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Perturbation theory for dual semigroups. 
III. Nonlinear Lipschitz continuous perturbations in the sun­
reflexive 

We consider nonl inear Lipschitz perturbations of the infinitesimal generator 
of a linear c0-semigroup on a non-reflexive Banach space. It is allowed 
that the perturbation maps the space into a bigger space which arises in a 
natural way when considering dual semigroups. Using a generalized variation -
of - constants formula we show that the perturbed operator generates a 
strongly continuous nonl inear semi group. ~Je study regularity properties 
of this semigroup and prove the principle of linearized stability. 

1. INTRODUCTION 

The aim of this paper is to demonstrate how pertrubation theory for dual 
semigroups can be used to write certain nonlinear evolution equations as 
abstract semilinear equations. Becoming familiar with our duality framework 
(the game of suns and stars) requires, as always, a certain investment of 
time and energy of the reader. The refund includes, among other things, 
1) the possibility to use standard techniques to prove local stability and 
bifurcation results, and 2) the unification of theories for various equations, 
like delay equations [13, 10] and age dependent population equations [19, 2]. 

In this paper we concentrate on the principle of linearized stability 
while postponing the derivation of results concerning invariant manifolds 
to future papers. As a prelude to semilinear problems we present in 
Section 2 some results about inhomogeneous linear equations which are, in 
our opinion, interesting by themselves. We hope to return to this topic 
too at some later time. 

In this paper we try to convey the flavour of our recent work which was 
largely motivated by physiologically structured population models [17]. It 
should be noted that Desch, Schappacher and coworkers [7,9] as well as 
Greiner [11, 12] and Kellermann [16] developed alternative approaches for 
the study of these kind of problems. 

Consider a semigroup r0(t) of bounded linear operators acting on some 
Banach space X. Assume that r0(t) is strongly continuous, i.e. the orbit 
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t + T0(t)x is continuous for each initial value x EX. If X is non-reflexive, 

the dual semigroup T;(t) need not have the same property. All one can say 

in general is that the orbits are continuous in the weak * topology. At the 
* level of the generators this phenomenon is reflected in the fact that A0, 

the adjoint of the infinitesimal generator A0 of T0(t), need not have dense 

domain and that A3 is the weak* generator of T;(t) (see Butzer & Berens [1]). 

The basic idea now is to take advantage of this phenomenon and to construct 

a second dual space for X based on the behaviour of the semigroup for t + 0 

(or, equivalently, the behaviour of the resolvent of the generator for A+ oo). 

To make this more precise we introduce 

XG {x* Ex* 1 im llT~(t)x* - x*ll O}. 
t+O 

The space X9 is the maximal invariant subspace of X* on which T;(t) is 

strongly continuous. Moreover, it is known that X9 = V(A~) (see [1, 14]). 

The restriction T~(t) of TB(t) to X9 is strongly continuous and is generated 

by A~, the part of A3 in X (that is, V(A~) = {x9 E X9 : x9 E V(A;) and 

A~xQ E X9 }). So on X6 we now have the sarre situation as we had on X at the 

start. Consequently we can play the same game once more. In self-explanatory 

notation we obtain x@, T~(t), A~* and X99 , T~Q(t) and A~9 The pairing 

between elements of X and X9 defines an embedding j of X into x9*. Note 
that j(x) c x("'. 

DEFINITION. X is 8-reflexive (pronounce: sun-reflexive) with respect to 
T0(t) if and only if j(X) = XQQ. 

In this paper we shall restrict our attention to the 8-reflexive case. 

Moreover, we shall in the following identify X with its embedding j(X) and 

omit the symbol j. t 

Integrals of the form f T~*(t-1)h(1)d1, where h is a given weakly* 
. Q* 0 

continuous X -valued function, are now defined as weak* Riemann integrals. 
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This means that the integral is by definition the continuous linear 
functional on X~ which assigns to an arbitrary xQ E x8 the value 

ft Q (! 

0 <h(T), T0(t-,)x >dT. 

Section 2 provides further information on these integrals. 
In our previous paper [2] (also see [4J) we showed that any bounded 

1 inear operator 

e* B : X + X 

defines via solutions of the variation - of - constants equation 

a "perturbed" strongly continuous semigroup T(t) on X such that 

(i) the spaces XQ and x00 do not change, so in particular they are 
independent of B, 

(ii) on the "big" spaces X* and x0* the domains of the weak* generators 
remain unchanged, i.e. 

