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This paper studies the effect on the interaction structure arising from merging labels in
certain classes of random field models.
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1. Introduction

In image segmentation, often Markov random field models are employed in which neighbouring (blocks of) pixels have
a similar texture (Winkler, 2003). Generally, the number of different textures is unknown. To overcome this problem, a
number of Bayesian approaches have been suggested in which the unknown number is treated as a random variable. See
for example Dryden et al. (2003) or Green and Richardson (2002).
A practical problemwith such approaches is thatmostMarkov random field densities are known only up to a normalising

constant. When updating the number of labels in a Monte Carlo method, the normalising constants do not cancel out and
have to be approximated. A more fundamental problem is that the interaction structure may change dramatically if two
labels are pooled together, in other words, the class of Markov random fields is not closed under merging labels, making
them unnatural models in an unsupervised image segmentation algorithm. In contrast, we show that the class of Markov
connected componentmodels (Møller andWaagepetersen, 1998) is closed under the abovementioned operation, and hence
may provide more natural prior distributions for image segmentation with an unknown number of different textures.
The plan of this paper is as follows. First we review some random field theory in Section 2, while the main part

Section 3 studies the effect on the interaction structure of changes in the number of labels and compares the results to
their counterparts in a continuous point process set-up (Chin and Baddeley, 1999; Van Lieshout, 2000b). The paper closes
with a short discussion.

2. Markov and connected component fields

Let S = (s1, . . . , sm)be a collection of sites, for example a rectangle of raster points inZ2, and assume there is a symmetric,
reflexive relation ∼ on S. In a graph theoretical interpretation, the sites are the vertices, and an edge is drawn between s
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and r , s 6= r , if and only if s ∼ r . Each site is assigned a label, or colour, from the set Λ = {1, . . . , q}, q ≥ 2, at random
according to some probability distribution. The labels are nominal, so any convenient set of q distinct numbers may be used.
The random field thus obtained is denoted by X = (X1, . . . , Xm)with Xi indicating the label at si.
There is a close connection between the notion of a random field and the physics concept of a Gibbs state. Recall that X is

a Gibbs state with interaction potentials {VA : A ⊆ S} if

P(X1 = x1, . . . , Xm = xm) =
1
Z
exp

[∑
A⊆S

VA(x1, . . . , xm)

]
(1)

for VA : ΛS → R such that V∅(·) ≡ 0 and VA(·) depends only on the labelling at sites in A. The potential V is normalised
with respect to the label ` ∈ Λ if xa = ` for some sa ∈ A implies VA(x1, . . . , xm) = 0. In fact, any random field with strictly
positive probability mass function is a Gibbs state with respect to the `-canonical potential

VA(x1, . . . , xm) =
∑
B⊆A

(−1)|A\B| log P(xB)

where xBi = xi for si ∈ B and a pre-fixed value ` ∈ Λ otherwise. The notation |A \ B| is used for the cardinality of the set
A \ B. Note that the above potential is the unique potential that is normalised with respect to label `. See Geman (1990) for
proofs and further details. From now on, we shall assume that P(·) is strictly positive so that conditional distributions are
well-defined, and use the equivalent Gibbs state formulation ad libitum.
A random field X with probability mass function P(·) is said to be Markov with respect to ∼ if for all i = 1, . . . ,m the

conditional probability mass function

P(Xi = xi | Xj = xj, j 6= i) = P(Xi = xi | Xj = xj, sj ∼ si, j 6= i) (2)

depends only on xi and the labels at those sites sj, j 6= i, that share an edge with si (Geman, 1990; Winkler, 2003). The
collection ∂(si) of such sites is called the neighbourhood of the ith site; the conditional distributions in (2) are known as the
local characteristics.
To characterise Markov random fields, we need the following definition. A clique is a subset C ⊆ S for which s ∼ t

for all s, t ∈ C . Note that singletons and the empty set ∅ are cliques. Write C for the class of all cliques in S. Then, the
Hammersley–Clifford theorem (Clifford, 1990) states that X is a Markov random field if and only if its probability mass
function can be written as

