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The problem of maintaining multiple representations of dynamic data structures 
is investigated: Suppose tbere are a number of processors, each having the same 
data structure (the so-called client structure). Then the problem arises of how to 
maintain these structures efficiently under insertions and deletions. We propose a 
strategy in which we store a central data structure in one processor, to which all 
other processors are connected. Updates are first "preprocessed" in the central 
structure. Then information obtained in this central update is sent to the client 
structures. where it is used to update these structures. By sending appropriate infor­
mation, each client structure can be updated more efficiently than by just directly 
performing the update. We present several solutions to this multiple representation 
problem. For example, we show that a client structure can be updated in time 
proportional to the size of the changes in this structure. (-, 1989 Academic Press, Inc. 

I. INTRODUCTION 

The design of efficient data structures for solving different types of 
searching problems is an important part of algorithm design. Many types 
of data structures exist, storing different types of objects and allowing for 
different types of queries. Data structures and searching problems have 
been studied in great detail and many properties and general techniques 
have been found. For example, general techniques exist for converting 

*Supported by the Netherlands Organization for Scientific Research ( NWO }. 

206 
0890-540L89 HOO 
Copyright ·C 1989 by Academic Press, Inc. 
All rights of reproduction in any Form reserved. 



MAINTAINING MULTIPLE REPRESENTATIONS 207 

static data structures that do not allow insertions and deletions of objects 
into dynamic structures that allow such operations (see, e.g., Overmars, 
1983 ). 

In most studies it is assumed that the data structure is stored only once 
in the main memory of a computer and that all operations are performed 
on this one structure. In many situations, however, we need to store the 
structure more than once and have a multiple representation of the data 
structure. For example, normally a data structure that is stored in main 
memory will be stored in secondary memory as well, because system errors 
or program errors might otherwise destroy the information. Such a shadow 
administration does not have to support the same operations as the main 
structure. Only insertions and deletions have to be performed. Hence, it 
might be advantageous to structure it in a different way. (See Smid et al., 
1989, for examples of such shadow administrations.) 

When we have a network of processors, each having its own memory, 
there are situations in which each processor holds its own copy of a par­
ticular data structure. Changes to the data structure have to be made in all 
copies. When the update time is high this is an unfavorable situation. In 
such situations, we are better off dedicating one processor to the task of 
maintaining the data structure and broadcasting the actual changes to the 
other processors. Again we have a situation in which there is a multiple 
representation of the data structure. One data structure that should allow 
for updates, and a set of other structures that answer queries. Of course, 
the query data structures must be structured in such a way that they can 
perform updates, but they get the update in a kind of "preprocessed" form 
that might be easier to handle. 

In this paper we study such multiple representations of data structures. 
The one structure that performs the updates will be called the central struc­
ture. The other structures that allow for queries are the client structures. We 
study how to organize the central structure for different types of query 
problems, how to structure the client structures that can sometimes store 
less information, and what type of information has to be sent from the 
central structure to the clients. It will be shown that, after "preprocessing" 
an update by the central structure, the clients can often perform the update 
more efficiently. Also, in some situations the client structures can be smaller 
than the central structure. 

An example of a practical instance in which this framework can be 
applied is a "Star Network." Here the central processor is the main 
computer; it holds the central data structure, and is connected to all other 
processors. Often, these other processors, that contain the client structures, 
are somewhat limited in capacity. Clearly, it is desirable in such situations 
to utilize the power of the central processor as much as possible. 

Besides possible practical applications, the results of this paper give the 
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insight that sometimes parts of data structures are only necessary for 
performing updates and can, hence, be removed in the client structures. 
The results also show what portions of data structures are actually changed 
when performing updates. This might have applications in storing dynamic 
data structures in write-once memories, such as optical disks. 

The paper is organized as follows. In Section 2 we describe the general 
framework we use to describe solutions for the multiple representation 
problem, and we introduce complexity measures to express the efficiency of 
solutions. In Section 3, we study binary trees as our first example where the 
client structures store less information than the central structure. It is also 
shown that we can gain a constant factor in the update time of the client 
structures. In Section 4, we consider "order decomposable set" problems. 
(See Section 4 for the definition of such problems.) We show that in several 
cases the client structures can be of size asymptotically less than the central 
structure. In Section 5 we present some simple techniques for decom­
posable searching problems. These techniques lead to solutions in which 
the client structures can be updated very fast. 

In general, since an update will change only a small part of a data struc­
ture, it might be possible to send only those parts of the structure that have 
been changed. In Overmars and Smid (1988 ), and Overmars et al. ( 1987 ), 
the problem of how to partition a range tree into parts of small size, such 
that an update changes only a few parts, is studied. The techniques 
developed there can of course be applied here. In those papers, however, it 
is assumed that the partition is stored in secondary memory, which is 
supposed to be divided into blocks of some predetermined size. Further­
more, the only allowed operation in secondary memory is to replace a 
block by another one. So in secondary memory no computing is possible. 
Since in our case the client structures are stored in an environment where 
computing is possible, we can replace much smaller pieces than just parts 
of some predetermined size. Hence we can send only those pieces that 
actually have changed. We investigate this idea in Section 6, where we 
show that this is indeed possible. (Here the main problem is that we want 
to avoid searching in the client structures-which might take a lot of 
time-in order to determine the positions where the data structure has to 
be changed.) The results of Section 6 are illustrated in Section 7 with some 
examples. We show for example, that we can maintain a class of range 
trees, such that the central structure needs O((log n )d) time for an update, 
whereas each client structure can be updated in O((log n )d 1) time. We 
finish the paper in Section 8 with some concluding remarks. 
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2. THE GENERAL APPROACH 

In this section we give a precise statement of our problem and introduce 

the model. We also give complexity measures to express the efficiency of 
the solutions. · 

There is a network of processors, the clients, each having its own 

memory. Each of these clients contains the same data structure DS· the 

so-called client structure-solving some searching problem. Each client uses 

its structure DS to solve queries. Updates have to be performed in all the 

client structures. In order to be able to perform these updates fast, we store 

in one of the processors a data structure DS', the central structure. Now an 

update is performed as follows. We first perform the update in the central 

structure DS'. During this update we (hopefully) obtain information that 

makes it possible to update the client structures more effciently than by just 

directly updating them. Then we send information about the update 

through the network to the clients, and using this information each client 

updates its structure DS. We express the complexity of an update of the 

client structures by the number of words transported to each client, and by 

the amount of computing time that the client structure needs to perform 

the update. 
Note that we have introduced multiple representation of the data. We 

have a number of copies of the same data structure DS. Furthermore, there 

is a data structure DS', that is used to "preprocess" updates, so that the 

client structures DS can be updated efficiently. On the client structures, 

queries and preprocessed updates are performed. whereas on the central 

structure only updates are carried out. In the later sections, we will see that 

the client structure and the central structure need not be identical. There­

fore we use different notations for these structures. 
The complexity of the client structure DS is expressed by the following 

functions (n is the number of objects represented by the structure): 

S(n ): the amount of space needed to store the structure DS. 

Q(n): the time required to answer a query using DS. 

F(n ): the amount of data (which we consider in terms of words) 

transported to DS in an update. 

G(n): the amount of computing time needed to update DS, using 

the information received from the central structure. 