V(A*) = V(A0), and V(AQ*) = V(A~*), 

(iii) A"* = Ar + B and A* = A~ + B* 

Since A is the part of A9 * in X the domain V(A) in the "small" space X may 
depend on B, even to the extent that all information about B is contained 
in V(A), the action of A0 and A being the same (this actually happens for 
functional differential equations and age-dependent population equations). 
Thus we see quite clearly how the duality frame-wrok is exploited to handle 
the equation dx/dt = Ax by perturbation methods. In the following we shall 
consider nonlinear perturbations 

F : X + x"* 

and use basically the same approach (see [3J for linear time-dependent 
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perturbations B(t)). 
In conclusion of this introduction we mention a useful fact which follows 

from dual semigroup theory. The so-called Favard class of T0(t) is defined 
by 

Fav(T0) = {x EX : lim sup { \\T(t)x-x\\ <co}. 
t + 0 

It is known ([1, 4]) that Fav (T0) = V(A~*). f·loreover, Fav (T0) is precisely 
the set of initial data which yield Lipschitz continuous orbits. It is this 
latter non-local characterization which immediately guarantees the invariance 
and which, therefore, is very useful in nonlinear situations. 

Section 2 deals with linear inhomogeneous equations. In Section 3 we 
derive results about the existence, uniqueness and differentiability of 
solutions of semilinear equations and Section 4 is devoted to the principle 
of linearized stability. In Section 5, finally, we show how to obtain 
solutions corresponding to initial data in the 1 big 1 space xQ* if the 
nonlinear perturbation is somewhat special (in particular it must have 
finite dimensional range). This is achieved by solving a nonlinear Volterra 
convolution equation in L . 

00 

2. THE LINEAR INHOMOGENEOUS INITIAL VALUE PROBL81 

Let T0(t) be a strongly continuous semigroup on the (non-reflexive) Banach 
space X, and assume that X is sun-reflexive with respect to A0, the generator 
of T0(t). There exist constants w ER and N ~ 1 such that the following 
estimate holds: 

In this section we consider the inhomogeneous initial value problem 

Of ( t) = A0 u ( t) + f ( t) , 0 < t < T, 

u(O) = x E X, · 

[
du e* 

where f: [0,TJ + xQ* is a given weakly* continuous 
the so-called mild solution to (2.1) by 
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function. We define 



u(t) = T0(t)x + J: T~* (t-s)f(s)ds, o ~ t ~ T, (2.2) 

where the integral is a weak * Riemann integral. 

t 

lJe a 1 so define 

v(t) = f 0 T~*(t-s)f(s)ds, o ~ t ~ T. (2.3) 

We will successively consider what can be said about v if f is weakly* 
continuous, norm continuous, Lipschitz continuous, and continuously 
differentiable. 

PROPOSITION 2.1. If f is weakly* continuous then vis weakly* continuous 
<i* with values in X • If f is norm continuous then v is norm continuous as 

well and takes values in X. In both cases the following estimate holds: 

llv(t)ll ~ !i (ewt-1). sup llf(s)ll. 
w O~s~t 

A proof of this result can be found in [2]. 

PROPOSITION 2.2. Let f be (locally) Lipschitz continuous. Then vis 
weakly* continuously differentiable (in particular, vis Lipschitz 
continuous), v takes values in V(A~*),and w* - ¥t(t) = A~\(t) + f(t). 
Here w* - ~denotes the weak * derivative. 

<i* e* Proof. To show that v takes values in V(A0 ) we use that V(A0 ) Fav(T0). 

Let t ~ 0 and h > O. Then 

f t+h * l!T0(h)v(t)-v(t) II~~ II t T~*(s)f(t+h-s)dsll 

+ ~ llJ: Tr(s) f(t+h-s)-f(t-s)}ds + t llJ: T<i~(s)f(t-s)dsll , 

which stays 
<i* II A0 v ( t) 11 is 

s* t +Ao v(t) 

bounded ash+ 0. It also follows from this expression that 

uniformly bounded on compact t-intervals. How we show that 
is weakly * continuous. First take x6 E V(A~). Then 
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is continuous. The continuity of <A~*v(·), x8> for arbitrary x8 E x0 now 
easily follows from the observation that V(A~) lies dense in X8 and that 
[[Arv(t) I[ is bounded on compact t-intervals. Finally we show that 

t{ e* fil Q v(t) = 10 A0 v(s) + f(s)}ds, which completes the proof. Let x E V(A0). 