P(X1 = x1, . . . , Xm = xm) =
∏
C∈C

ϕC (xc, sc ∈ C) (3)

for some interaction functions ϕC : ΛC → R+ defined for each clique C ∈ C. Eq. (3) amounts to saying that X is a Gibbs
state with interaction potentials VC (·) = logϕC (·) for non-empty C .
Recall that K ⊂ S is a connected component with respect to∼ if it is non-empty and for every s, r ∈ K there exists a path

s = s1 ∼ · · · ∼ sn = r with si ∈ K . TheMarkov connected component fields proposed by Møller and Waagepetersen (1998)
are defined by a factorisation of the form

P(X1 = x1, . . . , Xm = xm) =
1
Z

∏
K∈K(x)

Ψ (K , l(xK )) (4)

where the product ranges over themaximal∼-connected components of identically labelled sites in x = xS = (x1, . . . , xm),
l(xK ) denotes the common label in the component xK = (xk, sk ∈ K), andΨ (·, ·) is a positive function onK×Λ, the product
space of all ∼-connected components and the label set. Thus, the cliquewise interactions in (3) are replaced by connected
componentwise interactions in (4). In general, a local dependence definition does not exist, except when one of the colours
may be regarded as background.
It is important to observe that the two classes of Markov and Markov connected component fields are not comparable in

the sense that neither class is contained in the other; see Møller and Waagepetersen (1998) for further details.

2.1. Example: the Potts model

Let S = (s1, . . . , sm) be a finite set of sites,∼ a symmetric, reflexive relation on S andΛ = {1, . . . , q}, q ≥ 2, a finite set
of labels. Then the Potts model is aΛS-valued random variable with joint probability mass function

π(x1, . . . , xm) =
1
Z
exp

−β ∑
si∼sj,i<j

1
{
xi 6= xj

} . (5)

The parameter β ∈ R is known as the reciprocal temperature, Z is a normalising constant that ensures
∑

x∈ΛS π(x) = 1. The
special case q = 2 is known as the Ising model. Thus, (5) is of the form (1) with VC (xi, xj) = −β 1

{
xi 6= xj

}
for the two-point

set C = {si, sj}with si ∼ sj, and VA ≡ 0 otherwise.
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The Potts model (5) has local characteristics satisfying

P(Xi = ` | Xj = xj, j 6= i)
P(Xi = 1 | Xj = xj, j 6= i)

=

exp

[
−β

∑
si∼sj

1
{
xj 6= `

}]

exp

[
−β

∑
si∼sj

1
{
xj 6= 1

}]
for any ` ∈ Λ and xj ∈ Λ, j 6= i ∈ {1, . . . ,m}. We conclude that X is Markov with respect to ∼ for all q. If β > 0,
majority voting amongst the neighbours of the site of interest determineswhich label has the highest conditional probability
(ferromagnetic case); for β < 0, the label disagreeing with most of the neighbours’ ones is most likely (antiferromagnetic
case). The interaction functions are ϕ∅ = 1/Z , ϕC (xi, xj) = exp

[
−β 1

{
xi 6= xj

}]
for cliques C = {si, sj} that consist of a pair

of neighbours si ∼ sj, and ϕC ≡ 1 otherwise.
Since

π(x1, . . . , xm) =
1
Z
exp

[
−
β

2

∑
K∈K(x)

∑
si∈K

|{sj 6∈ K : si ∼ sj}|

]
,

the Potts model is also a Markov connected component field with respect to∼.

3. Merging of labels

Chin and Baddeley (1999) proved that the class of Markov connected component point processes (Baddeley and Møller,
1989) is closed under independent superposition. The purpose of the present paper is to show that the same is true for
Markov connected component fields under merging of labels. Formally, if X is a random field with labels in {1, . . . , q}, we
replace the labels q − 1 and q by a single label 0 (say) to obtain the field Y with label set {0, 1, . . . , q − 2}. Note that as
the labels are nominal values, we could have merged q − 1 and q into the label ‘‘q − 1’’ but chose not to in order to avoid
confusion.

