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Abstract

Expansions in terms of Bessel functions are considered of the Kum-
mer function 1F1(a; c, z) (or confluent hypergeometric function) as
given by Tricomi and Buchholz. The coefficients of these expansions
are polynomials in the parameters of the Kummer function and the
asymptotic behavior of these polynomials for large degree is given.
Tables are given to show the rate of approximation of the asymptotic
estimates. The numerical performance of the expansions is discussed
together with the numerical stability of recurrence relations to com-
pute the polynomials. The asymptotic character of the expansions is
explained for large values of the parameter a of the Kummer function.
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1 Introduction

The expansions are in terms of the function Eν(z) which is related to the
ordinary Bessel function of the first kind. In Tricomi’s notation [15, p. 34]
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we have

Eν(z) = z−
1

2
νJν

(
2
√

z
)

=

∞∑

k=0

(−1)k
zk

k! Γ(ν + k + 1)
. (1.1)

It is an entire function of z. In terms of the modified Bessel function we can
write

Eν(−z) = z−
1

2
νIν

(
2
√

z
)

=
∞∑

k=0

zk

k! Γ(ν + k + 1)
. (1.2)

We consider expansions of the confluent hypergeometric function (also
called Kummer function)1

1F1

(
a
c
; z

)
=

∞∑

k=0

(a)k
(c)k

zk

k!
. (1.3)

Here, (a)k is the Pochhammer symbol defined by

(a)0 = 1, (a)k =
Γ(a + k)

Γ(a)
, k ≥ 1. (1.4)

Tricomi [15, §1.8] has given two expansions in terms of the function
Eν(z), and Buchholz [4, §7.4] has given a third example.

Tricomi 1

1F1

(
a
c
; z

)
= Γ(c)e

1

2
z

∞∑

n=0

2−nznAn(a, c)Ec−1+n(κz), (1.5)

where
κ = 1

2
c − a, (1.6)

and the first few coefficients An are given by

A0(a, c) = 1, A1(a, c) = 0, A2(a, c) = 1
2
c, A3(a, c) = −1

3
(c − 2a). (1.7)

They satisfy the recurrence relation

(n + 1)An+1 = (n + c − 1)An−1 − 2κAn−2, n ≥ 2, (1.8)

1This notation for the Kummer function is equivalent with the notation 1F1(a; c; z)
(also used here when appearing in the text) of [13] and M(a, c, z) of [3].
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and have the generating function

e2κw(1 − w)κ−
1

2
c(1 + w)−κ− 1

2
c =

∞∑

n=0

An(a, c)wn, |w| < 1. (1.9)

When c = 2a, that is, κ = 0, the right-hand side of (1.5) becomes the
power series expansion of the modified Bessel function. This follows from
E2a−1+n(0) = 1/Γ(n + 2a) and

A2n(a, 2a) =
(a)n
n!

, A2n+1(a, 2a) = 0, n = 0, 1, 2, . . . . (1.10)

This gives

1F1

(
a
2a

; z

)
= Γ

(
a + 1

2

)
e

1

2
z
(

1
4
z
) 1

2
−a

Ia− 1

2

(
1
2
z
)

, (1.11)

which is a known identity for the Kummer function.

Tricomi 2

1F1

(
a
c

; z

)
= Γ(c)ehz

∞∑

n=0

Bn(a, c;h)znEc−1+n(−az). (1.12)

The first few coefficients Bn are given by

B0(a, c;h) = 1, B1(a, c;h) = −ch,

B2(a, c;h) = −1
2(2h − 1)a + 1

2c(c + 1)h2.
(1.13)

They satisfy the recurrence relation

(n + 1)Bn+1 = ((1 − 2h)n − hc)Bn+

((1 − 2h)a − h(h − 1)(c + n − 1))Bn−1 − h(h − 1)aBn−2,
(1.14)

n ≥ 2, and have the generating function

e−aw(1 + (h − 1)w)−a(1 + hw)a−c =

∞∑

n=0

Bn(a, c;h)wn. (1.15)

This series converges for |w| < min(1/|h|, 1/|1 − h|).
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Buchholz

1F1

(
a
c
; z

)
= Γ(c)e

1

2
z

∞∑

n=0

2−nznPn(c; z)Ec−1+n(κz), (1.16)

where κ is given in (1.6). The first few coefficients Pn are given by

P0(c; z) = 1, P1(c; z) = 1
6z, P2(c; z) = 1

72

(
z2 + 12c − 24

)
,

P3(c; z) = 1
6480z

(
5z2 + 180c − 432

)
.

