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Abstract
In this article we develop a theory of computation for continuous math-
ematics. The theory is based on earlier developments of computable
analysis, especially that of the school of Weihrauch, and is presented
as a model of intuitionistic type theory. Every effort has been made to
keep the presentation as simple yet general as possible. The core sub-
ject matter of Turing computability and computable analysis should be
accessible to non-specialists with a solid background in general topol-
ogy and analysis, but important technical results are also proved. To
show the potential use of the theory, some simple applications are given
to dynamical systems and control theory.
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Chapter 1

Introduction

In this paper, we develop a theory of computation for continuous mathematics. The
aim of this paper is to give an exposition which is explicitly based on Turing machine
model of computation, is powerful enough to study real computational problems arising
in practise (taken from the areas of dynamical systems and control theory), yet is as
straightforward and direct as possible, and uses terminology which is natural in classical
topology and analysis.

The main idea is to consider which mathematical operations are computable, by which
we mean that the result can be computed by a program running on a digital computer.
Since we are dealing with objects from continuous mathematics, we are typically dealing
with uncountable sets of objects (such as the real numbers), so we cannot specify an
arbitrary object with a finite amount of data. However, the objects we consider form
topological or metric spaces, and can be approximated arbitrarily accurately with a finite
amount of data. Hence we describe an object by an infinite stream of data, but in such a
way that useful information can be obtained from a finite amount of data. The inherent
use of approximations means that there is a very closed link between topology and
representations; indeed any representation of a set of objects induces a natural topology
on that set.

An operation is computable if a description of the result can be computed from a
description of the arguments. At any stage of computation, only a finite amount of
memory can be used, but most computations need an unbounded amount of internal
memory to compute the complete output. The input of a computation can in principle
be an arbitrary valid sequence of characters, we do not require that there be an effective
procedure to determine whether a string is valid. In practise, inputs will typically be
taken from a countable set of computable sequences i.e. those which can be computed
by a Turing machine, or from a subset which can be described symbolically e.g. the
rational numbers. One of the fundamental results is that only continuous functions can
be computable; however which operations are continuous depends on the topology, since
this affects the amount of information which is present in the input or required in the
output.

The exact details as to how objects of a set are described is immaterial in determining
which operations are possible, as long as a description in one representation can be
effectively converted to a description in another representation. We therefore look at
equivalence classes of representations as defining a type of object, and consider the
computable operations between types. In general, there are inequivalent representations
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6 CHAPTER 1. INTRODUCTION

of a given topological space, but typically in practise, one of these is canonical. For
example, there is a unique equivalence class of representations of the real numbers R for
which arithmetic is computable, strict comparison is verifiable, and limits of strongly-
convergent Cauchy sequences are computable. Hence there is a canonical type R of the
real numbers. From this type, we can canonically build up other types, such as Euclidean
space Rn, continuous functions C(Rn; Rm), and open sets O(Rn).

A canonical way of describing an element of a countably-based topological space
is to list the basic open sets containing it. In this way, the basic open sets become
the fundamental objects describing the space, rather than the points. This observation
indicates strong links with locale theory, which can be seen as a kind of “pointless
topology”.

The theory presented is a model of intuitionistic type theory [40]. This means that it
is always possible to construct finite products and function types, with the corresponding
natural computable operations. However, not all types and computable operations can
be constructed from a finite collection of base types; arbitrary subtypes are allowable,
and sometimes it is necessary to return to first principles to show that an operation is
computable, or that a constructive definition is well-defined and matches the classical
definition. For example, to prove computability of the solution of an ordinary differen-
tial equation, it is necessary to appeal to results of classical analysis to prove that an
construction based on Euler time-steps has the classical properties of a solution.

The ideas in this theory can be traced back to the intuitionistic logic of Brouwer [51]
and the constructive mathematics of Markov [39] and Bishop [8]. Although these theories
deal with constructive mathematics rather than explicitly with computation, the idea
of constructive existence is clearly linked with that of an algorithmic procedure for
computing a mathematical object.

A first link with computability was via the theory of Scott domains [27], which were
initially developed to give a semantics for programming languages, but which were soon
recognised as a possible foundation for real analysis. There is a considerable body of
work applying domain theory to various bodies of real analysis e.g. [21, 20]. However,
the foundations of domain theory are based on lattice theory, and the notation and ter-
minology is still heavily based on these foundations, rather than on the natural language
for topology and analysis. Further, domain theory is usually not directly presented in
terms of Turing computation, and an extra level of theory is still needed to give an
explicit relationship with computation (though intuitively it is clear for experts how to
proceed).

An attempt to provide a simplified theory of computable analysis based on type-two
effectivity, which is explicitly based on Turing computation and using natural language
was given by Weihrauch [53]. In this theory, representations are used to give a compu-
tational meaning to objects from continuous mathematics. Unfortunately, the elegance
of the framework tends to get lost in a plethora of subtly different representations for
different classes of object, and in the necessity to always specify the representation used
explicitly. From this point of view, the use of types represents an important notational
simplification, which we hope also improves the readability and accessibility of the the-
ory. A further drawback of the presentation in [53] is that the exposition is mostly
restricted to Euclidean spaces, and not all the results extend to spaces which are not
Hausdorff or not locally-compact.

An exposition of computable analysis focusing on complexity theory of real functions
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was given by Ko, based on the notion of an oracle Turing machine. Although the
framework is equivalent to that of Weihrauch, the use of the term “oracle” is rather
confusing; in computer science, an oracle is a machine which can provide the answer to
an unsolvable problem, in the work of Ko, an oracle may be used to provide an input to a
computation (e.g. in the form of a decimal expansion of an uncomputable real number)
but is not used in the computation itself.

This article is organised as follows. In Chapter 2, we give an overview of Turing
computability theory for discrete computations on words over some alphabet Σ, and
show how this can be extended to computations over sequences. We then give a formal
definition of naming systems, by which elements of some arbitrary set can be related to
objects with some “computational meaning”. Chapter 3 is the heart of the paper. Here
we give a complete exposition of computable analysis for elementary classes of objects,
including points, sets and functions. In Chapter 4, we relate the material of Chapter 3 to
concepts from classical topology and locale theory. We give a characterisation of topo-
logical spaces which have a representation which adequately preserves the topological
structure, describe the Scott topology on open sets, explain the concept of a sober space,
and give an overview of the theory of core-compact and locally-compact spaces. Finally,
in Chapter 5, we give some applications to dynamical systems and control theory.

There have been a number of excellent Ph.D. thesis in the area of computable anal-
ysis, especially those of Brattka [10], Bauer [6] and Schröder [46] and Battenfeld [4]. In
particular, it was Schröder who first classified the topological spaces which can be given a
representation capturing the topology. Indeed, Schröder’s classification extends to weak
limit spaces, a generalisation of topological spaces which may have some applications
in probability theory. Other important articles giving an exposition of a large part of
the theory include those of Escardo [22] and Blanck [9] and Taylor [49]. Books specif-
ically relating to computability in analysis include those of Pour-El and Richards [42],
Ko [38] and Weihrauch [53]. Other interesting books which contain deeper material in
logic, domain theory and topos theory include those of Vickers [52], Johnstone [34, 35],
Gierz et al. [27], Clementino, Giula and Tholen [12]. For an introduction to type theory,
see [40]. Books relating to rigorous computation include Jaulin et al. [33], Hansen [30],
Aberth [1], and Moore et al. [41].

We reiterate that it is the aim of this paper to give as concise an introduction to
the theory as possible, while still providing proofs of the most important theorems. For
this reason, we have restricted ourselves to computability theory for topological spaces,
and not for the more general class of weak limit spaces, since in almost applications we
use topological spaces. However, we have given most of the development of the theory
for general topological spaces, and have only restricted to Hausdorff and local-compact
spaces where necessary. This is important, since types of open/closed/compact subsets
of a space are not Hausdorff, and non-locally-compact spaces quickly arise as function
spaces, and need to be covered to discuss solution sets of dynamic systems.

We have not used the language of Scott domains, though we have given an explicit
exposition of the Scott topology on the open sets, as this is the topology induced by the
canonical representation. We have given an introduction to point-free topology, since
this is the natural way to obtain a representation for a countably-based topological space,
but have not used the language of locale theory. We have introduced the notion of a
sober space, since this is required to give a link between a type-theoretic construction of
compact sets by the subset predicate and the classical notion of a compact point-set.
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Chapter 2

Turing Computability

In this chapter we give an outline of the theory of computability based on the standard
notion of Turing machine, an abstract digital computing device with unlimited memory.
The Turing model of computation is the standard accepted model of digital computation.
There are many variants of the basic Turing machine, and generalisations to computa-
tional models which are closer to the architecture of modern digital computers, but they
all yield the same computable functions. When the model was introduced by Turing
in [50], it was envisaged that a human was performing the calculations, but the theory
is completely appropriate for mechanical devices. The only non-realistic assumption is
that the machine has enough memory available to complete the task. The Church-Turing
thesis asserts that any algorithmic procedure for performing a calculation is given by a
Turing-computable function. It seems reasonable that the thesis even holds for reliable
analogue computing devices, due to external noise and constraints on space and energy.
See e.g. [7, 55] for more detailed discussions of analogue computation.

2.1 Turing machines

** Probably better to have moving tape heads **

The standard model of computation is that of the Turing machine. This is a model of
a process for performing computations in which only a fixed finite amount of information
can be used at any stage, but for which an arbitrarily amount of storage is available. In
the standard model, computations are performed on one or more infinite or bi-infinite
tapes whose cells contain symbols from an alphabet Γ. For a digital computer, one
might expect the alphabet to be {0, 1}, but for expository purposes we can take a more
expressive alphabet, such as the ASCII or Unicode character sets. It will also be useful
to distinguish a tape alphabet Γ from the input/output alphabet Σ.

We first give a description of a multiple-tape Turing machine as a dynamical system;
later we will see what it means for the machine to compute a function.

Definition 2.1 (Turing machine). A k-tape Turing machine is described by a tuple
(Γ, Q, τ), where Γ and Q are finite sets, and τ : Q × Γk → Q × Γk × {−1, 0,+1}k
describes the transition relation.

The action of a Turing machine is as follows. The state of the machine is given by
(q, h1, . . . , hk, ~s1, . . . , ~sk), where q ∈ Q, each hi ∈ Z and each ~si ∈ ΓZ. The next state

9



10 CHAPTER 2. TURING COMPUTABILITY

(q′, h′1, . . . , h
′
k, ~s
′
1, . . . , ~s

′
k) is determined by taking(

q′, (s′1,h1
, . . . , s′k,hk

), (δ1, . . . , δn)
)

= τ
(
q, (s1,h1 , . . . , sk,hk

)
)
, (2.1)

and setting
h′i = hi + δi for i = 1, . . . , k. (2.2)

** Fix definition for tape heads **

Informally, the value of q ∈ Q is the register state of the machine, and is a kind of
“program counter”. The hi represent the position of the “tape head” for the ith tape.
For each computational step starting at register state q, the machine scans the values
s1,h1 , . . . , sk,hk

at the tape head, replaces them with new values s′1,h1
, . . . , s′k,hk

, shifts
the tape head left or right depending on the value of δ1, . . . , δk, and updates the register
state to q′.

Remark 2.2. In the definition given here, we “shift” the tapes heads left and right to
scan new symbols. Sometimes, the symbols {L, N, R} are used instead of {−1, 0,+1} for
the δi. An equivalent model sometimes used in the literature is to have shiftable tapes
rather than movable tapes. The state of the system then does not need the integer
variables hi. This model yields the same computable functions in Definition 2.3.

Now suppose Γ is an alphabet containing a special blank symbol , and Σ ⊂ Γ \
{ }. Define an encoding ι : Σ∗ → ΓZ by taking (ι(w))j = wj for j = 0, . . . , |w| − 1,
and (ι(w))j = otherwise. Since 6∈ Σ, the encoding ι is injective, so w can be
unambiguously recovered from ~s = ι(w).

When using multiple tapes, we can separately consider input, output and work tapes.
An input tape can only be read from and contains the initial input, the output tape can
only be written to, but not altered, and contains the final output. The work tape and
output tape start off completely blank. Formally, the ith tape is unidirectional if for
any transition, we always have δi ∈ {0,+1}, is read-only if we always have s′i = si, and
is write-only if s′i = si or si = , and write-once. A unidirectional read-only tape is
an input tape. A unidirectional write-only tape such that δ = +1 implies s′ 6= is an
output tape.

We now show how Turing machines can be used to compute partial word functions
(Σ∗)m ⇀ (Σ∗)n. We need to consider partial functions since not all words should be
considered valid inputs; for example, the string 2/3/4 is not a valid description of a
rational number. To distinguish “ordinary” computation on words from computation
on sequences (which will be introduced in Section 2.2), we call this type-one Turing
computation.

Definition 2.3 (Type-one Turing computation). Let (Γ, Q, τ) be an k-tape Turing ma-
chine where Γ contains a special blank character , and Σ ⊂ Γ \ { }. Let q0, qf ∈ Q be
the initial and final states, respectively. Let m,n ∈ N be such that m + n ≤ k define
the number of input and output tapes respectively.

Then M = (Σ,m, n,Γ, Q, q0, qf , τ) defines a partial function (Σ∗)m → (Σ∗)n as
follows: For input (w1, . . . , wm) ∈ (Σ∗)m, the initial state is given by q = q0, ~si =
ι(wi) for i = 1, . . . ,m and ~si = Z otherwise. The computation proceeds as given
by Definition 2.1 until the register state q is equal to qf , at which point the machine
halts. The computation is valid if the machine halts, and in the halting state, there
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Figure 2.1: A Turing machine computing the product of two integers in decimal form.

exist vi ∈ Σ∗ such that ~sm+i = ι(vi) for i = 1, . . . , n. The result of the computation is
(v1, . . . , vn).

A partial function (Σ∗)m ⇀ (Σ∗)n is computable if it is the function computed by
some Turing machine.

Remark 2.4. A theory of computable word functions can be developed without separate
“input”, “output” and “work” tapes. Indeed, the computability theory can be developed
for single-tape machines which replace the initial contents of the tape (the input) by the
output. We use the definition above for compatibility with the definition of type-two
computability in Section 2.2.

Remark 2.5. The computability theory could equally well be presented using general
recursive functions in NN instead of Turing computable functions on Σω. However, for
a meaningful complexity theory, we need to use a finite alphabet Σ.

Remark 2.6. In order to show that a function is computable, we in principle need to
explicitly construct a Turing machine which computes the function. In general, this is a
tedious exercise in Turing machine programming. In this article, in the few cases where
this is necessary, we shall merely give a sketch of how the function could be computed,
without explicitly describing a Turing machine.

The most important properties of Turing computability are summarised in the fol-
lowing theorem

Theorem 2.7.

1. If ξ : (Σ∗)l ⇀ (Σ∗)m and η : (Σ∗)m ⇀ (Σ∗)n are computable, then ζ = η ◦ ξ :
(Σ∗)l ⇀ (Σ∗)n is computable, where we take dom(η ◦ ξ) = ξ−1(dom(η)).

2. There is a computable tupling function τ : Σ∗×Σ∗ → Σ∗, and computable projec-
tions π1, π2 : Σ∗ ⇀ Σ∗ such that πi(τ(w1, w2)) = wi for i = 1, 2.

3. There is a universal Turing machine U computing a function µ : Σ∗ × Σ∗ ⇀ Σ∗

such that for every Turing machine M computing a function φ : Σ∗ ⇀ Σ∗, there
is a word a ∈ Σ∗ such that µ(a,w) = φ(w) for all w ∈ Σ∗.

4. There is a computable function λ : Σ∗ × Σ∗ ⇀ Σ∗ such that µ(λ(a, v), w) =
µ(a, τ(v, w)) for all a, v, w ∈ Σ∗.

Part (1) shows that the composition of computable functions is computable. Roughly
speaking, the computation can be carried out by running a machine computing ξ until
it halts, and then running the computation of η. Part (2) shows that the contents of
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two input tapes can be combined into one, and the contents recovered later. A (slightly)
simpler case is that of computing a function τ : Σ∗ × Σ∗ → Σ̂∗, where Σ̂ contains a
symbol , not present in Σ, and τ(w1, w2) = w1,w2. To avoid introducing a new symbol,
we can take τ(w1, w2) = 1|w1|0w1w2 to recover the break between w1 and w2. Part (3)
shows how to construct a machine with two inputs, one of which is a “program” for the
computation of another machine. For example, assuming Q ⊂ Σ and L, N, R ∈ Σ, we
can encode a transition (q, s)→ (q′, s′, δ) by the string q,s,q′,s′,δ. Part (4) shows that
given a computable function of two variables ξ(v, w) with program a, we can compute
the program of the function taking w to ξ(v, w) from a and v.

For more details on type-one Turing computation, see Sipser [48].

2.2 Type-two effectivity

When dealing with computation on objects from continuous mathematics, we shall need
functions on sequences Σω ⇀ Σω or, more generally, (Σω)m ⇀ (Σω)n. In order to
compute such a function, a machine needs to run forever, reading symbols from the
input tape(s) and writing to the output tape, with access to finitely many internal work
tapes of infinite size. Symbols from the output tape may not be overwritten once they
have been produced. A computational run is valid if the machine writes infinitely many
symbols to the output tape. A formal definition is given below. See Weihrauch [53,
Chapter 2] for a comprehensive treatment.

Definition 2.8 (Type-two computation). Let (Γ, Q, τ) be an k-tape Turing machine
where Γ contains a special blank character , and Σ ⊂ Γ \ { }. Let q0, qf ∈ Q be
the initial and final states, respectively. Let m,n ∈ N be such that m + n ≤ k define
the number of input and output tapes respectively. We require that the input tapes
~s1, . . . , ~sm and output tapes ~sm+1, . . . , ~sm+n are unidirectional, that the input tapes are
read-only and the output tapes are write-only. Define an encoding ι : Σω → ΓZ by
taking (ι(p))j = pj for j ≥ 0 and (ι(w))j = for j < 0.

ThenM defines a partial function (Σω)m → (Σω)n as follows: For input (p1, . . . , pm) ∈
(Σω)m, the initial state is given by q = q0, ~si = ι(pi) for i = 1, . . . ,m and ~si = Z other-
wise. The computation proceeds as given by Definition 2.1. The computation is valid if
the machine does not halt, and also writes infinitely many symbols on each output tape.
The result of the computation is (q1, . . . , qn), where each qi is defined by (qi)j = sm+i,j

for sufficiently large j.

Note that it is an undecidable problem to decide whether a type-two Turing machine
with no inputs produces a valid (i.e. infinite) output.

