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Abstract. In this paper we discuss term-rewriting systems with rule priorities, which simply is a 
partial ordering on the rules. The procedural meaning of such an ordering then is, that the 
application of a rule of lower priority is allowed only if no rule of higher priority is applicable. 
The semantics of such a system is discussed. It turns out that the class of all bounded systems 
indeed has such a semantics. 

1. Introduction 

Term-rewriting systems are an important tool to analyze the consistency of 
algebraic specifications, and are also becoming increasingly important for 
implementation. Some general references for algebraic specifications are [9, 11, 12, 
15, 18]. Some general references for term-rewriting systems are [13, 19, 20, 16]. 

For implementation purposes it is sometimes convenient to write down term­
rewriting systems (TRS's) where some ambiguities between the rules are present, 
while adopting some restrictions on the use of these rewrite rules to the effect that 
the ambiguities are not actually "used". The mechanism that we discuss in this 
paper consists of giving priority to some rules over others in cases of "conflict". 
Such a priority ordering on the rules has been used in a rather extended way, as is 
for instance the case in programming languages such as HOPE, ML or MIRANDA 

and in syntax editors like those used in MENTOR or TYPOL, where the pretty 
printer is directed by pattern matching rules with priorities, or in specification 
languages such as OBJ [10] where reductions of terms can be forbidden depending 
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on their sorts. In fact, our interest in this subject began when we tried to give a 
formal semantics to Backus' system FP (Functional Programming) (see (1, 2]). This 
frequent use is due to the strong (although natural) expressive power of such a 
system and its intuitive appeal. Another extension of the purely equational formal­
ism, which retains the initial algebra semantics and also increases expressive power, 
is the introduction of conditional equations, see [21, 14, 5]. 

Here we consider a TRS with rule priorities, called a priority rewrite system (PRS). 
We study the effect of such a priority assignment to rules, without imposing further 
restrictions such as choosing a certain reduction strategy in combination with rule 
priorities. That is, we wish to consider the priority mechanism on itself. As to the 
executability of the specification given by a PRS this is a drawback: in general a 
PRS without more will not be an executable specification. In fact, it turns out that 
it is rather problematic whether a "pure PRS" has a well-defined semantics at all. 
It may even be the case that a pure PRS does not possess a well-defined semantics 
(i.e. does not determine an actual rewrite relation). Apart from the fact that PRS's 
have some interesting mathematical properties, we find that it is worth-while to 
establish some facts about them in order to get a better understanding of both their 
expressive power and their complications. Moreover, a decent subclass of PRS's 
can be determined which does possess a well-defined semantics and we will also 
establish a general theorem ensuring confluence for several of such PRS's. A typical 
example we will consider is the class of all TRS's with a so-called specificity ordering. 

The theory of PRS's is also useful in connection with modularity: we can break 
up a specification in a number of (parametrized) smaller specifications in ways that 
are not expressible by means of equational specifications. 

This article is a major revision of [3], which itself is a revision of [2]. 

2. Priority rewrite systems 

In this section we will present the basic definitions of term-rewriting systems with 
rule priorities (often called a priority rewrite system or PRS, for short) and define 
what it means for such a PRS to be well-defined. We start out with some examples, 
to give the reader an intuitive idea of a PRS. 

Example 2.1. Consider the signature for the natural numbers with predecessor, 
successor, sum and zero, and the rewrite rules in Table 1. Without the arrow this 

Table I. 

rl: P(0)-+0 
r2: P(S(x))-> x 

l r3: 
r4: 

x+o-x 
x+y-S(x+P(y)) 
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set of rewrite rules is ambiguous (i.e. more than one rule can be applied to a certain 

redex), and does not implement our intention (to specify predecessor and sum on 

the natural numbers). The arrow now means that the third rule (r3) has priority 

over the fourth (r4). However, there is a caveat: the term x+ P(S(O)) does not 

match the left-hand side of r3; but this does not mean that r3 may be "by-passed" 

in favour of applying r4 on this term. We may only by-pass r3 if, in no subsequent 

reduction of y = P(S(O)), we will get a match with the left-hand side of r3. So, in 

this case, we are not allowed to by-pass r3 and the correct reduction is 

x + P(S(O)) ' 2___,. x + 0 r 3___,. x. 

Example 2.2. Finite sets of natural numbers with insertion and deletion. The sig­

nature consists of 

sorts 
functions 

constants 

variables 

NAT, SET 
S:NAT ..... NAT 

ins:NATxSET....,SET 

del:NATxSET ..... SET 

OE NAT 

0ESET 

x, y, .. . E NAT 

X, Y, ... ESET. 

The rewrite rules for insertion and deletion are shown in Table 2. Again, r3 has 

priority over r4. That r4 is "correct" is because if one is allowed to use it, then 

del(x, X) does not match the left-hand side of r3, so X is not of the form ins(x, Y); 

in other words, "x EX", hence X -{x} = X. 

Table 2. 

rl: ins(x,ins(x,X))-.ins(x,XJ 
r2: ins(x, ins(y, X)) - ins(y, ins(x, X)) 

r3: del(x, ins(x, X )) - del(x, X) 

r4: del(x, Xl- X 

Example 2.3. The factorial function. Add rules for multiplication to the rules of 

Table I. Then factorial can be specified as in Table 3. 