(1.17)

They satisfy the recurrence relation [1] (we write Pn(z) = Pn(c; z))

Pn(z) = z−
1

2
n

∫ z

0

(
1
4
uPn−1(u) + (c − 2)P ′

n−1(u) − uP ′′

n−1(u)
)

u
1

2
n−1 du,

(1.18)
where n ≥ 1, and have the generating function

e−
1

2
z(coth w−1/w)

(
sinh w

w

)c−2

=
∞∑

n=0

(−1)nPn(c; z)wn, |w| < π. (1.19)

From this expansion it follows that

Pn(c;−z) = (−1)nPn(c; z). (1.20)

In §2 we discuss the numerical aspects of these coefficients, in particular
the numerical stability of the recurrence relations for computing them. We
also consider the asymptotic nature for large values of a of the expansions in
(1.5) and (1.16), and our main conclusion is that Buchholz’ expansion gives
a good numerical performance. In §§3, 4 we give the large n asymptotic
behaviour of the coefficients An and Pn, together with tables showing the
rates of approximation.

Remark 1 The expansions in (1.5), (1.12), and (1.16) are in fact for the
ratio 1F1(a; c; z)/Γ(c), which is well-defined for c = −m, m = 0, 1, 2, . . .. We
have

lim
c→−m

1

Γ(c)
1F1

(
a
c

; z

)
=

(a)m+1 zm+1

(m + 1)!
1F1

(
a + m + 1

m + 2
; z

)
. (1.21)

Remark 2 In the expansions in (1.5) and (1.16) the same Bessel functions
are used, and we might wonder if

Pn(c; z)
?
= An(a, c), (1.22)
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but comparing the first few values of Pn and An and the completely different
nature of the generating functions for these coefficients, we conclude that
this is not true.

Remark 3 The expansions in (1.5) and (1.12) are mentioned in [3, p. 506]
and [13, §3.8], in the latter also with proofs. Analytical aspects of the ex-
pansions in (1.5) and (1.12) are discussed in [5], without details of numerical
experiments. Tricomi’s expansion (1.5) is used in [11] for the computation of
parabolic cylinder functions. In [1] and [2] Buchholz’ expansion is modified
to give an asymptotic expansion for the U−Kummer function in terms of
K−Bessel functions. In [1] several properties of the polynomials Pn(c; z) are
discussed, including a useful recurrence relation.

Remark 4 In [3, p. 506] another expansion in terms of Bessel functions is
given:

1F1

(
a
c
; z

)
=

∞∑

n=0

Cn(a, c)In(z), (1.23)

where the coefficients satisfy the recursion

Cn+1(a, c) = 2aCn(a + 1, c + 1)/c − Cn−1(a, c), (1.24)

with initial values C0(a, c) = 1, C1(a, c) = 2a/c. Observe that this recursion
is not a true recursion with fixed parameters a and c, which is inconvenient
for numerical computations, and that an explicit expression for investigating
the asymptotic behavior of Cn(a, c) seems not to be available. Also, the
Kummer function and the Bessel functions in (1.23) have the same argument,
whereas the Bessel functions in the expansions in (1.5) and (1.16) have
arguments depending on the parameters, which is interesting in connection
with the asymptotic nature of these expansions. For expansions in terms of
Bessel functions with argument 1

2z we refer to [13, §2.7], where also proofs
are given.

Remark 5 We don’t give details about the coefficients Bn in (1.12), be-
cause we can use the same methods as to be given for An. In addition, the
extra parameter h makes the analysis more complicated, and in practice one
may choose h = 1

2 as an obvious value. But then the expansion in (1.5) is
of more interest because the argument of the function Eν in that expan-
sion corresponds better with certain asymptotic expansions of the Kummer
function.
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2 Numerical and asymptotical aspects of the ex-
pansions

We discuss aspects of the rate of convergence of the expansions in (1.5) and
(1.16) and the stability of algorithms for computing the coefficients An(a, c)
and Pn(c; z) by recursion. We also consider the use of the expansions as
asymptotic expansions for large values of the parameters.

2.1 Numerical aspects

First we observe that the sequence of Bessel functions occurring in the ex-
pansions in (1.5) and (1.16) can be computed by a backward recurrence
scheme (the Miller algorithm). For details we refer to [6, §4.6].

For large values of ν (and all z such that z/ν = o(1)) the function Eν(z)
defined in (1.1) behaves as 1/Γ(ν + 1), and it follows from the asymptotic
expansions given in §3 that the terms in Tricomi’s expansion (1.5) behave
like

2−nznAn(a, c)Ec−1+n(κz) = O
(

(z/2)nnα

n!

)
, n → ∞, (2.1)

for some value α that depends on a and c. For Buchholz’ expansion in (1.16)
we have, using the asymptotic expansions given in §4,

2−nznPn(c; z)Ec−1+n(κz) = O
(

(z/2)nnβ

πnn!

)
, n → ∞, (2.2)

for some value β. Without doubt, because of the factor πn in (2.2), Buchholz’
expansion has a better rate of convergence than Tricomi’s expansion. The
significant difference with respect to large-n behavior of An(a, c) and Pn(c; z)
also follows from Table 3 and Table 4 given in §§3, 4.

On the other hand, for numerical computations the quantities An(a, c)
are easy to obtain by using the recurrence relation given in (1.8). For Pn(c; z)
the recurrence relation given in (1.18) is available, but this one is more
difficult to use in a numerical algorithm. Using Maple or Mathematica it is
easy to generate successive Pn(c; z) from (1.18), and it is possible to generate
a large number of these Pn(c; z) for storage.

