
~ Pergamon 
Computers Ma.th. Applic. Vol. 30, No. 11, pp. 9-23, 1995 

Copyright@l995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0898-1221(95)00160-3 
0898-1221/95 $9.50 + 0.00 

Step-Parallel Algorithms for 
Stiff Initial Value Problems 

W. A. VAN DER VEEN 
CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

(Received May 1995; accepted June 1995) 

Abstract-For the parallel integration of stiff initial value problems, three types of parallelism 
can be employed: "parallelism across the problem, n "parallelism across the method" and "parallelism 
across the steps." Recently, methods based on Runge-Kutta schemes that use parallelism across the 
method have been proposed in [1,2]. These methods solve implicit Runge-Kutta schemes by means of 
the so-called diagonally iteration scheme and are called PDIRK methods. The experiments described 
in [1], show that the speedup factor of certain high-<>rder PDIRK methods, is a.bout 2 with respect 
to a good sequential code. However, a disadvantage of the high-order PDIRK methods is, that a 
relatively large number of iterations is needed for each step. This disadvantage can be compensated 
by employing step-parallelism. 

Step-parallel methods are methods in which a number of steps are treated simultaneously. This 
form of parallelism can be applied to any predictor-corrector method. A common feature of this 
approach is their poor convergence behaviour, unless the various strategies are carefully designed. In 
this pa.per, we describe two strategies for the PDIRK across the steps method. Example problems 
tested in this paper show for the best strategy, a speed-up factor ranging from 4 to 7 with respect to 
the best sequential codes. 

Keywords-Numerical analysis, Runge-Kutta methods, Parallelism. 

1. INTRODUCTION 

In the literature, several step-parallel methods for integrating stiff initial value problems of the 

first-order form 
y' {t) = f (y(t)), y(to) =Yo, y(t), f(y(t)) E R0 

have been proposed. Here, a step-parallel method is understood to be a method that computes 
concurrently solution values at different points on the t-axis. Such methods are usually based on 
the iterative solution of an implicit step-by-step method. The conventional approach iterates until 
convergence at a particular point on the t-a.xis before advancing to the next point on the t-a.xis. 
Step-parallel methods, however, already start the iteration process at the next point before the 
iteration at the preceding point has converged. In a step-parallel method we distinguish three 

main components: 

(i) an implicit step-by-step method (the underlying corrector that we want to solve), 
(ii) an iteration process (the underlying iteration scheme) that is applied at each time point, 

and 
(iii) a strategy that determines when it is safe to advance to the next point on the t-axis, and 

at the same time provides an initial guess (the advancing strategy). 

The research in this paper was supported by the Technology Foundation (STW) in The Netherlands. 
The author wishes to thank P.J. van der Houwen and B.P. Sommeijer for their help during the preparation of this 
pa.per. 

Typeset by .A,MS-"I'E?C 

9 

~30·11·8 



10 W. A. VAN DER VEEN 

Step-parallel methods go back to Miranker and Liniger [3] in 1967 who based their method on 
predictor-corrector iteration of Adams-Moulton correctors. Since then, several of such methods 
have been proposed. For example, one of the recent step-parallel methods that has been developed 
is the method of Bellen and coworkers (4,5] which is based on Steffensen iteration (see also [6]). 

A common feature of step-parallel methods is that they require a carefully designed advancing 
strategy in order to ensure convergence, and if convergent, they often require an excessive number 
of iterations per time point. So the challenge is to design an advancing strategy that is both 
efficient and reliable with respect to convergence (robustness). Our purpose is to develop a 
strategy that is sufficiently robust to integrate large problems arising from control engineering 
and circuit analysis. 

The step-parallel method developed in this paper uses the 4-stage Radau IIA method as its 
corrector. This classical Runge-Kutta (RK) corrector has order p = 7 and is L-stable. For the 
underlying iteration process, we have chosen the Parallel Diagonal-implicit Iterated Runge-Kutta 
scheme (PDIRK scheme) proposed in [1]. The PDIRK scheme has a lot of intrinsic parallelism, 
that is, it is a method-parallel scheme. It solves the Radau IIA corrector by means of a so­
called diagonal iteration process which enables parallelism across the stages. In a performance 
analysis given in [1], it was shown that already without step-parallelism, PDIRK based on the 
4-stage Radau IIA corrector is a factor two faster than LSODE. The purpose of this pa.per is to 
decrease the effective number of iterations per point by adding an advancing strategy to obtain a 
step-parallel method. Consequently, we shall measure the performance in terms of these effective 
iterations. 

In [7], we already described a first version of an advancing strategy. This first version did not 
include a stepsize mechanism and could only be applied to simple test problems. For a number 
of sufficiently simple test problems we obtained speed-up factors with respect to LSODE ranging 
from 4 to 7. Furthermore, in [8] we derived convergence results for the step-parallel iteration 
process and we proved that it has the same stability and order properties as the underlying 
PDIRK scheme. 

