
Storing XML Documents in Databases
Albrecht Schmidt, Stefan Manegold, and Martin Kersten

 Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst
al@cs.aau.dk

 CWI, P. O. Box 94079, NL-1090 GB Amsterdam
First.Last@cwi.nl

Abstract
The authors introduce concepts for loading large amounts of XML
documents into databases where the documents are stored and
maintained. The goal is to make XML databases as unobtrusive in
multi-tier systems as possible and at the same time provide as many
services defined by the XML standards as possible. The ubiquity of
XML has sparked great interest in deploying concepts known from
Relational Database Management Systems such as declarative query
languages, transactions, indexes and integrity constraints. This
chapter presents now bulkloading is done in Monet XML, a main
memory XML database system, and evaluates the cost of bulkloading
and bulk deletion with respect to strategies which base on insertion
and deletion of individual nodes. Additionally, we survey the
applicability of the techniques to a wider class of XML storage
schemas.

1 Introduction
Ever since the Extensible Markup Language (XML) [W3C, 1998b] began to be used to
exchange data between diverse sources, interest has grown in deploying data management
technology to store and query XML documents. A number of approaches propose to adapt
relational database technology to store and maintain XML documents [Deutsch et al., 1999,
Florescu and Kossmann, 1999, Klettke and Meyer, 2000, Shanmugasundaram et al., 1999,
Tatarinov et al., 2002, O’Neil et al., 2004]. The advantage is that the XML repository
inherits all the power of mature relational technology like indexes and transaction
management. For XML-enabled querying, a declarative query language [Chamberlin et al.,
2001] is available.

Traditionally, database technology has been offering support for processing large
amounts of data. Recent research has provided valuable insights into the nature of
semistructured and XML data and has attempted to integrate them into existing paradigms.
However, there are still challenges that have to be met to scale XML databases up to
production levels as achieved by relational engines and, thus, to gain acceptance amongst
practitioners. Naturally, XML warehouses inherit the power of relational
warehouses [Roussopoulos, 1997] but they also face the same challenges; in particular,
update and consistency problems of materialised, replicated, and aggregated views over
source data need to solved.

This chapter discusses techniques related to loading XML documents into a document
warehouse. All techniques build on well-understood relational database technology and
enable efficient management of large XML repositories. To get the most of relational
database systems, we propose to do away with the pointer-chasing tree traversing
operations, which many applications generate in the form of edit scripts and replace them
with set-oriented operations. Edit scripts [Chawathe et al., 1996, Chawathe and Garcia-
Molina, 1997] have been long known in text databases and are similar in behaviour to
Document Object Model (DOM) [W3C, 1998a] traversals, which are standard in the XML
world; they tend to put relational technology at a disadvantage due to their excessive use of
pointer-chasing algorithms. We investigate the use of these scripts and propose alternative
strategies for cases when they perform poorly.

We implemented our ideas in the XML extension of the Monet Database
System [Schmidt et al., 2001, Schmidt et al., 2000]. A more detailed description of our
experiments is found in [Schmidt and Kersten, 2002]. As we benchmarked the system’s
performance, it turns out that the use of edit-scripts is only sensible if they only update a
rather small fraction of the database; once a certain threshold is exceeded, the replacement
of a complete database segment is preferable. We discuss this threshold and try to quantify
the trade-off for our example document database.

The application scenario which motivates our research consists of a set of XML data
sources which are feature detectors that monitor multimedia data sources and analyse their

content. The detectors feed protocols of analyses into a central data warehouse. The
warehouse now provides the following services: (1) insertion of a documents (a data source
transmits a single protocol of an analysis to the warehouse), (2) insertion of versioned sets
of documents (a set of check-out points transmits the result of a bulk analysis transcript to
the warehouse), (3) deletion of documents and sets of documents (a document is deleted
from the warehouse because it has become invalid or stale; duplicate analyses and
erroneous insertion also happen frequently and need to be corrected), and, (4) execution of
edit scripts that are transmitted from the sources and systematically correct errors in already
inserted documents; for example, a posteriori normalisation of feature values is required
frequently.