However, in a numerical algorithm the polynomials Pn(c; z) can be com-
puted by using recurrence relations for its coefficients. Let us write

Pn(c; z) =

n∑

m=0

pn,mzm. (2.3)
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Table 1: Relative errors δ in the computation of exact values Pn(c; z) (by
using the generating function (1.19)) and finite precision values (by using
system (2.4)) for several values of z, c and n.

c = 17/4 c = −17/4

z Pn(c; z) δ z Pn(c; z) δ

n = 50 1 –0.7605e–28 0.10e–18 1 0.7873e–22 0.18e–18
5 –0.2581e–24 0.19e–18 5 0.2010e–20 0.20e–18

10 0.6326e–23 0.85e–17 10 –0.6819e–19 0.21e–16
25 0.7183e–19 0.32e–14 25 0.8530e–16 0.76e–15
50 –0.4943e–13 0.34e–14 50 0.1844e–11 0.30e–13

100 0.2466e–05 0.34e–12 100 –0.1503e–04 0.32e–12

n = 100 1 –0.1820e–52 0.30e–18 1 –0.1412e–46 0.16e–17
5 –0.3664e–48 0.14e–16 5 0.2170e–43 0.19e–17

10 –0.2390e–45 0.24e–16 10 0.2489e–41 0.11e–15
25 –0.4316e–40 0.98e–16 25 0.7255e–37 0.28e–13
50 0.8123e–34 0.50e–11 50 –0.2162e–31 0.18e–10

100 –0.2896e–26 0.48e–06 100 0.5772e–23 0.18e–08

Then from (1.18) we can easily obtain the following recursion:

pn,m =
pn−1,m−1 + 4(m + 1)(c − m − 2)pn−1,m+1

2(2m + n)
, 0 ≤ m ≤ n, (2.4)

assuming pn−1,m = 0 for m = −1, n, n + 1. After evaluating Pn−1(c; z)
and computing pn,m by using (2.4), the array of coefficients {pn−1,m}, 0 ≤
m ≤ n − 1, can be overwritten, so there is no need of storing many earlier
coefficients for the next recursion step.

Another important aspect of the recurrence relations is the numerical
stability. Considering the Perron-Kreuser theorem [7], it is easy to see that
all the three linearly independent solutions of (1.8) behave as O(nα) for some
α. From this we conclude that the recursion for An(a, c) is not unstable;
only the usual rounding errors occur.

For the polynomials Pn(c; z) we notice a more difficult problem to prove
the condition. The recurrence relation in (2.4) is rather simple, and intu-
itively we expect instability, because the Pn(c; z) become so small for large
values of n.

To verify what happens we have collected some results in Table 1 from
numerical experiments. We have computed in Maple the polynomials Pn(c; z)
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for c = ±17
4 and several exact values of z by using the generating function

in (1.19). Next to this we have used a finite precision algorithm based on
the recursion in (2.4) to compute P̃n(c; z), using c = 4.25 and values of z in
finite precision with Maple’s parameter Digits = 20. In the table we give
the relative error δ = |Pn(c; z)/P̃n(c; z) − 1| for n = 50 and n = 100. We
conclude from the table that indeed instabilities occur in the recursion in
(2.4) for larger z and n.

2.2 Asymptotic aspects of the expansions

The expansions in (1.5) and (1.16) contain Bessel functions with argument
2
√

κz, and in the literature asymptotic approximations of the Kummer func-
tions are given in terms of J−Bessel functions, for a → −∞, see [13, p. 68].
For a → +∞ complete expansions in terms of the I−Bessel functions are
given in [13, p. 80]. In these results the Bessel functions have the same argu-
ment as in (1.5) and (1.16), and also the orders of the first Bessel functions
are the same. This indicates that the expansions in (1.5) and (1.16) may
have an asymptotic character for large values of a.

In Tricomi’s expansion (1.5) the coefficients are polynomials of a, and
this makes the expansion not very useful as an asymptotic series for large
|a|, unless |z/κ| is quite small. In this connection, see also [13, p. 68], where
it is shown that (1.5) has an asymptotic character for large values of κ when
|z| = O(|κ|ρ) if 0 ≤ ρ < 1

3 .
Buchholz [4, §7.4] derived the expansion in (1.16) to obtain asymptotic

approximations of the Kummer function for large values of κ = 1
2c−a, or for

the Whittaker function Mκ,µ(z). Buchholz remarked that a Poincaré-type
expansion for large κ is difficult to obtain. Notice that in the expansion in
(1.16) the parameter κ only shows up in the argument of the Bessel function,
and the parameter c should be fixed. So, we expect that for the F−Kummer
function the expansion in (1.16) can be used for large values of |a|.