Table 3. 
------···-----

l Fae( OJ- 5(0) 
Fac(x)-x· Fac(P(x)) 

Example 2.4. In a signature containing booleans, one may encounter rules for 

equality as in Table 4. Thus, for any specification, containing booleans, adding these 
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Table 4. 

l eq(x,x)-T 
eq(x,y)- F 
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equations describes the equality function on a certain sort. We claim that, without 
using rewrite rules with priority, such a parametrized specification cannot be found! 
Even when using auxiliary sorts and functions, or even conditional equations, such 
a specification cannot be found. One can see this from the fact that otherwise each 
initial algebra would be decidable, the proof of which requires a very systematic 
analysis of initial algebra semantics in the light of computability theory. In essence, 
this work has been carried out in [ 6, 7], see also [8]. 

Our conclusion is, that equational specifications do not support proper modu­
larization (in unexpected cases). We claim that priority rewrite systems support 
modularity much better. 

Let us now turn to the formal definition of rule priorities together with its 
mechanism of blocking rule applications. 

Definition 2.5. A priority rewrite system, or PRS for short, is a pair (IR, <),where IR 
is a term-rewriting system and < is a partial order on the set of rules of IR. 

As a notation in a listing of rewrite rules we write i ~1 when r 1 > r2. 

Definition 2.6. Let r be a rewrite rule of the PRS IR. 

(i) An instantiation (possibly containing variables) of the left-hand side of r is 
called an r-redex. Note that this is regardless of whether the r-redex, in view of the 
priority restrictions, is actually "enabled", i.e. is allowed to be rewritten according 
to rule r. 

(ii) A closed instantiation (closed instance) t ~ s of the rewrite rule r is called 
a rewrite. We will write t ~' s or r: t ~ s. 

(iii) The closure of the relation ~ under contexts is one-step reduction, and 
denoted by ~. 

(iv) The transitive and reflexive closure of the relation - is (more-step) reduction, 
denoted-· 

Definition 2.7. Let F(t1 , ••• , tn) be some term in a TRS. A reduction of F(ti. ... , tn) 

is called internal if it proceeds entirely in the arguments t1 , ••• , t" (so the head­
symbol F is "unaffected"). 

Now we can formulate in a first approximation what reduction relation a PRS is 
meant to describe: Let r be a rule of the PRS IR and let t be an r-redex. Then t may · 
be rewritten according to r if for no rule r' > r it is possible to rewrite t, by means of 
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t' ___::_____. s' 

Fig. l. 

an internal reduction, to an r' -redex t' (see Fig. 1 ). To see why the reduction to a 

"higher" redex scheme, blocking the "lower" reduction of t, must be internal, one 

should consider that only internal reductions preserve the "identity" of the term-to­

be-reduced, in casu t. The following example may clarify this: Consider the PRS 

in Table 2, and consider the r4-rewrite 

del(O, del(O, ins(O, ,0'))) ~ del(O, ins(O, ,0')). 

Intuitively, this application of r4 is correct since the bold part in the left-hand side 

denotes a set not containing 0. But if we had stipulated above that the internal 

reduction could be any reduction, the present application of r4 would be illegal 

since the right-hand side is also a r3-redex and r3 > r4. The point is that the priority 

provides us with some sort of a matching mechanism by rewriting the arguments 

of the term in order to prove them "equal" to the ones in the rule with higher 

priority. Indeed, application of r4 on a term de!( t, T) is only allowed if it is not 

the case that both t - s and T- ins(s, S) for some s, S, that is, if there is an internal 

reduction of the form del(t, T) int- del(s, ins(s, S)). In such an internal reduction, 

the right-hand side "matches" with the left-hand side with respect to the equality 

theory induced by the reduction relation. 

In the following definition we will present a formal criterion for a rewrite to be 

"enabled". It is important to note that in fact we make a choice here. For instance, 

in [2, 4] different notions were used. 

Definition 2.8. Let R be a set of rewrites for the PRS IR (i.e. closed instantiations 

of rules of IR). The rewrite t--+' sis correct ( w.r.t. R) if there is no internal R-reduction 

t R- t' to an r' -rewrite t' --+', s' ER with r' > r. So in the situation of Fig. 2, the 

rewrite t--+' s is not correct w.r.t. R. 

r' 
t'---> s'E R 

intl R 

r 
---> s 

Fig. 2. 
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Definition 2.9. R is called sound if all its rewrites are correct with respect to R. R 

is complete if it contains all rewrites which are correct w.r.t. R. 

In Fig. 2 R- denotes a reduction using only rewrites from R. Note that if R is 
sound and t _,sis correct w.r.t. R, then R' =Ru {t _,. s} need not be sound, since 
t _,. s may be used in an internal R' -reduction making some other rewrite t* - s* 
illegal. 

Finally, note that the concept of completeness of Definition 2.9 has nothing to 
do with the notion "complete" for TRS's, defined as meaning "confluent and 
terminating" (see, e.g., [ 17]). 

Clearly, if a PRS IR determines a reduction relation R as its semantics, we will 
require that R is sound (i.e. it may not contain forbidden rewrites). Now it might 
be thought that all we have to do is to look for a maximal sound rewrite set of IR. 
However, such a maximal sound rewrite set will not be unique in general, and 
therefore does not qualify as the semantics of IR; furthermore, we will require the 
semantics of IR to contain all r-rewrites for rules r which have maximal priority, 
and a maximal sound rewrite set need not obey this requirement, as the following 
example shows. 