In Section 2 of the present paper, we briefly describe the underlying PDIRK scheme and in 
Section 3, we give an exposition of the parallelism-across-the-steps mechanism. In Sections 4 
and 5, we specify two advancing strategies (including stepsize mechanisms), respectively based 
on extrapolation of previous information and on backward differentiation formulas. Finally, in 
Section 6, we shall examine the performance of these advancing strategies for various, relatively 
difficult test problems. It turns out that the extrapolation-based advancing strategy is the most 
robust and efficient one yielding speed-up factors ranging from 4 to 7 with respect to LSODE. 

2. A BRIEF INTRODUCTION TO THE PDIRK METHOD 
The PDIRK method is a parallel method for solving the implicit Runge-Kutta corrector equar 

tions, in the case of stiff initial value problems. We shall only consider PDIRK methods that a.re 
based on the class ofL-stable, stiffiy accurate implicit Runge-Kutta methods. This class contains 
methods of arbitrarily high order. 

A Runge-Kutta method approximates the solution in s points all in the interval (tn, tn+1]. 
These s point are given by 

tn + Cihn+i, Ci E (0, 1], i = 1, ... , S, hn+l = tn+l - tn, 

and a.re called stage points. The approximation in the stage point t.. + <;h,.+l is denoted by 
Yn+l,i and is called stage value. Using the s stage values, an approximation to the solution in 
the step point tn+l is obtained. This step point value is denoted by Yn+l· In the case of stiffiy 
accurate methods, the step point value Yn+l is the last stage value Yn+l,s (c8 = 1). For compact 
notation, the s stage values are combined in an set-dimensional stage vector Yn+l = (Yn+l,i)· For 
notational convenience only, we assumed= 1 in the formulas below, but in our discussion we 



Step-Parallel Algorithms 11 

will take into account that we deal with nonscalar equations. In terms of the stage vector Yn+l, 
the method is given by 

n = 0, 1, ... , N - 1, (1) 

where A and E are s by s matrices and F(Yn+d contains the derivatives f(Yn+i,i). Here A 
contains the Runge-Kutta parameters and Eis given by 

With respect to the stage vector Yo we remark that only the stage value Yo,s is needed. This 
stage value is given by Yo,s =Yo· 

The nonlinear equation (1) is solved by a Newton-like method, 

Y,?+ 1 to be defined by the predictor formula, (2) 

Y~+l = Y~+l - (I - hn+lDJn)-1 (Y1+i - EYn - h..+iAF (Y~+l))' (3) 

Yn+i =Y~1· 

In (3) the iteration index j runs from 1 tom. In practice, m will be determined dynamically, 
so that it depends on n, i.e., m = m(n). The matrix I is the s-dimensional identity matrix. A 
reasonable choice for the predictor formula is an extrapolation formula of order s. The matrix 
Jn represents an approximation to the Jacobian off at Yn and the matrix Dis a fixed diagonal 
matrix, that is chosen such that the iteration errors of the stiff components in the numerical 
solution are strongly damped (see [1,2], where D is chosen such that p(l - n-1 A) ~ O). The 
iteration scheme (2),(3) arises by replacing in the modified Newton method the matrix (J -
hn+lAJn)-1 by (I - hn+lDJn)-1 . In [1], this type of iteration scheme was called the diagonal 
iteration scheme. Finally, we describe how m is determined dynamically. First we introduce the 
defect defined by 

.6.(u, v) := 
_ 2uround 

r- Tol. (4) 

Here uround and Toi denote the unit round off and the limit for the local error estimate, respec­
tively. The smallest value of j for which the inequality 

'fln+1 = Y~+l,s• (5) 

is satisfied, is denoted by m. The parameter Tolcorr is supplied by the user. 
If d > 1, then D, E, A and Jn are replaced by the block matrices: D ®Id, E ®Id, A® Id and 

Is® Jn. Here, ® denotes the Kronecker product defined by A@ B = (AijB). 
Let us consider the computational aspects of the iteration scheme {2),(3). Since Dis a diagonal 

matrix, the s components Y~+l,i' i = 1, ... , s, can be computed independently from each other, 
so that they become available simultaneously. We shall assume that these s components are 
computed at the same time on s processors. This concurrent treatment of all s stage points is 
an example of parallelism across the method, or more specifically, parallelism across the stages. 
Moreover, we no longer solve a linear system of order sd, but we solves linear systems of order d. 
Obviously, they can be solved simultaneously using the s processors. These stage-parallel methods 
are called parallel diagonally iterated Runge-Kutta (PDIRK) methods. 