Indeed, the asymptotic character of Buchholz’ expansion (1.16) for large
values of κ follows from estimating the terms for fixed n. First we use [3,
(9.1.60)] |Jν(z)| ≤ 1 when z ≥ 0, ν ≥ 0. This gives for the terms in (1.16)
with c − 1 + n ≥ 0 and κz > 0 the estimate (see also (1.1))

2−nznPn(c; z)Ec−1+n(κz) =

2−nznPn(c; z)(κz)−
1

2
(c−1+n)Jc−1+n (2

√
κz) = O(z/κ)

1

2
n,

(2.5)

as κ → +∞. It follows that (1.16) has an asymptotic character for large
values of κ (with κz > 0) when |z| = o(κ), which, indeed, is much better
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Table 2: Relative errors δ in the computation of Buchholz’ expansion (1.16)
with terms up to and including n = 5 and n = 10 for a = −500, c = ±17

4 ,
and several values of z.

c = 17/4 c = −17/4

z δ z δ

n = 5 1 0.79e–12 1 0.15e–10
5 0.12e–08 5 0.35e–09

10 0.17e–07 10 0.14e–07
25 0.50e–05 25 0.13e–05
50 0.66e–04 50 0.23e–03

n = 10 1 0.55e–19 1 0.92e–18
5 0.16e–16 5 0.71e–16

10 0.44e–17 10 0.13e–14
25 0.15e–11 25 0.19e–11
50 0.11e–06 50 0.88e–09

than for Tricomi’s expansion (1.5).
When κz < 0 the functions Eν(z) become modified Bessel functions (see

(1.2)). For these functions we have [3, (9.6.20)]

Iν(z) =
1

π

∫ π

0
ez cos θ cos(νθ) dθ + O(1) = ez + O(1) (2.6)

for z ≥ 0, ν ≥ 0. So, also when κz < 0, we need the condition |z| = o(κ).
In Table 2 we give the relative errors δ in the computation of Buchholz’

expansion (1.16) with terms up to and including n = 5 and n = 10 for
a = −500, c = ±17

4 , and several values of z. The relative error is computed
by verifying the recurrence relation

c(c − 1)1F1

(
a

c − 1
; z

)
+ c(1 − c − z)1F1

(
a
c
; z

)
+

z(c − a)1F1

(
a

c + 1
; z

)
= 0.

(2.7)

for the computed F−functions.
For similar negative values of z and for a = +500 the results are the

same, and we conclude that Buchholz’ expansion (1.16) is very well suited
for evaluating the Kummer function 1F1(a; c; z) for large values of |a|.
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3 Asymptotic expansion for An(a, c)

We follow the same approach as in [10]. From (1.9) we obtain the Cauchy
integral

An(a, c) =
1

2πi

∫

C

e(p−q)w(1 − w)p(1 + w)q
dw

wn+1
, (3.1)

where
p = −a, q = a − c, (3.2)

and C is a circle around the origin with radius less than unity.
We observe that the singularities at ±1 are the sources for the main

asymptotic contributions. We integrate around a circle with radius R > 1,
avoiding branch cuts running from ±1 to ±∞. The contribution from the
circular arc is O(R−n), which is exponentially small with respect to the main
contributions. The loops around the branch cuts are denoted by L± and the
contributions from the loops by I±.

For the loop around the singular point w = 1 we substitute w = es, and
obtain

I+ =
2qep−q

2πi

∫

C+

g(s)
(
seπi

)p
e−ns ds, (3.3)

where

g(s) =

(
es − 1

s

)p (es + 1

2

)q

e(p−q)(es−1), (3.4)

and C+ is the image of L+. C+ is a contour that encircles the origin in the
clockwise fashion. For the asymptotic analysis we extend C+ to +∞. That
is, we start the integration along the contour C+ at s = +∞, with ph s = 2π,
turn around the origin in the clock-wise direction, and return to +∞ with
ph s = 0.2

We apply Barnes’ lemma (also called Watson’s lemma for loop integrals),
see [12, p. 120] and [16, p. 48]. We expand

g(s) =
∞∑

k=0

gk(p, q)sk, (3.5)

substitute this in (3.3). This gives

I+ ∼ 2qep−q

2πi

∞∑

k=0

gk(p, q)Fk, (3.6)

2With ph z we denote the phase (or argument) of the complex number z.
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where

Fk =
1

2πi

∫

C+

(
seπi

)p
ske−ns ds. (3.7)

To evaluate the integrals we turn the path by writing s = e−πit, and use
the representation of the reciprocal gamma function in terms of the Hankel
contour; see [14, p. 48]. The result is

Fk = n−p−k−1 (−1)k

Γ(−p − k)
= n−p−k−1 (1 + p)k

Γ(−p)
. (3.8)

This gives the expansion

I+ ∼ 2qep−q

np+1Γ(−p)

∞∑

k=0

(1 + p)k
nk

gk(p, q), n → ∞. (3.9)

The expansion for I−, the contribution from the loop around the branch
point w = −1, follows in a similar manner. It follows also by using the
substitution w → −w in (3.1) and observing the symmetry with the previous
case: change the sign of κ (which involves interchanging p and q), and include
a factor (−1)n. This gives

I− ∼ (−1)n
2peq−p

nq+1Γ(−q)

∞∑

k=0

(1 + q)k
nk

gk(q, p), n → ∞. (3.10)

These two expansions give the compound expansion for An:

An(a, c) ∼ I+ + I−, n → ∞, (3.11)

and this holds for fixed values of p and q (or κ and c).
The first few coefficients gk(p, q) are

g0(p, q) = 1, g1(p, q) = 1
2 (3p − q) ,

g2(p, q) = 1
24

(
13p − 9q + 3(3p − q)2

)
,

g3(p, q) = 1
48

(
8(p − q) + (3p − q)(13p − 9q) + (3p − q)3

)
,

g4(p, q) = 1
5760

(
30(13p − 9q)(3p − q)2 + 15(3p − q)4+

238p − 270q − 3090pq + 2285p2 + 885q2
)
.