We assume that G(n) = Q(F(n)), which is reasonable, since a client receives 

an amount of F(n) data, and it has to store it somewhere. Remark that we 

express F( n) in terms of words, which is customary in the theory of algo­

rithms and data structures. In Section 3, however, we express F(n) in terms 

of bits. 
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The complexity of the central structure DS' 1s given by the usual 
measures, and they are denoted by: 

S'(n): the amount of space used by DS'. 
P'(n ): the time needed to build DS' from scratch. 
I'(n): the time needed to insert an object into DS'. 
D'(n): the time needed to delete an object from DS'. 
if the insertion and deletion are equal, we denote this common 

update time by U'(n ). 

(There is no query time here, because queries are not performed on the 
central structure.) 

The problem investigated in this paper is the following. We are given a 
searching problem. The main goal is to design a client structure DS for this 
searching problem, such that when an update is given in some preprocessed 
form, this update can be performed efficiently. Ideally, the size of this 
preprocessed form and the time to perform the update using this informa­
tion (i.e., the values of F(n) and G(n)) should be much smaller than the 
time needed to perform the update directly in the structure. A second goal 
is to design a central structure DS' in which the updates can be prepro­
cessed efficiently. In this paper, however, we shall emphasize the design of 
the client structure DS. 

3. BINARY TREES 

Suppose that the client structures have to solve the member searching 
problem. A well-known dynamic data structure for this problem is a 
balanced binary search tree, e.g., an AVL-tree, or a BB[cc]-tree. Such a tree 
allows member queries and insertions/deletions to be performed in O(log n) 
time, if n is the number of objects stored in the tree. Internal nodes of these 
trees contain balance information. For example, in an A VL-trec each inter­
nal node contains the difference of the longest path in its left subtree and 
the longest path in its right subtrcc (which is - 1, 0, or 1 ). If an object is 
inserted in or deleted from the tree, all nodes that do not satisfy the 
balance property anymore are computed, and then by a local restructuring 
technique (mostly single and double rotations), balance is restored for 
these nodes. Clearly, this balance information is only used to update the 
tree; in case member queries arc performed, this information is superfluous. 

So take a class of balanced binary search trees, that can be maintained 
by means of single and double rotations. We consider these trees as leaf 
search trees, i.e., the objects are stored in the leaves. Let T' be a tree in this 
class, and let T be a copy of T' without the balance information in its 
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nodes. The tree T' will be the central structure, and the tree Twill be the 
client structure. Clearly, the tree T contains enough information to allow 
member queries to be carried out in logarithmic time. 

Suppose an object p is to be inserted or deleted in the client structures. 
Then we first insert or delete p in the central structure T'. This gives us a 
path in T', from the root to an appropriate leaf, along which rotations 
have been (possibly) carried out. We encode this path by a string 
s = (r 1 , b 1 , r2 , b2 , ••• , r b bd, where k is the length of the path. Starting at 
the root of the tree, r 1 contains information whether a left single rotation, 
a right single rotation, etc. has to be carried out, or that no restructuring 
operation is necessary; h 1 tells whether the next node on the path lies to the 
left or to the right of the root; r2 tells what kind of rotation has to be 
carried out for the second node of the path, and b2 says in which direction 
the path proceeds, and so on. Note that O(k) = O(log n) bits are sufficient 
to represent the string s. Now we send to each client structure the object 
p together with information whether it has to be inserted or deleted, and 
the string s. Using p and s, the client structures Tare updated. Note that 
we know exactly which path in T we have to walk down, and where on this 
path restructuring operations have to be carried out. So we do not have to 
decide in each node-by means of a comparison of p with the value stored 
in this node---in which direction to proceed. Hence this will save for each 
client structure O(log n) comparisons in the update procedure. 

The complexity of this solution is as follows. The central structure has 
size O(n), and an update takes O(log n) time. Each client structure has also 
size O(n ). In this last bound, however, the constant factor will be smaller. 
Member queries can be solved in the client structures in O(log n) time. To 
perform an update, an object panda bitstring s of length O(log n) are sent 
to the client structures, and for each of these structures O(log n) computing 
time is needed to update it. Again the constant factor is smaller than in the 
update time of the central structure. So at the cost of a slight increase in 
the amount of data that is transported to the client structures~by sending 
an additional string of O(log n) bits-we have decreased the constant 
factors in the complexity bounds for the client structures, compared to the 
constants in the bounds of the central structure. 

The client structures can be used for solving other searching problems. 
Examples are the one-dimensional range searching problem, where we are 
given a range [a: h ], and we have to report all object lying in this range. 
Such a range query can be answered, without needing balance information 
at the nodes, in O(log n + t) time, where t is the number of points in the 
range. Another example is the one-dimensional nearest neighhor searching 

problem. Here we are given an object p, and we have to report the object 
in the tree that is closest top. Clearly, such a query can be answered, again 
without using balance information at the client structures, in O(log n) time. 
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4. ORDER DECOMPOSABLE SET PROBLEMS 

In Overmars ( 1983) a class of so-called order decomposable set problems 
has been defined. In a set problem we are given a set of objects, and we are 
asked some question about this set. To be more precise, if T 1 and T2 are 
sets of objects, then a set problem is a mapping PR: P( Ti)_,. T2 • Here 
P(Ti) denotes the power set of T 1• For example, in the convex hull 
problem, we are given a set S of points in the d-dimensional euclidean 
space, and we are asked to compute the convex hull of S. Here T 1 is the 
set of all points in d-dimensional space, and T2 is the set of all convex 
polytopes. 

In this section we want to solve the problem of maintaining the answer 
to a set problem under insertions and deletions of objects. We restrict our­
selves to set problems, the answers of which can be merged efficiently. That 
is, once the answers for the two "halves" of a set are known, the answer for 
the entire set can be obtained fast. For such a class of set problems, we can 
maintain the answer for the entire set, by decomposing the set into subsets, 
and by maintaining the answers for these subsets. 

DEFINITION l. A set problem PR: P(Ti)-t T2 is called M(n)-order 
decomposable, if there is an order ORD on T 1 , and a function 
D: T2 x T2 -t T2 , such that for any set S = { p 1 ~ p 2 ~ • • • ~ p 11 }, ordered 
according to ORD, and for any i, I ~ i < n, we have 

PR( { P1 • ... , Pn}) = D (PR( {PI• ... , P;} ), PR( { P; +I' ... , Pn} )), 

where the function D takes M(n) time to compute. 

For example, Preparata and Hong (1977) showed that the three-dimen­
sional convex hull problem is O(n)-order decomposable, where ORD is the 
order according to x-coordinate. 

Let PR be an M(n)-order decomposable set problem. We briefly recall a 
dynamic data structure solving PR, the details of which are given in Over­
mars ( 1983 ). Let S be a set of cardinality n, for which we want to maintain 
the answer to PR. We store the objects of S, ordered according to ORD, 
in the leaves of a BB[a]-tree. Internal nodes of this tree contain informa­
tion to guide the searches. Also, each internal node v of this binary tree 
contains a representation of the answer PR(S,,), where S,, is the set of 
objects that are in the subtree of v. Hence, the root of the tree contains the 
answer to PR of the entire set S. The following theorem gives the com­
plexity of this dynamic data structure. For a proof, see ( Overmars, 1983 ), 
where it is also shown how the amount of space can be reduced without 
affecting the update complexity for certain values of M(n ), if the sizes of the 
answers PR( S,,) are large. 
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THEOREM 1. For an M(n )-order decomposahfe set problem, there exists 11 

dynamic data structure of' size S'(n) and update time U'(n), giren hy 

!.. S'(n)= O(M(n)) if M(n)~Q(n 1 + 1 )jiJrsomn>O, {

O(n) if M(n) = O(n") for some 0 < c: < l, 

O(M(n) log log n) if M(n) is at least linear, 

O(n + M(n) log n) otherwise. 

