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Summary. In the analysis of discretization methods for stiff intial value prob­
lems, stability questions have received most part of the attention in the 
past. B-stability and the equivalent criterion algebraic stability are well 
known concepts for Runge-Kutta methods applied to dissipative problems. 
However, for the derivation of B-convergence results - error bounds which 
are not affected by stiffness - it is not sufficient in many cases to require 
B-stability alone. In this paper, necessary and sufficient conditions for B­
convergence are determined. 

Subject Classifications: AMS(MOS): 65L05; CR: Gl.7. 

1. Introduction 

The core of the concept of B-convergence is the derivation of stiffness-indepen­
dent bounds for the global discretization errors ofRunge-Kutta methods applied 
to nonlinear initial value problems [12]. The theory is based on a well known 
class of testproblems ff,,, introduced by Dahlquist [7], where µeIR is a measure 
of dissipation. The main object of this paper is to determine necessary and 
sufficient conditions for having B-convergence on !Fµ in terms of algebraic rela­
tions for the coefficients of the Runge-Kutta methods. 

Sufficient conditions were presented already by Frank et al. [13, 14]; they 
showed that if the method is algebraically stable and also satisfies a slightly 
different algebraic condition - known as "diagonal stability" in matrix theory 
[1, 2] - then it is B-convergent on !Fµ for arbitrary µelR.. In this paper it 
will be proved that for µ ~ 0 these two conditions are necessary as well, under 
some mild apriori assumptions on the method. This result shows that there 
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can be a different behaviour of methods when applied to dissipative problems 
(µ=0) or to strictly dissipative problems (µ<0), as it is known from the work 
of Spijker, Dekker, Kraaijevanger and Schneid [21, 10, 20] that for µ<0 algebra­
ic stability on its own is already sufficient, and also necessary, for B-convergence 
on~. 

After some preliminaries in Sect. 2, the results on the algebraic characteriza­
tion of B-convergence will be presented in Sect. 3. In order to prove these results, 
an algebraic criterion for the internal stability concept ES-stability is needed; 
this will be given in Sect. 4. 

2. Preliminaries 

2.1 The Class ~ 

In this paper stiff nonlinear initial value problems 

(2.1 a) 

(2.1 b) 

y'(t)=f(t,y(t)) (for O~t;:;:!l), 

y(O)=Yo 

are considered, where f: [O, 1] x <Cm-+ <Cm and y0 e<Cm are given. We shall be 
concerned with error bounds for numerical approximations measured in the 
Euclidean norm I uJ = (u, u) 112 where (u, v) = u* v denotes the standard inner prod­
uct on <Cm for arbitrary meN. 

It will be assumed that the function! satisfies a one-sided Lipschitz condition 

(2.2) Re(f (t, u)-f (t, v), u-v) ;:i!µJµ-vJ 2 (for all tE [O, 1] and u, ve<Cm), 

with a constant µeIR, the one-sided Lipschitz constant. The class of all functions 
f: [O, 1] x <Cm--+ <Cm with meN which satisfy (2.2) will be denoted by !Fµ_. For 
continuous functions f the condition (2.2) is equivalent with stability of the 
differential equation (2.1 a), in the sense that for any two solutions y and y, 

(2.3) l.Y(t + h)-y(t + h)J ;:;:! eµh l.Y(t)- y(t)I (for 0 ;:;:! t ;:;:! t + h ~ 1), 

as can be seen from [11; Sect. 1.2], for example. If µ=0 (or µ<0) the initial 
value problem (2.1) is said to be (strictly) dissipative. The conventional Lipschitz 
constant L of feffe,.. may be arbitrarily large, which makes the class ~ useful 
as a test class for the analysis of numerical schemes for stiff nonlinear problems. 