t t 
<v(t),x8> - f 0 <f(s), x8>ds = J0 <f(s), Ti(t-s)xfil-xfil>ds = 

f
t f t-s e fil fil ft ft Q = 0 <f(s), 0 T0(o)A0x do> ds = 0 <f(s), s T 0 (o-s)A~xdo> ds = 

ft ft e* fil fil ft Jo i* fil o = 0 s <T0 (o-s)f(s), A0x >dods = 0 0 <T0 (o-s)f(s),A0x >dsdo = 

ft e i J t g* " = 0 <v(o), A0x >do= 0 <A0 v(cr), x >do. 

Since V(A~) is dense in X8 the same identity holds for arbitrary xfil E XQ. a 

PROPOSITION 2.3. Assume that f is continuously differentiable on [0,T) and 
that f(O) EX. Then v is continuously differentiable on [O,T) and takes 

o* values in V(A0 ). Furthermore 

* ft * v1 (t) =A~ v(t) + f(t) = T0(t)f(O) + 0 T~ (t-s)f 1 (s)ds EX. 

e* Proof. From Proposition 2.2 we know that v(t) E V(A0 ), 0 s t s T. We 
compute A~*v(t) explicitly. 

t(T0(h)-I)v(t) = t J0 T~*(t-s)f(s+h)ds 
-h 

1 Jt @* 1 Jt g* - n T0 (t-s)f(s+h)ds + h T0 (t-s) {f(s+h)-f(s) }ds 
t-h 0 

* ft * + T~ (t)f(O)-f(t) + 0 T~ (t-s)f'(s)ds, 

in the weak* topology, ash+ 0, and by definition this limit equals A~*v(t). 
Next we show that v is continuously differentiable. 
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1 1 f 0 @* 1 f 1 6* n(v(t+h)-v(t)) = n T0 (t-s)f(s+h)ds + n TO (t-s){f(s+h)-f(s)}ds = 
-h 0 

T0(t) ~ 1: T0(s)f(O)ds + T0(t) ~· J: T~*(s){f(h-s)-f(O)}ds + 

1: T~*(t-s)f'(s)ds + 1: T~*(t-s) {f(s+h)-f(s) -f'(s)}ds 

~ T0(t)f(O) + f: T~*(t-s)f'(s)ds 

in norm as h + 0. So v is right-differentiable and the right-derivative is 

continuous. Therefore v(t) is continuously differentiable and 

f
t @* @* 

v'(t) = T0(t)f(O) + 0 T0 (t-s)f'(s)ds = A0 v(t) + f(t). 

This proves the proposition. o 

COROLLARY 2.4. Assume that f is continuously differentiable. Let x EV(A~*) 
and A~ x+ f(O) EX. Then u(t) given by (2.2) is continuously differentiable 

@* @* 
and takes values in V(A0 ). Furthermore A0 u(t) + f(t) EX, 0 ~ t ~ T, and 

u satisfies (2.1). In other words, (2.1) ad~its a classical solution. 

Proof. Define f(t) = A~x + f(t), and let 

Jt @* - ft e* <il* 
v(t) = O T0 (t-s)f(t)dt = O T0 (t-s){A0 x+ v(t)}dt 

= T0 (t)x-x+v(t) = u(t)-x, 

where v, u are given by (2.3) and (2.2) respectively. 

assumption of Proposition 2.3, hence vis c1 and v'(t) 

equivalently, u is c1 and u'(t) = A~*u(t) + f(t). o 

Now f satisfies the 
@*-

= A0 v(t) + f(t), or 

We refer to Da Prato and Sinestrari [6] for a more general result. Also see 

Kellermann [15]. 
~Jhen studying the equation du/dt = A~*u+ Bu + f with Ba given bounded 

linear operator from X into x6 *, we may either consider Bu +fas a 

perturbation and solve a variation-of-constants integral equation involving 

T~*(t) or first define the semigroup T(t) on X generated by the part of 
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A~* + B in X and write down the solution explicitly as a variation-of­

constants formula involving T(t). Of course, both procedures should define 

the same solution. That they actually do so is the content of the following 

proposition. 