Example 2.10. Let IR be the PRS with rules and priorities in Table 5. Then R 1 ={O~1, 

A(l)- 2} v {A(t)- 3: all closed t except 0, 1} is a maximal sound rewrite set (the 
intended semantics!), but also R2 = {A(l) - 2} u {A(t)- 3: all closed t except 1} 
is a maximal sound rewrite set. As a candidate for the semantics of IR, R2 is 
unsatisfactory as it does not contain the maximum priority rule instance o- 1. To 
fix this problem we require that the semantics R of a PRS IR is also complete, since 
there is no reason to exclude from R a rewrite t - s which cannot be shown illegal 
by R. Note that the rewrite set R2 is not complete (as o-- 1 is correct w.r.t. R2), 

but that R 1 is. 

Table 5. 

0-1 

l A(l)->2 
A(x)->3 

Definition 2.11. Assume the PRS IR has a unique sound and complete rewrite set 
R; then R is called the semantics of IR; furthermore, IR will be called well-defined. 

The idea behind Definition 2.11 is that a rewrite is part of the semantics of IR if 
and only if there is no way to show that it is illegal using legal rewrites only. 
Obviously, such a definition has a circular nature and as a consequence there are 
PRS's that do not have a proper semantics, as is shown by the following example. 



Table 6. 

rl: 1-A(I) 
A(0)-1 
A(x)-0 

I r1: 
i r3: 
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Example 2.12. Consider the PRS IR, with rules and priorities as in Table 6. We allow 
the reduction A(l) - 0 if and only if not 1 ~ 0. However, one can easily verify that 
1--» 0 if and only if A( 1) ~ 0, since its left-hand side (i.e. 1) only matches the first 
rule in IR. Therefore, A(l) - 0 actually "blocks itself" and it is not quite clear 
whether or not this reduction should be part of the semantics of IR. 

What actually is the problem in Example 2.12 is that every internal reduction 
sequence from A(l) to A(O) uses the rewrite A( 1) - 0. Thus, A(l) - 0 is part of 
the semantics of such a PRS iff it is not. We will return to this problem later on 
(see Example 3.15). 

In the following we will use some extra notations. 

Definition 2.13. Let IR be a PRS, then the set of all rewrites for IR is denoted by 

Rmax· Next assume R £ Rmax is a set of rewrites for IR; then the closure c(R), often 
denoted by Re, of R is the set of all rewrites which are correct with respect to R. 

Lemma 2.14. Let R, S be sets of rewrites for the PRS IR. 
(i) R is sound ~ R £ Re, 

(ii) R is complete ~ R 2 Re. 

(iii) R is sound and complete ~ R = R°. 
(iv) R £ S ~ Rc2 Se. 

(v) R 2 S, Sis sound and complete ~ R is complete. 
(vi) R £ S, Sis sound and complete~ R is sound. 

Lemma 2.14 follows directly from Definitions 2.9 and 2.13. From (iii) it follows 
that any rewrite set is sound and complete for IR if and only if it is a fixed point of 
the closure map c. Furthermore, from (iv) we find that c is an antimonotonic mapping 

on the powerset of Rmax . 

Proposition 2.15. The direct sum of two well-defined PRS' s need not be well-defined. 

The proof of Proposition 2.15 is given by the following example. 

Example 2.16 (G.J. Akkerman). Consider the following PRS's I? and IR in Tables 7 
and 8 respectively. Considering IP' we note that all reducts of D(x) are either of the 

Table 7. 

I F(B(O, 1))- 2 
i F(D(x))- B(x, x) 

D(x)- F(D(x)) 

Table 8. 

or(x,y)-+ x 
or(x,y)->y 
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form Fk(D(x)), or of the form Fk(B(x, x)), so D(x) cannot be reduced to B(O, 1). 

Therefore, !P is a well-defined PRS (in some sense its rules are nonoverlapping). 

Clearly, IR is well-defined since it is a TRS, thus having Rmax as its semantics. 

However, the direct sum IP' EB IR of IP' and IR is not well-defined, for consider the 

following rewrite x: F(D(or(O, 1)))-> B(or(O, 1), or(O, 1)). Assume IP'EBIR has a 

sound and complete rewrite set R such that x ER; then we have the following 

internal reduction in R: 

F(D(or(O, 1)))-> F(F(D(or(O, 1)))) 

--> F(B(or(O, 1), or(O, 1)))-> · · ·--> F(B(O, 1)) 

contradicting the soundness of R. On the other hand, if x e R then x is incorrect 

with respect to R (since R is complete) and so there exists a reduction sequence 
D(or(O, 1)) R,in•~ B(O, 1) in R. Investigating all such possible reductions one easily 

verifies that they all contain the rewrite x again therefore x has to be an element 
in R. This is a contradiction. Thus IP'EB IR is not a well-defined PRS. 

Open question. Clearly, the PRS's introduced in this section are (in general) not 

executable since it is not decidable whether or not there exists an internal reduction 

from a "lower" LHS to a "higher" one. Until now, it is still an open question what 

classes of PRS's are executable, however. It would be very interesting to establish 

a result of this kind in order to be able to turn the priority mechanism into a 
executable programming language. 

3. Fixed points 

In this section we will present some more theory on sound and complete rewrite 
sets. In particular we will investigate the structure of the complete lattice ( Rmax, <;) 

together with the closure map c. From now on we write x, y, z, ... for rewrites from 
Rmax and r, r', ... will denote rules from the PRS IR. Furthermore, LHS(x) and 

RHS(x) will denote the left-hand and right-hand sides of the rewrite x, i.e. x = 
LHS(x)--> RHS(x ). 