2. U'(n)={O(M(n)) if M(n)=Q(n')forsomec>O, 

O(M(n) log n) otherwise. 

Note that the data structures presented here have the property that just 
a small part of the structure is used for answering a query~-the answer to 
the problem is stored in. the root of the tree-whereas the rest of the 
structure is only used to update this answer efficiently. 

Therefore, we take for the client structures, the answer PR(S) to the set 
problem for the entire set S, and we take for the central structure, the full 
dynamic data structure. Updates are first performed on the central struc­
ture. Then we replace each old client structure by the new answer to the 
set problem. The result is given in the following theorem and the notations 
used are the same as in Section 2. 

THEOREM 2. For an M(n )-order decomposahle set prohlem, there exists 

a client structure, that maintains the answer to the set problem. with 

complexity 

l. S(n)=O(PR(n)), 

2. F(n) = O(PR(n}), 

3. G(n) = O(PR(n)), 

where P R(n) is the size of the answer to the set problem jiJr a set of 11 objeets. 

Proof The proof follows from the above discussion. I 

It follows from these two theorems, that for many values of 1"vf(n ), the 
client structures have asymptotically lower complexity than the central 
structure. As an example, in the three-dimensional convex hull 
problem-which is 6l(n )-order decomposable--the central structure has 
size O(n log log n ), whereas the client structures have size only O(n ). 

5. DECOMPOSABLE SEARCHING PROBLEMS 

A searching prohlem can be seen as a mapping PR: T1 x P( T~)-> T3. 
where T T and T, are sets of obiects. For example, in the member 

I' 2' _l J 

searching problem, T 1 = T 2 , T 3 ={true, false}, and PR(x, S) = (xE S). 
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In this section we consider decomposable searching problems that were 
introduced by Bentley ( 1979 ). For this class· of searching problems a query 
for a set can be answered efficiently by merging the answers for a partition 
of the set. 

DEFINITION 2. A searching problem PR: Tix P(T2)-+ T3 is called 
decomposable, if there is a function D: T3 x T 3 ~ T3 , such that for any 
partition S =A u B of any subset S of T2 , and for any query oject x in T 1 , 

we have 

PR(x, S)= D(PR(x, A), PR(x, B)), 

where the function D can be computed in constant time. 

For example, the member searching problem is decomposable with 
D = V. Another example is the orthogonal range searching problem. Here 
we are given a set S of points in d-dimensional space, and an axis-parallel 
hyperrectangle ([a1: b1], [a2 : b2 ], ••• ,[ad: bd]), and we have to report all 
points p=(p 1 , ••• ,pd) in S, such that a 1 ~p 1 ~b 1 , ••• ,ad~Pd~bd. This 
problem is decomposable with D = LJ. Note that since we require the sets 
A and B to be disjoint, we can take the union of PR(x, A) and PR(x, B) 
in constant time. 

A number of techniques have been developed to design dynamic data 
structures for decomposable searching problems. It turns out that espe­
cially in the case where only insertions are performed, efficient structures 
can be designed. See Bentley (1979), Bentley and Saxe (1980), and 
Overmars ( 1983 ). 

Let PR be a decomposable searching problem, and let DS be a dynamic 
data structure solving PR. We consider the case in which only insertions 
are performed. Let S(n) be the size of the structure DS, and let Q(n) be the 
query time of DS. We assume that S(n)/n and Q(n) are non-decreasing, 
and that S(n) and Q(n) are smooth functions. (A function f(n) is called 
smooth if f(O(n)) = O(f(n)).) 

To maintain a multiple representation for PR we proceed in the follow­
ing way: Let the client structure consist of a copy of the structure DS, 
together with a list of objects. The central structure consists of the structure 
DS. Initially, the list of objects in the client structure is empty, and all 
structures DS are up-to-date. Let n be the initial number of objects. Con­
sider an insertion of an object p. First we insert p in the central structure. 
If p is already present, then nothing has to be done. (Note that in this case 
the client structures do not have to know that anything happened.) If p is 
a new object, we add it to the list of each client structure. After Q(n) 
objects are inserted in this way-hence each client structure contains a list 
of Q(n) objects-a copy of the central structure-which is up-to-date-is 
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sent to the clients. Each old client structure is then replaced by this new 
structure, and the list of objects is initialized again as an empty list. If m 
is the number of objects that are present after these Q(n) insertions, we 
repeat this procedure, now with a sequence of Q(m) insertions. 

Queries are solved in a client structure as follows. First we query the 
data structure DS. Next we query the at most Q(n) objects in the list of 
most recently inserted objects, by considering each of them separately. 
Then all answers obtained are merged using the function D. (Note that all 
objects in the list are different, and are not present in the client data 
structure DS.) 

THEOREM 3. Let DS be a data structure for a decomposable searching 
problem PR, of size S(n) and query time Q(n ). There exists a client structure 
solving PR, with performances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(S(n )/Q(n)) on the average, for an insertion. 

3. G(n) = O(S(n )/Q(n)) on the average, for an insertion. 

4. The query time of the client structure is bounded by O(Q(n) ). 

Proof The client structure consists of a copy of the data structure DS 
as it is at the beginning of a sequence of insertions, together with a list con­
taining the insertions performed (i.e., Q( n)) so far. Insertions and queries 
are carried out as described above. The size of the client structure is boun­
ded by the size of DS and by the number of objects in the list. Let N be 
the number of objects that are currently present, and let n be the number 
of objects that were present at the beginning of the sequence of insertions. 
Then the size of the client structure is bounded by O(S(n) + Q(n)) = 
O(S(N) ). Because for a decomposable searching problem obviously 
Q(n) = O(n), and since S(n)/n is non-decreasing, we have Q(n) = O(S(n)). 
Finally, since n::::; N::::; n + Q(n) = O(n ), and since S(n) is smooth, the bound 
on the space complexity follows. In a sequence of Q(n) insertions, the total 
number of words that are transported to a client structure, is bounded by 
O(Q(n) + S(n)) = O(S(n)). Hence the average amount of data that is trans­
ported for an insertion is O(S(n )/Q(n) ). The total computing time for Q(n) 
insertions into a client structure, is also bounded by O(Q(n)+S(n)), since 
a new object can be inserted to the list in constant time, and since it takes 
O(S(n)) time to receive and write a data structure of size S(n). Hence 
G(n) = O(S(n)/Q(n)) on the average for an insertion. Finally, the query 
time of the client structure is bounded by 0( Q(n) ), because the structure 
DS can be queried in Q(n) time, and using the definition of a decom­
posable searching problem, the objects in the list can be queried in 0( Q(n)) 
time. I 
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In the above theorem, the complexity for insertion for the client struc­
tures is an average case complexity. We show now how these bounds can 
be turned into worst case bounds. The idea is to spread out the transporta­
tion of the large data structure over a number of insertions. In the sequel 
we assume that if object p is to be inserted, it is not present yet. (As we saw 
already, if the object is present, the client structures do not have to know 
that anything happened.) We denote by DS11 , the data structure DS 
representing a set of n objects. 

The client structure consists of a data structure DS, and two lists of 
objects. The central structure consists of a structure DS and one list of 
objects. Let k be the initial number of objects. Then both the client struc­
ture and the central structure contain an up-to-date data structure DSk and 
all lists are empty. During Q(k) insertions, we add the new objects to one 
of the lists of the client structures (each time we add it to the same list). 
Furthermore, all these insertions are performed in the central structure DS. 