(3.12)

In Table 3 we give the relative errors δ when we use the expansions in
(3.9) and (3.10) with terms up and including k = 3, for several values of a,
c and n. We also give the values of An(a, c).
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Table 3: Relative errors δ in the asymptotic expansions in(3.9) and (3.10)
for several values of a, c and n.

c = 2.25 c = −2.25

a An(a, c) δ a An(a, c) δ

n = 50 0.5 0.4375e+1 0.99e–8 0.5 0.2036e–1 0.22e–5
2.5 0.2260e+2 0.97e–7 2.5 0.6040e+1 0.87e–6
5.0 0.1432e+4 0.26e–3 5.0 0.4164e+3 0.59e–3
7.5 0.3041e+5 0.22e–1 7.5 0.9474e+4 0.34e–1

n = 100 0.5 0.7153e+1 0.51e–9 0.5 0.1456e–1 0.28e–7
2.5 0.6054e+2 0.66e–8 2.5 0.1571e+2 0.61e–7
5.0 0.1690e+5 0.22e–4 5.0 0.4604e+4 0.54e–4
7.5 0.1351e+7 0.26e–2 7.5 0.3842e+6 0.44e–2

3.1 Integer values of p or q

The expansion for I+ vanishes when p = 0, 1, 2, . . ., and similar for I− when
q = 0, 1, 2, . . .. This is in agreement with the different nature of the points
w = ±1 in (3.1). When both p and q are equal to non-negative integers, the
singularities disappear, and An becomes exponentially small for large values
of n. In other words, the expansion in (1.9) converges for all finite complex
w when κ − 1

2c = j and −κ − 1
2c = k, j, k = 0, 1, 2, . . ..

For the a and c parameters of the 1F1 this means (see (1.6)) a = −j,
c−a = −k. When a = −j the 1F1 reduces to a polynomial; when c−a = −k
it reduces to an exponential function times a polynomial, as follows from

1F1

(
a
c

; z

)
= ez

1F1

(
c − a

c
; −z

)
. (3.13)

For an interpretation of 1F1(a; c; z)/Γ(c) for c = 0,−1,−2, . . ., see (1.21).
When p and q are both equal to non-negative integers we proceed as

follows (for p = q we refer to (1.10)). We expand

(1 − w)p(1 + w)q = (1 − w0)
p(1 + w0)

q

max(p,q)∑

k=0

ck(w − w0)
k, (3.14)

where w0 = n/(p − q). This value w0 is the saddle point of the function
e(p−q)ww−n.

12



Substituting the expansion (3.14) in (3.1) gives

An(a, c) = (1 − w0)
p(1 + w0)

q (p − q)n

n!

max(p,q)∑

k=0

ck

(p − q)k
φk, (3.15)

where

φk =
(p − q)k−n n!

2πi

∫

C

(w − w0)
ke(p−q)w dw

wn+1
, (3.16)

These φk are polynomials in n and can be obtained from the recursion
relation

φk+1 = −k (φk + nφk−1) , k ≥ 0, φ0 = 1. (3.17)

The first few are

φ1 = 0, φ2 = −n, φ3 = 2n, φ4 = 3n(n − 2). (3.18)

From (3.17) and induction it follows that the degrees of φ2k and φ2k+1

equals k. This, together with the fact that ck = O(n−k) shows that the
finite expansion in (3.15) has an asymptotic character for large values of n.

3.2 An alternative expansion for An(a, c)

In the method for obtaining the expansions for I± by using (3.1) the main
contributions come from the points w = ±1. In this section we expand
e(p−q)w in a two-point Taylor expansion at w = ±1. In this way an al-
ternative asymptotic representation can be obtained. For more details on
two-point Taylor expansions we refer to [8, 9].

We write

f(w) = erw =
∞∑

m=0

(am + wbm)
(
w2 − 1

)m
, r = p − q. (3.19)

The function f satisfies f ′ = rf , hence we have the relations

2(m + 1)am+1 = rbm,

2(m + 1)bm+1 = ram − (2m + 1)bm,
(3.20)

m = 0, 1, 2, . . ., with starting values a0 = cosh r, b0 = sinh r.
Putting the expansion in (3.1) we obtain

An(a, c) =

∞∑

m=0

(−1)m (amHm(p, q;n) + bmHm(p, q;n − 1)) , (3.21)
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where

Hm(p, q;n) =
1

2πi

∫

C

(1 − w)p+m(1 + w)q+m dw

wn+1
. (3.22)

This function can be written in the form

Hm(p, q;n) =

n∑

k=0

(−1)k
(

p + m
k

)(
q + m
n − k

)
. (3.23)

By symmetry we have

Hm(p, q;n) = (−1)nHm(q, p;n). (3.24)

For large n the representation in (3.23) is not a convenient one, and we write
it as a Gauss hypergeometric function. We use the loop integral given in
[14, p. 111].