Definition 3.1. Let 0 be a rewrite set. We write x <J 0 ( 0 obstructs x), if there is 

an internal reduction of LHS(x) (say this is an r-redex) to a "higher" redex (i.e. 
an r'-redex with r'> r), such that the internal reduction uses precisely all rewrites 

in 0. Furthermore, we write x <J<J y if there exists an obstruction x <:i O such that 
yEO. 

In Fig. 3 we have x <J {x1 , ••• , x,,} and x -<1-<1 xk for all 1 ~ k ~ n. An element 

(x, 0) of -<1 will be called an obstruction and 0 will be called an obstruction of x. 

We may have that an obstruction is empty, i.e. x <i0. For instance, in Example 2.12 
we find that the rewrite x: A(O)-> 0 has an empty obstruction since its left-hand 
side is identical with the left-hand side of r2 which has higher priority. 
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r' 
t'--s' 

int r Uses X1, ... , x,, 

r 
x=t -- s 

Fig. 3. 
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From the antimonotonic mapping c we easily construct a monotonic mapping, 
called T11. 

Definition 3.2. Suppose R is a rewrite set for the PRS IR; then define T11(R) =(Re)". 

Since c is antimonotonic, it follows directly that T11 is monotonic. Note that if R 
is a fixed point of c then it is a fixed point of T11 . In order to be able to find fixed 
points of T11 , let us consider the following construction. 

Definition 3.3. Let IR be a PRS. Then for all ordinals a we define 

T11 f O = 0, T11!0 = 0c, 

T11f a+ 1 = T11( T11f a), T11!a + 1 = T11( T11!a), 

T11fa =Uil""" (T11f/3), T11!a =nil<" T11!/3, 
if a is a limit ordinal; if a is a limit ordinal. 

Clearly, T11f a is the a-repetition of T11 starting from 0, and so is T11!a but then 
starting from 0c. Recall, that 0° does not need to be equal to Rmax. It is a well-known 
fact that any monotonic mapping such as TIR on a complete lattice (0\ s;) has a 
least fixed point (lfp) and a greatest fixed point (gfp). Furthermore, there exists an 
ordinal a such that lfp( T11 ) = T11 I a and gfp( T11 ) = T11! a which is a consequence of 
a well-known theorem from Knaster and Tarski [22]. The smallest ordinal a such 
that T11 I a is a fixed point is called the closure ordinal for T11 • 

Lemma 3.4. For all ordinals a we have (LJ13 «, T11f/3t=n!l<a (T11i/3)c. 

Proof. (s;): Since (LJ13 «> T11f /3) 2 T11 fy for all ordinals y< a we have 
(LJ/l<a T11ff3)"s;(T11f'Y)° (Lemma 2.14(iv)) for all y<a, and therefore 

(LJ!l<a T1Rff3ti;;nll«• (T1Rf/3)c. 
(2): If x e (LJ13 <" T11 I /3)c and x <J {y 1 , ••• , yd for some obstruction {Yi. ... , Yk} <;; 

LJil<a T11 I ,8. Since {Yi. ... , yd is finite and ( T11 I /3 )13 <" is nondecreasing, there exists 
some 'Y < a such that {y1 , ••• , Yk} s; T11 I y. Then x has an obstruction in T11 i ')', i.e. 
xe(T11f'Yt, so xenil<a (T11f/3)c. Hence (LJ13<a T1Rff3)°2nil<a (TRff3)°. 0 
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Theorem 3.5. For all ordinals a we have 
(i) (To,ja)"= TIFIJa, 

(ii) ( TIFIJa )" = Tlflf cd 1. 

Proof. By transfinite induction on a. 
(a=O) (i): (T11 j0)°=0"=TIFIJ0and(ii): (T11J0) 0 =(0")"=TIFl(0)=Ti;ijl. 
(a+l) (i): 

( Ti;i j a+ I)°= ( ( Ti;iJ a )c)c (induction) 

=TI'!( Ti;iJa) = (Ti;iJa + l); 

(ii): 

= T11 ja +2. 

limit ordinals a (i): 

(ii): 

(Tl'Rj£Y)c=CY. Ti;ij/3 r 

= n (Tl'Rj/3)" 
/3<a 

= n (Ti;iJ/3) 
{3<u 

= Ti;iJa; 

(T11Jat=(c:, Tl'RJ/3 r =Cc:. (T11f/3)cr 

= CY. (Ti;if /3)"r 

(induction) 

(Definition 3 .3) 

(Lemma 3.4) 

(induction) 

(induction) 

(Lemma 3.4) 

Corollary 3.6. For all ordinals we have (nr;•a TIFIJ,8)" =Ur;." ( T11 j ,B)". 

The proof of Corollary 3.6 follows immediately from Theorem 3.5. Apparently, 
we needed an inductive argument for this result, whereas Lemma 3.4 can be proved 
directly from the definitions. Note that for the closure ordinal a of T11 we also have 
gfp( T11 ) = TIFIJa. 

We have Theorem 3.5 only because earlier we have set T11 JO = W. A more natural 
choice would probably be to set Tu~JO = Rmax, in which case we work within ( Rmax, <:;;) 
instead of the smaller lattice (0", <;;;).Fortunately, however, it turns out that the fixed 
points of Ti;i in both lattices coincide and thus both lattices give rise to different 
iterations approaching the same fixed points. 
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Proposition 3.7. 77ie greatest fixed points of TrJ.?. in both lattices ( Rmax, <;:;) and (0", <;;) 

are equal. 