Hence after these Q(k) insertions, the client structures consist of a data 
structure DSk> representing the objects that were initially present, a list of 
the Q(k) most recently inserted objects, and an empty list. The central 
structure consists of an up-to-date structure DSk + Q<k» and an empty list. 

Let n = k + Q(k), i.e., n is the number of objects that are currently 
present. Consider a sequence of Q(n) insertions. 

During the first Q(n )/2 insertions, we add the new objects to the initially 
empty lists of the client structures, and we send the central structure 
DSk + Qtkl = DS11 to the clients: Each update we send a part of DS11 of size 
O(S(n)/Q(n)). Then, after these Q(n)/2 insertions, each client structure con­
tains a data structure DS11 , and a list of the Q(n )/2 most recently inserted 
objects. Now we discard the old client structure DSk and we set the old list 
of Q(k) inserted objects to the empty list. In the central structure we add 
the Q(n)/2 new objects to the list. Note that the central structure DS11 

cannot be affected during these insertions. 
The final Q(n )/2 insertions are performed as follows. The new objects are 

added to the non-empty list of the client structure. In the central structure, 
we perform in each update the current one, and one update from the list 
of updates. (Note that the order in which we perform the updates in the 
central structure does not matter, since all updates are insertions. If, 
however, deletions were also possible, the updates had to be carried out in 
chronological order. See Subsection 6.4.) Afterwards the list of the central 
structure is set to the empty list. 

So after the entire sequence of Q(n) updates, the client structure contains 
a data structure DS,,, a list of the Q(n) most recently inserted objects, and 
an empty list. The central structure consists of an up-to-date structure 
DSn+Qtnl and an empty list. Hence we are in the same situation as Q(n) 
updates ago, and we can continue in a similar manner. 
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Queries in a client structure are solved, by querying the data structure 

DS, and by walking along the two lists of objects. Then using the function 

D, the answers are merged to get the final answer to the query. 
The result is given in the following theorem. 

THEOREM 4. Let DS be a data structure for a decomposable searching 

problem PR with worst case complexity S(n ), J(n ), and Q(11 ). There exists a 
client structure solving PR, with pe~formances: 

1. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(S(n)/Q(n)) in the worst case, for an insertion. 

3. G(n) = 0( S(n )/Q(n)) in the worst case, for an insertion. 

4. The query time of the client structure is hounded by 0( Q(n) ). 

Furthermore, the size and the insertion time of the central structure are 

hounded by O(S(n)) and O(J(n)). 

Proof It follows from the above discussion that in each insertion we 

send an amount of 0( S(n )/ Q( n)) + 0( I ) = 0( S(n )/ Q( n)) data, and for each 

client structure we have to spend O(S(n)/Q(n)) + 0( l) = O(S(n )iQ(n)) time 

to receive and write this data. Hence both F(n) and G(n) are bounded by 
O(S(n )/Q(n)) in the worst case. Also, the size and the query time of the 

client structure are bounded by 0( S(n)) and 0( Q(n) ). Clearly, the perfor­
mances for the central structure are increased by at most a constant 

factor. I 
There are other techniques to obtain efficient solutions to the multiple 

representation problem. We can for example consider sequences of more 

than Q(n) insertions. Then the most recently inserted objects are stored in 

a small data structure, to ensure that the query time remains 0( Q( n) ). In 

this way the values of F(n) and G(n) can be decreased. This idea is worked 

out below. 
Let PR be a decomposable searching problem, and let DS be a dynamic 

data structure solving PR. The size and the query time of DS are denoted 

by S(n) and Q(n). As before, we assume that S(n)/12 and Q(n) are non­

decreasing, and that S(n) and Q(n) are smooth. 
Let f(n) be an integer function, such that Q(n) < /(11) < 11. The client 

structure consists of two data structures DS, and DS2 , and a list of objects. 

The central structure contains the structures DS 1 and DS 2. 

Initially, all structures DS 1 and the lists in the client structures, are 

empty. Each structure DS2 stores the n objects that are present at this 

moment. 
Consider a sequence off(n)-1 insertions. We insert the new objects in 

the central data structure DS 1 • In the client structure we add the new 

objects to the list. Every Q(n )-th insertion, the central structure DS 1 as it 
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is that moment is sent to the client structure (where it replaces the old 
DS 1 ), and the list of objects is set to the empty list. Hence during these 
f(n )- I insertions, the client structure consists of a list of at most Q(n) 
objects, and of two data structures DS 1 and DS2 • The structure DS 1 

represents at most f(n) objects. At each moment, the objects represented by 
these three structures form a partition of all the objects that are present at 

that moment. 
In the f(n )th insertion, we build a new structure DS 2 storing all objects 

that are present at this moment, and send it to the clients. Also, all struc­
tures DS 1 and all lists are made empty. If m is the number of present 
objects at this moment we repeat this procedure, now with a sequence of 

f(m) insertions. 
Clearly, the size and the query time of the client structure remain 

0( S(n)) and 0( Q(n) ). Furthermore, the average values of F(n) and G(n) 

are both bounded by O(S(f(n))/Q(n)+S(n)/l(n)). 
We generalize this solution as follows. Let k be a positive integer, and let 

f(n) be integer functions, i=O, 1, ... ,k, such that Q(n)=f~(n)<f1 (n)< 

j~(n) < · · · < .f~ _ 1 (n) < j~(n) = n. Then the client structure contains a 
collection of data structures DS;, i = 1, 2, ... , k, and a list of at most Q(n) 
objects. The central structure contains the structures DS,, i = 1, 2, ... , k. 
Each DS, will represent at most f;(n) objects. Initially, all structures 
DS 1, ••• , DSk 1 , and all lists, are empty. Each structure DSk stores the n 
objects that are present at this moment. 

Consider a sequence of j~ 1 (n) insertions. In the jth insertion, we do the 
following. If there is an i, 0 ~ i ~ k - 1, such that j = 0 mod f~ (n ), determine 
the maximal such i. Then build a new structure DS1 t 1 , storing all objects 
that were present in the old central structures DS 1 , .•• , DS 1 + 1 , and add it 
to the central structure. Also, the old central structures DS 1 , ••• , DS1 are 

made empty. Next, send this new structure DS; + 1 to the clients, where it 
replaces the old DS1+ 1 • Finally, all client structures DS 1 , .•• , DS1 and the 
lists are made empty. If there is no i such that j = 0 mod J;(n ), add the new 
object to the list of the client structures, and insert the new object in the 
central structure DS1 • 

It is not difficult to see, that indeed each DS1 represents at most J;(n) 
objects, and that the list in the client structure contains at most Q(n) 

objects. Also, each DS1 is sent to the clients at most once every /; 1 (n) 
insertions. 

After these f~ 1 (n) insertions, all structures DS 1 , ••• , DS k 1 , and all lists, 
are empty again, and each structure DSk stores the objects that are present 
at this moment. (Note that in the./~ 1 (n )th insertion, the maximal value 
of i in the above update procedure is k - 1.) So we can proceed in the same 
way, now with a sequence of./~ i(m) insertions, where m is the current 
number of objects. 
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In this way the average values of F(n) and G(n) are bounded above by 

S(f1(n)) S(f2(n)) S(fk __ 1(n)) S(n) ---'--+ + ... + + . 
Q(n) f1(n) fk-2(n) fk-1(n) 

Since we assumed that S(n )/n is non-decreasing, it follows that this sum is 
bounded above by 

S(n) (!1(n) f1(n) fk_ 1(n) n ) 
--;;-- Q(n) + f1(n) + ... + fk-2(n) + fk-1(n) · 

Now take f;(n) = rnilk(Q(n)) 1 -i/kl. Then the average values of F(n) and 
G(n) are bounded above by 

k S(n) (-n-) 1/k 
n Q(n) 

In a similar way as before these average case bounds can be turned into 
worst case bounds. The result is expressed in the following theorem, the 
proof of which is left to the reader. 