The results of this paper would remain valid if only real initial value prob­
lems, with f: [O, 1] x IR.m--+ JR. m, y0 eIR.m, were considered. Although a restriction 
to real problems is more natural, working in the complex space <Cm has the 
advantage that some proofs are easier to formulate. Any problem in <Cm can 
always be written as a real one with dimension 2m, by identifying <C with JR. 2 

in the usual way. We also note that arbitrary inner products ( ·, · > on <Cm 
might be considered as well; the restriction to the Euclidean inner product 
has only been made for notational convenience. 
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2.2 The Implicit Runge-Kutta Methods 

For the numerical solution of initial value problems (2.1) we consider implicit 
Runge-Kutta methods. Let h>O be the stepsize and tn=nh for n=O, 1, 2, ... 
and nh~ 1. Approximations Yn to y(tn) are computed from the scheme 

s 

(2.4a) Yn=Yn-1 +h L bJ(tn-1 +cih, Yt), 
i= 1 

s 

(2.4b) Yt=Yn-1+h L a;if(tn- 1 +cih, YT) (l~i~s). 
j= 1 

Here, seN is the number of stages and aii• b;, c; are real parameters defining 
the method. For convenience it will be assumed that all c;E [O, 1]; otherwise, 
some of the definitions would need modification (for example, the function 
f(t, y) then had to be defined for values t outside the integration interval [O, 1]). 
Almost all well known Runge-Kutta methods are such that the abscissas c; 
are different; such methods are called nonconfluent. 

Consider the s x s matrices A= (a;i), B = diag(b 1 , ••• , b.), and the vector 
b=(b 1 , •• ., b.f eJR•. The Runge-Kutta method (2.4) is said to be algebraically 
stable if 

(2.5) Band BA+ATB-bbr arepositivesemi-definite. 

This algebraic condition, introduced in [3] and [5], is known to be equivalent 
for nonconfluent methods to the following unconditional contractivity property, 
called B-stability, 

(2.6) IJi.-Ynl ~ IYn- 1 -Y.-1 I (for all h >0 andfeffe"o) 

for any two sequences of approximations computed by the Runge-Kutta scheme 
(2.4) with different starting values y0 and ji0 • Note that (2.6) is the discrete 
analogue of (2.3) forµ= 0. 

In order to treat also the effect of perturbations of the internal stages (2.4 b), 
a slightly different algebraic condition was considered in [13], 

(2.7) there is a diagonal matrix D such that 
D and DA +AT D are positive definite. 

Both conditions (2.5) and (2.7) will turn out to be essential for having error 
bounds independent of the stiffness. For important classes of Runge-Kutta me­
thods it is known whether (2.5) and (2.7) are valid, see [9, 11, 13] (cf. also 
Sect. 3.3). 

Remark 2.1. For any given Runge-Kutta method it is straightforward to check 
whether (2.5) is satisfied. Some necessary and sufficient conditions for (2.7) to 
hold can be found in [1] and [2]. For example, it is known that (2.7) implies 
that all principles minors of A are positive, and this is also sufficient in case 
s=2. If A is triangular, then (2.7) holds iff all aii>O. Furthermore, (2.7) implies 
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that for any principal submatrix A' of A and any positive diagonal matrix 
D', all eigenvalues of D' A' have a positive real part. D 

Let ck=(cL ... , c~)TEJR• for kEN and c0 =e=(l, ... , ll. The stage order q 
of the Runge-Kutta method is defined to be the largest integer such that 

(2.8) kbTck- 1 =1 and kAck-t=ck c- k 1 2 1or = , , ... , q. 

Values of q for various classes of Runge-Kutta methods can be found in [11, 
14]; usually, the stage order is at least one. 

Algebraically stable methods having some b; = O are known to be reducible 

(in the sense of Dahlquist and Jeltsch [8]), which means that some of the stages 
in (2.4 b) can be omitted without changing the numerical results. It is obviously 
no severe restriction to consider only irreducible methods. 

Finally, we note that for implicit Runge-Kutta methods the internal vectors 
Y;" are defined as the solution of the nontrivial system of algebraic equations 
(2.4b). If (2.7) is satisfied then this system has a unique solution for all fE.'fflµ 

(under a mild stepsize restriction ifµ> 0), see [6, 11]. More general conditions 
can be found in [18]. Throughout this paper it will be tacitly assumed that 
there is a unique solution for all appropriate stepsizes h. 