Proof. Let gfp( TIR) denote the greatest fixed point with respect to ( Rmax, c;; ). Since 

0 <;; gfp( TIRt we find by Lemma 2.14(iv) that W 2 gfp( TrJ.?.}"0 = gfp( T;Rl· Thus gfp( TrJ.?.) 

is a subset of W, and since W is a subset of Rrnax we conclude that gfp( Trr:i) is the 

greatest fixed point in (0\ :::; ). 0 

Proposition 3.8. For all ordinals a we have 

(i) TRta is sound, 

(ii) TrJ.?.ta is complete. 

Proof. Since ( TIR I a )c = T,~ta (Theorem 3.5), and TRta 2 gfp( TR) 2 lfp( TIR) 2 T,~ I a, 

it follows that ( TIR I a)° 2 TR ta. Hence by Lemma 2.14( i) we find that TIR ta is sound. 

Similarly, it follows that TRt a is complete. 0 

Corollary 3.9. Ufor some ordinal a I;,~ta = TRta, then lR is well-de.fined. 

In [2, 3] a similar result-in a less general form-is presented as the stabilization 

lemma. We will return to this subject later, and present an example of an explicit 

use of this theorem (see Example 3.17). 

The proof of Corollary 3.9 does not use other results than the fact that T1i is 

monotonic and that the least and greatest fixed points of T1i can be found from the 

closure ordinal of Tui. In [ 4] a different priority mechanism is used, in order to 

model the depth-first search strategy in PRO LOG, which starts from a different 

notion of a correct rewrite. Since, however, the closure map c is still antimonotonic­

making TR monotonic-we still have Corollary 3.9 for this particular case. 

Example 3.10. Consider the PRS lH,, in Table 9 which has n unary function symbols 

A 1 , ••• , A,, in its signature, together with two constants 0 and 1. Consider the 

rewrites, denoted by x,: A,Ak 1 ••• Ai(O)---> 0 (1 ~ k ~ n), then we can make the 

following observation. 

Observation. Let S be a rewrite set such that AkAk _ 1 ••• A 1 (0) 5- O; then this reduction 

sequence consists of a one-step reduction via xk. 

Table 9. 

1 
rl: A 1 (0)~1 

r2: A 1 (xl~O 

1 
r3: A 2(0) ~I 
r4: A 2A 1(x)-> 0 

1 
r2n -1: A,,(O)~ I 

r2n: A,,A,,. I ... A1(X)--> 0 
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Proof. First note that the application of a rule of !Rn will eliminate at least one 
symbol A; and does not introduce new function symbols. Furthermore, note that 
the head symbol Ak in the left-hand side of the reduction can only be eliminated 
via the rules r2k -1 or r2k. Now, application of r2k- l will yield the normal form 
I, which cannot be reduced to 0. Therefore, Ak is eliminated by application of rule 
r2k. Since, however, every reduction of a subterm in AkAk--1 ... A1 (0) will eliminate 
at least one function symbol, r2k has to be applied immediately (otherwise none 
of its reducts can develop to an r2k-redex ). Hence the reduction is a one-step 
reduction via xk (and thus xk ES). 0 

Corollary. For all rewrite sets S and all I~ k < n, xk+1 E Sc iff xk .ES. 

Its proof follows from the observation above and the fact that {xd is an obstruction 
for xk+i · Next, consider the rewrite set c"(0) = c(c( ... c(0) ... )), where c is the 
closure map from Definition 2.13. Set c0 (0) = 0. 

Proposition. For all n ~ 0 we have 
(i) c2"(0) = {X2, X4, · .. , X2,,}, 

(ii) c2"+ 1(0) = C211 (0) U {X2n+2, X2n+3• · • .}. 

The proposition follows easily by induction from the corollary above. From the 
proposition, we can see that Tri?.,,, and Tr.?.,,,+ 1 both have closure ordinal n. One can 
prove that, IR 211 has Tr.?.,Jn as its semantics, which in the case of IR 2 ,,+ 1 is 7;r.i,,,+ 1tn. 

Example 3.10 provides us with an example of a class of PRS's with unbound 
closure ordinals and thus with a nontrivial example of the "stabilization lemma", 
i.e. Corollary 3.9. Note that the length of the rules, the number of the rules and the 
number of arrows of IR 11 all increase with n. 

We are now already in the position to find sufficient conditions for a PRS to be 
well-defined. It turns out to be a sufficient condition that the relation <J<J (see 
Definition 3.1) is well-founded with respect to Rmax. i.e. there exists no infinite 
sequence (x; Lc:w of rewrites such that for all i we have X; <J<J X;+ 1 • From the theory 
developed so far, this can be proved directly as is done in the following theorem. 

Theorem 3.11. If IR is a PRS such that <J<J is welljounded, then it has a unique 
sound and complete rewrite set. 

Proof. Suppose that lfp( Tri?.) r! gfp( Tif-!), then there exists some x 1 E gfp( Tr.?.)- lfp( TIRI) 
which has an obstruction 0 in gfp( Tr.?.l- Since (gfp( TIR) )" = lfp( Tri?.) we find that this 
obstruction cannot be entirely in lfp( TIR) and therefore there exists some x2 E 

gfp( 7;r.i) - lfp( Till) such that x 1 <1<1 x2 • Note that it makes no difference whether or 
not x 1 and x2 are equal. Since we can repeat this procedure arbitrarily many times, 
<J<J is not well-founded. Hence lfp( TIRI) = gfp( Tri?.) and thus, by Corollary 3.9, taking 
the closure ordinal of Till for a, IR has a unique sound and complete rewrite set. 0 
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A sufficient condition for <J<J to be well-founded is that the underlying TRS of 
IR is bounded. Consider the following definition. 