While we regard (1) as a special case of (2) and, hence, do not treat it separately, there
is an obvious trade-off between a combination of (2) and (3) and the use of edit-scripts (4).
More precisely, the question is: When is it cheaper to delete invalid data and re-insert a
new consistent version than to use an edit script to ‘patch’ the warehouse? This and other
questions will be dealt with in detail later.

2 Background

<image key="134" source="/cdrom/img1/293.jpeg">
 <date> 999010530 </date>
 <colors>
 <histogram> 0.399 0.277 0.344 </histogram>
 <saturation> 0.390 </saturation>
 <version> 0.8 </version>
 </colors>
</image>

Figure 1: Example document

XML documents are commonly represented as syntax trees. This section recalls some of
the usual terminology we need to work with XML documents. In the sequel, string and int
denote sets of character strings, respectively integers; oid denotes a set of unique object
identifiers. Figure 1 shows an XML fragment, which is taken from the area of content-
based multimedia retrieval [Schmidt et al., 1999]. Figure 2 displays the corresponding
schema tree (dotted arrows indicate XML attribute relationships, straight lines XML
element relationships).

Figure 2: Schema tree of example document

Before we discuss techniques how to store a tree as a database instance, we introduce
the notion of associations. They are used to cluster semantically related information in a
single relation and constitute the basis for the Monet XML Model; the aim of the clustering
process is to enable efficient scans over semantically related data, i.e., data with the same
element ancestry, which are the physical backbone of declarative associative query
language like SQL. Different types of associations play different roles: associations of type
oid×oid represent parent-child relationships. Both kinds of leaves, attribute values and
character data, are modeled by associations of type oid×string, while associations of type
oid×int are used to keep track of the original topology of a document.

Paths describe the context of the element in the graph relative to the root node; we
identify with path(o) the type of the association (⋅,o). The set of all paths in a document is
called its Path Summary; it plays an important role in our query engine. The main rational
for the path-centric storage of documents is to evaluate the ubiquitous XML path
expressions efficiently; the high degree of semantic clustering distinguishes our approach
from other mappings (see [Florescu and Kossmann, 1999] for a discussion). Our approach
is to store all associations of the same ‘type’ in one binary relation. A relation that contains
the tuple (⋅,o) is named R(path(o)). In Figure 2, the types or paths are the . Clustering XML
elements by their type implies that we do not have to cope with many of the irregularities
induced by the semi-structured nature of XML, which are typically taken care of with
NULLs or overflow tables [Deutsch et al., 1999]. In the sequel, we describe the machinery
we need to convert documents to Monet format and bulkload them efficiently. Also note
that we are able to reconstruct the original document given this path-centric representation.
A detailed discussion of the reconstruction can be found in [Schmidt et al., 2000]. We
remark that we can also access the documents in an object-oriented manner, i.e., object as
node in the syntax tree, which is often more intuitive to the user and is adopted by
standards like the DOM [W3C, 1998a]. However, we do not optimize for this as we see
later.

3 XML Warehouses

3.1 Populating the XML Warehouse
There are two basic notions of interest that we are going to discuss in this section as
indicated in the Introduction: Populating a database from scratch, i.e., bulk load, and
incremental insertion of new data into an already existing database. However, similar
technology underlies both cases. Let us consider an example first. There are two standard
ways of accessing XML documents: (1) A low-level event-based, called SAX [Megginson,
2001], scans an XML document for token like start tag, end tag, character data etc., and
invokes user-supplied functions for each token that is encountered in the input. The
advantage of the SAX parsers is they only require minimal resources to work. (2) The more
high-level DOM interface [W3C, 1998a] provides a standard interface to parse complete
documents to syntax trees. In terms of resources, the memory consumption of DOM trees is
much higher, linear in the size of the document; thus, it frequently happens that large
documents exceed the size of available memory. We propose a bulk load method that has
only slightly higher memory requirements than SAX – O(heightofdocument) – but still
keeps track of all the contextual information it needs. Thus, the memory requirements of
the bulkload algorithm we use are very low as it does not materialize the complete syntax
tree.