PROPOSITION 2.5. Let B:X + x9 * be a bounded linear operator and let T(t) 

be the c0-semigroup on X generated by A, the part of A~* + B in X. Let 

x EX and let f:[O,TJ + x9* be an arbitrary continuous function. Let u(t) 

be the norm-continuous solution of the integral equation 

ft * 
u(t) = T0(t)x + 0 T~ (t-s){Bu(s) + f(s)}ds, 0 s t s T, (2.4) 

then 

J t * 
u(t) = T(t)x + 0 T9 (t-s)f(s)ds. 

To prove this proposition we need a lemma which is of interest by itself. 

Let A,B be as in Proposition 2.5 and define the integrated semigroups (see 
9* [15]) W0(t), W(t):X + X by 

s* J t 9* e* w0(t)x = 0 T0 (s)x ds 

9* Jt 9* e* 
~J ( t ) x = O T ( s ) x d s • 

LEHfiA 2.6. 
e* Q* 

For every x EX and t ~ 0, 

9* Q* Jt Q* 9* W(t)x = w0(t)x + 0 T0 (t-s)BW(s)x ds. 

Proof. From the variation-of-constants formula 

ft o* 
T(t)x = T0(t)x + 0 T0 (s)BT(t-s)xds 

it follows that for every x EX, x9 E x0 , 
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where B*:X0 + x* is the restriction of the dual operator of B to Xs. By 
changing the order of integration in the last integral we find that 

t 
<~J(t)x,xs> = <W0(t)x,xQ> + fo <IJ(t-s)x,B*T~(s)xs>ds. 

ii* ei* ii* Let x EX and let {xn} be a sequence in X converging to x in the weak * 
sense. It is easily seen that w0(t)* = f~ T~(T)dT and W(t)* = f~ T*(T)dT 

" o* and that they map X* into X and consequently that w0(t)x + w0(t)x and 
ii* n 

W(t)xn + l~(t)x with respect to the weak topology. By the dominated 
convergence theorem it follows that 

ft (,l e ft ( ) Ii* * Ii " 
0 <W(t-s)xn,B*T0(s)x >ds + 0 <W t-s x ,B T0(s)x >ds. 

From this, the result follows immediately. o 

PROOF OF PROPOSITION 2,5, It is easy to show that (2.4) has a unique 
continuous solution. Therefore we have to check that substitution of 
u(t) = T(t)x + !~T19 *(t-s)f(s)ds into equation (2.4) gives an identity. 
This amounts to verifying that 

ft * ft * 
0 T

19 (t-s)f(s)ds = 0 T~ (t-s)f(s)ds ft * f t-s e* 
+ 0 T~ (s)B{ 0 T (t-s-cr)f(a)da}ds. 

(*) 

In order to achieve this we integrate both sides of the equation from 0 to 
t. Clearly, 

and we find a similar identity for the integral of the first term at the 
right-hand-side. We evaluate the integral of the last term by pairing it 
with an element x8 E Xei. 

ft f T ii* f T-S Ii* Q < 0 { 0 T0 (s)B{ 0 T (T-S-cr)f(a)do}ds}dT,X > 
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Jt ft JT-S * @ @ < T@ (T-s-o)f(o)dodc,B*T0(s)x >ds 
0 s 0 

Jt Jt-s Jt-s-o 
O < O O Te*(c)f(o)dcdo,B*T~(s)x@>ds 

ft ft-s 
0 < 0 W(t-s-o)f(o)do,B*T~(s)x@>ds = 

ft J t-s < O Tr(s)B{ O Yl(t-s-o)f(o)do}ds,xe> = 

ft ft-a < 0 { 0 T~(t-o-T)BW(c)}dcf(o)da,x6> = 

<f: W(t-o)f(a)da - I: w0(t-o)f(o)do,xe> 

because of Lemma 2.6. Hence, the integral from 0 to t of (*) yields an 
identity. floreover (*) becomes an identity for t = 0, and from this the 
result follows. o 

3. THE SEtlILINEAR EQUATION 

Q* Let F:X + X be a (nonlinear) function which is globally Lipschitz continuous 
with Lipschitz constant L, i.e. 

llF(x) - F(y)ll ~ L llx-yll, x,y EX. 

~Je assume _2lobal Lipschitz continuity for ease of formulation. Appropriate 
variants of our results can be formulated when F is only locally Lipschitz 
continuous but our aim here is to explain the essence of our approach in as 
simple a setting as possible. 