12 W. A. VAN DER VEEN 

For PDIRK methods bMed on Radau IIA with s = 1, 2, 3, 4, it was shown in (1,2] that their 
application to the test equation y' = >.y (using fixed steps) gives an iteration process that is 
convergent for every).. in the left half plane. Therefore, these PDIRK methods and the corre­
sponding Rad.au IIA correctors have the same accuracy and stability properties, provided that 
Tolcorr is sufficiently small. Moreover, the PDIRK methods turn out to be much cheaper than 
the implicit Runge-Kutta methods. This can be explained by the fact that for PDIRK the 
linear algebra calculations per iteration are much cheaper. Experiments reported in [l J show 
that PDIRK based on Rad.au IIA (s = 4) is two times more efficient than RADAU5 (the same 
speed-up factor was found with respect LSODE). A disadvantage of PDIRK methods is that the 
number of required diagonal iterations per interval is about the order of the method. Hence, for 
a high-order PDIRK-method (such as PDIRK based on Radau IIA with 4 stages), a relatively 
large number of iterations is necessary in each interval. This is where parallelism across the steps 
can be exploited. 

3. PDIRK ACROSS THE STEPS 
We shall obtain a step-parallel scheme by modifying the PDIRK iteration scheme. In the 

PDIRK methods, the iteration process in a point on the t-axis must be completed, before iter­
ations are started in the next point. Instead, step-parallel methods start iterating at the next 
point, before the iteration process in the preceding point has been completed. An advancing 
strategy will determine for every point when the current iterate is good enough for providing an 
initial guess and to start iterating in the next step point. As soon as this happens, the iterates 
in these two subsequent step points are computed simultaneously. In this section, we shall de­
scribe a step-parallel method based on PDIRK. This method is called PDIRK Across the Steps 
(PDIRKAS). In Section 4 and 5, we shall discuss two advancing strategies. 

In the following, we use the notation In = (tn-1, tn]· In the PDIRK iteration scheme (2),(3), 
step-parallelism cannot be used, because in order to calculate the iterates Y~+l • j = 0, 1, ... , 
the finally accepted iterate Yn = Ynm(n) is needed. To enable the simultaneous computation of 
iterates in the intervals In+l and In, the iterations in the interval In+l are started as soon as the 
iterate in interval In is good enough. Let this iterate be denoted by y{(n). For obtaining the 
corresponding step-parallel iteration scheme, we replace in (3) Yn by y{(n)+i-l _ The result of 
these changes is 

Y~+ 1 to be defined by the predictor formula, 

vi _ yi-1 _(I_ h DJ )-1 (yi-1 _ EYi°(n)+j-1 _ h AF (yi-1)) 
.ln+l - n+l n+l n n+l n n+l n+l · 

(6) 

(7) 

Here j ranges from 1 tom, where m is the smallest iteration index j for which the inequality (5) 
is satisfied. The iteration index j"'{n) determines how many iterations must be done in the 
interval In, before the computation of the iterates in In+I is started. We have shown [8], that if j'" 
is independent of n, then the iteration process (6),(7) applied to the test problem y' = >.y, t E [O, T] 
converges, whenever the PDIRK iteration process (2),(3) converges. For a convergence analysis of 
PDIRK methods we refer to [2]. For small values of j'", the convergence of PDIRKAS can be quite 
slow or there can be even initial divergence. This is partly due to the bad initial convergence 
behaviour in PDIRK. In view of this, j"' will be determined dynamically. Consequently, j* 
depends on n. 

For the predictor formula we have considered two cases: in Section 4, we discuss a predictor 
that is based on extrapolation of recent iteration results, i.e., Y,?+1 = Extrapolation ( y,.((n)). 
Another option is to generate predictions by means of a separate stiff solver; this case will be 
discussed in Section 5. In both cases these predictions are almost for free. This is obvious for 
the extrapolation predictor, whereas the stand alone integrator can calculate its predictions on s 
processors concurrently with the iterations in the interval In. 



Step..Parallel Algorithms 13 

Suppose that the iterate y{(n) has just been calculated. In the next period the following 
iterates are computed concurrently 

Y{(n)+l = Y{(n) - (J - hnDJn-1)-l (Y/(n) - EY~~~n-l)+j"(n) - hnAF (Y[(n))), 

and 
Y~+l = Y,?+l - (I - hn+1Dln)- 1 (Y~+l - EY[(n) - hn+1AF (Y~+1)). 

Notice that both computations use Y{ (n). Hereafter, for j = 2, ... , m, the iterates 

Y[<n)+j = y{(n)+j-1 - (I - hnDJn_i)-1 

X (Y[(n)+j-1 _ EY~~\n-l)+j"(n)+j-1 _ hnAF (y{(n)+i-1)), 

Y1 = yj-l - (I - h DJ )-1 (yi- 1 - EYi°(n)+j-I - h AF (yJ- 1)) n+l n+l n+l n n+l n n+l n+l , 

are calculated concurrently until the iterate in In satisfies (5). Note, that both calculations use 
Y[ (n)+i-l. Similarly, y[(n)+i and the iterate Y1~~n-l)+j"(n)+j are computed concurrently in 

each period. Applying this several times we see that the iterates y,(Cn)+J, Yi~<;- 1 >+i"(n)+i, ... , 

are also computed simultaneously with YJ. Notice that as j*(n), n = 1,2, . .. ,N, is smaller, 
more intervals are treated simultaneously. The average number of intervals that are being treated 
simultaneously depends on the number of iterations needed by PDIRK. The number of iterations 
per interval needed by PDIRKAS is higher than that for PDIRK. However, for PDIRKAS many 
iterations in an interval are done simultaneously with iterations in other intervals, resulting in 
significantly lower effective costs. 