Definition 2.9 (Machine computability). A partial function η : (Σω)m ⇀ (Σω)n is
(machine) computable if it can be computed by a type-two Turing machine.

A sequence p ∈ Σω is (machine) computable if there is a type-two Turing machine
with no inputs which outputs p.

Since an output tape of one machine may be used as the input of another, we and
that the resulting combination can be realised by a single machine, we have the following
result:



2.2. TYPE-TWO EFFECTIVITY 13

Property 2.10 (Composition of machine-computable functions). Let η : (Σω)l ⇀ (Σω)m

and ζ : (Σω)m ⇀ (Σω)n be computable. Then ζ ◦ η : (Σω)l ⇀ (Σω)n, with dom(ζ ◦ η) =
η−1(dom(ζ)), is computable.

Just as in the type-one case, we can combine the data on multiple input tapes into
a single output tape, and later recover the original data.

Property 2.11 (Tupling). For any n ∈ N, there is a machine-computable function
τn : (Σω)n → Σω, and machine-computable functions πn,i : Σω ⇀ Σω such that for any
i ≤ n, πn,i(τn(p1, . . . , pn)) = pi.

The natural tupling function is given by (τn(p1, . . . , pn))in+j = (pj)i for i ∈ N and
j = 1, . . . , n, and the projections by (πn,i(p))j = pin+j . It is clear that these functions
can be computed by a type-two Turing machine.

As well as the finitary tupling functions (Σ∗)n → Σ∗ and (Σω)n → Σω, we can also
define mixed and infinite tupling functions. The infinite tupling function (Σω)ω → Σω

can be given by

τ(p0, p1, . . .) = q if qg(i,j) = (pi)j , where g(i, j) = (i+j)(i+j+1)/2+j for i, j ∈ N. (2.3)

It is clear that g is a computable bijection N× N→ N. If Σ̂ ⊃ Σ and contains a special
separator character ‘,’ not in Σ, then tupling (Σ∗)ω → Σ̂ω can be performed by taking
τ(w0, w1, . . .) = w0,w1,w2, · · · . To tuple (Σ∗)ω → Σω, we can choose an “escape”
character ‘\’ as well as a separator ‘,’, and replace any occurrence of ‘\’ in wi with the
string “\\” and ‘,’ with “\,”.

We shall also want to construct sequences by tupling infinitely many words from a
subset W of Σ∗. We say W is prefix-free if v is not a prefix of w for all v, w ∈W . For a
prefix-free subset of W , if v1, . . . , vm and w1, . . . , wn are words in W with v1v2 · · · vm =
w1, . . . , wn then m = n and vi = wi for all i. In other words, tupling Wω → Σω can be
accomplished by concatenation.

Notation 2.12. We henceforth write 〈·, · · · , ·〉 for any tupling function, and subscript
〈·〉i for the projection onto the ith element. We write w � p if p = 〈w0, w1, . . .〉 and
w = wi for some i ∈ N.

We now consider some topological aspects of computable functions.

Definition 2.13 (Topology on Σω). Define a topology on Σω by taking the basic open
sets to be the cylinder sets

Cw = {p ∈ Σω | pi = wi for i = 0, . . . , |w| − 1} (2.4)

where w ∈ Σ∗ is a word of length |w|.

The following theorem shows that machine-computable functions are continuous rel-
ative to the topology defined by the cylinder sets.

Theorem 2.14 (Machine computability implies continuity). Any machine-computable
function η : (Σω)m ⇀ (Σω)n is continuous.
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Sketch of proof. For simplicity, consider η : Σω ⇀ Σω. Consider p ∈ dom(η). For all
n ∈ N, there exists m ∈ N such that n symbols of η(p) have been written to the output
tape after m computational steps, and hence after at most m digits of p have been read.
Then for any q ∈ dom(η) such that q|[0,m) = p|[0,m), the output after m computational
steps is the same as that of p, so η(q)|[0,n) = η(p)|[0,n). Note that setting v = p|[0,m) and
w = η(p)|[0,n) we have shown that Cv ⊂ η−1(Cw). Hence η is continuous at p.

This result provides the basis for the main results on uncomputability ; it suffices to prove
discontinuity.

Recall that a subset of a topological space is a Gδ-set if it is a countable intersection
of open sets. In particular, any open set is a Gδ-set, and in any locally-compact Hausdorff
space, so is any closed set.

Proposition 2.15 (Natural extension). Any continuous function η : (Σω)m ⇀ (Σω)n

extends naturally to a continuous function on a Gδ-set.

Sketch of proof. For simplicity, consider η : Σω ⇀ Σω. Define a partial function η̃ :
Σ∗ ⇀ Σ∗ by taking dom(η̃) = {v ∈ Σ∗ | dom(η) ∩ Cv 6= ∅}, and w = η̃(v) of maximal
length such that η(Cv ∩ dom(η)) ⊂ Cw. Note that if v1 is a prefix of v2, then η̃(v1)
is a prefix of η̃(v2). Then for p ∈ Σω, if Cv ∩ dom(η) 6= ∅ for every prefix v of p, and
|η̃(v)| → ∞ as |v| → ∞, then we can define η̂(p) = q where {q} =

⋂{Cη̃(p|[0,k)) | k ∈ N}.
Clearly, η̂ is an extension of η, and dom(η̂) is a Gδ-set.

The set of continuous partial functions η : (Σω)m ⇀ (Σω)n with Gδ-domain has
continuum cardinality. This means that the continuous partial functions (Σω)m ⇀
(Σω)n with Gδ-domain can also be represented by sequences. This is a similar closure
property for continuous functions provided by the universal Turing machine result for
computable functions; computable word functions can be represented by words and
continuous stream functions can be represented by streams.

We can now present the main result of this section, the utm (universal Turing ma-
chine) theorem, and Kleene’s smn1 theorem. Note the interplay between the finite
description of Turing machines by words, and the infinite description of continuous
functions by sequences.

Theorem 2.16 (Universal Turing machines/smn). There exist machine-computable
functions ε : Σω × Σω ⇀ Σω and σ : Σω × Σω ⇀ Σω with the following properties:

1. For any continuous function η : Σω ⇀ Σω with Gδ-domain, there exists a ∈ Σω

such that ε(a, ·) = η.

2. If η is computable, then a can be taken to be a computable element of Σω.

3. For all a, p, q ∈ Σω, ε(σ(a, p), q) = ε(a, τ(p, q)).

The function ε is the evaluation function. The first argument a is an encoding of the
continuous partial function η : Σω ⇀ Σω as an element of Σω. Further, if the partial
function η is computable, then it has a computable encoding. Note that there may be

1The term “smn” is standard, and refers to letters occurring in the original statement of the theorem
in [37] rather than being an abbreviation.



2.3. COMPUTATION ON WORDS AND SEQUENCES 15

several different a corresponding to the same function f , some of which may be uncom-
putable even if f is computable. The function σ is a type-two analogue of the function s
in the smn-theorem. In particular, given a computable function η of two variables, there
is a computable sequence a such that η(p, q) = ε(a, τ(p, q)) = ε(σ(a, p), q).

Sketch of Proof. Given a continuous function η : Σω ⇀ Σω, we can define the set of all
pairs (v, w) ∈ Σ∗ × Σ∗ such that η(p)||w| = w whenever p|v| = v. (In other words, any
input with prefix v results in an output with prefix w.) By tupling in (Σ∗ × Σ∗)ω, we
can list all such pairs as a sequence in Σω, and reconsruct the function η from this list.
If η is computable, then the list can be constructed from a description of the Turing
machine.

2.3 Computation on words and sequences

We now have two theories of computation, type-one computability, which deals with
finite computations on words Σ∗, and type-two computation, which deals with infinite
computations on sequences Σω. In many situations, we wish to combine these two types
of computation; we may, for example, wish to compute a function with mixed arguments
e.g. Σ∗×Σω → Σω, compute an infinite sequence from a finite input Σ∗ → Σω, or convert
an infinite computation to a finite one.

At first sight, it seems straightforward to place type-one computation in the frame-
work of type-two computation. Both words in Σ∗ and sequences in Σω are naturally
expressed as sequences over the alphabet Σ̂ = Σ t { }. Where the result of a compu-
tation on an output tape is a word w ∈ Σ∗, the computation continues forever, writing
w0 · · ·wn−1 on the output tape, optionally followed by an arbitrary number of ‘ ’. Un-
fortunately, this approach suffers from the subtle drawback that it is impossible to know
when a word has been completed.

The simplest way of correcting this defect is to introduct a special “carriage return
symbol” ‘↵’ to signify the end of a word. Hence a word w = w0w1 · · ·wn−1 is encoded on
an input tape as w0w1 · · ·wn−1↵ · · · ; note that the symbols after the ‘↵’ are taken to be
blanks. Once the ‘↵’ symbol has been encountered, the result for that tape is known. In
principle, the computation could be halted once the result on all output tapes is known.

Definition 2.17 (Mixed Turing computation). Computation on words Σ∗ and sequences
Σω can be combined in a type-two Turing computation with alphabet Γ containing
special symbols ,↵ 6∈ Σ. An element p of Σω is encoded on a tape by ~s ∈ ΓZ = ι(p)
with si = pi for i ≥ 0 and si = otherwise. An element w of Σ∗ is encoded on a tape
by ~s = ι(p) with si = wi for 0 ≤ i < |w|, s|w| = ↵, and si = otherwise.

The computation proceeds as for a standard type-two computation. A computation
is valid if it runs forever, writing either ι(p) for some p ∈ Σω or ι(w) for some w ∈ Σ∗.
Since every output tape starts completely blank, it is not necessary to write infinitely
many symbols to an output tape for which the result is an element of Σ∗; instead the
computation of that element is finished once the ‘↵’ symbol has been written. If all
outputs are elements of Σ∗, the computation may halt once all output tapes have had a
‘↵’ written on them.

Note that if we wish to restrict to purely using the binary alphabet, we can encode
words w ∈ {0, 1}∗ as sequences in {0, 1}ω by describing the length of w in some way. A
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simple method is to encode the word w = w0, . . . , wn−1 as ŵ = 1w01w11 · · · 1wn−10 · · · .
In other words, each element of w is preceded by a ‘1’, and the word is followed by an
infinite sequence of ‘0’. Alternatively, we can encode w as 1|w|0w0 · · · .

When performing type-two computations in practise, we cannot in general wait for
the infinite amount of time needed to obtain the complete answer. Instead, we may wish
to terminate the computation after a fixed number of output digits. This means that
a type-two machine-computable function η : Σω ⇀ Σω would be replaced by a function
η̄ : Σ∗ × Σω ⇀ Σ∗, where η̄(v, p) = η(p)||v|. Additionally, the infinite input p is itself
likely to be generated from a finite input w ∈ Σ∗ by some function p = ξ(w), e.g. p is a
decimal expansion of a rational defined by the word w. We then obtain a purely finite
computation of a function ζ : Σ∗ × Σ∗ → Σ∗ defined by ζ(v, w) = η̄(v, ξ(w)).

Given that we can reduce type-two computation to type-one computation, one might
wonder what is the point of studying type-two computation in its own right. The main
reason is that elements of Σω can be used to describe objects from mathematical analysis,
such as real numbers or continuous functions, completely, whereas restricting to type-one
computation either forces one to always work with approximations or to only consider
computable elements. In the former case, we are often required to work with messy ε−δ
style considerations, while the latter is unnatural from the point of view of analysis.
Even if we are ultimately only interested in finite computation, the use of sequences to
represent intermediate results yields a much more elegant and simple theory than one
based purely on finite computation.

2.4 Computability induced by representations

We have seen how computability theory can be developed for partial functions (Σω)m ⇀
(Σω)n. However, we are really more interested in computations on more general math-
ematical objects, such as N or R, and so we need a way to relate computation over Σω

to that over more general spaces.
The basic idea is that each element x of a set of interest X, should be described by

one or more sequences p ∈ Σω. We note that the description of an element need not be
unique; for example, in the decimal representation, 0.999 · · · 1.000 · · · denote the same
real number. Further, not every sequence need correspond to an element of X; as an
example, the strings 1000 · · · and 1.0.00 · · · are both invalid as decimal representations
of a real number.

Definition 2.18 (Representations). Let Σ be a fixed alphabet and X be a set. Then a
representation of X is a partial surjective function δ : Σω ⇀ X. For x ∈ X, an element
p ∈ Σω such that δ(p) = x is called a δ-name of x.

Remark 2.19. In the definition of representation, there is no restriction placed on the
domain. This is because there are spaces for which the domain is necessarily complicated.
Ideally, we would like the domain to be an open set, so we can tell after a finite amount
of data that a sequence is a valid input, or a closed set, so we can tell that a sequence
is invalid. Frequently, there will be invalid sequences, but most words can be continued
to both valid and invalid inputs. Where possible, it would be advantageous to have a
decision procedure for whether a given word can be extended to a valid name.

Definition 2.20 (Equivalence). A representation δ1 of X is said to reduce to δ2, denoted
δ1 ≤ δ2 if there is a machine ‘computable function η : Σω ⇀ Σω such that dom(δ2 ◦ η) ⊃
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dom(δ1) and δ1 = δ2 ◦ η. In other words, given any δ1-name p of x, η(p) is a δ2-name of
x. Representations δ1 and δ2 are equivalent if δ1 ≤ δ2 and δ2 ≤ δ1.

Remark 2.21. A representation reduces to another if a name contains more information
about the type. The use of δ1 ≤ δ2 to denote “δ1 reduces to δ2” is standard.

Definition 2.22 (Computable type). A computable type is a pair (X, [δ]) where X is a
set and [δ] is an equivalence class of representations of X.

We henceforth denote computable types by script X or calligraphic X letters, and sets
by italic X or blackboard-bold X letters. Note that we always consider different sets as
having different types, even if the sets are bijective and the representations respect this
bijection.

Given a function f : X → Y , a partial function η : Σω → Σω is a valid description of
f if it translates any sequence p denoting x into a sequence q denoting y = f(x). The
function f is then computable if η is computable.

Definition 2.23 (Computability induced by representations). A function f : X1 ×
· · · ×Xk → X0 is (δ1, . . . , δk; δ0)-computable if there is a machine computable function
η : Σω × · · · × Σω ⇀ Σω such that

f(δ1(y1), . . . , δk(yk)) = δ0(η(y1, . . . , yk))

whenever the left-hand side is defined. We say that η is a realiser for f .

Note that it does not make sense to say whether a representation itself is computable.
This is because representations are used to induce a computability structure on another
set. However, most sets encountered in practise have a canonical equivalence class of
“natural” representations, and we can, of course, consider the computability of a repre-
sentation with respect to a natural representation.

Remark 2.24 (Multi-representations). A multi-representation is a multivalued function
δ : Σω ⇒ X. The idea is that p does not provide enough information to identify an
element of X exactly, but only a set of possible values. For example, δ might describe
the set of measurable functions on R, but δ(p) is a set of functions which are equal
almost everywhere. In many cases, multi-representations define a natural quotient map
on X, and give a single-valued representation of elements of the quotient set. In these
cases, the underlying set of the corresponding type can be taken to be the quotient set,
and the representation to be the single-valued version the multi-representation.

Since elements of finite and denumerable sets can be described by a finite amount of
information, and these are often important in their own right, we define a similar notion
for naming systems in terms of Σ∗.

Definition 2.25 (Notations). Let Σ be a fixed alphabet and X be a countable set.
Then a notation of X is a partial surjective function ν : Σ∗ ⇀ X.

Representations and notations are both naming systems since they relate general sets
to words and sequences over some alphabet.

Remark 2.26 (Realisations). More generally, suppose we have a set R for which we
already have some kind of “computational structure” defined. This could be Σω, with
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computations described by type-two Turing machines, or N with computations described
by partial recursive functions. Then we can induce a computational structure on another
set X using the computational structure on R. The traditional way of doing this is by
a realisation relation  on R ×X. A realisation is sound if for all x1, x2 ∈ R, if r  x1

and r  x2, then x1 = x2, and is complete if ∀x ∈ X, ∃r ∈ R, r  x.
A sound realisation  induces a partial function ρ : R ⇀ X by ρ(r) = x ⇐⇒ r  x,

and this function ρ is surjective if  is complete. An element r ∈ R such that ρ(r) = x
is called a ρ-name of x. Hence a representation of X can be seen as sound and complete
realisation of X in Σω. It is trivial that if δ : Σω ⇀ R is a representation of R, and
ρ : R ⇀ X is a sound and complete realisation of X, then ρ ◦ δ is a realisation of X.



Chapter 3

Computable Analysis

3.1 Representations of topological spaces

We now consider representations on topological spaces. We first show that a represen-
tation of a set X induces a natural topology on X.

Definition 3.1 (Topology induced by a representation). Let X be a set and δ be a
representation of X. Then the topology τ induced by δ is the final topology of δ, namely
U ∈ τ ⇐⇒ δ−1(U) is open in dom(δ).

By definition, the representation δ becomes a continuous quotient map. However, not all
continuous quotient maps are “good” representations, as the following example shows.

Example 3.2. Consider the binary representation of R. More precisely,

δ(±anan−1 · · · a0.a−1a−2 · · · ) = x ⇐⇒ x = ±∑n
k=−∞ ak2

k.

It can be shown (see Section 3.3) that δ is a partial surjective quotient map Σω → R.
Let xn = 1 + (−1/3)n for n ∈ N, and x∞ = 1, so the function f : N ∪ {∞} → R,
f(n) = xn is continuous. Then for n = ∞, we have names p∞ = +0.111 · · · and
p′∞ = +1.000 · · · , whereas for x2n we have a unique name p2n+1 = 1.0 · · · and for x2n+1

we have a unique name pn = 0.1 · · · . This means that any function h : N ∪ {∞} → Σω

satisfying δ(h(n)) = f(n) (there are only two) has a discontinuity at ∞. In other words,
the function h : N ∪ {∞} → R does not lift through the representation δ.

In order to prevent pathological situations as described above, we impose an admissibility
condition on representation in addition to the quotient condition.

Definition 3.3 (Admissible quotient representation). A continuous representation δ of
a topological space X is a quotient if whenever Y is a topological space and f : X → Y
is such that f ◦ δ is continuous, then f is continuous.

A representation δ of a topological space X is admissible if whenever φ : Σω ⇀ X
is a continuous partial function, there exists a continuous partial function η : Σω ⇀ Σω

such that φ = δ ◦ η.

An alternative definition of a quotient representation is that U is open in X whenever
δ−1(U) is open in Σω. An alternative definition of an admissible representation is that
whenever xi → x∞ is a convergent sequence in X, there exists a convergent sequence
ξn → ξ∞ in Σω such that δ(ξn) = xn for n ∈ N ∪∞.