In this section we examine the initial value problem 
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~~(t) = A90*u(t) + F(u(t)), t > o dt 

u(O) x. ( 3. 1 ) 

Note that even when orbits t ~ u(t;x) in X are considered, the differential 
equation should be interpreted as an identity of x9*-valued functions. We 
can reformulate (3.1) as an integral equation: 

ft @* 
u(t) = T0(t)x + 0 T0 (t-s)F(u(s))ds. ( 3. 2) 

We shall first study this integral equation and subsequently discuss the 
relation with the differential equation (3.1). 

If u(.) is a norm continuous X-valued function then F(u(·)) is a norm 
continuous xG*-valued function, and from Proposition 2.1 we conclude that 
the integral at the right-hand-side of (3.2) defines a norm continuous 
X-valued function. t1oreover, if u1(·), u2(·) are two norm continuous 
functions, then 

ft * ft * II 0 T~ (t-s)F(u 1(s))ds - 0 T~ (t-s)F(u 2(s))dsll :;; 

ft ( ) wt 
t1ew t-s L llu 1 (s)-u 2(s) II ds :;; ftl ~_:_!_ sup llu 1 (s)-u 2Cs) II. 

o w o;;;s:;;t 

Therefore, we can invoke standard contraction and continuation arguments 
to prove existence and uniqueness of solutions to (3.2). 

THEOREM 3.1. For every x EX there exists a unique continuous solution 
u(·,x) to the integral equation (3.2). This solution has the semigroup 
property 

u(t+s;x) u(t;u(s;x)), s,t ~ 0. 

Furthermore, the following estimates hold: 
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liu(t;x)I\:;; Ull\x\\+~l\F(O)ii)e(w+tlL)t, t~ 0, (3.3) 
w 

liu(t;x)-u(t;y) I\:;; M llx-yll e(w+ML)t, t ~ 0, (3.4) 

for every x,y E X. 

The estimates (3.3) and (3.4) fol low easily from the Gronwal 1 lemma. We 
define the non-linear strongly continuous semigroup S(t):X + X by 

S(t)x := u(t;x), t ~ 0, x E X. 

The remainder of this section is devoted to the question in which sense 
S(t)x satisfies the differential equation (3.1). To this end we need some 
definitions. The weak * generator A~* (note the abuse of notation) is 
defined as follows: x E V(A~) if h- 1(S(h)x-x) converges with respect to 

Cil* ii* i* the weak * topology of X to some element y EX as h + 0 and in this 
111* ii* case As x = y . The strong generator is defined as usual. Finally, we 

define the Favard class Fav(S) as in the linear case: 

Fav(S) = {x EX: lim sup~ \\S(h)x-xll < oo} 
h +o 

vJe can now prove the following important result. 

ii* 8* e* o* 
THEORErl 3.2. V(As ) = Fav(S) = Fav(To) = V(Ao ), and As x =Ao x + F(x) for 

i* x E V(A0 ). 

-1 fh Cil* Proof. For any x EX, the expression h 0 T0 (h-s)F(S(s)x)ds converges 

towards F(x) with respect to the weak* topology ash+ O. This implies that 
e* ii* e* 8* 6 V(As ) = V(A0 ) and that A5 x = A0 x + F(x) for x E V(A0). But we may also 

-1 fh Cil* conclude that l\h 0 T0 (h-s)F(S(s)x)ds\\ remains bounded ash + 0, which 

yields that Fav (S) = Fav (T0). From the linear theory we know that 
( Gl* Fav T0) = V(A0 ) and the result is proved. o 

PROPOSITION 3.3. x E Fav (S) if and only if the orbit t + S(t)x is locally 
Lipschitz continuous. 
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The proof of this result, which is relatively easy, can be found in a paper 
by Crandall [5], who calls Fav (S) the generalized domain of S. This result 
implies in particular that V(A~*) is invariant under S(t): namely Fav (S) 
is invariant under S(t). Proposition 2.2 implies that S(·)x is the solution 
to the differential equation (3.1) interpreted in the weak* sense if 

e* x E V(AS ): 

THEOREM 3 .4. 

and 

13* If x E V(A5 )tthenu=S(·)x is weakly* continuously differentiable 

w* - ~(t) =A~* u(t) + F(u(t)). 

@* THEOREM 3.5. As is the part of As in x, i.e. V(As) o* <i* {x E V(As ):As x EX} 
e* and Asx = As x. 