In the PDIRKAS iteration process each interval under treatment requires the use of s proces­
sors, for calculating the s stage values at the same time. If in an interval, the current iterate 
satisfies (5), then the s processors corresponding to that interval are assigned to the first interval 
at the right where the iteration process has not been started yet. Note, that PDIRKAS uses both 
parallelism across the stages and parallelism across the steps. 

The choice of the mechanism for determining j*(n) and the predictor formula compose the 
advancing strategy. Furthermore, these choices determine whether PDIRKAS is robust and 
efficient. For instance, if j*(n) is small, then PDIRKAS may become divergent. This can be due 
to bad initial guesses. Moreover, the stepsize mechanism will be bad if it uses the initial guesses. 
If the predictor does not depend on y{(n) or if the initial guess is good then divergence can still 
occur in PDIRKAS by the amplification of iteration errors as was shown in [8]. Nevertheless, 
a lot of step-parallelism is used. On the other hand, if j*(n) is relatively large, then we have a 
robust method, using step-parallelism only modestly. In order to develop efficient step-parallel 
methods the underlying strategy must be designed carefully. 

The predictor to be discussed in Section 4 uses y[<nl. An appropriate advancing strategy 
has to ensure fast convergence of the PDIRKAS iteration process as well as to yield a good, 
high-order local error estimate (the corrector we solve is an high-order method). In this case the 
iteration index j*(n) will be the smallest j for which the iterate YJ is sufficiently accurate. The 
predictor to be discussed in Section 5 is given by a stand-alone stiff ODE solver. Here the main 
purpose is to ensure a good convergence of the PDIRKAS iteration process. In the last case, the 
initial guess Y~+l no longer depends on iterates in the interval In. So, we have much freedom 
in choosing a criterion for j'"(n). For instance, j*(n) can be based on the iteration process in 
interval In-k, with k a small positive integer. 

We have selected the following two predictor formulas: 

• Y~+l is the extrapolation of orders using y{(n). 
• Y,?+1 is the result of the application in the stage points of the 2-step Backward Differentia­

tion Formula (BDF) using EY~ and EY~_ 1 • The computation ofY~+l is done concurrently 
with the first j*(n) iterations in interval In· 



14 W. A. VAN DER VEEN 

With these two choices for the predictor, along with their definitions of j*(n), we have two 
PDIRKAS strategies. In the next two sections we will give the complete description of these two 
strategies. 

In this paper, we shall restrict our considerations to the computational complexity of the method 
on a parallel computer. Communication issues will be subject of a future paper. The computa­
tional complexity will be referred to as ''the effective costs" , and will be expressed in terms of 
d-dimensional diagonal iterations (see (3)). In calculating the effective costs, all d-dimensional 
iterations that can be done simultaneously are counted as one. In particular, the effective costs of 

. yj y;i"(n)+i yi"(n-l)+j"(n)+j · · • f a: · F1 · computmg n+l• n , n-l , ... , is JUSt one umt o euect1ve costs. or measuring 
the effective costs we have run an implementation of our step-parallel method on a sequential 
computer while keeping track of the computational complexity as if it had been executed on 
a parallel computer. In a forthcoming paper we shall report on the performance of an actual 
implementation of our step-parallel method on a parallel computer, including communication 
effects. 

Having described the step-parallel method, we shall discuss what type of parallel computer is 
most suitable for implementing PDIRKAS. We can exploit two kinds of parallelism: parallelism 
across the stages, and a.cross the steps. For parallelism across the stages, s processors are needed 
to compute in every iteration step Y~+l,i• i = 1, ... , s. After each iteration, the new stage values 
must be broadcasted to the other s -1 processors. Because of the many communications, a shared 
memory system is appropriate. For using step-parallelism, we can employ a cluster of such shared 
memory systems. In this type of parallelism, each system has to communicate information to 
only one other system. 

4. PDIRKAS USING THE EXTRAPOLATION PREDICTOR 

In this section, we describe the strategy for the PDIRKAS method, that uses for the predictor 
the extrapolation formula of orders. This strategy will be referred to as PDIRKAS(EXT). First, 
we shall give the predictor formula, followed by the mechanism for determining j*(n). 