19
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The quotient representation captures the notion that δ must contain the information
given by the topology of the space. Admissibility means that δ does not contain “too
much” information, or that the information respects sequential continuity.

The following result is derived from [47]. It gives the basic properties implied by the
admissibility and quotient conditions on continuous representations.

Proposition 3.4. Let (X, τX) and (Y, τY ) be topological spaces, and δX , δY be continuous
representations of X and Y .

1. Suppose η is a continuous realiser for a function f : X → Y and δX is a quotient
representation. Then f is continuous.

2. Suppose f : X → Y is continuous, and δY is admissible. Then f has a continuous
realiser.

Proof.

1. Take φ = δY ◦ η, which is continuous. We have f ◦ δX = δY ◦ η, so f ◦ δX is
continuous. Since δ is a quotient map, f is continuous.

2. Take φ = f ◦ δX . Then since δY is admissible, there exists a continuous η such
that δY ◦ η = f ◦ δX .

The following result is a direct consequence of Proposition 3.4.

Corollary 3.5 (Discontinuity implies uncomputability). Let (Xi, τi) be topological spaces,
and δi be admissible quotient representations for i = 0, . . . , k. Then if f : X1×· · ·×Xk →
X0 is (δ1, . . . , δk; δ0)-computable, then f is (τ1, . . . , τk; τ0)-continuous.

In other words, only continuous functions can be computable, yielding a very strong
link between topology and computability. The main use of this result is to show certain
operations are uncomputable, since it is sufficient to show that the operation is discontinu-
ous. The converse is not true, as there are continuous functions that are not computable,
but in practise, most “naturally-defined” continuous functions are computable.

A common critique of computable analysis is that “only” continuous functions can
be handled, and there are plenty of important functions that are discontinuous, the most
important being the Heaviside function

H(t) =

{
0 if t < 0;
1 if t ≥ 0.

However, the negative computability results should be interpreted as the fact that it
is impossible to evaluate the function arbitrarily accurately at every point if only ap-
proximations to the argument are known (the computation fails at t = 0). In most
practical applications, the Heaviside function occurs on the right-hand side of a differ-
ential equation, and only its integrals are involved. Interpreting the function in the
space L1 of integrable functions gives a valid name which is sufficient to compute with.
Alternatively, by refining the topology on the argument space (corresponding to more
information) or coarsening the topology on the result space (corresponding to less in-
formation) again allows for a valid name. In this way, the computability theory yields
important information on the properties and valid uses of the function.
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We now turn to the question of which topological spaces have an admissible quotient
representation. An obvious condition is that the space should have at most continuum
cardinality, the cardinality of Σω. A second condition is that the space should at least
satisfy the T0 separation axiom, that is, for any two points x, y, there exists an open set
U such that either x ∈ U and y 6∈ U , or y ∈ U and x 6∈ U . Such spaces are also called
Kolmogorov spaces. Henceforth, all topological spaces considered will be Kolmogorov
unless explicitly declared otherwise.

One natural class of spaces which have at most continuum cardinality are the countably-
based Kolmogorov spaces, since every point is described by the basic open sets containing
it. In Section 3.6 we give an explicit construction of an admissible quotient representa-
tion for a countably-based Kolmogorov space. However, it turns out that any topological
quotient of a countably-based space also has an admissible quotient representation, and
that the class of quotients of countably-based (qcb) Kolmogorov spaces are exactly the
spaces with an admissible quotient representation. We prove this result in Section 4.2.

In general a quotient of a countably-based space need not be countably-based, but
we will show that it has a countable pseudobase in the following sense:

Definition 3.6 (Pseudobase). A collection ρ of subsets of a topological space (X, τ) is a
pseudobase if for any x ∈ X and U ∈ τ , there exists P ∈ ρ such that x ∈ P and P ⊂ U .

It is clear that if (X, τ) is a Kolmogorov space with a countable pseudobase then X
has at most continuum cardinality. Further, any pseudobase is a base if, and only if, it
consists only of open sets.

The admissibility condition is strongly tied to the concept of sequential space, for
which the topology is determined by the convergent sequences:

Definition 3.7 (Sequential space). A subset S of a topological space (X, τ) is sequen-
tially open if whenever ~x is a convergent sequence with limit x∞ ∈ S, there exists
N ∈ N such that xn ∈ S for all n ≥ N . A topological space (X, τ) is sequential if any
sequentially open set is open.

The space Σω is an example of a sequential space: The property of being sequential is
preserved by subspaces and quotient spaces, so any space with an quotient representa-
tion is itself a sequential space. For a sequential space to have an admissible quotient
representation, we also need to bound the cardinality in some way. In Section 4.2, we
show that any sequential space with a countable sequential pseudobase has an admissible
quotient representation.

3.2 Computable type theory

We now develop a computable type theory based on the admissible quotient represen-
tations. The most important goals are to give a collection of initial concrete types, and
then to build up new types from existing types. The resulting types form a Cartesian
closed category, with objects which are computable types, and morphisms which are
continuous functions (some of which are computable).

Note that there are two natural categories whose objects are computable types. In
the first, all continuous functions are allowed as morphisms, while in the second, only
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computable functions are allowed. In general, the morphisms involved in universal con-
structions in a category will all be computable, but the conditions apply to all continuous
functions.

Definition 3.8 (Category of computable types). The category of computable types (with
continuous morphisms) is the category whose objects are computable types X = (X, [δ]),
and morphisms X → Y are functions f : X → Y which are continuous with respect to
the induced topologies on X and Y . A morphism is computable if it corresponds to a
computable function. The category of computable types computable morphisms is the
subcategory with the same objects, but whose morphisms are the computable functions.

The type of any singleton space is a terminal object I in the category. Note that
there is exactly one morphism from any type to the singleton type. Further, there is a
natural bijection between elements x of a space X and continuous functions from the
singleton space to X. We can therefore associate any element of the object X with
a morphism I → X . This identification is useful in that it allows us to work purely
within the category itself, and still recover element of the underlying set of X . Further,
if f : X → Y is a morphism in the category, and x : I→ X represents an element of X,
then f ◦ x : I→ Y represents the element f(x) of Y .

The next theorem gives some closure properties of the category of computable types.
These properties imply that the category of computable types is Cartesian closed. This is
an important notion in intuitionistic/constructive type theory, since the lambda-calculus
can be developed in any Cartesian closed category.

Theorem 3.9.

1. There is a computable type I, which is unique up to continuous/computable iso-
morphism, such that for any continuous/computable type X , there is a unique
computable function X → I.

2. If X1 and X2 are computable types, then there is a unique computable type X1×X2

together with computable projections pi : X1 × X2 → Xi such that for all contin-
uous/computable functions fi : W → Xi, there exists a continuous/computable
function f :W → X1 ×X2 such that fi = pi ◦ f for i = 1, 2.

3. If X and Y are computable types, then there is a unique computable type YX
together with a computable evaluation function e : YX × X → Y such that for
any continuous/computable f : W × X → Y, there exists continuous/computable
f̂ :W → YX such that f(w, x) = e(f̂(w), x) for all w ∈ W and x ∈ X .

Proof.

1. Let I be a one-point set, with representation δ with dom(δ) = Σω. (Actually, any
representation whose domain contains a computable element will do.)

2. Let δi be a representation of Xi, i = 1, 2. We say that q is a name of (x1, x2) ∈
X1×X2 if q ∈ dom(π1, 2) and πi(p) ∈ dom(δi) with δi(πi(q)) = xi for i = 1, 2. We
have pi(x1, x2) = pi(δ(q)) = δi(πi(q)) for i = 1, 2 so the projections are computable.

Suppose P and P ′ are two types satisfying the properties. Then taking fi = p′i,
there exists computable f : P ′ → P such that xi = p′i(x1, x2) = pi(f(x1, x2)) for
all x1, x2, so id is computable. The same holds reversing the roles of P and P ′, so
any two product types are equivalent.
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3. Let δX , δY be admissible quotient representations of X and Y . We aim to define
a representation δX→Y on C(X;Y ). Let f : X → Y be continuous. Then there
exists continuous η : Σω ⇀ Σω with Gδ-domain such that f(δX(q)) = δY (η(q)) for
all q ∈ dom(δX). By Theorem 2.16, there exists a ∈ Σω such that η(·) = ε(a, ·).
We therefore take δX→Y (a) = f if, and only if, f(δX(q)) = δY (ε(a, q)) for all
q ∈ dom(δX).

The evaluation function e is computable, since if f = δX→Y (a) and x = δX(q),
we have e(f, x) = f(x) = f(δX(q)) = δY (ε(a, q)). Further, if f : W × X →
Y is computable, then there exists computable ξ : Σω × Σω → Σω such that
f(δW (p), δX(q)) = δY (ξ(p, q)). Take η : Σω → Σω such that η(τ(p, q)) = ξ(p, q),
noting that η can be taken to be computable. Then there exists computable a such
that ε(a, p) = η(p). Then for any x ∈ X, δX→Y (σ(a, p))(x) = δX→Y (σ(a, p))(δX(q)) =
δY (ε(σ(a, p), q)) = δY (ε(a, τ(p, q))) = δY (η(τ(p, q))) = δY (ξ(p, q)) = f(δW (p), δX(q)) =
f(w, x) = f̂(w)(x), so δX→Y (σ(a, p)) = f̂(w). Hence f̂ is computable.

We henceforth identify w ∈ YX with the (necessarily continuous) function f(x) =
e(w, x).

To show that the representation is unique up to equivalence, suppose C and C′ are
types of the continuous functions satisfying the required properties, with respective
evaluation functions e and e′. Since evaluation e : C × X → Y is computable, the
function i : C → C′ satisfying e′(i(w), x) = e(f, x) is computable. Then e′(i(f), x) =
f(x), so i(f) is equal to f i.e. the identity C and C′ is computable. Similarly, the
identity i′ from C′ to C is computable.

Remark 3.10. The topology on X1 × X2 induced by the representation δX1×X2 is not
necessarily the product topology. For the topology of X1×X2 must be sequential, but the
product topology need not be. In fact, the topology on X1 ×X2 is the sequentialisation
of the product topology.

The following equivalences hold in any Cartesian closed category.

Proposition 3.11.

1. The product of the terminal type I and any type X is isomorphic to X .

2. The morphisms I→ YX are in bijective correspondence with the morphisms X →
Y.

Proof.

1. Take W = I. Since an element of any type is associated with a morphism I→ X ,
the elements of I×X are associated with pairs (i, x) where i is the unique element
of I and x ∈ X .

2. An element of f̂ of YX is defined by a morphism I→ YX , and defines a morphism
f : X → Y by f(x) = ε(f̂ , x), and conversely.

We can additionally define countable products in the category of computable types.
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Definition 3.12. Let (Xn)n∈N be computable types. Then
∏∞
n=0Xn is a computable

type with representation δ given by taking

δ(τ(p0, p1, . . .)) = (x0, x1, . . .) ⇐⇒ δi(pi) = xi (3.1)

where τ is the infinite tupling function given by (2.3).

There are similar initial constructions in the category of computable types.

Theorem 3.13.

1. There is a computable type E which is unique up to computable isomorphism such
that for any computable type X , there is a unique computable function E → X .

2. If X1 and X2 are computable types, then there is a unique computable type X1 +X2

together with computable embeddings ji : Xi → X1 + X2 such that for all con-
tinuous/computable functions fi : Xi → W, there exists a continuous/computable
function f : X1 + X2 →W such that fi = f ◦ ji for i = 1, 2.

The proof is similar to that of Theorem 3.9, and it omitted. The initial type E is the
type of the empty set, and the sum type is the type of the disjoint union.

3.3 Fundamental types

We now describe three fundamental logical and numerical types, and some derived prod-
uct types, which form the cornerstone of computable analysis. For each type, we give
a simple representation with alphabet {0, 1}, and other natural representations as ap-
propriate. Where possible, we give representations where the domain has a particularly
nice form.

3.3.1 The natural numbers

We begin with the natural numbers N, and define the corresponding type N. A simple
representation using the alphabet {0, 1,↵} is given by the binary expansion using the
‘↵’ symbol to act as a terminator:

δ(pkpk−1 · · · p1p0↵ · · · ) =
k∑
i=0

2ipi.

The decimal representation uses the alphabet {0, 1, 2, . . . , 9,↵}, and is defined by

δ(pkpk−1 · · · p1p0↵ · · · ) =
k∑
i=0

10ipi.

A simple representation of N with the alphabet Σ = {0, 1} is given by a function δ
with domain {0, 1}ω \ {1ω} by

δ(1n0 · · · ) = n.

Alternatively, we can restrict dom(δ) to {1n0ω | n ∈ N}. The above representation is
very inefficient, since the number n requires n+ 1 bits to determine. In order to encode
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the binary representation using only symbols {0, 1}, we need to know how to specify the
end of the input. A simple way of doing this is to prefix the binary name with a unary
name giving the number of binary digits; or better, the number of “machine words”:

δ(1m0pkm−1pkm−2 · · · p1p0 · · · ) =
∑km−1

i=0 2ipi.

or the logarithm of the number of digits:

δ(1m0p2m−1p2m−2 · · · p1p0 · · · ) =
∑2m−1

i=0 2ipi.

For example, the number 425 has binary expansion 110101001 with 9 digits, so a name
of 425 would be 11110 0000000110101001 · · · with m = 4.

Under any of the above representations, it is easy to show that addition and multi-
plication are computable, and that comparisons are decidable predicates.

Note that there is no representation of the natural numbers with domain Σω, since
Σω is compact but N is not.

The integers can be constructed by introducing a symbol −, or as the quotient of
N × N under the function z(m,n) = m − n. The rationals can be constructed by
introducing a symbol /, or as the quotient of Z× (N \ {0}) under the function q(m,n) =
m/n.

The space N∞ = N ∪ {∞} is particularly important, since any convergent sequence
in a topological space X can be viewed as a continuous function s : N∞ → X. A
representation of N∞ as a total function is δ(1n0 · · · ) = n; δ(1ω) =∞.

3.3.2 Logical types

We shall later see that almost all problems in computable analysis are undecidable. In
particular, equality on Σω is undecidable, since we can never tell in finite time whether
two sequences are equal. For this reason, it is most natural to use a three-valued logical
type T with values {>,⊥, ↑} representing provable, disprovable and undecidable. Alter-
native names for > and ⊥ are, respectively, verifiable and falsifiable. An alternative
name for ↑ is indeterminate.

The type T can be given a representation δ which is a total function on {0, 1}ω. We
define

δ(0∗10 · · · ) = ⊥; δ(0∗11 · · · ) = >; δ(0ω) =↑ .
We interpret the representation as follows. A leading 0 indicates that at the given stage
of computation, there is insufficient information to determine whether the value should
be true or false. The first 1 indicates that a decision has been made, and the next digit
is 0 for false and 1 for true. If the result is undecidable, then the output is an infinite
sequence of zeroes.

The induced topology has basic open sets {>} and {⊥}, so the open sets are{{ }, {>}, {⊥}, {>,⊥}, {>,⊥, ↑}}. In particular, the set {↑} is closed but not open,
so although the topology is finite, it is not the discrete topology. Indeed, it is not even
Hausdorff, since the only open set containing ↑ is {>,⊥, ↑}.

3.3.3 The real numbers

Perhaps the most important computable type, and our first concrete example of an
uncountable type, is the type of the real numbers. We first show that the binary repre-
sentation is not an admissible representation of R.
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Example 3.14 (Binary representation). Given the real number 1, there are two possible
binary expansions, 1.00 · · · and 0.11 · · · . Let xn = 1 + (−1/2)n. Then for even n,
xn > 1 and any name of xn begins 1. · · · , whereas for odd n, xn < 1 and any name
of xn begins 0.1 · · · . Hence even though xn → 1 as n → ∞, we cannot choose binary
expansions for xn which converge.
Similar considerations hold for the decimal representation.

A class of representations which are admissible are know as extended digit repre-
sentations. The simplest is the binary signed-digit representation with alphabet Σ =
{0, 1, 1̄, .} The representation is defined by

δ(anan−1 · · · a0.a−1a−2 · · · ) =
n∑

i=−∞
ai 2i, (3.2)

where the symbol ‘1̄’ is read as −1.
It is easy to show that arithmetic is computable in with respect to the binary signed-

digit representation, and that strict inequality < is semidecidable. We also need to
account for the topological/metric structure of the real line. The most straightforward
way of doing this is by looking at limits of convergent sequences. Since a finite part of
a general convergent sequence gives no information about the limit, we need to restrict
to effectively convergent sequences for which the rate of convergence is known.

Definition 3.15 (Effective limit). A limit in a metric space is effective if there exists a
computable sequence of rationals εn such that εn ↘ 0 and d(xm, xn) < εmin(m,n) for all
m,n.

Without loss of generality, we can always take εn = 2−n or εn = 1/n.
The following theorem is due to Bauer [6]. It asserts the existence of a canonical real

number type.

Theorem 3.16 (Real number type). There is a unique computable type R with under-
lying set R such that the constant 1 is a computable number, arithmetical operations
+,−,×,÷ are computable, strict comparison < is semidecidable, and effective limits lim
are computable.

Proof. Suppose δ1 and δ2 are representations of R satisfying the required properties.
Given a δ1-name p1 of x ∈ R, we need to compute a δ2-name of p.

Since the constant one and addition are computable, given a positive integer n, we
can find a δ1- or δ2-name of n by computing 1 + 1 + · · · + 1. Since subtraction is
computable, we can find a name of any integer m as m = n1 − n2. Since division is
computable, we can find a name of any rational number q as q = m/n.

Given a δ1-name p of x ∈ R, since we can construct any rational number q and
verify q < x and x < q, we enumerate all rational numbers l < x and all rational
numbers u > x. We can therefore construct a sequence of rational numbers qi such that
|qi− qj | < 2−min(i,j) and limi→∞ qi = x. Since the qi are rational, we can find a δ2-name
of each qi. We can find a δ2-name of x since effective limits are δ2-computable.

3.4 Set and function types

We now develop the theory of subsets of a topological type. We begin by introducing
some convenient notation.
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Notation 3.17. Write A ./ U to denote the classical predicate U ∩A 6= ∅. If U is open,
we say that A overlaps U . Write Un ↗ U∞ if Un+1 ⊃ Un for all n and

⋃∞
n=0 Un = U∞.

From classical topology, we have the property that a set U is open if, and only if, its
characteristic function is a continuous map from X to S:

Proposition 3.18 (Open sets). Let X be a topological space. Then there is a canonical
bijection between O(X) and continuous functions X → S given by χ(x) = > ⇐⇒ x ∈ U
for U ∈ O(X) and χ : X → S.

We use this as a basis for the definitions of types of subsets of a computable type.

Definition 3.19 (Open and closed set types).