@* 13* Proof. It is clear that V(As):: {x E V(A5 ):As x EX}. Conversely, assume 
<i* e* that x E V(As ) and As x E x. Then 

1 1 1 fh e* n(S(h)x-x) = h (T0(h)x-x) + h OTO (h-s)F(S(s)x)ds 

1 f h @* e* 1 f h <i* n O T0 (h-s){AO x + F(x)}ds + h OTO (h-s){F(S(s)x)-F(x)}ds. 

-1 fh e* The first integral can be replaced by h 0 T0(h-s){A0 x + F(x)}ds and 

converges in norm to A~x + F(x), whereas the second integral converges in 
norm to D. This concludes the proof. c 

To conclude this section we state a result which gives sufficient conditions 
in order that t ~ S(t)x is a classical solution (see [18]) of the differential 
equation (3.1). 

THEORE!l 3.6. Assume that F is continuously Frechet differentiable. If 
x E V(As) then u(t): = S(t)x is continuously differentiable and 

e* u 1 (t) = A0 u(t) + F(u(t)). 

Proof. Let x E V(A5). Below we shall prove that u(t) S(t)x is continuously 
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differentiable on R . Then f given by f(t):= F(u(t)) is continuously 
+ e* 6* 

differentiable as well, and, moreover, A0 x + f(O) = A0 x + F(x) EX. From 
- ~ t @* 

Corollary 2.4 we may conclude that u(t) given by u(t) = T0(t)x + 10 T0 (t-s) 

Jt e* 1 e* 
f(s)ds = T0(t)x + 0 T0 (t-s)F(u(s))ds is C , takes values in V(A0 ) and 
~ @*- ~ 
u'(t) = A0 u(t) + f(t). But u(t) = u(t) and the result is proved. 

So it remains to show that u(·) E c1• Define B(t) := F'(u(t)), t ~ 0. 

Then B(t) :X + x0* is a bounded linear operator for every t ~ 0 and t + B(t) 

is norm continuous. We also define 

n(h,s) = F(u(s + h)) - F(u(s)) - B(s)(u(s + h) - u(s)). 

Then h- 1 lln(h,s) II+ 0, h -t 0, uniformly on bounded s-intervals. In [3] we 

have proved that the family Ar+ B(t) "generates" a strongly continuous 

evolutionary system U(t,s) on X. The function w(t) := U(t,O)A5x is a 

solution of the integral equation 

Jt * 
w(t) = T0(t)A5x + 0 T~ (t-s)B(s)w(s)ds. 

-1 We also define wh(t):=h (u(t+h)-u(t))-w(t). Then 

1 1 f h @* wh(t) = h (T0(t+h)x-T0(t)x) + n T0(t) OTO (h-s)F(u(s))ds 

1 ft io* + n O T0 (t-s){F(u(s+h))-F(u(s))}ds - T0(t)A5x 

- J: T~*(t-s)B(s)w(s)ds 
1 1 f h @* = T0(t){ K (T0(h)x-x) + h 0 T0 (h-s)F(u(s))ds-A5x} 

+ J: T~*(t-s){B(s)(~(s+h)-u(s)) + t n(h,s)}ds 

Jt @* 
- 0 T0 (t-s)B(s)w(s)ds 

= T0 (t){~(S(h)x-x) - A5x} 1 ft Gl* 
+ n O T0 (t-s)n(h,s)ds 
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t 
f @* 

+ 0 T0 (t-s)B(s)wh(s)ds. 

Fix t > O. It is easy to check that 

for t' ~ t. Here st(h) is a function of h (for fixed t) which goes to 0 as 

h + O. Thus we get 

t' 
llwh(t'lll ~ st(h) +et fo llwh(s)[i ds, 

for some constant et> O. Application of Gronwall 's lemma yields that 

from which we deduce that wh(t') + 0, hi 0, for every t' ~ 0. This implies 

that u(t) is right-differentiable and it's right derivative is w(t) = 

U(t,O)A5x which is a continuous function. Thus we have proved that u E c1. o 

4. LINEARIZED STABILITY 

Let x EX be an equilibrium of the nonlinear semigroup S(t), i.e. 