The initial guess Y~+l is given for n ~ 1 by the extrapolation formula. of orders 

Y.o _ E Y.r (n) 
n+l - n+l n ' 

where En+l satisfies the order conditions 

hn+l 
Tn= hn' k=0,1, ... ,s-1. 

Here c = ( c1, ... , Cs) T and e is the a-dimensional vector with unit entries. This gives 

En+1 = vu- 1 , U:= (e,c-e, ... ,(c-e)"-1), V := ( e, Tnc, ... , (rnc)"- 1). 

To calculate Y~+l• the steplength hn+l and j*(n) are needed. Having given the predictor formula 
for YJ'+i• there remains the mechanism for determining j* and hn+l· 

First, we shall describe how j*(n) is determined using the iterates in the interval In and in 
the previous intervals. Because the iteration process in interval 11 is a PDIR.K iteration process, 
the definition for j*(l) differs from the genera.I case. Unless mentioned otherwise, we assume 
that n ~ 2. Since the initial guess Y:+i depends on y{(n), the iteration index j*(n) will be the 
smallest value of j for which Y,{ is "sufficiently accurate". More precisely, the iteration index 
j*(n) is the smallest value of j, for which Y,{ satisfies a number of criteria. The first criterion is 
that Y,{ approximately solves equation (1) and reads 

res(YJ, n, j) < Pabe Tol, 



Step-Parallel Algorithms 15 

with Pabs a positive parameter. Here, res(YJ, n, j) denotes the residue of YJ, with respect to (1) 
at time step n and iteration level j and is given by 

<B ") A ( TB Ty:i+i'(n-1) h TAF(B)) res ,n,J =u e8 ,e8 n-l + ne8 • 

Here, the defect t:J..(-, ·) is given by (4) and B is some approximation for Yn that is computed 
simultaneously with YJ+i"(n-l)_ We need an additional criterion, because the first one does not 
lead to good local error estimates. 

For the choice of the second criterion we make use of the following observations. It is very 
possible that the initial iterates in an interval are converging too slowly, or that there is a slight 
initial growth of the iteration error. This last phenomenon already occurs for the test problem 
y' = >..y for certain values of>. lying in the left half plane [7,8]. Therefore, in the beginning of the 
iteration process in interval In, the information in the interval In-1, (e.g., Y~~\n-l)+i) is much 
more reliable than information in the interval In (e.g., YJ). 

In order to decide whether Y,{ is good enough, we compare it with an a.lternative approximation 
for Yn. Considering the observation just given, a suitable alternative (or reference) approximation 
to Yn is provided by a very chea.p separate method, that only uses the most recent informa.tion in 
the interval In-l · We have taken as a reference solution the sth order extrapolation of the iterate 
in the interval In-1 that is calculated simultaneously with Y,{. This updated initial guess for Yn 
will be denoted by G~, and is defined by E11Y~~\n-l}+j, and will be computed for j = 1, ... , j*(n). 

As long as Y,{ yields a larger residue than G~, the iterate YJ is not sufficiently accurate and 
the iteration process in In+i is not started. So the second criterion is given by 

res(Y~,n,j) < Pre1res(G~,n,j), 

where Prel E (0, 1) and res(G~, n,j) denotes the residue of G~, given by 

(G; .) A ( Tai Tyi+i'Cn-1) h TAF (Gi)) res n• n,J = L.l. es n• e., n-1 + nes n . 

In conclusion, we take j•(n) to be the smallest iteration index j satisfying 

res(YJ, n, j) < "Y min (Pre1res( G~, n, j), Pabs Tol) , (8) 

with "Y = 1 and as a precaution we impose in the interval In-1 a similar condition with "Y = 0.5. 
There are situations where it takes a lot of iterations to satisfy these criteria, while the con­

vergence is good. This happens, for instance, if the defect A(yi, yi-l) is small and res(YJ, n,j) 
is large. To deal with these cases, Y,1 is also considered to be sufficiently accurate if the defect 
t:J..(y~, y~- 1 ) is less than min{rn-5 , 10-3Tol). 

The role of the parameters Pre! and Pabs is discussed below. 
If n = 1, then we take Y~i = Yo for i = 1, ... , s, and we define j'"(l) to be the smallest value 

of j :2:: 2 for which 
. . 1 

t:J..(y{,y{- ) < Tol1 

holds. Here Toh is a method parameter with default value 10-4 • From now on we assume that 
n :2:: 1. 