2.3 B-convergence 

We shall be concerned with bounds for the global discretization errors which 
only depend on the smoothness and stability of the exact solution. Let p > 0 
and µEIR. The Runge-Kutta method (2.4) is called B-convergent of order p on 

§µif for any initial value problem (2.1) with fEff,, there is an error bound 

(2.9) 

where the error constant C only depends on µ and on certain bounds 
Mj=max{ly<i>(t)I: O~ t~ 1} for derivatives of the exact solution, and the maximal 
stepsize H only depends on µ. If this holds for some p > 0 the method will 
simply be called B-convergent on ffµ. 

Stiff initial value problems have large Lipschitz constants L - which are, 
by definition, prohibited to enter C - together with relatively smooth, stable 
solutions. So, for any given initial value problem (2.1) with fE:lf;,, the estimate 
(2.9) legitimates the adaptation of the stepsize to the smoothness of the solution 
only. 

The above definition of B-convergence, with C depending exclusively on 
µand some of the Mi, is a strong one, and is also called optimal B-convergence. 
A weaker form is obtained if C is allowed to depend as well on some of the 
quantities Kii=rnax {lo;+ if (t, y(t))/o t; o ii: 0 ~ t ~ 1 }, though not_ on K0 1 as this 
bound is proportional to the Lipschitz constant L. Usually, this weaker form 
has the effect that the order p in (2.9) can be raised by one, see [14]. A second 
alternative would be to allow C to depend on the dimension m of the initial 
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value problem. This, however, makes no difference in general (see Sect. 3.3), 
i.e., from a bound depending on m it can be concluded for most methods that 
a bound valid uniformly in m also exists. 

3. Characterization of B-convergence 

In this section a characterization of B-convergence on ffµ for Runge-Kutta 
methods will be given in terms of the algebraic conditions (2.5) (algebraic stabili­
ty) and (2.7). The cases µ<0 and µ~0 are considered separately. The results 
forµ< 0 are based on [10, 20, 21]; they are included here only for completeness. 

3.1 The Case µ<0 

Theorem 3.1. Let µ<0, and assume that the Runge-Kutta method has stage order 
q ~ 1 and its coefficient matrix A is nonsingular. Then 

(2.5) ~ B-convergence on ffµ. 

Theorem 3.2. Let µelR be arbitrary, and assume that the abscissas of the Runge­
Kutta method satisfy c; - c ii/= 'll, if i =t=j. Then 

B-convergence on ff,, => (2.5). 

Theorem 3.2 can be proved by a counterexample, based on material of [3, 5] 
(see [10, 20], for example). A proof of Theorem 3.1 can be found in [21], where 
it was shown that the order p of B-convergence is at least q - 1/2. This was 
improved in [10], where an order q result was derived under the assumption 
of irreducibility and 1-bT A - i ee(-1, 1) (note that (2.5) implies 1-br A - t eE 

[ -1, l]). In [20] it was shown that also in case 1 -br A - i e = -1 the order 
is at least q. 

By combining the above theorems we obtain the following result. 

Corollary 3.3. Let µ<0, and assume that the Runge-Kutta method has stage order 
q~l, A is non-singular, and C;-cif/='ll, if i*j. Then 

B-convergence on ffµ <=> (2.5). 

3.2 The Case µ~0 

Theorem 3.4. Let µelR be arbitrary, and assume that the Runge-Kutta method 
has stage order q ~ l. Then 

(2.5) and (2.7) => B-convergence on ffµ. 
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Thcorei:n 3.5. ~-et ft~O, and assume that the Runge-Kutta method is such that 

h;~O .for all. 1 and ci-cj=FO il i=Fj. Assume in addition that the j-th row of 
A cs nonzero tn case ci=O. Then 

B-convergence on :JI'µ =-- (2.7). 

The pr?of of Theorem 3.5 will be given in Sect. 4.3. Theorem 3.4 is due to [14], 

:Vhere It was a~so shown t_hat the order of B-convergence p is at least q. This 
ts not necessarily the maximal order. The implicit midpoint rule, for example, 
has stage order q= 1 and is known to be B-convergent on :F with order p=2 

for any /<EIR (see [17]). By considering local errors \y(t 1)-; 1 \ it can be seen 

that. we ~!:Ways_ ha~e p;;,. q + 1 for irreducible methods. There are, apart from 
the. 1mphc1t midpomt rule, some special methods where the order q + 1 is 
achieved (sec [ 4]), but generally it is only known that pE[q, q +I]. 