Theorem 1. Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive relation on S and Λ = {1, . . . , q}, q ≥ 2, a
finite set of labels. Let X be a q-colour Markov connected component field (4) with respect to ∼ and define the random field Y
with values in {0, . . . , q− 2} by

Yi = Xi 1 {Xi ≤ q− 2}

for i = 1, . . . ,m. Then Y is a (q− 1)-colour Markov connected component field with respect to∼.

Proof. Fix y = (y1, . . . , ym) ∈ {0, . . . , q − 2}S . For x ∈ Ωy := {x ∈ ΛS : yi = xi 1 {xi ≤ q− 2} , i = 1, . . . ,m} and
j ∈ Λ, writeKj(x) for the set of maximal connected components in x labelled j. Note that the maximal j-labelled connected
components in x and y are identical for j = 1, . . . , q− 2, and that each (q− 1)- or q-component is part of a single maximal
0-component in y. Denote the family of these 0-components byK0(y). Now, the probability mass function of Y is given by

πY (y) =
∑
x∈Ωy

π(x) =
1
Z

q−2∏
j=1

∏
K∈Kj(y)

Ψ (K , j)×
∏

K∈K0(y)

 ∑
z∈{q−1,q}K

q∏
j=q−1

∏
L∈Kj(z)

Ψ (L, j)

 .
Thus, πY admits a factorisation of the form (4) with ΨY (K , j) = Ψ (K , j) for j ∈ {1, . . . , q − 2} and ΨY (K , 0) =∑

z∈{q−1,q}K
∏q
j=q−1

∏
L∈Kj(z) Ψ (L, j). The claim is proved. �

Note that the normalisation constant Z involved in πY is the same as that in π , the probability mass function of X .
The factorisation in the proof above should be compared to that for point processes; see Chin and Baddeley (1999) or

page 73 in Van Lieshout (2000a).
A similar result does not hold for Markov random fields. Here the situation is more complicated, reflecting the state of

affairs for Markov point processes with respect to superposition (Van Lieshout, 2000a,b).

Example 1. Consider the Potts model X introduced in Section 2.1, and, for i = 1, . . . ,m, set Yi = Xi1 {Xi ≤ q− 2}. Then,
using the notation introduced in the proof of Theorem 1, the probability mass function of Y equals

πY (y) =
∑
x∈Ωy

1
Z
exp

−β ∑
si∼sj,i<j

1
{
xi 6= xj

} = 1
Z
exp

−β ∑
si∼sj,i<j

1
{
yi 6= yj

}
×

∏
K∈K0(y)

 ∑
z∈{q−1,q}K

exp

−β ∑
si∼sj∈K ,i<j

1
{
zi 6= zj

} . (6)



1434 M.N.M. Van Lieshout, R.S. Stoica / Statistics and Probability Letters 80 (2010) 1431–1436

Fig. 1. Realisation of a Pottsmodel with q = 5 labels, the first-order neighbour relation si ∼ sj ⇔ ‖si−sj‖ ≤ 1, and interaction parameter β = 1 (leftmost
panel) after merging two labels successively (other panels).

Thus, (6) is proportional to the product of the probability mass functions of a Potts model with q− 1 colours and a Markov
connected component field on themaximal 0-components collected inK0(y). Realisations of X and Y with q = 5 are shown
in the two leftmost panels of Fig. 1.

We conclude that merging two labels in a Potts model yields a Markov connected component field with respect to the
underlying relation∼. One might wonder whether Y is Markov with respect to∼. This is not the case, as can be seen from
the following counterexample.