<image key="134" source="/cdrom/img1/293.jpeg">


Figure 3: Path sequences in the example document
Since Monet XML stores complete paths, the bulk load routine has to track those paths.

We do this by organizing the path summary as a schema tree which we use to efficiently
map paths to relations. Each node in the schema tree represents a database relation and
contains a tag name and reference to the relation. Figure 3 shows the path sequences
generated by combining the SAX events of the parser and a stack in the following way. We
attach OIDs to every tag when we put it on the stack. This way, we are able to record all
path instances in the documents without having to maintain a syntax tree in (main) memory
– an advantage that lets us process very large documents in relatively little memory. The
function that performs the actual insertion is insert(R,t) where R is a reference to a relation
and t is a tuple of the appropriate type. A first naive approach would thus result in the

following sequence of insert statements (disregarding the order in the document and
whitespace due to lack of space):
1. insert(sys,(,image))
2. insert(R(image[key]),(,“134”))
3. insert(R(image[source]),(,“/cdrom/img1/293.jpeg”))
4. insert(R(image/date),(,))
5. insert(R(image/date/pcdata),(,“ 999010530 ”))
6. insert(R(image/colors),(,))
7. insert(R(image/colors/histogram),(,))
8. insert(R(image/colors/histogram/pcdata), (,“ 0.399 0.277 0.344 ”))
9. insert(R(image/colors/saturation),(,))
10. insert(R(image/colors/saturation/pcdata),(,“ 0.390 ”))
11. insert(R(image/colors/version),(,))
12. insert(R(image/colors/version/pcdata),(,“ 0.8 ”))

3.2 Database Maintenance
Once data reside in a database, maintenance of these data becomes an important issue. We
distinguish between two different maintenance tasks: First, the update of existing data via
edit-scripts for propagating changes of source data to the warehouse, and, second, the
deletion and insertion of complete versions of documents which may have become stale or
need to be added to the warehouse.

The concept of edit scripts to update hierarchically structured data is both intuitive and
easy to implement on modern database systems [Chawathe et al., 1996, Chawathe and
Garcia-Molina, 1997]. The scripts comprise three basic operations for transforming the
syntax tree: insertion of a node, deletion of node, and moving a node. (We do not mention
other operators that traverse the syntax tree, see [Chawathe and Garcia-Molina, 1997,
Buneman et al., 1996].) We also view these operations as representatives for traversals that
are defined in the DOM standard [W3C, 1998a]. Continuing our example, an edit script
could insert additional subtrees that describe textures in the images or delete items that
appear twice in the database. Typically, an edit script first pins the location of nodes to be
changed; this process is often done by navigating through the syntax tree as object
identifiers in the database are often not accessible to other applications. Once the location is
found, the scripts then apply update, delete, and insert operations. Conceptually, an edit
script may do two kinds of changes: systematic and local changes. Systematic changes may
become necessary if a faulty application produced data with errors that are spread over
parts of the XML document. In this case, the script traverses large parts of the syntax graph
and applies similar changes at various places. In the relational context of our work, this
may be an expensive restructuring process. On the other hand, if changes are only local, the
script just visits a small number of nodes and patches them. This should be no resource-
intensive problem, not in relational, object, or native systems.

We do not have the space to discuss edit scripts in depth here and refer the reader to the
above citations. However, we demonstrate their use with an example similar to that used in
the performance discussion. Consider again Figure 1. A systematic change would, for
example, require us to change all dates from Unix system time, i.e., seconds since
January 1 1970, to a more human readable format. The way we go about creating the
appropriate edit script is the following: We look up all associations which assign a value to
an attribute unit. Then, for all these nodes, we calculate the new date and replace the old
one. Techniques for constructing automata that do the traversal can be found,
e.g., in [Neven and Schwentick, 1999]. Once such an automaton finds a node n that needs
to be updated, it executes an update(n,date,newdateformat) statement. On the physical data
model of Section 2, this is translated into a command that replaces the value of the
respective association.