1. The type of open subsets of X , denoted O(X ), is defined to be the exponential
object SX . The interpretation of continuous χ : X → S as a point-set U ∈ O(X)
is given by U = χ−1({>}).

2. The type of closed subsets of X , denoted A(X ), is identified with SX . The interpre-
tation of continuous χ : X → S as a point-set A ∈ A(X) is given by A = χ−1({↑}).

We now turn to types of compact sets, and the dual type of separable or overt sets,
which are defined in terms of subset and overlap relations. Note that the overlap and
subset relations can be defined in terms of existential and universal quantifiers as

S ./ U ⇐⇒ ∃x ∈ S, x ∈ U
S ⊂ U ⇐⇒ ∀x ∈ S, x ∈ U.

Further, for any set S, the overlap relation and subset relations satisfy:

S ./ (U1 ∪ U2) ⇐⇒ (S ./ U1) ∨ (S ./ U2); (3.3)
S ⊂ (U1 ∩ U2) ⇐⇒ (S ⊂ U1) ∧ (S ⊂ U2). (3.4)

Given a fixed set S, these relations define functions O(X) → S, or equivalently, or a
set of open sets O(X). It can be shown that the functions defined by ./ are always
continuous, but the functions defined by ⊂ are continuous if, and only if, S is compact
The observations above motivate the definition of set types as functions defined by the
overlap and subset relations.

Definition 3.20 (Separable/overt and compact set types).

1. The type of separable or overt sets1 subsets of X , denoted V(X ), is defined to be the
subtype of SO(X ) defined by functions b : O(X ) → S satisfying b(U ∪ V ) = b(U) ∨
b(V ). Given any set B, we can define such a function b by b(U) = > ⇐⇒ B ./ U .
The interpretation of the function b as a point-set B is given by B = {x ∈ X |
∀U ∈ O(X), (x ∈ U =⇒ b(U) = >)}.

2. The type of compact subsets of X , denoted K(X ), is defined to be the subtype of
SO(X ) defined by functions c : O(X )→ S satisfying c(U ∩V ) = c(U)∧ c(V ). Given
any compact set C, we can define such a function c by c(U) = > ⇐⇒ C ./ U .
The interpretation of the function c as a point-set C is given by C = {x ∈ X |
∀U ∈ O(X), (c(U) = > =⇒ x ∈ U)}.

1The terminology overt is becoming standard in the literature. We use the terminology separable
since this is the classical property most closely related to this type.
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Since S ./ U ⇐⇒ cl(S) ./ U , the function b : O(X ) → S defines a set only up to its
closure; the point-set construction of B always yields a closed set. If X is a Hausdorff
space, then the function c : O(X )→ S defines a compact set uniquely. However, if X is
not Hausdorff, then the point-set is defined only up to its saturation:

Definition 3.21 (Saturation). Let (X, τ) be a topological space and S ⊂ X. Then the
saturation of S in (X, τ), denoted sat(S), is

sat(S) =
⋂
{U ∈ τ | S ⊂ U}. (3.5)

We say S is saturated if S = sat(S).

For example, if X = R with topology τ = {(−∞, a) | a ∈ R}, then any set S with
sup(S) ∈ S is compact, and the saturated compact sets have the form (−∞, s] for s ∈ R.

Remark 3.22. The interpretation of c : O(X )→ S as a point-set may fail to be compact.
For if X = (Q, τ<) and r 6∈ Q, then the function c : (−∞, a) 7→ > ⇐⇒ a > r
is continuous and satisfies (3.4), but the corresponding point-set C is (−∞, r] ∩ Q =
(−∞, r) ∩ Q which is not compact. Additionally, the identity c(U) = > ⇐⇒ C ⊂ U
fails for the set U = (−∞, r). In order that the interpretation of c as a point-set yields
a compact set C, we require the space X to be sober. We shall return to this point in
Section 4.4.

We now give some computability results which are valid for any topological type.

Theorem 3.23. The following operators are computable:

(i) Complement O↔ A.

(ii) Finite intersection O× O→ O.

(iii) Countable union ON → O.

(iv) Finite union A×A→ A.

(v) Countable intersection AN → A.

(vi) (Closed) intersection V× O→ V.

(vii) Intersection K×A→ K.

(viii) Countable union VN → V.

(ix) Finite union K×K→ K.

(x) Singleton X → V and X → K.

Proof. The basic proof technique in all cases is the same; in order to prove that a
function f̂ :W → YX is computable, it suffices to show that the function f :W×X → Y
satisfying f(w, x) = f̂(w)(x) is computable.

(i) x ∈ U ⇐⇒ x 6∈ X \ U ; x 6∈ A ⇐⇒ x ∈ X \A.

(ii) x ∈ U1 ∩ U2 ⇐⇒ (x ∈ U1) ∧ (x ∈ U2).

(iii) x ∈ ⋃∞n=1 Un ⇐⇒
∨∞
n=1(x ∈ Un).

(iv) x 6∈ A1 ∪A2 ⇐⇒ (x 6∈ A1) ∧ (x 6∈ A2).

(v) x 6∈ ⋂∞n=1An ⇐⇒
∧∞
n=1(x 6∈ An).
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(vi) B ∩ U ./ V ⇐⇒ B ./ U ∩ V .

(vii) C ∩A ⊂ U ⇐⇒ C ⊂ U \A = U ∩ (X \A).

(viii)
⋃∞
n=1Bn ./ U ⇐⇒

∨∞
n=1(B ./ Un).

(ix) C1 ∪ C2 ⊂ U ⇐⇒ (C1 ⊂ U) ∧ (C2 ⊂ U).

(x) x ∈ U ⇐⇒ {x} ./ U ⇐⇒ {x} ⊂ U .

We have seen that the exponential YX (alternatively denoted C(X ;Y)) is a canonical
type for the continuous functions X → Y , and that evaluation e : C(X ;Y) × X → Y is
computable. We can extend computability to images and preimages of sets.

Theorem 3.24 (Computable image/preimage).

1. Preimage (f, S) 7→ f−1(S) is computable C(X ;Y)× O(Y)→ O(X ) and C(X ;Y)×
A(Y)→ A(X ).

2. Image (f, S) 7→ f(S) is computable C(X ;Y)×V(X )→ V(Y) and C(X ;Y)×K(X )→
K(Y).

Proof.

1. x ∈ f−1(U) ⇐⇒ f(x) ∈ U and x 6∈ f−1(A) ⇐⇒ f(x) 6∈ A.

2. f(A) ./ V ⇐⇒ A ./ f−1(V ) and f(C) ⊂ V ⇐⇒ C ⊂ f−1(V ).

We now turn to multivalued functions F : X ⇒ Y , which can be thought of as set-
value functions F : X → P(Y ). A multivalued function is open- (respectively closed- or
compact-) valued if F (x) is open (respectively closed or compact) for all x. The image
of a set S is defined by F (S) =

⋃{F (x) | x ∈ S} = {y ∈ Y | ∃x ∈ S, y ∈ F (x)}. The
composition of F : X ⇒ Y and G : Y ⇒ Z is defined by G ◦ F (x) = G(F (x)) = {z ∈
Z | ∃y ∈ Y, y ∈ F (x) ∧ z ∈ F (y)}. The weak preimage F−1 of F : X ⇒ Y is defined by
F−1(B) = {x ∈ X | F (x) ∩ B 6= ∅}, and is a multivalued function F−1 : Y ⇒ X. The
strong preimage F⇐ of F is defined by F⇐(B) = {x ∈ X | F (x) ⊂ B}. A multivalued
function F : X ⇒ Y is upper-semicontinuous if F−1(A) is closed whenever A is closed;
equivalently if F⇐(U) is open whenever U is open. F is lower-semicontinuous if F−1(U)
is open whenever U is open; equivalently if F⇐(A) is closed whenever A is closed. A
multivalued map F : X ⇒ Y defines a relation R ⊂ X × Y by R(x, y) ⇐⇒ F (x) 3 y;
conversely every relation between X and Y defines a multivalued function.

Theorem 3.25 (Action of multivalued functions).

1. Multivalued preimage (F, S) 7→ F−1(S) is computable C(X ; V(Y))×O(Y)→ O(X )
and C(X ; K(Y))×A(Y)→ A(X ).

2. Multivalued image (F, S) 7→ F (S) is computable C(X ; V(Y)) × V(X ) → V(Y) and
C(X ; K(Y))×K(X )→ K(Y).

Proof.

1. x ∈ F−1(V ) ⇐⇒ F (x) ./ V and x 6∈ F−1(B) ⇐⇒ F (x) ∩ B = ∅ ⇐⇒ F (x) ⊂
(Y \B).
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2. F (A) ./ V ⇐⇒ A ./ F−1(V ) and F (C) ⊂ V ⇐⇒ C ⊂ F⇐(V ) ⇐⇒ C ⊂
X \ F−1(Y \ V ).

Classically, a multivalued function X ⇒ Y can be expressed as a subset of X × Y .
However, this only holds computably for open- and closed- valued functions.

Proposition 3.26.

1. The types C(X ; O(Y)) and O(X × Y) are computably equivalent.

2. The types C(X ; A(Y)) and A(X × Y) are computably equivalent.

3. The types C(X ; V(Y)) and V(X × Y) are in general not equivalent.

4. The types C(X ; K(Y)) and K(X × Y) are in general not equivalent.

Proof.

1. y ∈ F (x) ⇐⇒ (x, y) ∈ F̃ .

2. y 6∈ F (x) ⇐⇒ (x, y) 6∈ F̃ .

3. Consider X = Y = R and the sets F̃n = {(2−n, 0)} with F̃∞ = {(0, 0)}. Then
F̃n → F̃∞ in V(R× R), but Fn(0) = ∅ for n ∈ N but F∞(0) = {0}.

4. If X is not compact, then only multivalued functions with compact domain have a
graph in K(X×Y ). If X is not Hausdorff, then F (x) ⊂ V ⇐⇒ {x}×(Y \V ) ∩R =
∅, but {x} need not be closed.

The above observation has important ramifications for the notion of causality in dy-
namic systems. With additional effectivity properties of Definition 3.28, we can derive
reductions between C(X ; V(Y)) and V(X ×Y), and between K(X ×Y) and C(X ; K(Y)).

Define the multivalued restriction map IS for a set S by IS(x) = {x} if x ∈ S
and IS(x) = ∅ otherwise. The following useful result shows that open/closed sets have
overt/compact restriction maps.

Theorem 3.27 (Properties of restriction maps). The restriction map S 7→ IS is O(X )→
C(X ; V(X ))-computable and A(X )→ C(X ; K(X ))-computable.

Proof. If U is open, then IU (x) ./ V ⇐⇒ x ∈ U ∩ V . If A is closed, then IA(x) ⊂
V ⇐⇒ x ∈ V ∪ (X \A).

3.5 Effective topological properties

We now consider some familiar classical properties of topological spaces, give “effective”
versions of them, and deduce some of their properties.

Definition 3.28 (Effectivity properties). Let X be a topological type. Then:

1. X is effectively discrete if the equality relation =: X × X → S is verifyable.

2. X is effectively distinguishable if the relation 6=: X × X → S is verifyable.

3. X is effectively separable if X is a computable element of V(X ).

4. X is effectively compact if X is a computable element of K(X ).
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Remark 3.29. Even if inequality 6= is verifyable, the space X need not be a Hausdorff, but
the Hausdorff property always holds if X ×X with the product topology is a sequential
space; in particular if X is locally-compact.

The following proposition provides the relationship between overtness and separabil-
ity; a space is computably overt if, and only if, it has a computable dense subset.

Proposition 3.30. Let X be a topological type. Then:

1. X is effectively separable if there is a computable function ξ : N → X with dense
range.

2. X is effectively compact if there is a computable surjective function ξ : B→ X .

The following result gives a link between effectivity properties of the topological type
and conversions between subsets of that type.

Theorem 3.31. Let X be a topological type. Then:

1. The interior function V(X )→ O(X ) is computable if, and only if, X is effectively
discrete.

2. The closure function K(X )→ A(X ) is computable if, and only if, X is effectively
distinguishable.

3. The closure function O(X )→ V(X ) is computable if X is effectively separable.

4. The saturation function A(X )→ K(X ) is computable if X is effectively compact.

Proof.

1. Let W ∈ V(X ). Since for any x ∈ X, {x} = {y ∈ X | x = y} is open, we have
x ∈W ⇐⇒ W ∩ {x} 6= ∅.
Conversely, if V(X )→ O(X ), then x = y ⇐⇒ {x} ∩ {y} 6= ∅. Since the singleton
operator X → V(X ) is always computable, we can compute a name of {x} in O(X )
and a name of {y} in V(X ). Hence =: X × X → S is verifyable.

2. For given x, the function X → S given by y 7→ > ⇐⇒ x 6= y is computable
since X is effectively distinguishable, so {y | y 6= x} is computably open. Then
x 6∈ C ⇐⇒ C ⊂ (X \ {x}).
Conversely, x 6= y ⇐⇒ {x} ∩ {y} = ∅. Since singleton x 7→ {x} is always
computable X → K(X ), if K(X ) → A(X ) is computable, we can compute a {x}
in K(X ) and {y} in A(X ), and hence verify {x} ∩ {y} = ∅.

3. Suppose X is computable in V(X ), and let U ∈ O(X ). Then cl(U) = cl(U ∩
X) is computable in V(X ). Conversely, if the closure function O(X ) → V(X ) is
computable, then since X is computable in O(X ), it is also computable in V(X ).

4. Suppose X is computable in K(X ), and let A ∈ A(X ). Then A = A ∩ X is
computable in K(X ). Conversely, if the saturation function A(X ) → K(X ) is
computable, then since X is computable in A(X ), it is also computable in K(X ).
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Note that since the effective distinguishability/Hausdorff property and the effective sep-
arability property are relatively common for the main types used in analysis, the conver-
sions O(X )→ V(X ) and K(X )→ A(X ) are usually computable, whereas the conversions
V(X )→ O(X ) and A(X )→ K(X ) are usually not. This means that a description of an
open set in O(X ) provides more information than a description of its closure in V(X ), and
a description of a compact set in K(X ) provides more information than its description
in A(X ).

We now prove that effectivity properties extend to countable products.

Theorem 3.32. Let Xn, n ∈ N be computable types.

1. If each Xn is effectively separable, then
∏∞
n=0Xn is effectively separable.

2. If each Xn is effectively compact, then
∏∞
n=0Xn is effectively compact.

Proof.

1. Suppose ξn : N → Xn are computable functions with countable dense range. Let
h : N∗ → N be a computable bijective function. Define η : N → ∏∞

n=0Xn by
η(h(m0, . . . ,mj)) = (ξ0(m0), ξ1(m1), . . . , ξj(mj), ξj+1(0), ξj+2(0), . . .). Then η has
dense range and is computable by construction.

2. Since each Xn is effectively compact, there exist computable surjective functions
ξn : B→ Xn. Define g : N× N→ N by g(i, j) = (i+ j)(i+ j + 1)/2 + j, and note
that g is a bijection. Define τ : Bω → B by τ(p0, p1, . . .)k = pi,j where g(i, j) = k,
and note that τ is also a bijection. Define η : B→∏∞

n=0Xn by (η(q))i = ξi(pi) for
q = τ(p0, p1, . . .). Then η : B → ∏∞

n=0Xn is surjective since each ξi is surjective,
and is computable by construction.

The following result shows that projection maps are computable on open and closed
subsets given suitable effectivity properties.

Proposition 3.33.

1. Suppose Y is effectively separable. Then the set projection operator πX : O(X ×
Y)→ O(X ) is computable.

2. Suppose Y is effectively compact. Then the set projection operator πX : A(X ×
Y)→ A(X ) is computable.

Proof.

1. x ∈ πX(A) ⇐⇒ ({x} × Y ) ∩A 6= ∅.
2. x 6∈ πX(A) ⇐⇒ ({x} × Y ) ∩A = ∅.
We now give an effective version of local compactness.

Notation 3.34. We write U b V if every open cover of V has a finite subcover of U .
We define �U = {V ∈ O(X) | U b V }.
Definition 3.35 (Effectively locally-compact). A computable type X is effectively locally-
compact if there is a computable function N → O(X ) ×K(X ), n 7→ (Vn,Kn) such that
for any n, Vn ⊂ Kn, and for any x ∈ X and W ∈ O(X), there exists n such that x ∈ Vn
and Kn ⊂W .

We say that X is strongly effectively locally-compact if we can take Kn =
⋂{W ∈

O(X) | Vn bW} for all n; if X is a Hausdorff space this is equivalent to Kn = cl(Vn).
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Remark 3.36. Using the definition given, it is immediate that X is a countably-based
space, since any U is given by U =

⋃{Vn | Kn ⊂ U}, and is effectively separable, since
U 6= ∅ ⇐⇒ ∃n, U ⊃ Kn. It would be interesting to find a weaker notion of effective
local compactness which does not imply these properties.

Frequently, rather than find a neighbourhood of a point, we need a neighbourhood of a
compact set. The next result shows that this can always be done.

Proposition 3.37. Suppose X is effectively locally compact. Then there is a computable
function N→ O(X )×K(X ), n 7→ (Wn, Ln) with Wn ⊂ Ln such that for any compact C
and open U with C ⊂ U , there exists n with C ⊂Wn and Ln ⊂ U .

Proof. Consider the pairs (
⋃
n∈N Vn,

⋃
n∈N Kn) for N a finite subset of N. Let C ⊂ U

be compact. Then {Vn | Kn ⊂ U} is an open cover of C, so has a finite subcover
{Vn | n ∈ N}. By construction {Kn | n ∈ N} ⊂ U .

3.6 Standard representations of topological and metric spaces

In this section we show how to build representations of topological and metric spaces.
These constructions can be used to give equivalent representations for the spaces con-
structed as category-theoretic products and exponentials, or to give representations of
new spaces which extend the type theory. The material of this section is based on the
definitions of Weihrauch and Grubba [54].

Definition 3.38 (Effective topological spaces; standard representation). An effective
topological space is a tuple (X, τ, σ, ν) where (X, τ) is a second-countable Kolmogorov
(T0) space, σ is a sub-base for τ , and ν is a notation for σ .

If σ is base for τ , we write β instead of σ, and say that (X, τ, β, ν) is a effective
topological space.

The standard representation δ of (X, τ, σ, ν) is the function δ : Σω ⇀ X such that

δ(p) = x ⇐⇒ {ν(w) | w � p} = {J ∈ σ | x ∈ J}. (3.6)

In other words, a name of x in the standard representation encodes a list of all J ∈ σ
such that x ∈ J .