THEOREM 5. Let DS be a data structure for a decomposable searching 
problem PR with complexity S(n) and Q(n ). Then for each positive integer 
k there exists a client structure solving PR, with performances: 

I. The size of the client structure is bounded by O(S(n)). 

2. F(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the worst case, for an insertion. 

3. G(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the worst case, for an insertion. 

4. The query time of the client structure is bounded by O(k x Q(n) ). 

We illustrate this result with an example. In the nearest neighbor search­
ing problem, we are given a set S of n points in the plane, and a query point 
p, and we are asked to find the point in S that is closest to p with respect 
to the euclidean distance. Clearly, this problem is decomposable. There 
exists a data structure for this problem of size O(n) such that queries 
can be solved in O(logn) time, see, e.g., Kirkpatrick (1983). Applying 
Theorem 5, we obtain 

THEOREM 6. Let k be a positive integer. For the nearest neighbor search-
ing problem in the plane, there exists a client structure, with performances: 

1. The size of the client structure is bounded by O(n). 

2. F(n) = O(k(n/log n )11k) in the worst case, for an insertion. 

3. G(n) = O(k(n/log n) i;k) in the worst case, for an insertion. 

4. The query time of the client structure is bounded by O(k x Jog n). 

643/8312· 7 
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It is clear that the technique presented in this section only allows inser­
tions to be carried out. In some cases, however, deletions can also be per­
formed. For example, deletions can be handled if we restrict ourselves to a 
subclass of the decomposable searching problems, the decomposable count­
ing problems. Roughly speaking, a decomposable counting problem is a 
decomposable searching problem where the function D has an inverse, that 
can also be computed in constant time (see Bentley and Saxe, 1980; Over­
mars, 1983 ). An example is the orthogonal range counting problem. Here we 
are give a set S of points in the plane, and an axis-parallel query rectangle, 
and we are asked how many points of S are in the rectangle. 

For decomposable counting problems we can design a full dynamic data 
structure by maintaining two structures. In one structure new objects are 
inserted, whereas a deletion is performed by inserting the object that is to 
be deleted into the other structure. A query is solved by querying the two 
structures, and by "subtracting" the two obtained answers from each other, 
using the inverse of the function D. 

For decomposable counting problems, the following analogue of 
Theorem 5 can be proved. 

THEOREM 7. Let DS be a data structure for a decomposable counting 
problem PR with complexity S(n) and Q(n ). Then for each positive integer 
k there exists a full dynamic client structure solving PR, with performances: 

1. The size of the client structure is hounded by O(S(n )). 

2. F(n) = O(k(S(n)/n)(n/Q(n)) 1ik) in the worst case. 

3. G(n) = O(k(S(n)/n)(n/Q(n)) 11k) in the v.·orst case. 

4. The query time of the client structure is bounded by O(k x Q(n) ). 

6. A GENERAL TECHNIQUE 

6.1. Introduction 

Consider again our strategy with respect to the member searching 
problem of Section 3. In this solution, in each update we send a string of 
O(log n) bits to the client structures, where the string contains an encoding 
of the path to the node where the update is carried out, together with infor­
mation about what kind of rotations have to be performed. In order to 
update the client structure, we follow the path, insert or delete the object, 
and perform ·the rotations. Clearly, this procedure takes O(log n) time. If 
we consider, however, how many nodes in the tree are changed in this 
update, we see that 0( I) of them are changed due to the insertion or dele­
tion, and the rest of them are changed due to rotations. Therefore, if 0( I ) 
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rotations are carried out, only 0( I ) nodes of the tree are changed. (Note 
that a client structure does not contain balance information.) So if we 
could avoid to walk down the path, it could be possible to update the 
client structure in only 0( I) time. 

The solution is to send to the client structures the inserted or deleted 
object, together with the positions in the tree where changes-and what 
kind of changes-have to be carried out. Since there are binary trees that 
cap. be maintained in logarithmic time with only 0( I) rotations in the 
worst case (see Guibas and Sedgewick, 1978; Olivie, 1980, 1981, 1982; 
Tarjan, 1983 ), this will give us a solution where the client structures can be 
maintained in constant time. 

This is the main idea of the general technique that will be worked out 
in this section. We will achieve our result in a number of steps. First we 
give a solution in case the data structures do not exceed some given size. 
Next we extend this solution to a general one having a low average case 
complexity. Then we turn these average case bounds into worst case 
bounds. 

Let PR be a searching problem, and let DS (resp. DS') be the corre­
sponding client structure ( resp. central structure). The performances of DS 
are denoted by S(n) and Q(n), and those of DS' by S'(n), P'(n) and U'(n) 
(see Section 2 for these notations). We assume that DS is a substructure of 
DS'. That is, DS is a part of DS', containing enough information such that 
queries can be solved fast. For example, if DS' is a balanced binary tree, 
then we can take DS, the tree without the balance information at the 
nodes. Updates are performed as before. That is, first the central structure 
DS' is updated, then information is sent to the client structures, and finally 
the client structures DS are updated. Let C(n) denote the amount of data 
that is changed in the client structure DS in an update. We assume that all 
these complexity measures and S(n )/n are non-decreasing and smooth. 

We transform this multiple representation into another one, such that 
each transformed client structure has size O(S(n)), update complexity 
F(n) = 0( C(n)) and G(n) = 0( C(n) ), and in which queries can be solved in 
0( Q(n)) time. In each update, we only send the changes of the client struc­
ture DS. In order to avoid searching for the positions in the client structure 
where the changes have to be carried out, we also send these positions. 
Therefore, we implement the data structures as arrays. (We assume that 
our processors are random access machines, the memories of which are 
modeled as arrays. Hence we can indeed implement the data structues as 
arrays.) We take care that each part of DS is stored in the same position 
in all processors. If such a part has to be changed, we send the index in the 
array where this part is stored, together with the updated part. Then, in 
each client structure, we can find in constant time the position where the 
change has to be carried out. Remark that data structures contain pointers, 
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which we consider to be indices of array entries. By storing parts of DS in 
each processor in the same positions, these pointers indeed "point" to the 
correct objects. 

The implementation will be described more precisely in the next sub­
section. We finish this subsection with the following lemma. 

LEMMA 1. The complexity measures introduced above satisfy 

1. S(n):::; S'(n), 

2. S'(n )/n = 0( U'(n) ), 

3. P'(n )/n = 0( U'(n) ), 

4. S(n)/n=O(C(n)). 

Proo( Since DS is a substructure of DS', we have S(n)::::; S'(n ). We can 
build the structure DS' by performing n insertions into an initially empty 
structure, which takes at most U'( 1) + U'(2) + · · · + U'(n) ~ n x U'(n) time. 
During these n insertions we have built a structure of size S'(n ), and hence 
we have spent at least S'(n) time. This proves that S'(n) = O(n x U'(n)). 
The proof of P'(n) = O(n x U'(n)) is similar. In the same way we can build 
the structure DS. The total amount of data that has changed during n 
insertions, is at most C( 1) + C(2) + · · · + C(n):::; n x C(n ). Since at the end 
there is a structure of size S(n), it follows that S(n) = O(n x C(n)). I 
6.2. A Fixed Si::e Solution 

Let N be an integer that denotes the maximal number of objets that can 
be represented by our data structures. We use in this subsection--and in 
the following ones--the notations introduced in Subsection 6.1. 