Definition 3.12. (i) Let 1R be a TRS, and R == t0 ---.. t 1 ---.. ••• a possibly infinite reduc­
tion sequence in 1R. Then the reduction R is bounded if 

3n Vt1 ER \tJ<S n (\t;\ is the length in symbols oft;). 

(ii) Let IR be a TRS. Then IR is bounded if all its reduction sequences are. 

(iii) Let 1R be a PRS. Then IR is bounded if its underlying TRS is. 

Proposition 3.13. (i) If the underlying TRS of a PRS is strongly normalizing, then it 

is bounded. 

(ii) Equivalence of terms in a bounded and confluent TRS is a decidable property 

(two terms are equivalent if they are related by the symmetric closure of - ). 
(iii) The direct sum of bounded TRS's need not be bounded. 

Proof (i): Since every term t has only finitely many reducts, the maximum length 

of all reducts of t is an upper bound. For (ii) and (iii), see [17] ((iii) uses a 

counterexample, similar to one given in [23]). D 

Proposition 3.14. If IR is bounded then <1<J is well-founded. 

Proof. Let (x1);c'" be an infinite sequence such that x1 <J<J x1+1 for all i; then for 
every i there is an internal reduction from LHS(x;) using X;+ 1 • Therefore, for some 

sequence of nonempty contexts C;[] we have that LHS(x1)- C;[LHS(x1+1)]. But 

then the reduction of LHS(x1) is not bounded, since for every n it is reducible to 

C1[C2[C3 [ ••• Cn[LHS(xn+ 1)] ••• ]]],which is a term with length >n. D 

Note, that if IR is a TRS, then <J<J is well-founded since there are no obstructions. 

Let us consider some examples of PRS's that are not bounded. 

Example 3.15. Consider the PRS IR, with rules and priorities as in Table 10. Note that 

lfp( Tlf.!) == { 1 -'> A(l ), A(O)-'> l}, gfp( Tlf.!) == Rmax -{A( O)-'> O}. 

IR does not have any sound and complete rewrite set since it has no other fixed 

points and the least and the greatest fixed point do not coincide. To see this, we 

show that 

gfp( Ta;i)- lfp( T~) ={A n+ 2(0)-'> 0, A"( 1)-'> 0: n > O}. 

Table 10. 

rl: 1-> A(I) 
A(O) __. I 1 r2: 

r3: A(x)-> 0 
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(i) The rewrite x: A"(l) __,. 0, being an instance of rule r3, is incorrect with 
respect to lfp( T11:) u {x }, since it allows the internal reduction: A" ( 1) ini.ri__,. 

A'lf 1(1) int,,__,. A(O) and A(O) is a redex of r2 which has higher priority. Note that 
x is a "selfobstructor", i.e. all obstructions of x contain the rewrite x itself, and 
therefore x is correct with respect to lfp( Tll!). 

(ii) Since A"+ 1(0) ;"'·'2__,. A"(l), the rewrite A"(O) __,. 0 has an obstruction via 
A"(l)--.. 0 and thus is not an element of (gfp( T11:)l" = lfp( T,~). 

Note that lfp( T11:) = Tll! i1 and gfp( Tll!) = Tll!i 1. 

Example 3.16. Consider the PRS IR, with rules and priorities as in Table 11. Note that 

lfp( Till)= {1-> A(2), 2 __,. A(l), A(O) __,. 1}, 

gfp( Tll!) = Rma,-{A(O) __,. O} 

which can be seen as follows. We have to prove that 

gfp( Till)- lfp( Tll!) ={A" 11 (0) __,. 0, A" (1) __,. 0, A" (2)--> 0: n > O}. 

(i) Note that all rewrites A 11 + 1(0).......,.0, A"(l)__,.O, A"(2)__,.0 are correct with 
respect to lfp( T11:) and thus are in (lfp( T,~) )" = gfp( Tii!). 

Table I I. 

r2: 

1 r3: 
r4: 

rl: I-+ A(2) 
2~A(l) 

A(O)-. I 
A(x)-+ 0 

(ii) The rewrites x: A( 1) __,. 0 and y: A(2) __,. 0 in gfp( I;R) are "mutual obstruc­
tors", in the sense that they both are part of an obstruction for the other: A( 1) __,. 0 
is incorrect with respect to gfp(Till) since A(l) int.•I__,. A(A(2)) inc.i·__,. A(O), and 
similarly, A(2)---> 0 is incorrect since A(2) int,r2.__,. A(A(l)) int,x_,. A(O). Since both x 
and y are correct with respect to lfp( 7;"') they are in (lfp( 7;"') r = gfp( I;ll)· 

(iii) Finally, observe that A"+ 1(0) int,r 3_,. A"(l) and A"(J) int,rl__,. A"+ 1(2), thus in 
the presence of both A(l) __,. 0 and A(2) __,. 0, the rewrites An+ I ( 0) __,. 0, An (l) __,. 0, 
A"(2)---> 0 are incorrect. 