The following result shows that the standard representation of an effective topolog-
ical space is an admissible quotient representation. The proof is similar to that of the
corresponding parts of 4.5, but is considerably simpler, so we include it in full.

Theorem 3.39. Let (X, τ, σ, ν) be an effective topological space. Then the standard
representation δ of (X, τ, σ, ν) is an admissible quotient representation.

Proof. δ is continuous: Let U ⊂ X be open and x = δ(p) ∈ U . Since σ is a sub-base,
there exist J1, . . . , Jk ∈ σ such that x ∈ ⋂k

i=1 Ji ⊂ U . Since p is a name of x, we have
wi � p where ν(wi) = Ji for i = 1, . . . , k. Hence there is a prefix v of p such that wi � v
for all i = 1, . . . , k. Hence δ(q) ∈ ⋂k

i=1 Ji ⊂ U for any q ∈ vΣω.
δ is a quotient map: Suppose W ⊂ X and δ−1(W ) is open. Let x ∈ W and

p ∈ δ−1(x). Then there is a prefix v of p such that q ∈ δ−1(W ) whenever v is a prefix
of q. From the information contained in v, we can only deduce that there are open



34 CHAPTER 3. COMPUTABLE ANALYSIS

sets J1, . . . , Jk ∈ σ such that x ∈ Ji for all i = 1, . . . , k. Hence
⋂k
i=1 Ji is an open

neighbourhood of x which is a subset of W .
δ is admissible: Suppose φ : Σω ⇀ X is a continuous partial function. Define

a function η̃ : Σω ⇀ Σω such that if v1 is a prefix of v2, then η̃(v1) is a prefix of
η̃(v2), and that w � η(v) if, and only if, φ(p) ∈ ν(w) whenever p ∈ vΣω. Define η(p) =
limn→∞ η̃(p|n). By padding η̃(v) with names of the empty set if necessary, we can ensure
that η : Σω ⇀ Σω. Then by definition, w � η(p) ⇐⇒ φ(p) ∈ ν(W ), so δ(η(p)) = φ(p)
for all p ∈ dom(φ).

We would like to define concrete representations of subsets of an effective topological
space. Since any open set is a union of basic open sets, we can define a representation of
open sets by taking a name of U to be an encoding of a list of basic open sets J whose
union is U . For technical convenience, we henceforth assume that ∅ ∈ β.

Definition 3.40 (Standard representations of open and closed sets). Let (X, τ, β, ν) be
an effective topological space.

1. The standard representation θ< of open sets O(X) is given by
θ<(p) = U ⇐⇒ ⋃{ν(w) | w � p} = U .

2. The standard upper representation ψ> of closed sets A(X) is given by
ψ>(p) = A ⇐⇒ ⋃{ν(w) | w � p} = X \A.

Unfortunately, the representation θ< is in general too strong. The following result shows
that it is always possible to verify x ∈ U given a θ<-name of U .

Lemma 3.41. Let (X, τ, β, ν) be an effective topological space. Then inclusion ∈: X ×
O(X)→ S is computable.

Proof. If x ∈ U and U =
⋃∞
i=0 Ji, then x ∈ U ⇐⇒ ∃m ∈ N, x ∈ Jm.

Without additional assumptions it is not possible to compute intersections, in general.

Definition 3.42 (Computable intersection property). An effective topological space
(X, τ, β, ν) has the computable intersection property if there is a recursively-enumerable
subset I of dom(ν)× dom(ν)× dom(ν) such that for all w1, w2 ∈ dom(ν),

ν(v1) ∩ ν(v2) =
⋃
{ν(w) | (v1, v2, w) ∈ I}.

For convenience, we may sometimes say that there is a recursively enumerable subset I
of β × β × β such that I1 ∩ I2 =

⋃{J ∈ β | (I1, I2, J) ∈ I}.
Proposition 3.43. Let (X, τ, β, ν) be an effective topological space. Then intersection
O(X) × O(X) → O(X) is (θ<, θ<; θ<)-computable if, and only if, (X, τ, β, ν) has the
computable intersection property.

Proof. If (X, τ, β, ν) has the computable intersection property, then we have (
⋃∞
i=0 ν(ui))∩

(
⋃∞
j=0 ν(vj)) =

⋃∞
i,j=0(ν(ui) ∩ ν(vj)) =

⋃∞
i,j=0

⋃{ν(w) | (ui, vj , w) ∈ I}, so intersection
is (θ<, θ<; θ<)-computable. Conversely, if intersection is (θ<, θ<; θ<)-computable, then
ν(u) ∩ ν(v) = (

⋃∞
i=0 ν(u)) ∩ (

⋃∞
j=0 ν(v)) =

⋃∞
k=0 ν(wk), so (X, τ, β, ν) has the effective

intersection property.
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We now show that the computable intersection property is precisely what is needed
that (O(X), θ<) has the type of O(X ).

Theorem 3.44. Let (X, τ, β, ν) be an effective topological space, and X = (X, [δ]) where
δ is the standard representation of X. Then (O(X), θ<) ≡ (O(X), δX→S) i.e. has type
O(X ) if, and only if, (X, τ, β, ν) has the computable intersection property.

Proof. If θ< is effectively equivalent to δX→S, then intersection is (θ<, θ<; θ<)-computable,
so (X, τ, β, ν) has the computable intersection property by Proposition .

Conversely, suppose (X, τ, β, ν) has the computable intersection property, and p :
X → S is continuous. Let w1, . . . , wk ∈ dom(ν), and simulate a computation of p on
input 〈w1, w2, . . . , wk, . . .〉. If this computation outputs 1 after reading at most the words
w1, . . . , wk, then we can deduce that

⋂k
i=1 ν(wi) ⊂ p−1(>). For either

⋂k
i=1 ν(wi) = ∅,

in which case
⋂k
i=1 ν(wi) ⊂ p−1(>) is vacuous, or x ∈ ⋂k

i=1 ν(wi) = ∅ for some x ∈ X, in
which case 〈w1, w2, . . . , wk〉 is a prefix of a name of x, and so the computation is valid.

Now since any x ∈ p−1(>) has a δ-name, and the computation π of p(x) is completed
in a finite time, there exists (w1, . . . , wk) such that q = 〈w1, . . . , wk, . . .〉 is a δ-name of x,
and computation of p on input q outputs 1 after reading at most the words w1, . . . , wk,
proving that x ∈ ⋂k

i=1 Ji ⊂ U with Ji = ν(wi). Hence p−1(>) is equal to
⋃{⋂k

i=1 ν(wi) |
π outputs 1 after reading at most w1, . . . , wk}. The result follows since we can write⋂k
i=1 ν(vi) =

⋃∞
j=0 ν(wj) for some wj computable from v1, . . . , vk.

Following [54], we make the following definition:

Definition 3.45 (Computable topological space). An effective topological space (X, τ, β, ν)
is a computable topological space if dom(ν) is recursively-enumerable and (X, τ, β, ν) has
the computable intersection property.

We now give concrete standard representations of overt and compact subsets of com-
putable topological spaces. For the representation of open sets, a name p is a list of
words w ∈ dom(ν) encoding a list of basic open sets J ∈ β.

Definition 3.46 (Standard representations of overt and compact sets). Let (X, τ, β, ν)
be an effective topological space.

1. The standard lower representation ψ< of the closed sets A ∈ A(X) is given by
ψ<(p) = A ⇐⇒ {ν(w) | w � p} = {J ∈ β | A ./ J}.

2. The standard representation κ> of compact sets K(X) is given by
κ>(p) = C ⇐⇒ {(ν(w1), . . . , ν(wk)) | 〈w1, . . . , wk〉� p}

= {(J1, . . . , Jk) ∈ β∗ | C ⊂ J1 ∪ · · · ∪ Jk}.
We can also define a standard representation for the space of continuous functions.

Definition 3.47 (Standard representation of continuous functions). Let (X, τX , βX , νX)
and (Y, τY , σY , νY ) be effective topological spaces. The standard representation γ of
C(X;Y ) is given by

γ(p) = f ⇐⇒ ∀wY ∈ dom(νY ), f−1(ν(wY )) =
⋃{νX(wX) | 〈wX , wY 〉� p}.

Standard representations for spaces of multifunctions can be defined analogously.
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Intuitively, a name of f in the standard representation γ of C(X;Y ) encodes a list F of
pairs (I, J) ∈ σX × σY such that f−1(J) =

⋃{I | (I, J) ∈ F}. It is easy to verify that
the standard representations of spaces of overt and compact subsets and of continuous
functions are equivalent to those in Section 3.4 for computable topological spaces.

In order to relate open and overt sets, or compact and closed sets, we need some
extra effectivity properties (see [11]) of the notation ν of the basic open sets J ∈ β.

Definition 3.48. Let (X, τ, β, ν) be an effective topological space. Then (X, τ, β, ν) has
the:

1. effective overlap property if {w1, w2 ∈ Σ∗ ×Σ∗ | ν(w1) ∩ ν(w2) 6= ∅} is recursively-
enumerable.

2. effective disjointness property if there is a recursively-enumerable set D ⊂ dom(ν)×
dom(ν) such that

⋃{ν(w1)× ν(w2) | (w1, w2) ∈ D} = {(x, y) ∈ X ×X | x 6= y}.
The following theorem relates the effectivity properties for the standard representations
with

Theorem 3.49. Let (X, τ, β, ν) be an effective topological space. Then

1. the effective overlap property is equivalent to every open set being effectively overt.

2. the effective disjointness property is equivalent to every saturated compact set being
effectively closed.

Proof.

1. If (X, τ, β, ν) has the effective intersection property, then if U =
⋃∞
j=1 Ji is open

and L ∈ β, then U ./ L ⇐⇒ ∃i ∈ N, Ji ∩ L 6= ∅. Conversely, we have
J ./ L ⇐⇒ (

⋃∞
i=0 J) ./ L.

2. Effective disjointness is equivalent to the set {(x1, x2) ∈ X ×X | x1 6= x2} being
computable as an open set.

The definition of the effective disjointness predicate used here is different from that
of [11]. We return to this point in Remark 3.56.

If (X, τ, β, ν) is a computable locally-compact topological space such that, then we
have an alternative representation for the open sets.

Definition 3.50. Let (X, τ, σ, ν) be an effective topological space. The Scott represen-
tation θ′< of open sets O(X) is given by

θ′<(p) = U ⇐⇒ {ν(w) | w � p} = {I ∈ β | I b U}.
Remark 3.51. If (X, τ) is a Hausdorff space, then I b

⋃k
i=1 Ji is equivalent to I ⊂ ⋃k

i=1 Ji.

In order to relate the representations θ and θ′ we need an extra effective covering property.

Definition 3.52 (Effective covering property). Let (X, τ, β, ν) be an effective topological
space. Then (X, τ, β, ν) has the effective covering property if {v, w1, . . . , wk ∈ Σ∗×Σ∗×
· · · × Σ∗ | ν(v) b ν(w1) ∪ · · · ∪ ν(wk)} is recursively-enumerable.

The following theorem shows that the effective covering property is a necessary and
sufficient condition for equivalence of the representations θ< and θ′<.
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Theorem 3.53. Let (X, τ, β, µ) be an effective topological space space which is locally-
compact. Then the representations θ< and θ′< are equivalent if, and only if, (X, τ, β, µ)
has the effective covering property.

Proof. Suppose (X, τ, β, µ) has the effective covering property. For any locally-compact
space (X, τ) and any U ∈ O(X), we have U =

⋃{I ∈ β | I b U}. Hence any θ′<-name
is also a θ<-name. If U =

⋃∞
i=0 Ji and I b U , there exists k such that I ⊂ ⋃k

i=1 Ji, so
we can prove that I b U . Hence any θ<-name is also a θ′<-name

Conversely, if θ< and θ′< are equivalent, then we can compute a θ′<-name of
⋃k
i=1 Ji,

which amounts to enumerating {w ∈ dom(ν) | ν(w) b
⋃k
i=1 Ji}. Hence (X, τ, β, µ) has

the effective covering property.

We now give standard representations of spaces of functions and multifunctions in an
effectively locally-compact space.

Definition 3.54. If (X, τX , βX , νX) is a computable topological space and (Y, τY , σY , νY )
be a computable topological space, then

1’. The Isbell representation γ′ of C(X;Y ) is given by
γ′(p) = f ⇐⇒ {(νX(v), νY (w)) | 〈v, w〉�p} = {(I, J) ∈ βX×βY | I b f−1(J)}.

In other words, a γ′-name of f encodes a list F ′ of all pairs (I, J) ∈ σX × σY such that
I b f−1(J).

2’. The Isbell representation µ′< of C(X;V(Y )) is given by
µ′<(p) = F ⇐⇒ {(νX(v), νY (w)) | 〈v, w〉� p} = {(I, J) ∈ βX × βY | I b F−1(J)}.

3’. The Isbell representation µ′> of C(X;K(Y )) is given by
µ′<(p) = F ⇐⇒ {(νX(v), νY (w1), . . . , νY (wk)) | 〈v, w1, . . . , wk〉� p}

= {(I, J1, . . . , Jk) ∈ βX × β∗Y | I b F⇐(J1 ∪ · · · ∪ Jk)}.
The following result is a direct corollary of Theorem 3.53.

Corollary 3.55. Let (X, τX , βX , νX) be an effectively locally-compact space, and (Y, τY , σY , νY )
be an effective topological space. Then the standard representation γ of C(X;Y ) is equiv-
alent to the Isbell representation γ′.

Remark 3.56. If (X, τ, β, ν) is a locally-compact Hausdorff space, then we can choose a
basis β such that J is compact for all J ∈ β. Then the effective covering property can be
written as {I, J1, . . . , Jk | I ⊂

⋃k
i=1 Ji} is recursively-enumerable. Further, the effective

disjointness property can be written as {I1, I2 ∈ β × β | I1 × I2 = ∅} is recursively-
enumerable. This recovers the definitions of [11].

We now turn to the metric spaces.

Definition 3.57 (Computable metric space). A computable metric space is a tuple
(X, d, ξ, α), where (X, d) is a metric space, ξ : Σ∗ ⇀ X encodes a countable dense subset
of X, and α : Σ∗ × Σ∗ × N ⇀ Q is such that |d(ξ(w1), ξ(w2))− α(w1, w2, ε)| < ε.

The standard representation of a computable metric space is the Cauchy represen-
tation, that is,

δ(〈w1, w2, . . .〉) = x ⇐⇒ lim
n→∞

ξ(wn) = x and α(wm, wn, 2−(min(m,n)+1)) < 2−(min(m,n)+1).
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Theorem 3.58. The standard representation δ of a computable metric space (X, d, ξ, α)
is an admissible quotient representation, and the metric d is a computable function X ×
X → R.

Proof. The proof that δ is an admissible quotient representation is similar to that of
Theorem 3.39 and is omitted. To show that the metric is computable, let δ(〈v1, v2, . . .〉) =
x and δ(〈w1, w2, . . .〉) = y. Observe that d(ξ(vn), x) ≤ 2−n and d(ξ(wn), y) ≤ 2−n If
δ(〈v1, v2, . . .〉) = x we have

|d(x, y)− α(vn+2, wn+2, 2−(n+1))| ≤ d(x, ξ(vn+2)) + d(ξ(wn+2), y)

+
∣∣d(ξ(vn+2), ξ(wn+2))− α(vn+2, wn+2, 2−(n+1))

∣∣
≤ 2−(n+2) + 2−(n+2) + 2−(n+1) ≤ 2−n.

Hence α(vn+2, wn+2, 2−(n+1)) is a strongly convergent Cauchy sequence with limit d(x, y).

We can construct a complete computable metric space from a countable metric space by
defining a representation on equivalence classes of strict Cauchy sequences.
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3.A Summary of computable types and operations

Predicates:

Element χS(x) ⇐⇒ x ∈ S.
Overlap S ./ U ⇐⇒ ∃x ∈ S, x ∈ U ⇐⇒ A ∩ U 6= ∅.
Subset S ⊂ U ⇐⇒ ∀x ∈ S, x ∈ U.

General constructions:

Terminal I.
Element X ≡ I→ X .
Subtype {x ∈ X | p(x)}.
Sum X1 + X2 with inclusions i1,2 : X1,2 → X1 + X2.
Product X1 ×X2 with projections p1,2 : X1 ×X2 → X1,2.
Exponential YX ≡ (X → Y); YA×X ≡ (YX )A (or A×X → Y ≡ A → YX ) with

evaluation ε : YX ×X → Y.

Countable types:

Binary Words {0, 1}∗.
Boolean B := {>,⊥}.
Sierpinski S := {>, ↑}.
Trilogic T := {>,⊥, ↑}.
Naturals N := {0, 1, 2, . . .}.
Integers Z := {. . . ,−2,−1, 0, 1, 2, . . .}.
Rationals Q := {m/n | m ∈ Z, n ∈ N, and n 6= 0}.
Rational step functions
Rational polynomials

Uncountable types:

Cantor set {0, 1}ω.

Real numbers R := {[x] ∈ QN | abs(xm−xn) ≤ 2−min(m,n), x ∼ y⇐⇒ abs(xn−
yn) ≤ 21−n}.

Continuous functions C(X ;Y) := YX .

Linear functions L(V;W) := {f ∈ C(V;W) | f(x+ sy) = f(x) + sf(y)}.
Measures (weak) M(X ) := {µ ∈ L(C(X ; R); R) | f ≥ 0 =⇒ µ(f) ≥ 0}.
Open sets O(X ) :' SX ; U ' χU .

Closed sets A(X ) :' SX ; A ' χX\A.

Separable sets V(X ) := {(A./ ·) ∈ SO(X ) | A./ (U ∪ V ) ⇐⇒ A ./ U ∨A ./ V }.
Compact sets K(X ) := {(C⊂ ·) ∈ SO(X ) | C⊂ (U ∩ V ) ⇐⇒ C ⊂ U ∧ C ⊂ V }.
Flow {φ ∈ C(X ; C(R;X )) ≡ C(X × R;X ) | φ(x, s+ t) = φ(φ(x, s), t)}.
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Logic:

Unprovability B→ S, ⊥ 7→↑.
Countable disjunction SN → S, (an)n∈N 7→

∨
n∈N an.

Finite disjunction S× S→ S, (a1, a2) 7→ a1 ∧ a2.

Arithmetic:

Unit 1 ∈ R.
Addition (x, y) 7→ x+ y : R× R→ R.
Subtraction (x, y) 7→ x− y : R× R→ R.
Multiplication (x, y) 7→ x× y : R× R→ R.
Division (x, y) 7→ x÷ y : R× (R \ 0)→ R.
Comparison x 7→ sgn(x) : R→ T.
Limit (xn)n∈N 7→ limn→∞ xn : RN ⇀ R if ∃ ε : N→ Q+ such that limn→∞ εn = 0

and |xm − xn| ≤ εmin(m,n).