S(t)x = x, t ~ 0, 

or equivalently, 

In this section we prove the principle of linearized stability which says 

that local (in-)stability of the equilibrium x is completely determined by 

the spectral properties of the linearization of the nonlinear operator 
@* -

"Ao + F(·)" around u = x. 
In what follows we assume that F is continuously Frechet differentiable 

at x, and we denote the Frechet derivative DF(x) by B. Thus B is a bounded 
e* " linear operator from X into X • In [2] we showed that the part of A0 + B 

81 



in X, which we denote by A, generates a linear c0-semigroup T(t), t ~ 0, on 
X. It satisfies the variation-of-constants formula 

T(t)x = To(t)x +I: T~*(t-s)BT(s)xds, t ~ 0, x Ex. (4. 1) 

The following theorem gives the relation between S(t) and T(t). 

THEOREM 4.1. The nonlinear operator S(t) is Fr~chet differentiable at i and 

(DS(t))(i) = T(t) 

for every t ;;; 0. 

Proof. Assume that x = O. This can always be achieved by setting 
cr = u - x, ~(cr) = F(i + ~)-F(x). Let x EX and u(t) = S(t)x. Then u(t). 
is a solution of the integral equation 

ft G* ft ~* u(t) = r0(t)x + 0 r0 (t-s)Bu(s)ds + 0 r0 (t-s){F(u(s))-Bu(s)}ds 

and from Proposition 2.5 we get that 

u(t) = T(t)x + I: r~*(t-s){F(u(s)) - Bu(s)}ds, 

hence 

ft * S(t)x - T(t)x = 0 T@ (t-s){F(S(s)x) - BS(s)x}ds. 

vJith this observation the proof becomes Straightforward. D 

It is not difficult to give a proof of this theorem without taking recourse 
to Proposition 2.5, but instead using Gronwall 's lemma. 

Let w0(A) denote the type of the semigroup T(t): recall that A is the 
generator of T(t). We are now ready to prove the following version of one 
part of the principle of linearized stability which is due to Desch and 
Schappacher [8]. 
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THEORE~ 4.2. Let w0(A) < O. For every s with O s s < -w0(A) there exists 

a o > 0 such that llxll So implies that 

Proof. Assume x =0. Let sE[O,-w0(A)) and choose 1E(s,-w0 (A)). There is a 

constant M ~ 1 such that 
I 

Choose t 0 so large that t\e-(y-s)to s 1/4, and choose o E (0, 1] so small 

that 

Then, if II x 11 S o , 

s } II x 11 + t 11 xii = ~ 11x11. 

Thus, for k ~ 1, 

kst 
e 0 lls(kt0)xlls (~} llxll, llxll so. 

Every t ~ 0 can be written as t = k t 0 + T for some integer k and some 

TE[O,t0). Then 

kEt 
est lls(t)xll = es'e 0 llS(kt0)s(1)xll s 

Et t/t -1 
eET(i)k lls(1)xll s e 0 (;) 0 ·o, t;;: O 

if II x 11 s r,- 1 e-(w+tlL )too. D 

Desch and Schappacher also proved an instability result in [8], and it is 

easy to show that this result carries over to our case immediately, so we 

omit the proof. 
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THEOREN 4.3. Suppose that w0(A) > 0, and assume that X = x1 © x2, where x1 
is finite-dimensional and where both x1 and x2 are invariant under T(t). 

Let T.(t) denote the restriction of T(t) to x. and let A. be the corresponding 
1 1 l 

infinitesimal generator. If 

then there exists a constant s > 0 and a sequence {x } > 1 c X converging to n n ~ 
x and a sequence {tn}ni;;;l cR, converging to 00 such that llS(tn)x0-x\\;;; s. 

5. PERTURBATIONS ~!ITH FINITE DiflENSIONAL RANGE AND EXTENSIONS TO THE "BIG" 

SPACE 

In the linear case we can, for an arbitrary c0-semigroup T(t), define the 

extension T8 *(t) to the "big" space x9* by taking second semigroup adjoints. 

This technique breaks down in the nonlinear case. In this section we 

introduce a more direct alternative technique which does work in the non­

linear case. but which is bound to special perturbations with finite 

dimensional range. Still other techniques are conceivable but we will not 

go into these here. 