Let us consider step rejection in PDIRKAS(EXT). Although several intervals a.re treated simul­
taneously, we shall only reject steps in that interval, where the iteration index j does not exceed 
j*. Assume that this is the interval In. The step hn is rejected if either the local error estimate is 
larger than Tol or if the convergence is too slow. If the step is accepted then the iteration process 
in interval ln+l is started, and this is the step that can be rejected. The local error estimate is 
only calculated when the iterate is sufficiently accurate. Therefore, step rejection due to a. too 
large local error can only occur for j = j* ( n). On the other hand, it may happen that there is 



16 W A VAN DER VON 

slow convergence. To avoid we shall halve the step in the interval I,. when at least ooc of 
the conditions is violated in the interval In: 

• :::::; max;*, 
• res(}i;,n,J) < realim, for j > 
• 6.('11.,,, ) < l, for) ;::: 2, 

Here j assumes al! W!.lues for wh.i<'h is not sufficiently accurate. Furthermore, ma.xj*, resHm 
and jconv are method Section 6 for their \.11.l.ues). In view of the possible initial 
grmi.1:h, the integer valued para.meter jconv should not be too small. 

Finally, we describe how h...+1 is obtained. As an indicator for the behaviour of the local error 
in the corrector we take 

if n > 1 

if n = I, 

which is of order s. If err,. < Tol, then the step is accepted and hn+l is given by 

h.,.. 
kr.+1 = ( ( )) . ma.x 0.6, min 3.0, (1/0.8) y'(err,../Tol) 

(9) 

Conversely, if errn ;::: Toi then the step is rejected and (9) is used as the new steplength. Having 
described. PDIRKAS(EXT) we discuss the role of Prel and Pabs· These parameters determinej*(n) 
and, therefore, the stepsize and the convergence of the PDIRKAS iteration process. For small 
values of Pre! and P.i>bs• j•(n) will be relatively large. Consequently, the local error estimator is of 
good quality resulting in a relatively small number of steps. However, less intervals are treated 
simultaneously. Hence, small values of the parameters leads to inefficient strategies. On the 
other hand, if these two values are large and, therefore, causing j*(n) to be small, PDIRKAS 
may become divergent, because the initial guesses steadily deteriorate. Furthermore, the local 
error estimate gets worse as the parameters become larger, with the effect that more steps a.re 
needed to achieve a certain accuracy. However, the amount of step-parallelism is relatively high. 
So there are optimal values of the two parameters, that give the required accuracy at a minima.I. 
effective cost. Experiments show that the performance is not sensitive to small changes in the 
two parameters. Moreover, the optimal values a.re more or less problem independent. In our 
implementation with the Radau HA corrector, we have taken Pa.bs = Pre! = 0.5. 

Experiments show that the number of intervals that are treated concurrently may become 
large (up to 30) temporarily. However, most of the time the number of intervals under concur­
rent treatment is only a fraction of this. We will describe a bound K for this number. As a 
consequence, the conditions (8) may be satisfied while the number of processors in use equals 
the number K. This forces the method to continue the iteration, thus increasing j*(n). The 
resulting PDIRKAS(EXT) algorithm is denoted by PDIRKAS(EXT,K). Only for small K (say 
between 1 and 8) this restriction alters the value of j* significantly. 

Next, consider the effective costs. A straightforward implementation on a parallel computer 
yields an effective cost of j*(n) + 1 units in the interval In· Assume that Y1~\n-ll and Y~ have 
just been calculated. First, the iterates YJ,j = l, ... ,j'"(n) are computed. When this has been 
done, the PDIRKAS method has to verify tha.t the iters.te y[«» satisfies (8). For this verification 

we need F ( Y{ (n)) and F ( Gf (n)). After these function evaluations, we advance to the interval 

In+i and compute Y,?+1. Hence, F (y[<nl) is calculated before F (Y;?+i) can be calculated. 

Because F ( Y{ (n)) is the first part of the computations for Y{ (n)+ 1 , a substantial part of the 

calculation of y{Cn)+l is completed, before Y~+l can be computed. 



Step. Parallel A lgorith!T13 17 

However, we can reduce the effective costs in I,, to j* ( n), as follows. Assume that the iterations 
have already been started in interval I,,, while the iterations in interval ln+I have not been 
initiated yet. When an iterate YJ in I,, has just been computed, we a.et as if this iterate is accurate 
enough in order to advance to the interval In+ 1. Therefore, we ca.lculate Y~+l = En+! YJ and 
F (Y,?+1) simultaneously with F (Y..f). Only when YJ satisfies condition (8), we really advance 
the iteration process to interval ln+i. otherwise we just ignore F (Y.?+ 1) a.nd compute a new Y~+i 
based on YJ+l and repeat the procedure just described once more. These additional calculations 

requires additional processors. In this fl'l.Shion, F (y{!nl) a.nd F {Y~+l) = F ( .En+1Y{Cnl) are 
calculated simultaneously. Because these function evaluations are the first parts of the calculation 
of y{<n)+l and Y~+l • these iterates a.re also computed simultaneously (En+l is almost for free). 
In view of this, the effective costs in interval I,, are j•(n) units. 

The total effective costs are given by E:.::.1 j'(n)+m(N) plus the effective costs of all iterations 
carried out in rejected steps. The number of processors needed by PDIR.KAS(EXT,K) equals 
(K + ~~s. Here, 2s processors a.re used for computing F(Y~+i) = F(En+1YJ) and F(G~) 
simultaneously with F (YJ). 