Sets:

Complement O↔ A.
Finite union O× O→ O, A×A→ A, V× V→ V, K×K→ K.
Countable union ON → O, VN → V.
Finite intersection O× O→ O, A×A→ A, V× O→ V, K×A→ K.
Countable intersection AN → A. (KN → K can be derived if X is Hausdorff.)
Singleton X → V(X ), X → K(X ).
Closure O(X )→ V(X ) if X is effectively separable.
Identity K(X )→ A(X ) if X is effectively distinguishable.
Evaluation C(X ;Y)×X → Y.
Preimage C(X ;Y)× O(Y)→ O(X ), C(X ;Y)×A(Y)→ A(X ).
Image C(X ;Y)× V(X )→ V(Y), C(X ;Y)×K(X )→ K(Y).
Element X × O(X )→ S.
Overlap V(X )× O(X )→ S.
Subset K(X )× O(X )→ S.



Chapter 4

Classical Topology

In this chapter, we relate the computability theory developed in Chapter 3 to concepts
from classical topology. The material in this chapter is mostly quite technical, and is
not needed to actually use the type theory.

4.1 Sequential spaces

Since all spaces with an admissible quotient representation are sequential spaces, we
begin with a brief overview of sequential spaces.

Lemma 4.1. The space Σω is a countably-based sequential space.

Proof. A countable base for Σω is given by the cylinder sets Cw = {p ∈ Σω | ∀i <
|w|, pi = wi} where w ∈ Σ∗ and |w| denotes the length of w.

Suppose U is sequentially open and p ∈ U , but p 6∈ int(U). Then for all n, the set
p|nΣω \ U = {q 6∈ U | p|n = q|n} is nonempty. Therefore there exists a sequence pn such
that pn|n = p|n and pn 6∈ U , contradicting U being sequentially open. Hence p ∈ int(U),
and since p ∈ U is arbitrary, U is open.

Recall that a subset C of X is compact if any open cover of C has a finite subcover,
countably compact if any countable open cover of C has a finite subcover, and sequentially
compact if any sequence in C has a convergent subsequence.

Theorem 4.2. Let X be a topological space. Then any compact subset of X is countably
compact, and any countably compact subset is sequentially compact. If X is a sequential
space, then any sequentially compact set is countably compact. If X has a countable
pseudobase, then any countably compact set is compact.

Proof. It is immediate from the definition that any compact subset is countably compact.
If C is countably compact and ~x is a sequence in C, define An = cl{xn, xn+1, . . .} and
Un = X \ An. Then {Un | n ∈ N} is a countable collection of open increasing open sets
such that no Un contains C. Hence U∞ =

⋃∞
n=0 Un is not a cover of C, so A∞ ∩ C 6= ∅

where A∞ = X \U∞. However, A∞ =
⋂∞
n=0 cl{xn, xn+1, . . .} is the set of limit points of

~x. So some subsequence of ~x has limit in C. This shows that C is sequentially compact.
Conversely, let X is a sequential space and C is sequentially compact. Suppose

U = {U0, U1, . . .} is a countable collection of open sets with no finite subset covering
C. Then there exists a sequence of points xn such that xn ∈ C \ ⋃n

k=0 Uk. Since C

41
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is sequentially compact, the sequence ~x has a convergent subsequence xk(n) with limit
x∞ ∈ C. By taking yn = xkm with km ≥ m, we can construct a convergent sequence
yn → y∞ with yn ∈ C \

⋃n
k=0 Uk and limit y∞ ∈ C. Then y∞ 6∈

⋃∞
n=0 Un, so U is not an

open cover of C. Taking the contrapositive, we see that any countable open cover has a
finite subcover.

To prove the final part, we show the following result.

Lemma 4.3. Suppose X is has a countable pseudobase. Then for any U ⊂ O(X), there
exists countable V ⊂ U such that

⋃V =
⋃U .

Finally, suppose X has a countable pseudobase B and C is countably compact. Let
U be an open cover of C. For x ∈ C, there exists U ∈ U such that x ∈ U . Since B is a
pseudobase, there exists B ∈ B such that x ∈ B ⊂ U . By the axiom of choice, there is
a countable subset C of B such that C ⊂ ⋃ C and for all B ∈ C, there exists U ∈ U such
that B ⊂ U . By the axiom of countable choice, there is a countable subset V of U such
that for all B ∈ C, there exists U ∈ V with B ⊂ U . By construction C ⊂ ⋃ C ⊂ ⋃V, so
V is a countable subset of U which covers C.

4.2 Spaces with an admissible quotient representation

We now prove one of the most important results of computable type theory, namely a
characterisation of spaces with an admissible quotient representation. We will need the
following definition:

Definition 4.4 (Sequential pseudobase). A collection ρ of subsets of a topological space
X is called a sequential pseudobase if for any convergent sequence xn → x∞ and any
open set U 3 x∞, there exists V ∈ ρ such that V ⊂ U and xn ∈ V for all sufficiently
large n.

Theorem 4.5 (Schröder [46, 5]). Let X be a Kolmogorov topological space. Then the
following are equivalent:

1. X has an admissible quotient representation.

2. X is a quotient of a countably-based space.

3. X is a sequential space with a countable sequential pseudobase.

Proof.

(1 =⇒ 2) Σω is a countably-based space, so any subspace R is also countably-based.
Let δ : Σω ⇀ X be a quotient representation, and take R = dom(δ), so δ : R→ X
is a total quotient map. Thus X is a quotient of the countably-based space R.

(2 =⇒ 3) Suppose X is a topological space, β is a countable base for X, and q : X → Y
is a quotient map.

Y is a sequential space: Suppose V ⊂ Y is sequentially open. We need to show
that V is open. Since q is a quotient map, V is open if, and only if, q−1(V ) is open.
Let x∞ ∈ X but x∞ 6∈ int(q−1(V )). Let {I0, I1, . . .} = {I ∈ β | x ∈ I}. Since
for any n ∈ N,

⋂n
j=0 Ji is open and x∞ 6∈ int(q−1(V )), the set

⋂n
j=0 Ji \ q−1(V ) is



4.2. SPACES WITH AN ADMISSIBLE QUOTIENT REPRESENTATION 43

nonempty. Hence we can choose a sequence xn with xn ∈
⋂n
j=0 Ji \ q−1(V ). Since

β is a base for X, for any open U 3 x, there exists n such that
⋂n
j=0 Ji ⊂ U .

Hence xn → x∞. Then f(xn) → x∞, so f(xn) is a convergent sequence in Y \ V .
Since V is sequentially open, x∞ = limn→∞ f(xn) 6∈ V , so x∞ 6∈ f−1(V ). Hence
int(q−1(V )) = q−1(V ), so q−1(V ) is open.

Y has a countable pseudobase: Let βX be a countable base of X. Define

BY = {sat(q(I1 ∪ . . . ∪ Ik)) | (I1, . . . , Ik) ∈ β∗X}. (4.1)

We claim that B is a countable pseudobase of Y .

We first prove the following: Suppose K is a compact subset of Y , V open and
K ⊂ V . Let Un be a sequence of increasing open subsets of X such that

⋃∞
n=0 Un =

q−1(V ). Then there exists m such that sat(q(Um)) ⊃ K. To this end, suppose that
for all n, sat(q(Um)) 6⊃ K. Then there exists a sequence of open sets (Wn)n∈N such
that for all n, q(Un) ⊂ Wn but Wn 6⊃ K. Then Un ⊂ q−1(Wn), which implies⋂
n≥m q

−1(Wn). Since q is a quotient map and q−1(
⋂
n≥mWn) =

⋂
n≥m q

−1(Wn),
we see that Vm =

⋂
n≥mWn is open for any m. Since q−1(Vm) ⊃ Um, we have⋃∞

m=0 q
−1(Vm) = q−1(V ), from which

⋃∞
m=0 Vm = V . Since K is compact, there

exists m such that K ⊂ Vm, which means K ⊂ ⋂∞n=mWn and hence K ⊂ Wm, a
contradiction. Hence there exists m such that sat(q(Um)) ⊃ K.

To complete the proof, let yn → y∞ with y∞ ∈ V . Then there exists m such that
yn ∈ V for all n ≥ m. Take K = {ym, ym+1, . . . , y∞}. Let (I0, I1, . . .) be a list of
all I ∈ β such that I ⊂ q−1(V ), and let Uj =

⋃j
i=0 Ij . Hence there exists k such

that yn ∈ sat(q(I0 ∪ · · · ∪ Ik)) for all n ≥ m.

(3 =⇒ 1) Let X be a sequential topological space, and B = {B0, B1, . . .} be a countable
pseudobase with prefix-free notation ν : Σ∗ � B. Define a function δ : Σω ⇀ X by

δ(p) = x ⇐⇒ ∀w � p, x ∈ ν(w) and ∀ open U 3 x,∃w � p, ν(w) ⊂ U. (4.2)

Here, by w � p we mean that p = w0w1w2 · · · with wi ∈ dom(ν) for all i and
w = wi for some i. We claim that δ is an admissible quotient representation.

δ is single-valued: If x 6= y, there exists open U containing exactly one of x, y.
Without loss of generality, suppose x ∈ U and y 6∈ U . Then for any name p of x,
there exists w � p such that x ∈ ν(w) ⊂ U , but for any name q of y and any w
such that ν(w) ⊂ U , we have y 6∈ ν(w), so w 6 �q.
δ is surjective: For any x ∈ X, there exists B ∈ β such that x ∈ B.

δ is continuous: Let U ∈ O(X) and p ∈ δ−1(U) with x = δ(p). Then there
exists B = ν(w) ∈ β such that x ∈ B ⊂ U , and then w � p. There is an
open neighbourhood W of p in Σω such that w � q for all q ∈ W , so for any
q ∈ W ∩ dom(δ), we have δ(q) ∈ B ⊂ U . Hence p ∈ W ⊂ δ−1(U), so δ is
continuous.

δ is a quotient: Suppose that f : X → Y and φ = f ◦ δ is continuous. Let V
be open in Y and U = f−1(V ) with x∞ ∈ U . Let p∞ be a δ-name of x∞ so
y∞ = φ(p∞) ∈ V . Let pn be a sequence in dom(δ) such that pn → p∞, and let
xn = δ(pn) Since δ is continuous and X is a sequential space, xn → x∞ as n→∞.
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Since φ is continuous, there exists N such that φ(pn) ∈ V for all n ≥ N . Then for
n ≥ N we have f(xn) = f(δ(pn)) = φ(pn) ∈ V , so xn ∈ f−1(V ). Hence f−1(V ) is
sequentially open, so is open.

δ is admissible: Suppose φ : Σω ⇀ X is a continuous partial function. Define
a function η̃ : Σω ⇀ Σω such that if v1 is a prefix of v2, then η̃(v1) is a prefix
of η̃(v2), and that w � η(v) if, and only if, φ(p) ∈ B whenever p ∈ vΣω. Define
η(p) = limn→∞ η̃(p|n). By padding η̃(v) with names of the empty set if necessary,
we can ensure that η : Σω ⇀ Σω.

It remains to show that for all p ∈ dom(φ), η(p) is a δ-name of φ(p). First, if
w � η(p), then φ(p) ∈ ν(w). It remains to show that if φ(p) ∈ U , there exists
w � η(p) such that x ∈ ν(w) ⊂ U . If φ(p∞) ∈ U , there exists B = ν(w) ∈ B such
that φ(p∞) ∈ B. Then for any sequence pn → p∞, the sequence φ(pn) converges
to φ(p∞). Since B is pseudobasic, there exists N ∈ N such that φ(pn) ∈ B for all
n ≥ N . The pn ∈ φ−1(B) for all n ≥ N . Since the sequence pn is arbitrary, there
is a neighbourhood of p mapping into B, so w � p.

Remark 4.6. It not true that convergent sequences lift under topological quotients. For
example, the disjoint union of [−1, 0] and [0,+1] quotients onto [−1,+1], but any se-
quence in [−1,+1] with infinitely many positive and negative elements does not lift to
the base space.

The construction of the pseudobase for the topological quotient is [46, Lemma 3.1.12].

Remark 4.7. It is not true in general that if q : Y → X is a quotient map and δY
is an admissible quotient representation of Y , then q ◦ δY is an admissible quotient
representation of X. See [18].

Remark 4.8. To the best of our knowledge, it is an open question as to whether every
separable sequential space satisfies the equivalent conditions of Theorem 4.5.

4.3 The Scott topology on open sets

We now give a more detailed study of the open set type introduced by Definition 3.19.
We first study the induced topology on O(X).

Definition 4.9 (Scott topology). Let X be a topological space. A collection U of open
subsets of X is Scott open if:

1. U ∈ U , V ∈ O(X) and U ⊂ V implies V ∈ U , and

2. whenever V ⊂ O(X) and
⋃V ∈ U , there is a finite subset {V1, . . . , Vn} of V such

that
⋃n
k=1 Vk ∈ U .

A collection U of open sets is ω-Scott open if 1. above and

2’. whenever V ⊂ O(X) is countable and
⋃V ∈ U , there is a finite subset {V1, . . . , Vn}

of V such that
⋃n
k=1 Vk ∈ U , or equivalently

2”. whenever Un ↗ U∞ with U∞ ∈ U , then there exists n such that Un ∈ U .
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It is straightforward to show that the collection of Scott open sets and ω-Scott open sets
are topologies on O(X), called the Scott topology and ω-Scott topology respectively.

In general, the ω-Scott topology is finer than the Scott topology. However, the following
result shows that the ω-Scott topology coincides with the usual Scott topology if X has
a countable pseudobase; in particular, if X is a quotient of a countably-based space.

Proposition 4.10. Let X be a topological space with a countable pseudobase. Then a
set is ω-Scott open if, and only if, it is Scott open.

The proof is immediate from Theorem 4.2. we henceforth use 2. and 2’. interchangeably
for defining Scott open sets when working in a space with a countable pseudobase, in
particular, in a quotient of a countably-based space.

The following properties of the ω-Scott topology are elementary.

Lemma 4.11. Let X be a topological space.

1. If Un ↗ U∞ with U∞ ⊃ V , then Un → V in the ω-Scott topology.

2. If C is countably compact, then {U | C ⊂ U} is open in the ω-Scott topology.

3. The set of open sets with the ω-Scott topology is a sequential space.

Proof.

1. Immediate from the definition of the ω-Scott topology.

2. Suppose Un ↗ U∞ with C ⊂ U∞. Then {Un | n ∈ N} is a countable open cover of
C so has a finite subcover {U1, . . . , Un}. Then C ⊂ Un.

3. Suppose W ⊂ O(X), and W is sequentially open in the ω-Scott topology. Then if
U ∈ W and V ⊃ U , then since V → U in the ω-Scott topology, we have W 3 V .
Further, if Un ↗ U∞ with U∞ ∈ W, then Un → U∞ in the ω-Scott topology, so
there exists N such that Un ∈ W for n ≥ N since W is sequentially open. Hence
the ω-Scott topology is sequential.

The following theorem shows that the Scott topology (and by Proposition 4.10 the
ω-Scott topology) is an explicit description of the topology on O(X) induced by the
representation of the topological type SX .

Theorem 4.12. Let X = (X, [δ]) be a topological type. A subset of O(X) is open in the
topology induced by the representation δX→S if, and only if, it is Scott open.

Proof. It suffices to show that the Scott topology is the coarsest topology such that the
inclusion map X ×O(X)→ S, (x, U) 7→ > ⇐⇒ x ∈ U is sequentially continuous.

Suppose xn → x∞ in X, and Un → U∞ in the Scott topology with x∞ ∈ U∞. Since
x∞ ∈ U∞, there exists N such that xn ∈ U∞ for all n ≥ N . Consider V = {V ∈ O(X) |
{xN , xN+1, . . . , x∞} ⊂ V }. The set V is Scott open, since {xn, xn+1, . . . , x∞} is compact.
Hence there exists M such that Um ∈ V for all m ≥ M . Then for k ≥ max(M,N) we
have {xk, . . . , x∞} ⊂ Uk, so xk ∈ Uk. Thus inclusion is sequentially continuous using the
Scott topology on O(X).

Suppose T is a sequential topology on O(X) such that inclusion X × O(X) → S is
sequentially continuous. Suppose U is Scott-open but not T-open. Since T is a sequential
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topology, U is not T-sequentially-open. Hence there exists a sequence Un →T U∞ with
U∞ ∈ U but Un 6∈ U for any n ∈ N. Since U is Scott-open, we have

⋃∞
n=0 Un 6⊃ U∞. Let

x ∈ U∞ \
⋃∞
n=0 Un. Then x ∈ U∞ but x 6∈ Un for any n, contradicting inclusion being

sequentially-continuous with respect to T. Hence the Scott topology is coarser than any
other topology making inclusion sequentially-continuous.

For any quotient of a countably-based space X, we henceforth assume the Scott topology
on O(X), so O(O(X)) consists of Scott-open subsets of O(X).

4.4 Sober spaces

We now consider the closed and compact subsets of X, and their relationships with the
types V(X ) and K(X ) given by Definition 3.20 as subtypes of O(O(X )). In particular,
we are interested in spaces for which any function O(X) → S satisfying both (3.3) and
(3.4) defines a singleton, and the consequences for V(X ) and K(X ).

Definition 4.13 (Filters and cofilters). A subset D of P(X) is directed if S ∈ D and
T ⊃ S implies T ∈ D. A directed subset F of P(X) is a filter if S1 ∈ F ∧ S2 ∈ F =⇒
S1 ∩ S2 ∈ F . A directed subset F of P(X) is a cofilter if ∅ 6∈ F and S1 ∪ S2 ∈ F =⇒
S1 ∈ F ∨ S2 ∈ F . A directed subset of P(X) is an ultrafilter if it is both a filter and a
cofilter. A (co)filter which is a Scott-open subset of O(X) is a Scott-open (co)filter.

Remark 4.14. The condition ∅ 6∈ F in the definition of a cofilter could have been omitted,
but since for any set S ⊂ X, we have S 6./ ∅, such a cofilter could never arise as the
collection of sets intersecting some set S.

If S is any set, then {U ∈ O(X) | S ⊂ U} is a filter, and {U ∈ O(X) | S ./ U} is a
cofilter. If x ∈ X is a point, then we have {x} ⊂ U ⇐⇒ {x} ./ U ⇐⇒ x ∈ U , so the
set of neighbourhoods of x is an ultrafilter, and is easily shown to be open in the Scott
topology. Conversely, if X is a T0 space, and S is a set such that S ⊂ U ⇐⇒ S ./ U ,
then S is a singleton. Hence the set of Scott-open ultrafilters are “point-like” in the
sense that they can only arise from a subset of X as the set of neighbourhoods of a
point. However, as the following example shows, not all Scott-open ultrafilters are the
set of neighbourhoods of a point.