For ease of formulation we will restrict ourselves to the one-dimensional 

case. More precisely we take F: X -+ x9 * to be of the special form 

F(x) = G(<x,r*>)r9* ( 5. 1 ) 

e* G* for some r* E X*, r EX and G:R-+ Ra globally Lipschitz continuous 

function. As in [2, Section 5] we note that 

ft o* @* 
Q(t) = < 0 T0 (T)r dT,r*> (5.2) 

is locally Lipschitz continuous and hence can be written as 

Q(t) f: K(T)dT (5.3) 

for some KE L~oc. For given x EX we define 

h(t) <T0(t)x,r*>, y(t) = <S(t)x,r*>. (5.4) 
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Lemma 5.1 of [2] then implies that 

y = h + K*G(y), (5.5) 

where * denotes the convolution product. In other words, y is the solution 
of a nonlinear renewal (i.e. Volterra convolution) equation. Conversely 
the formula 

S(t)x (5.6) 

enables us to reconstruct the semigroup S(t)x from the solution y of (5.5), 
the unperturbed semigroup T~(t) and r@*. This observation suggests that we 
may define 

(5. 7) 

@* provided (i) we can give a proper definition of h for initial data in X , 
(ii) we are able to solve (5.5) for such h, (iii) we can give a meaning to 
the in teg ra l in ( 5. 7) • 

The definition of h proceeds exactly as the definition of K: for given 
xG* E x9* there exists h E Lloc such that 

co 

(5.8) 

for a 11 t ;G; 0. 

@* @* @* G* THEOREM 5.1. For given x EX define S (t)x by (5.7) where y is the 
unique Lloc solution of (5.5) corresponding to h E L~oc defined by (5.8). 

*00 
Then S@ (t) is a semigroup whose restriction to X is exactly S(t). ~1ore-

e* <ii* over, t + S (t)x is weakly * continuous. 

Proof. We start by proving the last assertion. The Lebesgue integral 

is the conv olution of a continuous function and an L -function and is 
00 
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®* @* 
therefore a continuous function of t. Since t-+ T0 (t)x is weakly* 

@* @* 
continuous formula (5.7) then ir:ipl ies that t-+ S (t)x has the same 

property. Si nee 

9* Gl* G* 9* Jt+s Gil* ®* s (t+s)x = T0 (t+s)x + 0 
T0 (t+s-1)r G(y(,))d1 

@* @* f s @* @* Jt Gl* ) ®* ( ( = T0 (t+s)x + 0 T0 (t+s-1)r G(y(1))d1 + 0 T0 (t-1 r G y 1+s))d1 

e* e* e* Jt e* e* = T0 (t)S (s)x + 0 
T0 (t-1)r G(y(1+s))d1, 

@* 13* Gl* 9* Gl* ( the identity S (t+s)x = S (t)S (s)x follows provided y s+.) is the 

solution of the renewal equation (5.5) with forcing function hs such that 

On the other hand the fact that y satisfies (5.5) with the original forcing 

function h implies that 

t+s 
y(t + s) = h(t + s) + J0 K(t + s - 1)G(y(1))d1 

= h(t + s) + J: K(t + s-1)G(y(1))d1 + J: K(t-1)G(y(1+s))d1, 

or, in other words, that y(s+.) is the solution of the Volterra equation 

(5.5) with forcing function h(t+s) + f~ K(t+s-1)G(y(1))d1. So it only 

remains to be shown that 

ft f tO f OS ft ~* ®* Gl* 
0 h(1+s)d1 + K(1+s-o)G(y(o))dod1 = < 0 T0 (1)S (s)x d1,r*>. 

Now observe that 

Jt GJ* I!!* e* J t+s * * < 0 T0 (1)T0 (s)x d1,r*> = < s T-~ (o)x6 do,r*> 

Jt+s Jt = 
5 

h(o)do = 0 h(1+s)d1, 

and that 
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f
t <9* f s <9* Gl* f s ft Ii* Ii* < O T0 (L) O T0 (s-o)r G(y(o))dod,,r*>= 0< O T0 (L+s-o)r d1",r*>G(y(o))do 

= fs Jt+s-o K(,)d,G(y(o))do = ft Js K(,+s-o)G(y(o))do. 
O s~ 0 0 

~Jhen combined with (5.7) these two observations yield the required identity. 
Finally, that S(t) is the restriction of s9*(t) to X is precisely the 

content of formula (5.6). a 

REf1ARKS i) Many delay equations as well as many age dependent population 
equations are described by perturbations of the form (5.1). 

ii) In both of these applications 1ci T~*(t-,)re*h(,)d1" EX for any L00-function 
Gl* ii* h and, moreover, T0 (t)x + 0 for t + oo. As a consequence all of the 

interesting dynamics occurs in X. 
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