First we write

Hm(p, q;n) =
2p+m

2πi

∫ (1+)

0

(
1 − 1

2
w
)p+m

wq+m dw

(w − 1)n+1
, (3.25)

and obtain

Hm(p, q;n) =
2p+mΓ(q + m + 1)

Γ(q + m + 1 − n)n!
2F1

(
−p − m, q + m + 1

q + m + 1 − n
; 1

2

)
. (3.26)

By using the many transformations for the Gauss functions we can write
these in different forms, for example, by using

2F1

(
a, b
c

; z

)
= (1 − z)−a

2F1

(
a, c − b

c
;

z

z − 1

)
. (3.27)

This gives

Hm(p, q;n) =
Γ(q + m + 1)

Γ(q + m + 1 − n)n!
2F1

(
−p − m, − n
q + m + 1 − n

; −1

)
. (3.28)

Because n is an integer, this 2F1 is a finite sum, and it can be written in the
form (3.23). Another form is

Hm(p, q;n) = Γ(n − p − q − 2m) ×(
(−1)n2p+m

Γ(−q − m)Γ(n − p − m + 1)
2F1

(
−p − m, q + m + 1

n − p − m + 1
; 1

2

)
+

2q+m

Γ(−p − m)Γ(n − q − m + 1)
2F1

(
−q − m, p + m + 1

n − q − m + 1
; 1

2

))
.

(3.29)
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The symmetry relation (3.24) gives other forms of (3.26) and (3.28), whereas
(3.29) remains the same.

The Gauss function in (3.28) reduces to a finite sum when p + m =
0,−1,−2, . . . (and the same for the version for Hm(q, p;n) when q + m is a
non-positive integer).

The representation in (3.29) is very convenient for evaluating Hm(p, q;n)
for large values of n, because the series of the Gauss functions are convergent
asymptotic series for large n. Both Gauss functions behave like 1+O(1/n),
and hence, by using Γ(n + a)/Γ(n + b) = na−b(1 + O(1/n)),

Hm(p, q;n) = 2mn−m−1

(
(−1)n2pn−q

Γ(−q − m)
+

2qn−p

Γ(−p − m)
+ O

(
n−1

))
, (3.30)

as n → ∞, with p, q,m fixed, and p + m and q + m not both equal to a
non-positive integer.

This shows the asymptotic nature of the expansion in (3.21), and because
the expansion in (3.19) converges absolute and uniformly for w in compact
sets of C, the expansion in (3.21) is convergent as well. The coefficients am

and bm can be computed by using the recursion in (3.20). For Hm a three-
term recurrence relation also exists (because it is related with the Gauss
function. To find this recursion , we start with the relation

A 2F1

(
a − 1, b
c + 1

; z

)
+ B 2F1

(
a, b
c

; z

)
+ C 2F1

(
a − 2, b
c + 2

; z

)
= 0. (3.31)

By using several contiguous relations [3, p. 558] we find

A = A0 + A1z + A2z
2 + A3z

3, (3.32)

where

A0 = −(a − 1)(a − 2)c(c + 1),

A1 = −(a − 1)(a − 2)(c + 1)(a − 4c − 3 + 3b),

A2 = −(c + 1)(b − c)(b − c − 1)(4a − c − 6),

A3 = (c + 1)(b − c)(b − c − 1)(a − b − 1),

(3.33)

and

B = (a − 1)c(c + 1)(a − 2 + (b − 1 − c)z)(1 − z)2,

C = (c + 1 − b)(a − c − 3)(a − c − 2)(a − 1 + z(b − c))z.
(3.34)
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Using representation (3.28) we find

PHm+2(p, q;n) = QHm+1(p, q;n) + RHm(p, q;n), (3.35)

where

P = (p + q + 2m − n + 4)(p + q + 2m − n + 3),

Q = p2 + q2 + 6pq + 11(p + q + 2m) + 8m(p + q + m) +

16 − 2n(p + q) − 4nm − 6n,

R = −4(p + m + 1)(q + m + 1).

(3.36)

4 Asymptotic expansion for Pn(c; z)

From (1.19) we obtain

(−1)nPn(c; z) =
1

2πi

∫

C

e−
1

2
z(coth w−1/w)

(
sinhw

w

)c−2 dw

wn+1
, (4.1)

where C is a circle around the origin with radius smaller than π. The sin-
gularities of the integrand of (4.1) are of a different type, compared with
those of §3: at w = ±πi we have essential singularities, and we need Bessel
functions for the asymptotic form.