Again we have lfp( Till)= Till f1 and gfp( Tll!) = Tll!H. Note that both S 1: lfp( 7;1~) u 
{A(l) - O} and S2 : lfp( Tll!) u {A(2)---> O} are sound. One can easily check that 

lfp( Tu;i) u {A 2"+ 2(0) __,. 0, A~"+ 1 (1) __,. 0, A 2" 12(2) __,. 0: n ~ O}, 

If p( I;ll) u {A 211 +2(0) __,. 0, A 211 +- 2( 1) _,. 0, A 2"+ 1 (2) __,. 0: n ~ 0} 

are both sound and complete. They are obtained from S 1 and S2 by repeatedly 
applying T11:. Thus IR has (at least) two sound and complete rewrite sets. 
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Example 3.17. The PRS in Table 1 (Example 2.1) is not bounded. Therefore, in 

order to prove that it is well-defined we cannot use Proposition 3.14. We will prove 

that it is well-defined by finding the closure ordinal a of Tlfl: and using Corollary 

3.9. Define the interpretation [ · J from closed terms to natural numbers by 

[OJ= 0, [S( t)] = succ([t]), 

[P(t)] = pred([t]), [t+ s] = [t]+[s], 

where t, s are closed and pred, succ, 0 and + are the usual functions on the set of 

natural numbers. Then, define 

R = {P(O)--> 0, P(S(t))--> t, t+O--> t: t closed} 

u {t+s _,. S(t+ P(s)): t, s closed, [s] r' O}. 

Claim 1. Ifs R- 0, then [s] = 0. 

Proof. Use induction on the formation of s. D 

Claim 2. ~f [s] = 0, then s R- 0. 

Proof. First prove with induction on n that Vm, n S"'(O)+S"(O) R- smcn(O). Then 

use this fact to show with induction on t that \;/closed t 311 t R- S"(O). The claim 

follows from this observation and Claim l. D 

Claim 3. Tl'!fl = Tl'ltl. 

Proof. From Claims 1 and 2. D 

By Corollary 3.9 it follows that IR is well-defined. 

The fixed-point theory presented in this section seems to provide us with some 

elegant tools to find a semantics (if it exists) for a PRS. There are still a few open 

questions that are worth presenting at the end. 

Open questions. (1) Is the mapping TI'! (Definition 3.2) continuous, instead of only 

monotonic? In other words, do we have that for all collections (X;);cw of subsets 

of Rmux: Tl'!(LJ;u,, X;) = LJ;,,,, Tlfl:(X;)'? 

(2) Is the closure ordinal of TI'! always finite? In Example 3.10 we presented an 

infinite sequence (IR,,) nE w of PRS's with increasing closure ordinals. It is not clear 

whether or not there exist finite PRS's with closure ordinal w or even larger. If this 

is not the case, all transfinite induction arguments can be eliminated from the proofs 

in this section. 

(3) The stabilization lemma (Corollary 3.9) provides us with a sufficient condition 

for a PRS to be well-defined. Is this condition also necessary? That is, can we find 

a PRS, with closure ordinal a which is well-defined and such that TI'! i a r' Tl'lt a'? 

4. Left-linear priority rewrite systems 

Up to this point, no requirement was made as to the left-linearity of the rules in 

a PRS. In this section, we will restrict our attention to PRS's which have left-linear 
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rules (i.e. no left-hand side has a multiple occurrence of the same variable), in order 

to prove (under certain circumstances) a confluence result for them. 

We expect that some confluence results can also be obtained for suitably restricted 

PRS"s with non-left-linear rules, as in Examples 2.2 and 2.4, but we will not attempt 

to do so here. First we will prove a "general" theorem, namely confluence for 

essentially regular TRS's. Ambiguities in the rewrite rules of a TRS may be an 

obstacle to confluence (see, e.g., [ 16, 17]). Yet, we may allow the presence of 

ambiguities if there is some additional mechanism (such as rule priorities) which 

prevents the ambiguities to be actually "used". We will conceive such a "desam­

biguating" mechanism as a restriction of the sets R; of rewrites r;: t;,k---> su. 

In the following we write t(x 1 , ••• , xnl for an open term containing variables 

only from x 1 , ••• , x,,, but not necessarily containing all of them. 

Definition 4.1. Let r: t(xi. ... , x,,)--> s(xi, ... , x,,) be a rewrite rule, and let 

t(p(x 1), ••• ,p(x,,)) be an r-redex for some substitution p. Lett' be another redex 

occurring in some p (x; ). Then this redex occurrence is called a small red ex occurrence 

of t' in t. 

Definition 4.2. Let IR be a left-linear TRS (possibly ambiguous). Suppose that Rmax 

is partitioned into "enabled" rewrites (E) and "disabled" rewrites (D): Rmax = 

Du E. Then (IR, E) is called a restricted TRS. 

The idea behind Definition 4.2 is that we are able to block the use of the rewrites 

from D, in order to avoid ambiguities. Although, formally, D is denoted as a set, 

in any practical implementation one may think of a rule or some other mechanism. 

The reduction relation defined by a restricted TRS is precisely the reduction relation 

induced by the set of enabled rewrites E. 

In the sequel we will consider a well-defined PRS as such a restricted TRS, in 

the sense that its semantics is precisely its set of enabled rewrites. Note that a PRS 

without a semantics has no such set. 

In the following definition we recall the concept of a critical pair of terms (see 

[13]), well-known in the area of Knuth-Bendix completions. Our definition will be 

self-contained though. 