The point that is important for us is that edit scripts traverse parts of the XML syntax
graph and manipulate individual nodes. This is in stark contrast to the second method
mentioned above, bulk deletion and re-insertion where we delete a complete segment of the
database and re-insert a corrected version. In the example scenario, this means that an
individual detector re-sends the corrected version of a previously submitted document
instead of a patching edit script. Generally, the underlying assumption is that the
aforementioned data sources provide the capability of sending both, the edit-script and a
complete updated document; however, this assumption holds for many practical
applications as well as for our example: a detector may either send an edit script or re-
transmit a corrected version of the complete document.

It is straight-forward to design an algebraic algorithm that does the deletion and visits
every node at most once like a linear scan [Schmidt and Kersten, 2002]. Still, we need to

discuss when to use bulk deletion combined with re-insertion and when to use edit scripts.
The next section looks quantitatively at when to go for what.

3.3 Performance Impressions
This section presents performance impressions of a data warehouse [Kersten and
Windhouwer, 2000] containing actual features which are more elaborate but similar to the
ones used in the running example. The data warehouse uses Monet XML as the physical
storage model. A 500 MHz Pentium-class PC running Redhat Linux was our
experimentation platform.

Figure 4: Performance of loading and updating data
Figure 4 shows the relationship between database size and insertion speed. The figure

displays the speedup of an optimized approach with caching over a naive implementation.
As one might expect the insertion into an empty database is faster than into an already
densely populated one if no intelligent caching is used. As the database gets larger,
insertion speed converges to a ratio of about 390 KB/sec. If schema trees are used, bulk
load speed more than triples showing the potential of this technique, which has been
explained in Section 3.1. Note that neither bulk load method blocks the database; both
operate interactively and do not interfere with the transaction system. Note that the
insertion performance in Figure 4 includes converting the textual representation of a
document to executable database statements and, thus, random memory accesses (which
can be alleviated with path caching), whereas deletion can be done as sequential scans.

Updates are considered in Figure 4 as well. Edit scripts as presented in Section 3.2 are
run against the database created in the previous experiment; the updates they apply are
systematic. The figure plots the performance of edit scripts against a simple algebraic bulk
replacement strategy which consists of deleting those documents that need updating from
the database and subsequently loading updated documents into the database. With respect
to when to choose which technique, the two lines in Figure 4 show that once more than
approximately 220 entries are changed by the edit script, one should consider reverting to
bulk operations for performance reasons. The threshold of 220 entries is surprisingly low;
however, one should keep in mind that relational databases are not optimized for pointer-
chasing operations. We remark that this threshold also depends on the characteristics of the
XML document, especially on the ratio between text and mark-up.

3.4 Other Storage Mappings
This section discusses some opportunities and limitations of the methods discussed in this
chapter. It takes up ideas found in the literature and relates them to the techniques we
developed for Monet XML.

3.4.1 Positional Mappings and Extent Mappings
Recently, the idea of using the OIDs located on a path as components of a positional
number system like the Dewey system caught on [Tatarinov et al., 2002, O’Neil et al.,
2004]. We can easily adjust the mapping algorithms which produce the Monet mapping to
include the whole list of OIDs which are on the stack rather than just include the two
lowest ones as the algorithm in Section 3.1 does. This just requires us to look at the
complete stack before producing an insertion statement. This kind of positional mapping is
especially suited for implementation of query primitives based on tree automata [Comon et
al., 1997] since many of the query primitives like axis navigation can be translated
transparently to state transitions [Ludäscher et al., 2002].