We have a client structure DS and a central structure DS', and we want 
to implement these structures as arrays. These data structures are com­
posed of "indivisible pieces of information" of constant size, such as poin­
ters, integers, etc. (Here we assume that pointers, integers, etc. have size 
one, which is customary in the theory of algorithms and data structures.) 
Each such indivisible piece will be stored in one array location. Since the 
data structures represent at most N objects, we take a client array of S(N) 
entries, containing DS, and a central array A' of S'(N) entries, containing 
DS'. If n is the current number of objects, S(n) entries of the client array 
and S' (n) entries of the central array are occupied. We assume that the first 
S(N) entries of the central array are identical to those of the client array. 
Clearly, this can always be achieved. Finally, we introduce two stacks FE 
and FE' of free entries. In FE we store those indices of the first S(N) entries 
of the client array A, that are unoccupied. Similarly, the stack FE' contains 
those indices of the last S'(N)- S(N) entries of the central array A' that 
are unoccupied. The purpose of these stacks is to perform our own memory 
management. 
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The transformed client structure consists of the array A. The transformed 

central structure consists of the array A' and the stacks FE and FE'. 

Suppose we want to insert or delete object p. We assume that there is 

space in the arrays for a new object. Then we first perform this update in 

the central structure. If we need new entries, we take them from the 

appropriate stack FE or FE', and if entries become unoccupied, we put 

them on the stack where they belong. Clearly, this update procedure takes 
0( U' (n)) time. Next we send to the clients, the indices of the entries in the 

array A that are changed together with the new contents of these entries. 
Using this information, each client structure is updated. Clearly, the client 

array can be updated in time proportional to the number of changed 

entries. So in our notation we have F(n)=O(C(n)) and G(n)=O(C(n)). 

Note that the client structures do not need to contain the stack FE of free 

array indices: the entire memory management is arranged by the central 
structure. Clearly, at each moment the client structure is up-to-date and, 

hence, it can be used to answer queries. 

THEOREM 8. Let DS be a client structure solving some searching 

problem, with complexity S(n ), Q(n) and C(n ). Let DS' be the corresponding 

central structure, with complexity S'(n) and U'(n). We can transform these 

structures into a multiple representation, such that each client structure 

1. has size O(S(N)), 

2. has a query time bounded by O(Q(n)), 

3. has F(n)=O(C(n)), 

4. hasG(n)=O(C(n)), 

\\'here N is the maximal number of objects that can be represented by the 

structures, and n is the current number of objects. Furthermore, the central 

structure has si::e O(S' ( N) ), and its update time is bounded by 0( U'(n) ). 

Proof The size of the central structure is bounded by O(S'(N)) for the 

array A', and by 0( IFEI +I FE'I) = O(S'(N)) for the stacks. Hence the total 
size of the central structure is bounded by O(S'(N) ). The other bounds 

follow from the above discussion. I 
If we know in advance that the number of objects does not vary too 

much, this will be an efficient solution. If, however, the number of objects 

becomes too large, after a number of insertions, our arrays will become too 
small. Similarly, after a number of deletions, a large part of the arrays will 

become empty, and so the amount of space will become too large. In these 
cases the solutions, of course, is to rebuild the structures. 

6.3. An Efflc·ient Average Case Solution 

Suppose that the data structures initially represent n objects. We store 



224 SMID ET AL. 

each structure in an array that can store a data structure of ~n objects. In 
this way there is space in the structures for n/2 insertions. So in the nota­
tion of the preceding subsection, we take N = ~n. The client structure con­
sists of the array A of length S(N). The central structure contains the array 
A' of length S'(N), and the stacks FE and FE'. The information is stored 
in these data structures as in the previous subsection, and updates are per­
formed in exactly the same way. As soon as the number of objects becomes 
either ~n or ~n, we rebuild our data structures. That is, if m is the number 
of objects at that moment, we build a new array A' and new stacks FE and 
FE', that are large enough to contain a data structure for ~m objects, and 
we send the subarray containing the first S( ~m) entries of A '-this subarray 
will be the new client structure A--to the clients, where this new array 
replaces the old one. Then we proceed in the same way. 

THEOREM 9. Let DS he a client structure solving some searching 
problem, ll'ith complexity S(n ), Q(n ), and C(n ). Let DS' he the correspond­
ing central structure, with complexity S'(n) and U'(n). We can transform 
these structures into a multiple representation, such that each client structure 

I. has size O(S(n)), 

2. has a query time hounded hy O(Q(n)), 

3. has F(n) = 0( C(n) ), on the average, 

4. has G(n) = 0( C(n) ), on the average. 

The central structure has size O(S'(n) ), and its average update time is 
hounded hy 0( U' ( n) ). 

Proof: The bounds on the amount of space used by the structures 
follow from Theorem 8, and from the fact that N--the maximal number 
of objects that can be represented-and n-the current number of 
objects-satisfy n = 8(N). Clearly, the query time for a client structure 
remains 0( Q(n) ). Since the structures are rebuilt at most once every n/2 
updates, the average values of both F(n) and G(n) are bounded by 
O(C(n)+S(n)/n), which is O(C(n)) by Lemma 1. Rebuilding of the new 
central structure takes O(P'(n)) time for A' and O(S'(n)) time for the two 
stacks. So the average update time of the central structure is bounded by 
O(U'(n)+P'(n)/n+S'(n)/n), which is O(U'(n)) by Lemma l. I 

Remark. The rebuilding of the new central array A' cannot be per­
formed by just walking along the old array and putting the entries into a 
new one of size S' ( ~m ): we have to take care that the pointers keep their 
correct meaning. Therefore we charged in the above proof O(P'(n)) time 
for this rebuilding, which is clearly an upper bound. 
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6.4. An Efj'icient Worst Case Solution 

In this subsection we assume that the update time U'(n) of the central 
structure and the amount of data C(n) that an update changes in the client 
structure are worst case bounds. We show how the average case bounds of 
the preceding section can be made into worst case bounds. The idea is to 
spread out the construction of the new structures over a number of 
updates. The technique is related to the global rebuilding technique given 
in ( Overmars, 1983 ). 

Let m be the number of objects initially represented by the data 
structures. Let I be an integer, such that ~m:::; l:::; 3m. We first describe the 
update algorithm for the client structure; later we consider the central 
structure. The client structure consists of the array A of length S(l), as 
before. 

Consider a sequence of m/2 updates. (Note that the array A has space 
for at least m/2 new objects.) We split this sequence into three phases. 

First phase. The first phase consists of the first m/4 updates. These are 
performed as before. That is, the changes of the client structures, together 
with the positions in the array A, where the changes have to be carried out, 
are sent to them, and using the received information, each client structure 
is updated. So after the first phase, the client structures are up-to-date. 

Let m0 be the number of objects that are present after the first phase, 
and let 10 = 2m 0 . (We use 10 to estimate the number of objects that are 
present after the third phase.) 