By a combination of Theorems 3.2, 3.4 and 3.5, we arrive at a characterization 
of B-convergence on .'Fµ, µ ~ 0, for methods which are irreducible in the sense 
of [8]. The proof will be given in Sect. 4.3. 

Corollary 3.6. Let µ~0, and assume that the Runge-Kutta method is irreducible, 

it has stage order q~ 1, and ci-cA=7l if i=Fj. Then 

B-conuergence on.?µ <=> (2.5) and (2.7). 

3.3 Consequences and Remarks 

For most well known classes of algebraically stable Runge-Kutta methods (see 
[ 11 ]) it can be determined with the above theorems whether they are B-conver­
gcnt on -~,. The Gauss methods, as well as the Radau IA and IIA methods 
and the two-stage Lobatto IIIC method satisfy (2.5) and (2.7), and thus they 
are B-convergent on-~, for any µeIR (see [14]). All algebraically stable, irreduc­
ible, diagonally implicit Runge-Kutta methods have aii>O for all i, and hence 
(2.7) also holds, see Remark 2.1. Lobatto IIIC methods with more than two 
stages are also algebraically stable, but violate (2.7) (see [9]), and so it follows 
from Theorems 3.1, 3.5 that these methods are B-convergent on ffµ if and only 

if p<O. 
There arc some methods, such as the Lobatto IIIA schemes, which are not 

algchraically stable and do not satisfy (2.7), but which have c1 =0, Cs= 1 and 
ef A = 0. Theorems 3.2 and 3.5 cannot be applied to show that these methods 
arc not 13-convergent; in fact, the trapezoidal rule, which is a Lobatto IIIA 

method, is B-convergent on .'li'µ for any µEIR. (see [17]). On the other hand, 
Theorem 3.2 does not apply either to the Lobatto IIIB methods, while it follows 
from the material presented in [19] that these methods are not B-convergent 
on .¥',, for any /lEIR; note that Theorem 3.5 is applicable but only gives this 

result for p ~ 0. 
For rnriahle stepsizes the condition in Theorem 3.2 can be relaxed to ci-cj*O 

(nonconfluency), see [10]. Thus, the Lobatto IIIA methods are not B-convergent 
on -~, with arbitrary variable stepsizes, for any µEIR. In [10] it was also shown 
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that Theorem 3.1 remains valid for variable stepsizes, and the same holds for 
Theorem 3.4, as can be easily seen by an inspection of its proof as given in 
[14] or [11]. 

Theorem 3.5 would already be valid if only initial value problems with dimen­
sion m = s were considered (see Sect. 4.2, 4.3). The proof of Theorem 3.2 is even 
based on a scalar counterexample. It follows that for Runge-Kutta methods 
satisfying the assumptions of these theorems, B-convergence uniformly in m 
- which we consider - follows already from B-convergence where m is allowed 
to enter the constants C and Hin (2.9). 

4. Characterization of BS-stability 

In this section an algebraic characterization of the internal stability concept 
ES-stability will be given. It will turn out that this provides a tool for a simple 
proof of Theorem 3.5. 

4.1 ES-stability 

Consider along with one Runge-Kutta step (2.4) a perturbed step 

s 

(4.la) Yn= Yn-1 +h L bJ(tn-1 +c;h, }(")+wo, 
i= 1 

s 

(4.lb) li"=y,,_ 1 +h L auf(t11 _ 1 +cjh, 'fj")+w; (1;:£i;:£s). 
j= 1 

The perturbations wjE<Cm may represent errors caused by inexactly solving the 
algebraic equations (2.4b), but also local discretization errors may be represented 
this way. Let w=(wf, ... , wI)TE<Cms. The Runge-Kutta method is called BS­
stable on !Fµ if there exists a uniform bound for the difference between (2.4 a) 
and (4.1 a) of the type 

(4.2) !5'11 - y,,I ;:£ C(I w01 + !wi) (for all h E(O, H] and fE/Fµ) 

with C, H>O only depending on µ. It is known from [13] that the algebraic 
condition (2. 7) is sufficient to have SS-stability on :!Fµ for arbitrary µ "?: 0. We 
will show that this condition is, in general, also necessary. 