Counterexample 1. Consider the following configuration with sites indexed in row major order and first-order neighbour
relation si ∼ sj ⇔ ‖si − sj‖ ≤ 1, i = 1, . . . , 4:

0 ?
0/1 0

Let X be a Potts model with q = 3 and β = 1, and merge labels 2 and 3 into a single label 0 to obtain the random field
Y . We are interested in the marginal distribution of Y at the top right site given that its neighbours are assigned value 0.
Straightforward computations yield P(Y2 = 1; Y1 = Y3 = Y4 = 0) = 2e−2(1 + e−1)2/Z = P(Y1 = Y2 = Y4 = 0; Y3 = 1).
Also P(Y1 = Y2 = Y3 = Y4 = 0) = (2 + 2e−4 + 12e−2)/Z , and P(Y1 = Y4 = 0; Y2 = Y3 = 1) = 4e−4/Z . We obtain
respectively

P(Y2 = 1 | Y1 = Y3 = Y4 = 0) =
e−2(1+ e−1)2

1+ 7e−2 + 2e−3 + 2e−4

and

P(Y2 = 1 | Y1 = Y4 = 0; Y3 = 1) =
2e−2

1+ 2e−1 + 3e−2
.

Hence Y is not first-order Markov.

In the above counterexample, the neighbours of the pixel of interest were labelled 0. To see why, consider any q-colour
Markov random field X with respect to some relation∼, and focus (without loss of generality) on the site s1. Let (y2, . . . , ym)
be a configuration on the remaining sites such that the labels fall in {1, . . . , q− 2} on the neighbourhood ∂(s1) of s1. Define
Y as in Theorem 1. Then, for ` ∈ {1, . . . , q− 2} and y = (`, y2, . . . , ym),

P(Y1 = `; Yj = yj, j 6= 1) =
∑
x∈Ωy

P(X1 = l; Xj = xj, j 6= 1)

=

∑
x∈Ωy

P(X1 = ` | Xj = xj, sj ∈ ∂(s1))P(Xj = xj, j 6= 1)

= P(Y1 = ` | Yj = yj, sj ∈ ∂(s1))P(Yj = yj, j 6= 1)

where as beforeΩy = {x ∈ ΛS : yi = xi 1 {xi ≤ q− 2}}. Hence
P(Y1 = ` | Yj = yj, j 6= 1) = P(Y1 = ` | Yj = yj, sj ∈ ∂(s1))

for any ` 6= 0. Since probabilities add to unity, also
P(Y1 = 0 | Yj = yj, j 6= 1) = P(Y1 = 0 | Yj = yj, sj ∈ ∂(s1)).

For homogeneous models such as the Potts model in Counterexample 1, a single neighbour of the pixel of interest may
be set to zero without affecting the relation (2) for Y . A similar phenomenon is observed for Markov point processes that
are invariant under independent superposition up to second order (Van Lieshout, 2000a, p. 59–61).
Next, we turn our attention to the class of random fields that are both Markov and connected component Markov,

characterised by Møller and Waagepetersen (1998) by a factorisation of the probability mass function as follows:

π(x1, . . . , xm) =
1
Z

∏
K∈K(x)

∏
∅6=C∈C,C⊆K

Φ(C, l(xK )). (7)
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For instance for the Potts model introduced in Section 2.1,Φ(C, l(xK )) = exp[− β

2 |{sj 6∈ K : c ∼ sj}|] for C = {c}with c ∈ K
and 1 otherwise.
We have the following corollary to Theorem 1.

Corollary 1. Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive relation on S and Λ = {1, . . . , q}, q ≥ 2, a
finite set of labels. Let X be a q-colour Markov connected component field with respect to∼with a probability mass function given
by (7) and define the random field Y with values in {0, . . . , q− 2} by

Yi = Xi 1 {Xi ≤ q− 2}

for i = 1, . . . ,m. Then Y is a (q− 1)-colour Markov connected component field with respect to∼ with

Ψ (K , 0) =
∑

z∈{q−1,q}K

q∏
j=q−1

∏
L∈Kj(z)

∏
∅6=C∈C,C⊆L

Φ(C, j).