Second phase. The second phase consists of the next m/8 updates. These 
updates are performed as in the first phase. Also, a new client array A0 is 
built in the central computer during the first m/ 16 updates of this second 
phase. This array has length S(/0 ), and it stores the client data structure as 
it was after the first phase. (Later we shall describe how the central pro­
cessor builds this new array; we now just assume that it is there.) This new 
array is sent to the clients during the last m/16 updates of the second phase. 
In each update we send an amount of O(S(/0 )/m) = O(S(m)/m), which is 
bounded by O(C(m)) by Lemma 1. 

After the second phase, the client structure consists of an up-to-date 
array A and an array A0 , containing the client structure as it was after the 
first phase. We also assume that the central structure contains a list of the 
updates in the second phase, i.e., a list containing the m/8 objects, and for 
each object information whether it has to be inserted or deleted. 

Third phase. This phase consists of the final m/8 updates. These updates 
are carried out for the up-to-date client array A, as before. In order to 
make the new array A. 0 up-to-date, we perform on this array with each 
update, two updates from the list of updates from the second phase. (Note 
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that these updates have to be performed in chronological order, since the 
same object can be inserted and deleted several times!) Then we remove the 
two updates we just carried out from the (front of the) list, and the actual 
update is added at the end of the list. 

After this final phase, the client array A 0 is up-to-date, and the old array 
A is discarded. 

So we end with a client structure consisting of an array A 0 of length 
S(/0 ). Let n be the number of objects that are represented by the structures 
at this moment. If we can show that ~n :%; 10 :%; 3n, then we are in the same 
situation as the one we started with, and hence we can proceed in the same 
way. 

At the beginning the data structures represented m objects, and after the 
first m/4 updates there were m0 objects. It follows that 

After the third phase, i.e., after another m/4 updates, there are n objects. 
Hence 

Clearly, m and n are related by 

It follows that 

and 

10 = 2m 0 ~ 2(n + ~m) :%; 2n + n = 3n, 

which shows that we are indeed in the same situation as at our starting 
point. 

The central structure consists of two copies of each of the structures A', 
FE, and FE', and one copy of a list l (we use the notations of the preced­
ing subsection). All m/2 updates are carried out on one of A', FE, and FE'. 
Hence at each moment the central structure contains an up-to-date data 
structure. In the second phase, in each update we add the object together 
with information whether it has to be inserted or deleted, to the list l. 

It remains to describe what happens to the other structures A', FE, and 
FE'. In the first phase, the updates are performed on these structures as 
usual. During the first m/16 updates of the second phase we convert them 
into new structures A~, FE0 , and FE;). Here A~ is an array of length S'(/0 ) 

that will contain the data structure as it is at the beginning of the second 
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phase, and FE0 and FE;i are the corresponding stacks of free entries in this 
new array. This converting can be performed in O(P'(/0 ) + S'(i0 )) = 
O(P'(m) + S'(m)) = O(P'(m)) time. In each of the m/16 updates we do an 

amount of 0 ( P' ( m )/ m) of this converting. It follows from Lemma I that the 

update time for the central structure remains O(U'(n)+P'(m)ml= 

0( U'(n) ), where n is the current number of present objects. 

During the next m/16 updates of the second phase, the first 5(/0 ) entries 

of the array A~----which contain the new client array A 11~are sent to the 

clients, as described above. Also, the structures A~, FE0 , and FE~ are 

copied; each update we do an amount of O(S'(m)/m)=O(U'(m))= 

O( U'(n)) work. During the third phase, we perform with each update. two 

updates from the list L, on both copies of each of the structures A;1• FE0 , 

and FE;), and we add the actual update at the end of L (Again we remark 

that the updates have to be carried out in chronological order.) After this 

third phase, the structures A', FE, and FE' are discarded. We end with two 

copies of each of the structures A~, FE0 , and FE;1. Hence we are in the 

same situation as before the first phase. 
Before we summarize the result, we remark that a client structure 

contains at any moment an up-to-date data structure, that can be used to 

answer queries. 

THEOREM 10. Let DS he a client structure solving some searching 

problem, with worst case complexity S(n ), Q(n ), and C(n ). frt DS" he the 

corresponding central structure, with worst case complexity S'(n) and l/(n l. 

We can transform these structures into a multiple represen1a1ion, sud1 tha1 

each client structure 

I. has size O(S(n)), 

2. has a query time bounded hy O(Q(n)), 

3. has F( n) = 0( C( n) ), in the worst case, 

4. has G(n) = O(C(n)), in the worst case. 

The central structure has size O(S'(n)), and its worst case update timl! is 

hounded by 0( U' (n) ). 

Proof The size of the central structure is bounded by O(S'(n) + nl = 

O(S'(n)), where the O(n) term is due to the list of updates. The rest of the 

proof follows from the above discussion. I 

7. EXAMPLES 

As we have seen in Section 6, we can bound the update time for the 

client structures by O( C(n) ), which is the size of the changes in the struc-
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ture. Hence our goal is to design structures for searching problems for 
which C(n) is small. It is not important whether the changes can be found 
efficiently (although this would make the amount of work on the central 
structure small). 

7.1. Binary Search Trees 

Most classes of balanced binary search trees, such as AVL-trees, BB[a]­
trees, etc., have the property that in an update O(log n) rotations are 
necessary to rebalance them. Hence for such trees, an update changes 
O(log n) nodes. Binary trees from the class of aBB-trees, as introduced by 
Olivie ( 1980, 1981, 1982 ), however, have the interesting property that they 
can be maintained in logarithmic time, by at most a constant number of 
rotations (if a E { 1. t} ). (See also Guibas and Sedgewick, 1978 and Tarjan, 
1983.) 

So let T be an aBB-tree, where a E O. t}, without the balance informa­
tion at the nodes. Suppose T contains a set of n objects in its nodes. In this 
tree, member queries can be solved in O(log n) time. By the above men­
tioned result of Olivie, we can maintain T by means of 0( I ) rotations. 
Hence an update changes only 0( I) nodes in T. (Note that if the tree 
would contain balance information, an update would change O(log n) 
nodes, since then the balance information would have to be updated.) 
Applying Theorem 10, we get 

THEOREM 11. For sohiing the member searching problem, there exists a 
client structure with complexity 

I. S(n) = O(n), 

2. Q(n) = O(log n ), 

3. F(n) = 0(1 ), 

4. G(n) = 0(1 ). 

The central structure has size O(n ), and can be maintained in O(log n) time. 

In the solution given above, we stored the objects in the nodes of the 
tree. There are applications, however, in which we want to store the objects 
in sorted order in the leaves of the tree. Then, in order to be able to search 
in the tree, we have to store information in the internal nodes to guide 
these searches (in each node we must decide in some way whether we 
proceed to the left or to the right son). Suppose we store in each node the 
maximal element in its subtree. Clearly, we can use this information to 
solve member queries in time proportional to the longest path in the tree. 
If we now delete the maximal element in the tree, then in each node on the 
rightmost path the search information has to be changed. Therefore, if the 
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tree is balanced, an update changes O(log n) nodes. So we have to be care­
ful regarding the '"search information" that is stored in the internal nodes. 

Suppose now that we store in each internal node i:, the maximal element 
in the left subtree of v. Note that this maximal element is stored in the 
unique leaf that is reached by making one step to the left in node t', 

followed by a maximal number (possibly none) of steps to the right. It is 
not difficult to prove that in this case an update changes 0( I) nodes, if we 
do not rebalance the tree. (The search information in a node is changed iff 
the maximal element in its left su btree is changed.) 