In order to prove this result some notations are needed. The i-th row 
(a; 1 , ... , a; 5 )T of A will be denoted by aJ'. For a given mElN, let A=A@I, 
br =br<g;J and a! =a!@I, where I is them x m identity matrix and@ denotes 
the Kronecker product; further, I will stand for the sm x sm identity matrix. 
Vectors uE<Csm will be partitioned as (uf, ... , u{f with ujE<Cm (1 ;:£j;:£s), and 
for all components uj we define the scaled counterparts uj by 

Uj=luj1- 1 uj if uj=FO, and uj=O if Uj=O. 
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Finally, f0 0 stands for the set of block-diagonal matrices Z=diag(Z 1 , ... , Zs) 
where all Zi are m x m matrices with meN and Re(v, Ziv);£0 for all vE<Cm, 
1 ;£j;£s. 

It is known, see [16], that for nonconfluent Runge-Kutta methods BS-stabili­
ty on ffo is equivalent with the existence of a positive constant C such that 

Lemma 4.1. Suppose the Runge-Kutta method is ES-stable on !?0 , and C;-ci=FO 
if i =I= j. Then, for any sequence { un} in ccsm with mE JN and bT u" =I= 0, there is 
an index j, 1 ;£j ;£ s, such that 

(4.4) 

Proof Suppose the condition in the lemma does not hold, i.e. there are u"e<Csm 
with br u" =I= 0 such that 

(4.5) limsup)bru")- 1 Re(u],af u")~O (1;£j;£s). 
n _.. oo 

We may assume that )br u") = 1; this is only a matter of scaling. 
Define the vectors p"e<Csm by 

p'j =af u" + r'J, r'J = -[Re(uj, af u")] + uj (1 ~j~s), 

where a+ =max{a, O}. By this construction we have Re(pj, uj);£0 (1 ~j~s), 
and I rjl ....... 0 ( 1 ;£j ~ s, n ....... co). Hence, there are Un, p" eccsm such that 

Next, we slightly modify the vectors p"; define q"e<Csm by 

q'j = - n - 1 uj if p'j = 0, u'j =I= 0, and qj = p'j otherwise. 

Then qj = 0 only if uj = 0, while we still have Re (q'j, u~) ;£0 (1 ;£j ~ s). By applying 
Lemma 2.4.7 of [15] it now follows that u"=Z"qn for some Z"ef00 . Since 
)p"-q"J -->O (n--> w), we see from (4.6) that there exist q"e<Csm, Z"ef00 such 
that 

(4.7) )brZ"q")=l, )(I-AZ")q")-->0 (n-->w). 

Finally, setting w"=(I-AZ") q", we obtain 

which is a contradiction to (4.3). D 

Lemma 4.2. Suppose the Runge Kutta method is ES-stable on § 0 , C;-cj=i=O if 
i =F j, and bi=F 0 for all j. Then, for any real nonzero vector ve.IR:m there is an 
index j, 1 ;£j ;£ s, such that (vi, a J v)> 0. 
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Proof Let vEJR•m, v =I= 0, and let wElRsm be such that bT w =I= 0 and wi=O whenever 
vi=O (such a w exists since all bi are nonzero). We apply Lemma 4.1 to u"= 
v+il\,nwE<Cs"' where A"ElR, ),"->O. Note that vi=O implies uj=O for all n. It 
follows that there is an indexj for which vi=i=O and 

(4.9) lim sup JbT v + iAbr wl - i {(vi, aJ v)+ l\, 2 (wi, aJ w)} > 0, 
.i.-o 

and this implies (vi, aJ v)>O. D 

Theorem 4.3. Let µ~O, and suppose the Runge-Kutta method is such that ci-ci=i=O 
if i =f= j, and bi =f= 0 for all j. Then 

ES-stability on .<Fµ =- (2.7). 