In general, Y is not a Markov random field; see Counterexample 1.
For any Markov random field, the following result holds true.

Theorem 2. Let S = (s1, . . . , sm) be a finite set of sites,∼ a symmetric, reflexive relation on S andΛ = {1, . . . , q}, q > 2, a finite
set of labels. Let X be a Markov random field (3)with respect to∼ and define the random field Y with values in {0, . . . , q− 2} by

Yi = Xi 1 {Xi ≤ q− 2}

for i = 1, . . . ,m. Then Y has probability mass function πY (y) given by∏
C3C⊆(∪K0(y))c

ϕC (yc, sc ∈ C)
∏

K∈K0(y)

 ∑
z∈{q−1,q}K

∏
C3C∩K 6=∅

ϕC (zc, sc ∈ C ∩ K ; yd, sd ∈ C \ K)

 .
Proof. Fix y = (y1, . . . , ym) ∈ {0, . . . , q − 2}S , and writeΩy := {x ∈ ΛS : yi = xi 1 {xi ≤ q− 2} , i = 1, . . . ,m}. Then the
probability mass function of Y is given by

πY (y) =
∑
x∈Ωy

π(x) =
∏

C3C⊆(∪K0)c

ϕC (yc, sc ∈ C)
∑

z∈{q−1,q}K0(y)

∏
C3C∩K0(y)6=∅

ϕC (zc, sc ∈ C ∩K0(y); yd, sd ∈ C \K0(y)).

The key observation is that if yi = 0 = yj and si ∼ sj then si and sj must belong to the same maximal 0-component in y, so
no clique can contain points from disjoint K , L ∈ K0(y). Consequently, πY is as claimed. �

Weconclude that Y is not necessarily aMarkov connected component field. A counterexample is theGeman andReynolds
field (Geman and Reynolds, 1992). More precisely, let S = {s1, s2} consist of two related sites, and take q = 6. Define a
random field X by its probability mass function π(x1, x2) ∝ exp [1/(|x1 − x2| + 1)] . Then clearly X is a Markov random
field with

φS(x1, x2) = exp [1/(|x1 − x2| + 1)] ,
φs1(x1) = φs2(x2) = 1, and the interaction function of the empty set equal to the normalising constant. However, by
arguments similar to those in Example A2 of Møller andWaagepetersen (1998), the density of Y does not factorise over the
maximal connected components.

4. Conclusion

In this paper, we considered the effect of merging labels on the interaction structure of random fields. It was shown
that the class of Markov connected component fields is closed under the merge operation, and explicit expressions were
derived for the component potentials. We then proved that the class of Markov random fields is not closed under the merge
operation, and the resulting random field does not necessarily satisfy the Markov connected component condition.
Our results suggest that models such as those proposed by Møller and Waagepetersen (1998) are natural prior

distributions for image segmentation with an unknown number of different textures. Except for trivial cases, Markov chain
Monte Carlo methods will be needed in order to calculate an ‘optimal’ segmentation. As such a Markov chain in principle
must be able to visit all possible labellings, transitions that assign label q or q − 1 to the 0-components of y, say, to obtain
x must be considered. There are many valid options, for example picking the two labels independently and uniformly.
Alternatively, and more naturally, one could sample from the conditional distribution π(x)1{x ∈ Ωy}/πY (y). For a Markov
connected component field, this conditional probability can be written as

∏
K∈K0(y)


q∏

j=q−1

∏
K∈Kj(x)

Ψ (K , j)

∑
z∈{q−1,q}K

q∏
j=q−1

∏
L∈Kj(z)

Ψ (L, j)

 (8)
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by the proof of Theorem 1, so the x-labels in different maximal 0-components of y are assigned independently. Switching
between labels in thisway is amenable to Gibbs sampling (Geman, 1990;Winkler, 2003) and involves no ratio of normalising
constants. Instead, a sample from (8) is required. Since single texture components tend be small compared to the image size,
and only two labels have to be considered, such label assignment is quite feasible.
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