We observe that for z = 0 we have

P2n+1(c; 0) = 0, P2n(c; 0) = 22n
B−µ

2n (−1
2µ)

(2n)!
, µ = c − 2. (4.2)

where Bµ
n(z) is the generalized Bernoulli polynomial defined by the gener-

ating series

wµewz

(ew − 1)µ
=

∞∑

n=0

Bµ
n(z)

n!
wn, |w| < 2π. (4.3)

The large n asymptotic of the generalized Bernoulli polynomial can be found
in [10, §2.3].

When z 6= 0 we first transform w → iw, because we like to have the
singularities on the real line, as for An(a, c) in §3. We obtain

Pn(c; z) = inPµ
n (iz), (4.4)

where

Pµ
n (z) =

1

2πi

∫

C

ez(cot w−1/w)/2

(
sin w

w

)µ dw

wn+1
, µ = c − 2. (4.5)
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We enlarge the radius of the circle in (4.5) and integrate around a circle
with radius R, π < R < 2π, avoiding branch cuts running from ±π to ±∞.
The contribution from the circular arc is O(R−n), which is exponentially
small with respect to the main contributions. The loops around the branch
cuts from ±π to ±∞ are denoted by L± and the contributions from the
loops by I±.

4.1 The evaluation of I+

For the singularity at +π we substitute w = πes. We have, as s → 0,

sinw = sin π (1 − es) = −πs − 1
2
πs2 + O(s3),

cot w = cot π (es − 1) =
1

πs
− 1

2π
+ O(s).

(4.6)

After these preparations we can write

I+ =
e−3z/(4π)π−n

2πi

∫

L+

eφ(s)f(s)(−s)µez/(2πs)−ns ds, (4.7)

where

φ(s) = 1
2
z

(
cot π (es − 1) − 1

πs
+

1

2π
− 1

π

(
e−s − 1

))
,

f(s) =

(
sin π(1 − es)

−sπes

)µ

.

(4.8)

By writing s = eπit we turn the contour to the negative real axis and obtain

I+ =
e−3z/(4π)π−n

2πi

∫

L

g(t)tµe−z/(2πt)+nt dt, (4.9)

where L is the Hankel contour and g(t) = eφ(−t)f(−t). That is,

g(t) = exp
(
−1

2z
(
cot π(1 − e−t) − 1

πt − 1
2π + 1

π (et − 1)
))

×
(

et sinπ(1 − e−t)

tπ

)µ

.
(4.10)

The function g(t) in (4.10) is analytic at the origin and we can expand it
in powers of t, interchange integration and summation, and obtain a series of
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Bessel functions with decreasing orders. Instead we use integration by parts,
and obtain a compound expansion in which two Bessel functions occur.

To see the connection with Bessel functions we mention the integral
representation (see [14, p. 277])

(
1
2
z
)−ν

Jν(z) =
1

2πi

∫

L

es−z2/(4s) ds

sν+1
, (4.11)

valid for all complex z and ν. In our approach we need the integral

Φµ(z) =
1

2πi

∫

L

ent−z/(2πt)tµ dt =
( z

2πn

)(µ+1)/2
J−µ−1

(√
2nz/π

)
, (4.12)

which can be written in the form (see (1.1))

Φµ(z) = n−µ−1E−µ−1

(nz

2π

)
, (4.13)

showing that Φµ(z) is an entire function of its argument z.
Next we write

g(t) = g(0) + g′(0)t + t2h(t), (4.14)

where the derivative is with respect to t. Substituting this in (4.9) we obtain,
after integrating by parts,

I+ =
e−3z/(4π)

πn
×

(
g(0)Φµ(z) + g′(0)Φµ+1(z) +

1

2πi n

∫

L

g1(t)t
µe−z/(2πt)+nt dt

)
,

(4.15)

where
g1(t) = −

(
t2h′(t) +

z

2π
h(t) + (µ + 2)th(t)

)
. (4.16)

Continuing this procedure, we obtain

I+ ∼ e−3z/(4π)

πn

(
Φµ(z)

∞∑

k=0

Ak(µ, z)

nk
+ Φµ+1(z)

∞∑

k=0

Bk(µ, z)

nk

)
, (4.17)

where Ak(µ, z) = gk(0) and Bk(µ, z) = g′k(0) and the functions gk(t) are
defined by

gk+1(t) = −
(
t2h′

k(t) +
z

2π
hk(t) + (µ + 2)thk(t)

)
, k = 0, 1, 2, . . . , (4.18)

with g0(t) = g(t). The functions hk(t) follow from

gk(t) = gk(0) + g′k(0)t + t2hk(t), k = 0, 1, 2, . . . . (4.19)
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4.2 The evaluation of I
−

For the singularity at −π we can use a symmetry argument by observing
that we can transform in (4.5) w → −w, which is equivalent with changing
the sign of z and adding a front factor (−1)n. This gives

I− ∼ (−1)n
e3z/(4π)

πn

(
Φµ(−z)

∞∑

k=0

Ak(µ,−z)

nk
+ Φµ+1(−z)

∞∑

k=0

Bk(µ,−z)

nk

)
.