So let T be an o:BB-tree, containing a set of n elements in sorted order 
in its leaves, without balance information. Each internal node contains the 
maximal element in its left subtree. Then, in T member queries can be 
solved using the search information of the internal nodes in O(log n) time. 
Now let o: E { L ~}. Then it follows from the above that an update changes 
only 0( 1) nodes in T. Applying Theorem l 0, we get 

THEOREM 12. For soh:ing the member searching problem, we can rake j(1r 

the client structures a lea( search tree, having complexity 

1. S(n)=O(n), 

2. Q(n) = O(log n ), 

3. F(n) = 0( 1 ), 

4. G(n) = 0( 1). 

The central structure has si:::e O(n ), and can be maintained in O(log n) time. 

In the next subsection we shall use o:BB-trees to design an efficiently 
maintainable class of data structures solving the orthogonal range search­
ing problem. 

7.2. Range Trees 

The orthogonal range searching problem, was mentioned in Section 5. 
Bentley ( 1979 ), Lueker ( 1978 ), and Willard and Lueker ( 1985) designed an 
efficient data structure for this problem, the so-called range tree. In the 
following definition we modify the balance conditions of these range trees 
somewhat. (For the definition of BB[:x]-trees, we refer the reader to 
Nievergelt and Reingold, 1973 and Blum and Mehlhorn, 1980.) 

DEFINITION 3. Let S be a set of points in the d-dimensional euclidean 
space. A d-dimensional range tree T, representing the set S, is defined as 
follows: 

1. If d= 1, then T is an o:BB-tree, containing the points of Sin sorted 
order in its leaves. 
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2. If d > 1, then T consists of a BB [a' ]-tree, called the main tree, con­
taining in its leaves the points of S, ordered according to their first coor­
dinate. Each node v of this main tree contains an associated structure, 
which is a (d- 1 )-dimensional range tree for those points of S that are in 
the subtree rooted at v, taking only the second to dth coordinate into 
account. 

So in our notion of range trees there are two kind of binary trees. The 
trees representing points in multi-dimensional space belong to the class of 
BB[a']-trees, and the trees representing one-dimensional points belong to 
the class of cxBB-trees. All trees are used as leaf search trees. 

Let T be a d-dimensional range tree, and suppose we want to insert or 
delete a point p. Then we search with p in the main tree to locate its posi­
tion among the leaves, and we insert or delete pin all the associated struc­
tures we encounter on our search path (if these associated structures are 
one-dimensional range trees, we apply the update algorithm for cxBB-trees 
using rotations; otherwise we use the same procedure recursively). Next we 
insert or delete p among the leaves in the main tree, and we walk back to 
the root. During this walk, we rebalance the main tree: each node that is 
out of balance is rebalanced by means of rotations. Note that we have to 
rebuild the associated structures of the nodes that are involved in these 
rotations, and this will take a lot of time when these structures are large. 
It turns out, however, that the average update time is low. 

The following theorem gives the complexity of range trees. For a proof, 
we refer the reader to (Bentley, 1979; Lueker, 1978; Overmars, 1983; 
Willard and Lueker, 1985 ). 

THEOREM 13. Let S be a set of n points in d-dimensional space. Then a 
d-dimensional range tree, representing the set S, has size O(n(log n)J 1 ), and 
can be built in O(n(log n )J 1) time. In this tree, updates can be performed 
in time O((log n)d) on the average, and orthogonal range queries can be 
solved in time O((log n )J + t ), where t is the number of reported answers, 
without using the balance information stored at the nodes. 

Let T be a d-dimensional range tree for a set of n points, without the 
balance information. We store in internal nodes of the trees search informa­
tion as in Subsection 7.1. We take for the one-dimensional structures 
:xBB-trees with ex E { !, ~ }. Let C(n, d) denote the average number of nodes 
that are changed in Tin an update. 

LEMMA 2. C(n, d) = O((log n )d - 1 ). 

Proof We have seen in Subsection 7.1 already that C(n, 1) = 0( 1 ). Let 
d> I. To perform an update we start in the root of the main tree, and we 
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update its associated structure. This changes on the average at most 
C(n, d - I) nodes. Then we repeat the same procedure for the appropriate 
son of the root, which is the root of a range tree for at most ( 1 - a')n 
points. Hence this changes on the average at most C(( 1 - a')n, d) nodes. If 
the root of the main tree gets out of balance, we perform a rotation and, 
hence, we have to rebuild the associated structures of the sons of the root. 
Since these associated structures are (d- 1 )-dimensional range trees, this 
changes O(n(logn)"- 2 ) nodes. It was shown by Blum and Mehlhorn 
( 1980) that for a proper choice of a' the root of the main tree gets out of 
balance at most once every Q(n) updates. Hence the average number of 
nodes that are changed due to our visit to the root of the main tree is 
bounded by 0( (log n )" - 2 ). It follows that C(n, d) satisfies the following 
recurrence: 

C(n, d) ~ C(n, d- 1) + C(( I - a') n, d) + O((log n)"- 2 ). 

This proves the lemma. I 

So we have a class of range trees that can be maintained in time 
O((log n)") on the average, whereas in the structures without balance infor­
mation an update changes only 0( (log n )"- 1 ) nodes, also on the average. 
Hence, by Theorem 9, we have 

THEOREM 14. For solving the orthogonal range searching problem, there 
exists a client structure with complexity 

1. S(n) = O(n(log n )"- 1 ), 

2. Q(n) = 0( (log n )" + t ), where t is the number of reported answers, 

3. F(n) = O((log n)"- 1) on the average, 

4. G(n) = O((log n )" - 1 ) on the average. 

8. CONCLUSIONS 

We have studied the problem of maintaining multiple representations of 
dynamic data structures: Suppose there are a number of processors, each 
containing the same data structure. Then updates have to be performed in 
all these structures. In order to save time, we first "preprocess" the update 
in a central structure. Then we broadcast information about the update to 
the processors, and using this information, each of these processors updates 
its structure. 

In this way there are two different types of structures. First there are the 
client structures, that are stored in the processors. These client structures 
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contain information such that queries can be answered efficiently. Also, 
preprocessed updates can be carried out fast on these client structures. The 
other structure is the central structure, in which the updates are prepro­
cessed. We have shown that it is not necessary that the client structures are 
exact copies of the central structure. For example, often a dynamic data 
structure contains information that is only used for efficiently updating it. 
Since the client structures can use the information gathered during the 
update of the central structure, they do not need to have this information 
in their structure. A typical example is a dynamic data structure that main­
tains the answer of an order decomposable set problem. The main part of 
this structure is used to perform updates, whereas only a relatively small 
part of it contains the answer to the set problem. 

We have given a powerful general technique that solves the multiple 
representation problem, such that a client structure can be updated in time 
proportional to the size of the changes in this structure. As an example, we 
have shown that there is a class of range trees that can be maintained in 
0( (log n )d) time, whereas in the version of this tree containing no balance 
information, only 0( (log n )d ·· 1 ) nodes are changed in an update. Hence by 
applying this general technique, we can maintain the client version of the 
range tree in O((log n )d - 1) time. 

There remain several problems and directions for further research: 
In order to apply our general technique, data structures are needed for 

which C(n )-the amount of data that is changed in an update-is small. It 
would be interesting to have more examples of such data structures. 

In the present paper, we performed single updates in the data structures. 
Is it possible to carry out sets of updates more efficiently, than by just 
performing them one after another? 

We have seen some technioues to solve the multiple representation 
problem for decomposable searching problems. It might be possible to 
design other schemes for these problems. 

Finally, one could investigate other multiple representation problems. 
For example, what should be done if the client structures do not necessarily 
have to represent the same set of objects? 
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