5. PDIRKAS USING THE 
BACKWARD DIFFERENTIATION FORMULA 

We have implemented several strategies using BDF, the best of which will be presented here. 
This strategy uses for the initial guess Y.?+i the L-sta.b1e, two-step BDF and we shall refer to it 
as the PDIRKAS(BDF) strategy. This predictor has to yield an initial guess for Yn+l,i in every 
stage point. These initial guesses a.re calculated concurrently ons processors. The implicit BDF 
equations a.re solved using the modified Newton method. This method is stopped as soon as the 
defect (4) between two subsequent iterations is less than min(l0-5, 10-3Tol). Here Tol is the 
upper bound for the local error estimate. If after 5 iterations this criterion is not satisfied., then 
the step is halved and new BDF approximations a.re calculated. 

The local error, which is only controlled in the step points, is given by the defect (4), where 
u and v correspond to the approximations obtained by the two-step and three-step BDF and 
is denoted by errn. This local error estimate is of order 3. The three-step BDF approximation 
is computed concurrently with the other s BDF approximations. The step hn is accepted if 
err,, <Toi. In that case, the initial guess for the steplength is given by 

hn 
hn+l = ( ( )) · max 0.66,min 5.0, (1/0.8){/(err,,/Tol) 

Otherwise, the step is rejected and the new steplength for h,, is given by the right hand side of 
the preceding formula. 

We have taken as definition for j*(n): j*(n) is the smallest iteration index j of Yn such that 
the residue of the iterate in interval In-k• that is computed concurrently with YJ, is a factor a1c 

smaller than res (Y~-k• n - k, 0), i.e., 

Here Y;:!!i denotes the iterate in interval In-k that is computed simultaneously with YJ, and k 
is a small positive integer. In addition we require that: 

and 
res(YJ,n,j) <0.01 or il(Y!i,Y!i-1) <0.01. 



18 W. A. VAN DER VEEN 

These two last criteria prevent the propagation of instabilities. For n :5 k the va.Jue of j'"(n) is 
the smallest value of j for which 

ti. (Y!,,y~- 1 ) < Tol1, 

with Tol1 = 10-4 • Optimal values of the parameters k and a.k have to be determined experimen­
tally. Experiments show that they are more or less problem-independent. We use the parameter 
values k = 3 and ak = 0.01. 

As in the PDIRKAS(EXT) ca.se we shall describe a bound K for the number of intervals that 
are treated concurrently. The resulting method is denoted by PDIRKAS(BDF,K). An apparent 
disadvantage of this approach is that the local error estimate is independent of the number of 
stages of the corrector and, consequently, independent of its order. 

In the PDIRKAS(BDF) process it happens that Y~+l has to be be calculated, while the calcu­
lations for Y~+l are not completed yet. This situation rarely arises because the maximal number 
of BDF iterations is limited to 5 (the average number of iterations per point turns out to be 
between 2 and 3). 

6. PERFORMANCE EVALUATION 
OF PDIRKAS 

6.1. Numerical Experiments 

In our experiments we use the four-stage Radau IIA method as the underlying corrector. Since 
we shall iterate this corrector until convergence, PDIRKAS has the same order a.nd stability 
properties, that is, it has step point order 7, stage order 4 and it is £-stable. 

We distinguish four types of parameters: 

(i) problem parameters like initial values, integration interval, etc., to be specified in Section 
6.2, 

(ii) input parameters to monitor the integration process and to be specified by the user, 
(iii) strategy para.meters that are part of the code, and 
(iv) output para.meters, that will be specified in Section 6.3. 

The input parameters are Tol, Tolcorn K and ho. Toi is the upper bound for the local error 
estimate, and Tolcorr determines when the iteration process in the successive intervals can be 
terminated (cf. (5)). Since a relatively small value ofTolcorr only slightly increases the number of 
intervals treated simultaneously, while the effective costs remain approximately the same, we have 
chosen Tolcorr = 10-12 , unless mentioned otherwise. Furthermore, K is the maximum number of 
intervals that the user allows to be treated simultaneously, and ho is the initial stepsize. 

PDIRKAS(EXT) contains the strategy parameters maxj*, jconv, and reslim, which a.re re­
spectively chosen 20, 7 and 0.1. The strategy parameters for PDIRKAS(BDF) are given in 
Section 5. 

For the calculations, 15-digits arithmetic was used. For a number of test problems we shall give 
results obtained by PDIRKAS(EXT) and PDIR.KAS(BDF). In order to appreciate these results, 
we compare them with PSODE. PSODE (Parallel Software for ODEs} has been developed in [9] 
and is, like PDIRKAS, based on PDIRK iteration of the four-stage Radau IIA corrector. This 
facilitates an easy mutual comparison in terms of effective numbers of diagonal iterations. 