Proof We only have to demonstrate the necessity of (2.7); sufficiency is well 
known, see [ 13, 11]. Since ff0 c.?µ for µ ~ 0, it follows from Lemma 4.2 that 
ES-stability on :Fµ implies 

s 

(4.10) for any vElRs"', v=i=O, there is a j such that I aidvi, vk)>O. 
k=1 

Let, for arbitrary nonzero vElR5 "', S(v) be the s x s matrix with entries sik(v) 
=(vi, vd. The matrix S(v) belongs to the class Y 0 of nonzero, symmetric, positive 
semi-definite s x s matrices. Moreover, any matrix SEY 0 can be decomposed 
as 

for some s x s matrix W= [w 1 , .. ., wsJ and with w=(wf, ... , wIY ElRss (for exam­
ple, by Cholesky factorization). Thus, if m ~ s then 

(4.11) {S(v): vElR5 "', v=i=O} =Yo. 

Since m in (4.10) is arbitrary (it may be chosen equal to s), we see that ES-stability 
on ffµ implies 

(4.12) for any SE/1'0 there is aj such that I aik sik>O. 
k=l 

By observing that 
s s 

L aik sik= L aik ski=(AS)ii• 
k=l k=l 

it follows from Theorem 1 in [1] that (2.7) holds. D 
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4.2. Remarks 

For any veJR•m, meN, there exists a weJR .. such that S(v)=S(w) (see the proof 
of Theorem 4.3). Hence, the algebraic condition (2.7) would follow already from 
ES-stability on !?0 if only initial value problems with dimension m = s were 
considered. Note further that ibr vl 2 = br S (v)b and lvil 2 = eJ S(v) ei (1 ~j ~ s). 

With these observations it can also be shown that Lemma 4.1 can be 
extended: for nonconfluent Runge-Kutta methods ES-stability on §'0 is equiva­
lent to the condition given in Lemma 4.1. This can be proved by first showing 
that if the method is not ES-stable on §'0 , then there are u"e<C•mn with mnEN, 
br u"=!=O such that (4.5) holds (this is fairly straightforward; use (4.3)), and subse­
quently noting that we can take mn ~ s. This result allows a characterization 
of ES-stability on !?0 also in case some of the weights bi are zero. 

In a similar way as in Sect. 4.1 an algebraic criterion can be derived for 
ESJ-stability on Ji';,, a concept which requires that the difference between the 
internal vectors I Y;n- ~nl in (2.4b), (4.1 b) can be uniformly bounded by Clwl 
for O<h~H, feFµ, with C, H>O only depending on µ (cf. [13, 11]). This 
concept is related to the conditioning of the algebraic equations in the Runge­
Kutta method, rather than to the effect of perturbations on the numerical 
approximations. In case A is nonsingular - or, more general, if A has no zero 
column - it can be shown that ESJ-stability on il'µ is equivalent with (2.7). 
The sufficiency of (2.7) was proved already in [13]; the fact that (2.7) is also 
necessary for nonconfluent methods with nonsingular matrix A generalizes a 
related result of [9]. 

4.3. Proofs of Theorem 3.5 and Corollary 3.6 

In order to prove Theorem 3.5 we consider a Runge-Kutta method with c;-ci 
=!=O ifi=!=j, b;9=0 for all i, and aJ =!=O if ci=O. Suppose the method is B-convergent 
on §,. for some µ ~ 0. Then it follows in particular, by considering (2.9) with 
n = 1 for arbitrary fe§,., that the method is B-consistent on il'µ, and this was 
shown in [16] to be equivalent to ES-stability on§,. (for nonconfluent methods 
with aJ =!=O in case ci=O). Theorem 4.3 thus shows that the algebraic condition 
(2. 7) is satisfied. 

Next, for proving Corollary 3.6, consider an irreducible Runge-Kutta method 
with c;-cie71, if i=!=j. Assume this method to be B-convergent on ffµ for some 
µ~0. Then Theorem 3.2 implies that we have algebraic stability. For an irreduc­
ible, algebraically stable method all rows of A and all weights bi are nonzero, 
as can be seen from the material presented in [8]. Theorem 3.5 now shows 
that (2.7) holds as well. Theorem 3.4 completes the proof of Corollary 3.6. 
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