Definition 4.3. Let r: t--" s, r': t'-> s' be two different rewrites in E (i.e. the triples 

(r, t, s) and (r', t', s') are different; thus we may have that, e.g., r = r' and t = t' or, 

e.g., that r = r' and s = s'). Let r be of the form g--" d (so t is an instantiation of 

g ). Now, r: t--" s and r': t'---> s' together form a critical pair of rewrites if t' is a 

subterm oft (possibly equal tot) and t' is an instantiation of a nonvariable subterm 
of g. 

Definition 4.4. E is called closed under small redex contractions if the following 

holds: Let r be a rule of the form g(xi, ... , x,,)-> d(x 1 , ••• , xn) and g(t1 , ••• , t,,)--> 
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d(t 1 , ••• , tn) EE, where all t1, ... , t" are closed terms, and assume there exist (zero 
or more-step) reductions t; E- s; using rewrites from E, then 
g(s 1 , ••• , Sn)- d(si, ... , Sn) EE. 

Using the two definitions above we are now in the position to present the definition 
of an important property of restricted TRS's. 

Definition 4.5. The restricted TRS (IR, E) is essentially nonambiguous if 
(1) E contains no critical pair of rewrites, 
(2) E is closed under small redex contractions. 

(IR, E) is essentially regular if it is essentially nonambiguous and the rules are 
left-linear. 

We now have immediately the Church-Rosser Theorem for essentially regular 
restricted TRS's. 

Theorem 4.6. If the restricted TRS (IR, E) is essentially regular, then it is ground 
confluent. 

Proof. It is entirely similar to the unrestricted regular case (see, e.g., [ 17]). It proceeds 
as follows, assuming - and - to denote reductions in E (cf. Fig. 4). 

s' s' s' ! disjoint set 
of redex.es 

! disjoint set 
of redexes ! ! ! ! 

t' s t' s t' s 

(a) (b) (c) 

Fig. 4. 

First prove that if both t - s' and t - t' by reducing a set of pairwise disjoint 
redexes, then an s can be found such that t' - s and s' - s, the latter again via the 
reduction of disjoint redexes (see Fig. 4(a)). The proof follows from a straightforward 
analysis of cases depending on the relative position of the red ex reduced in the step 
t-+ s' with respect to the disjoint redexes that are reduced in 1--* t'. Here we use 
the property "essentially regular". From this fact (Fig. 4(a)) we immediately find 
the so-called parallel moves lemma (see Fig. 4(b) ), which reads: t--* s' & t--* t' ~ 
3s: s'--* s & t' - s. This lemma finally yields the full confluence property (see Fig. 
4(c)). 0 

Definition 4.7. Let IR be a PRS. We say that the ordering < of the rules in IR is a 
specificity ordering if 

(i) r < s ~ the LHS of s is a substitution instance of the LHS of r, 
(ii) no ambiguities occur between incomparable rules, 

(iii) ambiguities between comparable rules consist of overlaps at the roots only. 
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The third condition tells us that left-hand sides of rules with lower priority do 
not unify with proper subterms of higher priority rules. For instance, 

L(L(x))--> · · · 

L(x)--> · · · 

is not a specificity ordering since the second LHS unifies with a proper subterm of 
the first. Note, that condition (i) in Definition 4.7 still holds. 

Theorem 4.8. Well-defined, left-linear PRS's with specificity ordering are ground con­

.fluent. 

Proof. If IR is a well-defined, left-linear PRS such that its priority relation is a 
specificity ordering, then IR contains no critical pairs of rewrites in its semantics. 
To see this, assume that x and y form a critical pair of rewrites originating from 
the rules r and r' respectively; then, clearly, r and r' are overlapping and thus it 
follows by Definition 4.7(ii) and r and r' are comparable, r > r' say. Furthermore, 
it follows from Definition 4.7(iii) that r and r' are overlapping at the root (hence 
LHS(x) = LHS(y)) and therefore y has an empty obstruction. But then y is not 
correct (with respect to 0, hence with respect to the semantics of IR) and thus not 
in the semantics of R 

Furthemore, the semantics R of IR is closed under small ("internal") redex 
contractions, since if it were not, then for some rewrite x in R there would exist 
an internal reduction of LHS(x) to a term which is the left-hand side of a rewrite 
y, which is an instance of the same rule and which is not in R. Thus y is incorrect 
with respect to R and there is an internal reduction from LHS(y) to the left-hand 
side of a rewrite z with higher priority. Since x and y are instances of the same 
rule, there exists an internal reduction from LHS(x) via LHS(y) to LHS(z) using 
rewrites in R, and therefore x is incorrect as well. This is a contradiction, since x 
was in R. 

Thus 1R is essentially nonambiguous, and since it is left-linear it is essentially 
regular. Now apply Theorem 4.6. O 

Example 4.9. Consider the PRS from Example 2.1 (Table 1). Obviously, the PRS 
from Table 1 is left-linear and the priority relation is a specificity ordering. In 
Example 3.17 we have shown that it is well-defined (despite the fact that it is not 
bounded), and thus it is confluent. Extending this PRS with the rules for the factorial 
function in Table 3 (see Example 2.3) we find that the priority relation is still a 
specificity ordering, and since the resulting PRS is well-defined and left-linear, it is 
confluent. 

Open question. What kind of conditions can be found for a PRS to be terminating? 
Clearly, a restricted TRS can turn a nonterminating TRS into a terminating one. It 
would therefore be interesting to find a class of terminating PRS's with a nonterminat­
ing underlying TRS. 
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