Example 4.15. Let X = (Q, τ<), where τ< = {(−∞, a) ∩Q | a ∈ R}. In other words, X
is the restriction of the reals with the topology of lower convergence to the subspace of
the rationals. Take r 6∈ Q, and let U = {(−∞, a) | a > r}. Then U is Scott-open, since if
Un = (−∞, an) with Un ↗ U∞ with U∞ = (−∞, a∞) ∈ U , then an ↗ a∞ > r, so an > r
for some n. Further, it is clear that U is an ultrafilter. However, there is no q ∈ Q such
that U = {(−∞, a) | a > q}, so U is not the set of neighbourhoods of a point.

The topology τ< on Q is equivalent to the topology τ< on R, in the sense that there
is a bijection between open sets preserving unions and intersections. This shows that
a set of points of a topological space cannot be recovered from the lattice of open sets.
However, if we view the Scott-open ultrafilters as providing a canonical set of points,
we do obtain a unique space. We call a space sober if every Scott-open ultrafilter is the
closure of a (unique) point. Thus a sober space “has enough points” in the sense that
any “point-like” collection of open sets corresponds to a real point.



4.4. SOBER SPACES 47

Definition 4.16 (Sober space). A topological space X is sober if any Scott-open ultra-
filter of X is the set of neighbourhoods of a point.

In the literature (see [31, 28]), an alternative definition of sober space is used. A closed
set A is irreducible if whenever A = A1 ∪A2 where A1, A2 are closed sets, either A1 = A
or A2 = A. A topological space X is (classically) sober if every non-empty irreducible
closed subset is the closure of a point.

We now show that the definition of sober space used here coincides with the classical
definition.

Theorem 4.17. Let X be a topological space. Then the following are equivalent:

1. Any Scott-open ultrafilter of X is the set of neighbourhoods of a point.

2. Any irreducible closed subset of X is the closure of a point.

Proof. Let A be an irreducible closed set, and U = {U ∈ O(X) | A ./ U}. If A
is disjoint from U1 ∩ U2, then A = A \ (U1 ∩ U2) = (A \ U1) ∪ (A \ U2), so either
A \ U1 = A or A \ U2 = A since A is irreducible, and hence A is disjoint from either U1

or U2. Hence if A ./ U1 and A ./ U2, then A ./ (U1 ∩ U2). Hence U is an ultrafilter.
Further, if A ./

⋃V with
⋃V ∈ U , there exists x ∈ A such that x ∈ ⋃V, and then

x ∈ V for some V ∈ V. Hence U is Scott-open. Therefore, if any open ultrafilter
is the neighbourhood filter of a point, we have U = {U ∈ O(X) | x ∈ U}. Then
cl{x} ./ U ⇐⇒ {x} ./ U ⇐⇒ x ∈ U ⇐⇒ U ∈ U ⇐⇒ A ./ U , so cl{x} = A.

Let U be a Scott-open ultrafilter, and let V =
⋃{U | U 6∈ U}. Suppose V ∈ U .

Then since U is Scott open, we have V1 ∪ · · · ∪ Vk ∈ U with Vi 6∈ U for all i. Taking
k minimal, we have V1 ∪ · · · ∪ Vk−1 6∈ U and Vk 6∈ U , contradicting U being an cofilter.
Hence V 6∈ U . Suppose V = V1 ∩ V2 with V1, V2 6= V . Then each Vi is a strict superset
of V , so V1, V2 ∈ U by definition of V . But then V = V1 ∩ V2 ∈ U since U is a filter,
again a contradiction. Hence A = X \ V is an irreducible closed set. Therefore, if every
irreducible closed set is the closure of a point, we have X \⋃{U | U 6∈ U} = cl{x}. Then
U ∈ U ⇐⇒ U 6⊂ V ⇐⇒ cl{x} ./ U ⇐⇒ x ∈ U .

Remark 4.18. A space is supersober if the set of limit points of each ultrafilter on X is
either empty or a singleton closure. Theorem 4.17 does not show that any supersober
space is sober, since it refers only to Scott-open ultrafilters, whereas the definition of a
supersober space refers to arbitrary ultrafilters.

We now give two results which relate the classical closed and compact subsets of X
with V(X) and K(X) considered as subsets of O(O(X)).

Theorem 4.19. Let X be a T0 topological space. Then there is a bijection between closed
subsets of X and Scott-open cofilters in O(X).

Proof. Given A ∈ A(X), define F = {U ∈ O(X) | A ./ U}. Clearly F is a Scott-open
cofilter. Conversely, given a Scott-open cofilter F , define A = {x ∈ X | x ∈ U ∈
O(X) =⇒ U ∈ F}. If x 6∈ A, there exists U ∈ O(X) such that U 6∈ F . But then
A ∩ U = ∅. Hence A is closed. Finally, if A ∈ A(X) and F = {U ∈ O(X) | A ./ U},
define B = {x ∈ X | x ∈ U ∈ O(X) =⇒ U ∈ F}. If x ∈ A, then for any U ∈ O(X)
with x ∈ U , we have x ∈ A ∩ U , so A ./ U and U ∈ F , hence x ∈ B. If x 6∈ A, then
taking V = X \A we have x ∈ V but x 6∈ F , so x 6∈ B.
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Recall that the saturation of a set S is sat(S) =
⋂{U ∈ O(X) | S ⊂ U}, and a set S

is saturated if S = sat(S). The next result is due to Hofmann and Mislove [31], which
establishes an isomorphism between compact saturated sets and open filters. We give a
direct proof due to Keimel and Paseka [36].

Theorem 4.20 (Hofmann-Mislove). Let X be a sober space. Then there is a bijection
between saturated compact subsets of X and Scott-open filters in O(X).

Proof. Let C be a compact subset of X and U = {U ∈ O(X) | C ⊂ U}. Then U is open
since C is compact, and is clearly a filter.

Let U be an open filter and C =
⋂U . Suppose C ⊂ V but V 6∈ U . Then by Zorn’s

lemma, there is an open set W containing V which is maximal among all open sets not
in U . If W = W1 ∩W2 with W1,W2 6= W , then we would have W1,W2 ∈ U and so
W1 ∩W2 ∈ W, a contradiction. Hence X \W is irreducible, so X \W = cl{x} for some
x ∈ X. Any open set not containing x is therefore a subset of W . Hence x ∈ U for all
U ∈ U so x ∈ C, but x 6∈W and C ⊂W , a contradiction. Thus if C ⊂ U then U ∈ U .

Now let V be an open cover of C, so C ⊂ ⋃V. Then
⋃V ∈ U , and since U is

open, there exists V1, . . . , Vk ∈ V such that
⋃k
i=1 Vi ∈ U , so C ⊂ ⋃k

i=1 Vi. Thus C is
compact.

4.5 Core compact spaces

A weaker version of local compactness is that of core compactness. We shall see that
any sober core-compact space is locally-compact, which justifies restricting to local com-
pactness in the computability theory. Much of the material in this sections is based on
work Escardo and Heckmann [23] and Escardo, Lawson and Simpson [24].

For core-compact spaces we have an alternative representation of open sets; instead
of denoting an open set as a countable union of basic open sets, we denote it by sets
which are “compactly contained” in U . Recall from Notation 3.34 that U b V if every
open cover of V has a finite subcover of U . Note that if X has a countable pseudobase,
then U b V if any monotone sequence Vn ↗ V has Vn ⊃ U for some n. We first give
some elementary properties of the relation b.

Lemma 4.21. Let X be a topological space and U, V,W ∈ O(X). Then:

1. U b V =⇒ U ⊂ V .

2. U ⊂ U ′ b V ′ ⊂ V =⇒ U b V .

3. U bW ∧ V bW =⇒ U ∪ V bW
Note that it is not true in general that U b V and U b W implies U b V ∩W

(though we shall see that this does hold in a sober core-compact space).

Definition 4.22 (Core compact). A topological space X is core-compact if, for every
open set V and every x ∈ V , there exists an open set U such that x ∈ U and U b V .

If X is core-compact, then for any W ∈ O(X), we have W =
⋃{V ∈ O(X) | V bW}.

The following result is [23, Lemma 5.2]

Lemma 4.23. Let X be a core-compact space.
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1. For any U ∈ O(X), the set �U = {V ∈ O(X) | U b V } is Scott open.

2. If Q ⊂ O(X) is Scott open and V ∈ Q then U b V for some U ∈ Q.

3. The sets �U for U ∈ O(X) form a base of the Scott topology of O(X).

Proof.

1. If V ∈ �U and V ⊂ W , then U b V ⊂ W so U b W and hence W ∈ �U . If
W ∈ �U then there exists V ∈ O(X) with U b V b W , so V ∈ �U . Hence every
open cover of a member W of �U has a finite subcover of a member V of �U .

2. The open set V is the union of the open sets U b V , and such open sets are closed
under the formation of finite unions.

3. An immediate consequence of (2) and (3).

The following lemma shows that the relation U bW can be interpolated.

Lemma 4.24 (Interpolation lemma). Suppose X is core-compact and U b W . Then
there exists V ∈ O(X) with U b V bW .

Proof. The open set W is the union of the open sets V bW , and each open set V bW
is the union of the open sets T b V . Hence W is the union of the collection T = {T ∈
O(X) | ∃V ∈ O(X), T b V b X}. For T1, T2 ∈ T , we have T1 ∪ T2 b V1 ∪ V2 b W ,
so T is closed under finite union. Hence there exists T ∈ T with U ⊂ T . Taking the
corresponding V , we have U ⊂ T b V bW and hence U b V bW .

The following result shows that we can find a Scott-open filter V interpolating U b
W .

Lemma 4.25. Suppose X is a core-compact space and U b W . Then there exists a
Scott open filter V such that U ⊂ ⋂V and W ∈ V.

Proof. Recursively construct a sequence of open sets Vn such that V0 = V and for all n,
U b Vn+1 b Vn. Define V = {W ∈ O(X) | ∃n, Vn ⊂W}. Then if W ∈ V and W ′ ⊃W ,
we have Vn ⊂W ⊂W ′ for some n, so W ′ ∈ V. Further, if W1,W2 ∈ V, then there exists
n1, n2 such that Vn1 ⊂ W1 and Vn2 ⊂ W2. Let n = max(n1, n2), so Vn b Vn1 ⊂ W1 and
Vn b Vn2 ⊂ W2, so Vn ⊂ W1 ∩W2, so W1 ∩W2 ∈ K. Finally, if W ⊂ O(X) such that⋃W ∈ V, then there exists n such that

⋃W ⊃ Vn, so Vn+1 b
⋃W and hence there is

a finite subset {W1, . . . ,Wm} of W such that
⋃m
j=1Wj ⊃ Vn+1. Hence V is a Scott-open

filter.

The following result shows that core-compactness generalises the classical notion of
local compactness, and that for sober space, local compactness is equivalent to core-
compactness. The proof that any sober core-compact space is locally-compact is due to
Hofmann and Lawson [32].

Theorem 4.26. Any locally-compact space X is core-compact, and any sober core-
compact space is locally-compact.
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Proof. If X is locally-compact, then for any open set V and any x ∈ V , there exists
open U and compact K such that x ∈ U , U ⊂ K and K ⊂ V . Then any open cover of
V has a finite subcover of K and hence of U , so U b V .

Conversely, suppose X is a sober core-compact space, that W is open and x ∈ W .
Since X is core-compact, there exists an open set U such that x ∈ U and U b V . By
Lemma 4.25 there exists a Scott open filter V such that U ⊂ ⋂V and W ∈ V. By
Theorem 4.20, the set K =

⋂V is compact. Hence x ∈ U ⊂ K ⊂W .

The following result is [24, Corollary 6.11]. We give a direct proof.

Theorem 4.27. If a core-compact space is a quotient of a countably-based space, then
it is itself countably-based.

Proof. It suffices to show the result for a sober core-compact space X, which is therefore
locally-compact. By Theorem 4.5, the space X has an admissible quotient representation
δ : R → X where R ⊂ Σω. Let x ∈ X and U ∈ O(X) be such that x ∈ U . Since X is
locally-compact, there exists V ∈ O(X) and K ∈ K(X) such that x ∈ V ⊂ K ⊂ U . Let
(I0, I1, . . .) be a list of sets with each Ij in a countable basis or R such that δ−1(U) =⋃∞
j=0 Ij . Suppose δ(

⋃k−1
j=0 Ij) is not a cover of K for any j. Then there is a sequence

(xk)k∈N with xk ∈ K \ n
⋃k−1
j=0 Ij for all k. Since K is compact and X is a sequential

space, K is sequentially-compact, so (xk) has a convergent subsequence. Without loss
of generality, we can assume that (xk) is itself convergent and limk→∞ xk = x∞.

Since δ is admissible, there is a convergent sequence (rk)k∈N with limit r∞ such that
δ(rk) = xk for all k ∈ 0, 1, . . . ,∞. Since r∞ ∈ In for some n, there is a finite subset
Im1 , . . . , Imk

of (I0, I1, . . .) such that V ⊂ K ⊂ ⋃k
j=1 Imj ⊂ U .

We have shown that if β is a countable base for R, x ∈ X and U ∈ O(X), then there
is a finite subset {J1, . . . , Jk} of β such that x ∈ int(

⋃k
i=1 Ji) ⊂ U . Hence {int(

⋃k
i=1 Ji) |

J1, . . . , Jk ∈ β∗} is a countable base for X.

Note that the proof given relies crucially on the admissibility of the admissible quo-
tient representation δ, which may be different from the original quotient map q.

The following theorem can be derived from [23, Theorem 5.3]. Its main significance
is to show that core-compactness of X implies local-compactness of O(X).

Theorem 4.28. Let X be core-compact. Then O(X) with the Scott topology is locally-
compact.

Proof. Let U ∈ O(X) and W ⊂ O(X) be Scott open. By Lemma 4.23, there exists
W ∈ O(X) such that U ∈ �W and �W ∈ W. Since U ∈ �W means W b U , and X is
core-compact, by Lemma 4.24 there exists V ∈ O(X) such that W b V b U . Note that
↑V = {S ∈ O(X) | V ⊂ S} is compact in the Scott topology, since any open cover has
a singleton subcover. By Lemma 4.23 the set �V is open in the Scott topology. Then
U ∈ �V ⊂ ↑V bW as required.



Chapter 5

Applications to Dynamic Systems

We now use the computable type theory developed in the previous section to give some
results on computable properties of dynamic systems. When considering solutions of
nondeterministic systems, we are often interested in function spaces with set-valued
types. In this section we now give some applications of the computability type theory to
problems in control and systems theory. We focus on three problems, namely the evolu-
tion of hybrid systems, computation of reachable and viable sets, and control synthesis.
Note that using the computable types developed earlier, many of the results are almost
trivial to prove.

5.1 System behaviour

The set of solutions of a dynamic system is the space of continuous functions ξ : T → X,
where T is the time domain, and X is the state space. Throughout this section, we will
assume that X is effectively Hausdorff and effectively separable. We require the property
of state, that if ξ and η are solutions with ξ(s) = η(s), then there is a solution ζ with
ζ(t) = ξ(t) for t ≤ s, and ζ(t) = η(t) for t ≥ s. For an autonomous system, we also
require time-invariance, that if ξ is a solution and s ∈ T , then the function defined by
η(t) = ξ(t+ s) is also a solution.

For a deterministic system, there is only one trajectory through a given initial state.
The solution operator may be represented either as a function φ̃ : X × T → X, or as a
function φ̂ : X → C(T ;X) taking an initial point x to the trajectory ξ : T → X with
ξ(0) = x. By the exponentiation property, the types X × T → X and X → C(T ;X ) are
equivalent.

In a non-deterministic system there may be may different trajectories with the same
initial state. In a stochastic system, the behaviour can be described by a function
X × T → Pr(X), where Pr(X) is the set of probability measures on X. Since we have
not considered computable measure theory in this article, we will not consider stochastic
systems further.

In general, we do not merely wish to compute the evolution only for a system de-
scribed by computable data, but for all systems within a class, even if the system data
is uncomputable. We therefore express the computability results in terms of both the
system description and the initial state.

The simplest class of system to consider is that of a deterministic discrete-time
system defined by a continuous function f : X → X with the update law given by
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xn+1 = f(xn). The evolution function φ̃f : X × N → X is given by φ̃f (x, 0) = x and
φ̃(x, n + 1) = f(φ̃(x, n)). Unsurprisingly, the evolution is computable from f ; this is
direct from the definition.

Proposition 5.1. The evolution of a discrete-time system defined by the update rule
x′ = f(x) where f ∈ C(X;X), is computable as a function C(X ;X ) × X → C(N;X )
(equivalently as a function C(X ;X )×X ×N→ X ).

5.2 Nondeterministic systems

Nondeterministic systems frequently arise in control and systems theory as models of
systems with control or disturbance inputs. A system with state space X and input
space U is described by a function f : X ×U → X with xn+1 = f(xn, un). If the inputs
un are under the control of the user, we are interested in determining whether there
exists a trajectory with some given property. Hence we should compute overt sets of
trajectories. If instead the inputs un are disturbances from the external environment,
then we are interested in properties which hold for all possible trajectories. Hence we
should try to obtain compact sets of trajectories.

In both cases, we can define a multivalued map F : X ⇒ X describing the evolution
by F (x) = f(x, U), and obtain an update law xn+1 ∈ F (xn). If U is overt, then
F (x) is computable from f and U as an overt set, and if U is compact, then F (x) is
computable as a compact set. Hence it suffices to consider systems defined by multimaps
F : X → V(X) and F : X → K(X)

Note that a set of possible solutions is described, with no distinction between what
is likely or unlikely; merely between what is possible and impossible.

There are many different ways of representing the solution space. The simplest way of
representing the solution space is as the behaviour of the system, which is simply the set
of all solutions, Φ̄ ∈ P(C(T ;X)). The canonical solution trajectory operator is a function
Φ̂ : X → P(C(T ;X)) such that Φ̂(x) = {ξ : T → X | ξ ∈ Φ̄ and ξ(0) = x}. Another
useful representation is in terms of the finite reachability operator, Φ̃ : X × T → P(X)
defined as Φ̃(x, t) = {ξ(t) | ξ ∈ Φ̄ ∧ ξ(0) = x}.

The following result shows that while the reachable sets and the set of all solutions
can be recovered from the solution to the initial-value problem. Further, unless X is
compact, the set of all solutions cannot be represented as an element of K(C(N;X )),
whereas Φ̂ : X → V(C(N;X )) cannot be recovered from Φ̄ ∈ V(C(N;X )) This means
that in order to study properties of the system, we should compute Φ̂ and not Φ̄ or Φ̃.