Another type of mapping is called extent mapping. In extent mappings, not only the
element OID is recorded but also the range in which the descendant node OIDs can be

found; an example of such a mapping can be found in [Zhang et al., 2001]. The insertion
algorithm can be adapted by delaying the generation of an insert statement until not the
start tag of an element but its end tag is encountered. This way, enough information can be
gathered about the position of the end tag.

3.4.2 Semantic Mappings
A semantic mapping in our context is a mapping which takes into account data semantics.
For example, a mapping might decide to map an XML element to an instance of a
particular datatype. Semantic mappings generally follow two mutually exclusive
principles. First, they may analyse schema information such as given by
DTDs [Shanmugasundaram et al., 1999] or XML Schema and generate a database schema
with features that imitate those found in E/R mappings. This kind of mapping is fully
automatic. Second, users may manually specify application-specific constraints that help
map document fragments to tuples in relational databases. These mappings try to overcome
the semantic gap between XML and relational databases by equipping users with a
language to specify which parts of a set of documents correspond to which part of a
database schema.

Although semantic mappings are more complex to implement in a streaming manner
like the Monet mapping where only a stack is needed to keep track of all necessary
information, we can overcome much of the complexity by falling back to conceptually
simpler mappings like the Monet mapping or a positional mapping. This is done by
implementing the mapping as a two-step process. In the first step, the Monet mapping of an
incoming XML document is used to derive database relations. In the second step, these
relations are combined in database queries to form the semantic entities produced by the
semantic mapping. This abstraction can greatly facilitate the complexity of the mapping
software.

4 Future Trends
In the future, we are likely to witness a tighter integration of the two paradigms which
dominate XML processing: data management and information retrieval. This is likely to
pose new challenges with respect to database maintenance and indexing; it is also likely to
necessitate new data structures as well as novel query processing and update strategies and
will thus require adaptations of the strategies presented in this chapter.

5 Conclusion
This chapter discussed performance considerations for typical problems in relational XML
document data warehousing, especially the trade-off between algebraic and pointer-chasing
algorithms for updates. For practical purposes, it turned out that it often is better to replace
a complete database segment and re-insert the updated data than to patch an existing
version with expensive edit-scripts. In particular, our experiments showed that once the
patched data volume exceeds a small percentage of the database, one should resort to bulk
replacement. For good insertion performance, the use of schema trees has been beneficial.

References
[Buneman et al., 1996] Buneman, P., Davidson, S. B., Hillebrand, G. G., and Suciu, D. (1996). A Query

Language and Optimization Techniques for Unstructured Data. In Proc. of the ACM SIGMOD
Int’l. Conf. on Management of Data, pages 505–516, Montreal, Canada.

[Chamberlin et al., 2001] Chamberlin, D., Florescu, D., Robie, J., Siméon, J., and Stefanescu, M.
(2001). XQuery: A Query Language for XML. available at
http://www.w3.org/TR/xquery as of 22 March.

[Chawathe et al., 1996] Chawathe, A., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996).
Change Detection in Hierarchically Structured Information. In Proc. of the ACM SIGMOD Int’l.
Conf. on Management of Data, pages 493–504.

[Chawathe and Garcia-Molina, 1997] Chawathe, S. and Garcia-Molina, H. (1997). Meaningful
Change Detection in Structured Data. In Proc. of the ACM SIGMOD Int’l. Conf. on Management
of Data, pages 26–37.

[Comon et al., 1997] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
and Tommasi, M. (1997). Tree automata techniques and applications. available at
http://www.grappa.univ-lille3.fr/tata. (released 1 October 2002) as of 22
March.

[Deutsch et al., 1999] Deutsch, A., Fernandez, M. F., and Suciu, D. (1999). Storing Semistructured
Data with STORED. In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, pages
431–442, Philadephia, PA, USA.

[Florescu and Kossmann, 1999] Florescu, D. and Kossmann, D. (1999). Storing and Querying XML
Data Using an RDBMS. Data Engineering Bulletin, 22(3).