(4.20)

4.3 The coefficients of the expansions

The first few coefficients in the expansion (4.17) are given by

A0(µ, z) = 1, B0(µ, z) =
1

24π

(
12µπ − 13z + 4zπ2

)
, (4.21)

A1(µ, z) = − z

2304π3

(
−96zπ3 − 288zπ − 104z2π2 − 312zµπ

+169z2 + 16z2π4 + 96zπ3µ + 144µ2π2 − 192µπ4 + 48µπ2
)
,

(4.22)

B1(µ, z) = − 1

829440π4

(
8640zµ3π3 − 51840z2π4µ − 28080z2µ2π2

+2880z3π5µ + 27648z2π6 − 10985z4 − 138240zπ5 − 5760z3π5

+10140z4π2 − 3120z4π4 + 320z4π6 + 1440z3π3 + 56160z3π

+34560zπ5µ2 − 216000zπ3µ2 + 60480z2π2µ + 30420z3µπ

−18720z3π3µ + 138240zπ5µ + 8640z2π4µ2 + 69120µπ4

−656640zπ3µ − 276480µπ6 + 103680µ3π4 + 241920µ2π4

−138240µ2π6 − 414720zπ3 + 209088z2π2 − 138240z2π4
)
.

(4.23)

4.4 The complete expansion for Pn(c; z)

Using (4.17) and (4.20), we obtain

Pµ
n (z) ∼ e−3z/(4π)

πn

(
Φµ(z)

∞∑

k=0

Ak(µ, z)

nk
+ Φµ+1(z)

∞∑

k=0

Bk(µ, z)

nk

)
+

(−1)n
e3z/(4π)

πn

(
Φµ(−z)

∞∑

k=0

Ak(µ,−z)

nk
+ Φµ+1(−z)

∞∑

k=0

Bk(µ,−z)

nk

)
,

(4.24)
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Table 4: Relative errors δ in the asymptotic expansions in (4.24) for several
values of z, µ and n.

µ = 2.25 µ = −2.25

z Pµ
n (z) δ z Pµ

n (z) δ

n = 50 0.5 0.1057e–28 0.56e–4 0.5 0.7438e–22 0.28e–3
2.5 0.5370e–25 0.62e–3 2.5 0.4067e–20 0.38e–2
5.0 0.1129e–22 0.26e–2 5.0 0.1431e–18 0.22e–1

10.0 0.1544e–19 0.75e–2 10.0 0.3374e–16 0.25e–0

n = 100 0.5 0.3618e–53 0.41e–5 0.5 0.7474e–46 0.70e–4
2.5 0.9816e–49 0.20e–3 2.5 0.3156e–43 0.95e–3
5.0 0.9190e–46 0.78e–3 5.0 0.5282e–41 0.55e–2

10.0 0.1129e–41 0.21e–2 10.0 0.1181e–37 0.58e–1

where Φµ(z) is defined in (4.12) and (4.13). This expansion holds for n → ∞,
uniformly with respect to bounded complex z and µ. In particular the
expansion is valid for small z. When z is bounded away from 0 we can
expand the Bessel functions (see (4.12)) in terms of their large argument
asymptotic expansions.

In Table 4 we give the relative errors δ when we use the expansions in
(4.24) with terms up and including k = 2, for several values of z, µ and n.
We also give the values of Pµ

n (z).
For the expansion in (1.16) we need the relation in (4.4), and we have

1F1

(
a
c
; z

)
= Γ(c)e

1

2
z

∞∑

n=0

2−n(iz)nPµ
n (iz)Ec−1+n(κz). (4.25)

When we use this representation with z real and want to estimate the rate
of convergence, we have to write in (4.24) Φµ(iz) and the coefficients in the
expansions in real and imaginary parts. For example, when we write

Eν(iy) = E(r)
ν (y) + iE(i)

ν (y), (4.26)

and use the first term approximation

Pn(c; z) ∼ in

πn

(
e−3iz/(4π)Φµ(iz) + (−1)ne3iz/(4π)Φµ(−iz)

)
, (4.27)
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then we have, using (4.13),

P2n(c; z) ∼ 2(−1)n(2n)1−c

π2n

(
cos ζ E

(r)
1−c(y) + sin ζ E

(i)
1−c(y)

)
,

P2n+1(c; z) ∼ 2(−1)n+1(2n + 1)1−c

π2n+1

(
cos ζ E

(i)
1−c(y) − sin ζ E

(r)
1−c(y)

)
,

(4.28)
where

ζ =
3z

4π
, y =

nz

2π
. (4.29)

5 Concluding remarks

Comparing Tricomi’s expansion (1.5) with Buchholz’ expansion (1.16) we
prefer the latter because of the faster convergence properties. In addition,
it performs better in the asymptotic evaluation of the Kummer function for
large values of a. The computation of An(c; z) is straightforward, without
instabilities, whereas Pn(c; z) are more difficult to evaluate, and the compu-
tation in finite arithmetic may become unstable.

Tricomi’s expansion (1.5) has been used in [11] for the computation of
parabolic cylinder functions, and we expect better representations by using
Buchholz’ expansion.
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