Proposition 5.2.

1. The type K(C(N;X )) reduces to C(X ; K(C(N;X ))), which reduces to C(X ; C(N; K(X ))).

2. The type C(X ; V(C(N;X ))) reduces to both C(X ; C(N; V(X ))) and to V(C(N;X )).

Proof.

1. Given Φ̄ ∈ K(C(N;X)), define Φ̂ : X → K(C(N;X)) by Φ̂(x) = Φ̄∩{ξ ∈ C(N;X) |
0 ∈ ξ−1({x}}. The Hausdorff property is required that {x} is effectively closed.
Given Φ̂ : X → K(C(N;X)), define Φ̃ : X × N → K(X) by Φ̃(x, n) = {ξ(n) | ξ ∈
Φ̂(x)) = (Φ̂(x))(n), which is computable.
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2. Given Φ̂ : X → V(C(N;X)), define Φ̄ = Φ̂(X), which is computable since X is
assumed to be effectively separable, and hence a computable element of V(X ).
Define Φ̃ : X × N→ V(X) by Φ̃(x, n) = {ξ(n) | ξ ∈ Φ̂(x)) = (Φ̂(x))(n).

We now consider the computability of the solution operator Φ̂. We begin with a
generally useful result on multivalued maps.

Theorem 5.3. The following types are computably equivalent:

1. F : X → V(Y), F−1 : O(Y)→ O(X ) and F : V(X )→ V(Y).

2. F : X → K(Y), F−1 : A(Y)→ A(X ) and F : K(X )→ K(Y).

Proof.

1. x ∈ F−1(U) ⇐⇒ F (x) ./ U ; F (B) ./ U ⇐⇒ B ./ F−1(U).

2. x 6∈ F−1(A) ⇐⇒ F (x) ⊂ (X \A); F (C) ⊂ U ⇐⇒ C ⊂ X \ F−1(X \ U).

We can use these properties to compute the forward-time evolution of discrete-time
nondeterministic systems.

Corollary 5.4. The behaviour of a nondeterministic discrete-time system F is com-
putable in the following cases:

1. If F : X → V(X ), then Φ̂ : X → V(C(N,X )) is computable from F .

2. If F : X → K(X ), then Φ̂ : X → K(C(N,X )) is computable from F .

5.3 Differential systems

We now consider the computability of systems defined by differential equations or dif-
ferential inclusions. For simplicity, we assume that X is a Euclidean space Rn, though
these results also extend to differential manifolds and locally-compact Banach spaces.
To prove the results of this section we need to go back to first principles to solve the
differential systems; in particular, we need to resort to the classical Arzela-Ascoli and
Michael theorems to assert the existence of solutions.

Theorem 5.5. Let f : X → X be locally-Lipschitz continuous. Then the solution
operator φ̂f of ẋ = f(x) is computable C(X ;X )×X → C(R,X ).

The proof is essentially standard [19], though is too long to include here. A simple
proof can be found in [16]. Note that we can weaken the locally-Lipschitz condition to
simply requiring uniqueness of solutions [44].

We now turn to nondeterministic differential systems as defined by differential in-
clusions ẋ ∈ F (x). For an introduction to differential inclusions, see [2]. Following the
well-known solution concept of Filippov [25], we may first need to compute the convex
hull of the right-hand side. The continuous case was first proved in [43], but easily
splits into the lower- and upper-semicontinuous cases. The lower-semicontinuity with
the one-sided Lipschitz condition was proved in [26]. Full proofs can be found in [17].

Theorem 5.6.
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1. Let F be one-sided locally-Lipschitz lower-semicontinuous with closed convex val-
ues. Then the solution operator (F, x) 7→ Φ̂F (x) of ẋ ∈ F (x) is computable
C(X ; V(X ))×X → V(C(R,X )).

2. Let F be upper-semicontinuous with compact convex values. Then the solution
operator of ẋ ∈ F (x) is computable C(X ; K(X ))×X → K(C(R,X )).

5.4 Evolution of hybrid systems

A hybrid system comprises continuous evolution interspersed with discrete jumps. Since
from the results of Sections 5.2 and 5.3, the evolution of continuous-time and discrete-
time systems are computable, we focus on the problem of event detection. An event
occurs whenever the state of the system enters a guard set G. Consider the case of a
hybrid system defined as the tuple (X,F,G,R), where ẋ ∈ F (x) defines the continuous
dynamics, the guard set G is entered when g(x) ≥ 0, and the reset is given by x′ ∈ R(x).
Let D = {x | g(x) ≤ 0}.

Suppose ξ(t) is a continuous trajectory with g(ξ(0)) < 0, and g(ξ(t)) > 0 for some
t > 0. Then clearly the trajectory ξ crosses the guard set at some time. We define
the hitting time τh by τh(ξ) = min{t ∈ R | g(ξ(t)) = 0} and the crossing time τc as
τc(ξ) = inf{t ∈ R | g(ξ(t)) > 0}. Clearly τh(ξ) ≤ τc(ξ), but the two need not be equal,
in general. If τh(ξ) = τc(ξ), then we say that ξ crosses g transversely at τ = τh(ξ).
Otherwise, it may be the case that ξ(t) slides along the guard set G between τh and τc,
or touches G and re-enters D before later crossing G. We define the touching time set
as τ(ξ) = {t ∈ R | g(ξ(t)) = 0 ∧ ∀s ≤ t, g(ξ(s)) ≤ 0}.

Lemma 5.7. The set of trajectories ξ with g(ξ(0)) < 0 and g(ξ(t)) > 0 for some t > 0
is computable in O(C(R;X )).

Theorem 5.8. The touching time set τ(g, ξ) is computable as a function C(X ,R) ×
C(R,X ) → A(R). Further, if g(ξ(t)) > 0 for some t > 0, then τ(g, ξ) can be computed
in K(R).

Proof. Define γξ,g(t) = g(ξ(t)) and µξ,g(t) = sup{g(ξ(s)) | s ∈ [0, t]} which is a com-
putable function (see [53]). Then τ(g, ξ) = γ−1

ξ,g ({0}) ∩ µ−1
ξ,g((−∞, 0]) so is computable.

If g(ξ(t)) > 0, then τ(g, ξ) = τ(g, ξ) ∩ [0, t], so is effectively compact.

Theorem 5.9. Consider a hybrid system where ΦF is a compact-valued multiflow, and R
is compact-valued. Then set of points Ψ(X0) reachable after the first event is computable
as a compact set.

Proof. The set of points reachable after the first event of a continuous solution ξ is
R(ξ(τ(g, ξ)), which is computable in C(X ) from ξ ∈ C(R;X ). The set of trajectories
with initial condition X0 is ΦF (X0), so is computable in C(C(R;X )). Then Ψ(X0) is the
union of R(ξ(τ(g, ξ)) for ξ in the compact set ΦF (X0), so is computable in C(X ).

Unfortunately, the set of points reachable after the first event is not computable as
an overt set, since the crossing time is not computable as an overt set. It turns out that
event detection is easier in the context of backwards reachability
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Theorem 5.10. Consider a hybrid system where ΦF is an overt multiflow and R is
overt-valued. Let V be an open set. Define Ψ−1(V ) to be the set of points for which
there is a solution for which the state is in V immediately after the first jump. Then
Ψ−1(V ) is computable as an open set.

Proof. The trajectory ξ crosses G in R−1(V ) if ξ(τ(g, ξ)) ⊂ V . Since R : X → V(X ),
U = R−1(V ) is computable in O(X). Since τ(g, ξ) is compact and ξ is continuous,
W = {ξ | τ(g, ξ) ⊂ U} is computable in O(C(R;X )). Since Φ : X → V(C(R;X )),
Φ−1(W ) is computable in O(X ). We have Ψ−1(V ) = {x | ∃ξ ∈ ΦF (x) s.t. ξ(τ(g, ξ)) ⊂
R−1}) = Φ−1

F ({ξ(τ(g, ξ)) ⊂ R−1}), so Ψ−1(V ) is computable in O(X ).

5.5 Reachable and viable sets

We now apply the results of Section 5.2 to prove computability of some infinite-time
operators in discrete-time dynamical systems. Computability of reachable sets was con-
sidered in [13]. Computability of the viability kernel was considered in [45]. Similar
results for upper-semicontinuous hybrid systems have been obtained in [3, 29].

In this section, we will assume that X is effectively locally compact, so there is a
recursively enumerable set D of pairs (Un, Cn) ∈ O × K such that Un ⊂ Cn for all n,
and for any compact K and open V with K ⊂ V there exists n such that K ⊂ Un and
Cn ⊂ V .

We define the reachable set of a system F : X → P(X) with initial state set X0 as

reach(F,X0) = {x ∈ X | ∃ solution ξ and t ∈ T with ξ(0) ∈ X0 and ξ(t) = x}.

Theorem 5.11. The reachable set operator reach is computable as a function C(X ; V(X ))×
V(X )→ V(X ), but not as a function C(X ; K(X ))×K(X )→ K(X ).

Proof. We can write reach(F,X0) =
⋃∞
i=0Ri, where R0 = X0 and Ri+1 = Ri ∪ F (Ri).

Then reach : C(X;V(X)) × V(X) → V(X) is computable since all operations are com-
putable. However, reach fails to be computable from C(X ; K(X )) × K(X ) to K(X )
even if X is compact since it is easy to show that reach is not upper-semicontinuous in
parameters, as in Example 5.12.

Example 5.12. Consider the system f : R→ R defined by fε(x) = ε+ x+ x2− x4. Then
reach(f0, {−1/2}) ⊂ [−1, 0], but reach(fε, {−1/2}) 6⊂ [−1, 1/2] for any ε > 0.

We define the chain-reachable set of F as limit of all ε-orbits, or equivalently as

chainreach(F,X0) =
⋂
{U ∈ O(X)| cl(U) is compact, and X0 ∪ F (cl(U)) ⊂ U}.

Theorem 5.13. If chainreach(F,X0) is bounded, then chainreach : C(X ; K(X )) ×
K(X )→ K(X ) is computable, and is the optimal K(X )-computable over-approximation
to reach.

Proof. It is clear that chainreach(F,X0) =
⋂{K | (K,V ) ∈ D and X0 ∪ F (K) ⊂ V },

proving computability. The proof of optimality involves considering perturbations, and
can be found in [14].
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The viability kernel of a multivalued map F and a set S is given by

viab(F,A) = {x ∈ X | ∃ solution ξ s.t. x = ξ(0) and ∀t ∈ T, x(t) ∈ S}.

Theorem 5.14. The viability kernel operator viab(F, S) is computable as a function
C(X ,K(X ))×K(X )→ K(X ).

Proof. Write viab(F,A) =
⋂∞
i=0 Si, where S0 = S and Si+1 = Si ∩ F−1(Si).

The viability kernel is not computable as an open or overt set. However, we can
define a robust viability kernel

robviab(F, S) = {C ∈ K(X) | C ⊂ S ∩ F−1(int(C))}.

Theorem 5.15. The robust viability kernel operator robviab(F, S) is computable as a
function C(X ,V(X ))× O(X )→ O(X ).

Proof. Write robviab(F, S) =
⋃{V | (K,V ) ∈ D and K ⊂ S ∩ F−1(V )}.

5.6 Control synthesis

A noisy control system with state space X, input space U and noise space V is a function
f : X × U × V → X. We assume that U is an overt space and V a compact space, and
define FU : X → P(X × U), FU (x) = {(x, u) | u ∈ U}, and FV : X × U → P(X) by
FV (x, u) = {f(x, u, v) | v ∈ V }.

The controllable set of ctrl(f, T, S) with target set T and safe set S is determined
recursively by T0 = T ∩S and Ti+1 = Ti∪{x ∈ X | ∃u ∈ U, ∀v ∈ V, f(x, u, v) ∈ Ti}∩S.

Theorem 5.16. The controllable set operator ctrl : C(X ,U ,V;X ) × O(X ) × O(X ) →
O(X ) is computable.

Proof. The multivalued functions FU : X → V(X×U) and FV : (X×U)→ K(X) can be
computed from f , U and V . Write Ti+1 = Ti∪ (F−1

U (F⇐V (Ti))∩S) and C =
⋃∞
i=0 Ti.

Classically, a state feedback control law is a function g : X → U . There are systems
which are controllable by a discontinuous state feedback, but not a continuous feedback,
so we cannot hope to solve a general control problem by computing a continuous state
feedback. One solution to this difficulty is to first compute a supervisor, which is a
multivalued function G : X ⇒ U such that taking inputs un ∈ G(xn) always gives a
solution. If G is open-valued, we can then construct a deterministic feedback law by
taking g(x) ∈ G(x).

Theorem 5.17. If ctrl(f, T, S) ⊃ X0, then there is an supervisor G : X → O(U) which
can be computed from f, T, S.

Proof. From Ti+1 = Ti ∪ F−1
U (F⇐V (Ti)) and X0 ⊂ Tn, we can find open Bi, Ci such

that C0 ⊂ T , X0 ⊂
⋃n
i=0Bi, and for all i, Ci ⊂ Bi and Bi+1 ⊂ F−1

U (F⇐V (Ci). For
x ∈ Bi \

⋃i−1
j=0Cj , define Gi(x) = {u ∈ U | (x, u) ∈ F⇐V (Ci−1)}, and define G(x) =⋃{Gi(x) | x ∈ Bi \

⋃i−1
j=0Cj}.
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A noisy control system with partial observations with output space Y and measure-
ment noise space W is defined by functions f : X×U×V → X and h : X×W → Y . We
assume W is compact, and define H : X → K(Y ) by H(x) = {h(x,w) | w ∈W}. An ob-
server for the system takes values X̂ ∈ K(X), with with initialisation X̂0 = X0∩H−1(y0)
and update rule X̂n+1 = F̂ (X̂n, un, yn+1) = FV (X̂n, un) ∩H−1(yn+1).

In order to guarantee control to the target set within the safe set, we require X̂n ⊂ T
for some n, and X̂i ⊂ S for all i ≤ n. We can therefore define sets Ti ⊂ K(X) by
T0 = {C ∈ K(S) | C ⊂ T} and Ti+1 = {C ∈ K(S) | ∃u ∈ U, ∀y ∈ Y, F̂ (C, u, y) ∈ Ti}.
Note that {C ∈ K(X) | C ⊂ U} is open in K(X) for U open in X. Then Ti+1 is the set
of all state estimates for which we can choose an input such that the next state estimate
is guaranteed to be in Ti. The problem is solvable if, and only if, there exists n such
that

⋃n
i=1 Ti ⊃ {C ∈ K(X) | ∃y ∈ Y s.t. C = X0 ∩H−1(y)}.

Define the controllable set operator ctrl by X0 ∈ ctrl(f, h, S, T ) if X0 is controllable
into T inside S under the system (f, h).

Theorem 5.18. The controllable set operator is computable ctrl : C(X ,U ,V;X ) ×
C(X ,W;Y)× O(X )× O(X )→ O(K).

Proof. Define a function Ĥ : K(X) × Y → K(X) by Ĥ(C, y) = C ∩ H−1(Y ). Then
Ĥ is computable. Further, either Y is compact or Ĥ(C, Y ) = Ĥ(C,H(C)) ∪ ∅, so
Ĥ(C, Y ) = {Ĥ(C, y) | y ∈ Y } ∈ K(K(X)). For X0 ∈ K(X), define X̂0 = {C ∈ K(X) |
∃y ∈ Y s.t. C = X0 ∩H−1(y)}. Then X̂0 = Ĥ(X0) is computable in K(K(X )).

The set T0 = {C ∈ K(S) | C ⊂ T} = {C ∈ K(X) | C ⊂ S ∩ T} is computable in
O(K(X)) directly from S and T . We now show that Ti+1 is computable in O(K(X)).
Let Vi = {C ∈ K(X) | ∀y ∈ Y, C ∩ H−1(y) ∈ Ti} and Ui+1 = {(C, u) ∈ K(X) × U |
FV (C, u) ∈ Vi}, so Ti+1 = {C ∈ K(S) | ∃u ∈ U, (C, u) ∈ Ui+1}. Then Vi = {C ∈
K(X) | Ĥ(C, Y ) ⊂ Ti}, and since Ĥ(C, Y ) ∈ K(K(X)), we have Vi computable in
O(K(X )). Then Ui+1 = F−1

V (Vi), so is computable in O(K(X )× U). Defining F̃U (C) =
C ×U ∈ V(K(X)×U), we obtain {C ∈ K(X) | ∃u ∈ U, (C, u) ∈ Ui+1} = F̃−1

U (Ui+1), so
Ti+1 = F̃−1

U (Ui+1 ∩ {C ∈ K(X) | C ⊂ S} is computable in O(K(X )).

In a similar way to the case of state feedback, we can construct a supervisor G :
K(X ) → O(U) solving the control problem. However, in order to realise the control
strategy, we need to replace the state estimator update F̂ by a finite automaton approx-
imation, and the supervisor G by a function on this automaton. This process is not as
straightforward as designing a state feedback control law since the space K(X) is not
Hausdorff. Details are given in [15].
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Springer-Verlag London Ltd., London, 2001. With examples in parameter and state
estimation, robust control and robotics, With 1 CD-ROM (UNIX, Sun Solaris).

[34] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1,
volume 43 of Oxford Logic Guides. The Clarendon Press Oxford University Press,
New York, 2002.

[35] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2,
volume 44 of Oxford Logic Guides. The Clarendon Press Oxford University Press,
Oxford, 2002.

[36] Klaus Keimel and Jan Paseka. A direct proof of the Hofmann-Mislove theorem.
Proc. Amer. Math. Soc., 120(1):301–303, 1994.

[37] S. C. Kleene. General recursive functions of natural numbers. Math. Ann.,
112(1):727–742, 1936.

[38] Ker-I Ko. Complexity theory of real functions. Progress in Theoretical Computer
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[40] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, Napoli, 1984.

[41] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to interval
analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2009.

[42] Marian B. Pour-El and J. Ian Richards. Computability in analysis and physics.
Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1989.



62 BIBLIOGRAPHY

[43] Anuj Puri, Pravin Varaiya, and Vivek Borkar. Epsilon-approximation of differential
inclusions. In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors,
Hybrid Systems III, volume 1066 of LNCS, pages 362–376, Berlin, 1996. Springer.

[44] Keijo Ruohonen. An effective Cauchy-Peano existence theorem for unique solutions.
Int. J. Found. Comput. Sci., 7(2):151–160, 1996.

[45] Patrick Saint-Pierre. Approximation of the viability kernel. Appl. Math. Optim.,
29(2):187–209, 1994.
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