[Kersten and Windhouwer, 2000] Kersten, M. and Windhouwer, M. (2000). DMW Homepage.
Available at http://www.cwi.nl/~acoi/DMW/ as of 22 March.

[Klettke and Meyer, 2000] Klettke, M. and Meyer, H. (2000). XML and Object-Relational
Database Systems - Enhancing Structural Mappings Based on Statistics. In International
Workshop on the Web and Databases (WebDB), pages 63–68.

[Ludäscher et al., 2002] Ludäscher, B., Mukhopadhyay, P., and Papakonstantinou, Y. (2002). A
Transducer-Based XML Query Processor. In Proceedings of the International Conference on
Very Large Data Bases, pages 227–238.

[Megginson, 2001] Megginson, D. (2001). SAX 2.0: The Simple API for XML.
http://www.megginson.com/SAX/ as of 22 March.

[Neven and Schwentick, 1999] Neven, F. and Schwentick, T. (1999). Query Automata. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 205–214.

[O’Neil et al., 2004] O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., and Westbury, N. (2004).
ORDPATHs: Insert-Friendly XML Node Labels. available at
http://www.cs.umb.edu/~poneil/ordpath.pdf as of 22 March.

[Roussopoulos, 1997] Roussopoulos, N. (1997). Materialized Views and Data Warehouses. In
Proceedings of the 4th KRDB Workshop. available at
http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-
WS/Vol-8/ as of 22 March.

[Schmidt and Kersten, 2002] Schmidt, A. and Kersten, M. (2002). Bulkloading and Maintaining
XML Documents. In Proceedings of the ACM Symposium on Applied Computing (SAC), pages
407–412.

[Schmidt et al., 2001] Schmidt, A., Kersten, M., and Windhouwer, M. (2001). Querying XML
Documents Made Easy: Nearest Concept Queries. In Proceedings of the IEEE International
Conference on Data Engineering, pages 321–329.

[Schmidt et al., 2000] Schmidt, A., Kersten, M., Windhouwer, M., and Waas, F. (2000). Efficient
Relational Storage and Retrieval of XML Documents. In International Workshop on the Web and
Databases, pages 47–52, Dallas, TX, USA.

[Schmidt et al., 1999] Schmidt, A., Windhouwer, M., and Kersten, M. L. (1999). Feature Grammars.
In Proc. of the Int’l. Conf. on Information Systems Analysis and Synthesis, Orlando, Florida.

[Shanmugasundaram et al., 1999] Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt,
D., and Naughton, J. (1999). Relational Databases for Querying XML Documents: Limitations and
Opportunities. In Proc. of the Int’l. Conf. on Very Large Data Bases, pages 302–314, Edinburgh,
UK.

[Tatarinov et al., 2002] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E., and
Zhang, C. (2002). Storing and querying ordered XML using a relational database system. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
204–215.

[W3C, 1998a] W3C (1998a). Document Object Model (DOM). available at
http://www.w3.org/DOM/ as of 22 March.

[W3C, 1998b] W3C (1998b). Extensible Markup Language (XML) 1.0. available at
http://www.w3.org/TR/1998/REC-xml-19980210 as of 22 March.

[Zhang et al., 2001] Zhang, C., Naughton, J., DeWitt, D., Luo, Q., and Lohman, G. (2001). On
Supporting Containment Queries in Relational Database Management Systems. In Proc. of the
ACM SIGMOD Int’l. Conf. on Management of Data.

Terms
XML. The eXtensible Markup Language as defined at http://www.w3.org/XML/.
Document Databases. A collection of documents with a uniform user interface.
Document Warehouses. A document database consisting of documents gathered from

various independent sources.
Database Maintenance. The task of updating a database and enforcing constraints.
Relational Databases. Widely used variety of databases based on the relation algebra

by Codd.
Bulkload. Adding a (large) set of data to a database rather than individual tuples.
Edit script. A set of instructions that walk and update a document database node

by node.