Finally, we remark that in both PDIRKAS strategies we have refrained from introducing a 
mechanism for updating the Jacobian. Since our present implementation of PDIRKAS updates 
the Jacobian in each step, PSODE was modified accordingly. 

6.2. Test Problems 

The first test problem is the electric ring modulator [10], which contains 15 differential equa­
tions. Some of them are highly nonlinear. This set of equations contains a parameter c., by 
which a DAE or ODE can be realized. We have chosen Ca = 10-9 , resulting in a stiff ODE. 



Step-Parallel Algorithms 19 

The second test problem is the Robertson kinetics example, which originates from chemistry: 

and with t E [O, 108]. 

dy1 4 dt = -0.04y1 + 10 Y2Y3 

dy2 0 04 3 7 2 dt = 0. 4y1 - 1 Y2Y3 - · 10 Y2 

dy3 = 3 · 107y~ 
dt 

y(O) = (1, 0, 0) T 

We also include two van der Pol equations: 

dy1 
-=y2 dt 
dy2 ( 2 dt = 50 1 - yi)y2 - Yi 

y(O) = {2, 0) T 

on [0,83] a.s the third test problem and 

dy1 
-=y2 
dt 

dY2 ( 2 )6 dt = (1-Y1)Y2-Y1 10 

y(O) = (2, -0.66) T 

{10) 

(11) 

(12) 

on (0,2] as the fourth. These ODEs have changes in their components in an almost discontinuous 
way (especially (12)). 

Our fifth test problem is the linear Prothero-Robertson problem: 

dy1 1 . 
- = -- (Y1 - cos(y2)) - sm(y2) 
dt e 
dy2 = 1 
dt 

y(O) = (1, 0) T 

on [0,10] and with e = 10-3• The exact solution is given by y(t) = cos(t). 
The last one is the electric inverter [11]: 

dyi 5 -yi K °di = RO - 0 g(Yi-l• Yi), i = 1, ... ,4, 

R = 5000, C = 0.2 · 10-12 , K = 2 · 10-4 , 

g(u, v) = (max(u - 1, 0))2 - (max(u - v, 0))2 , 

y(O) = (5, 0.5, 5, 0.5) T, 

{ 
o if t $ 0.5 · l0-8 v t ;::::: 1. 75 . 10-8 

109t - 5 if t e [0.5 · 10-s, 1 · 10-8] 

Yo(t) = 5 if t e [1·10-s, 1.5 · 10-s1 

-2 · 109t + 35 if t e [1.5 · 10-8 , 1.75 · 10-8] 

on (0, 2.5 · 10-8]. 

{13) 

(14) 



20 W. A. VAN DER VEEN 

6.3. Numerical Results 

For the experiments we recorded the following quantities: 

• Tol: the upper bound for the local error estimate. 
• N: the number of accepted steps. 
• nsd: the relative accuracy in significant digits of the approximation in the endpoint, given 

by the minimum of 
10 jyfx -yfPPj 

- log ma.x(IYf~'I, lQ-6)' 

where i runs from 1 to d. Here yez and y3PP respectively denote the exact solution and its 
approximation in the endpoint. Components with absolute values smaller than 10-6 are 
treated differently because this is also done in the defect ( 4). 

• Kmax: the maximal number of intervals that are treated simultaneously. 
• Kav: the average number of intervals that are treated simultaneously. 
• Gelf: effective costs, the number of diagonal iterations (including iterations in rejected 

steps). Here all diagonal iterations, that can be done concurrently are counted as one 
unit. 

• j:v: the average value of j*. 
• Nreject: the total number of rejected steps (due to convergence failure or local error con­

trol). 
• mav: the average number of iterations performed in an interval (including iterations done 

in a step rejection). 

First, we shall consider how the parameter K in the PDIRKAS(EXT,K) method affects the 
performance. Because the maximal number of intervals that are treated concurrently is at most K, 
unnecessary continuation of the iteration process should be avoided for small K-values. Therefore, 
we have used here Tolcorr = 10-9• In Table 1 (see appendix), the infl.uence of K is shown for 
the first test problem. For this small value of Tolcom PDIRKAS(EXT,2) is about two times 
cheaper than PDIRKAS(EXT,1). Comparing the average number of iteration per step, given 
by mav• we see that in an interval the PDIRKAS(EXT,2) iteration process closely resembles the 
PDIRK-iteration process. For larger values of K the performance does not get better any more 
and becomes more or less independent of K. 

In Tables 2 to 7, (see appendix) we give the results of PDIRKAS(EXT) and PDIRKAS(BDF) 
when applied to the various test examples; for evaluating the performance we give the results 
obtained with PSODE as well. For PDIRKAS(EXT,4) we used Tolcorr = 10-9 instead of 
Tolcorr = 10-12 • As can be seen from these tables, PDIRKAS(EXT,4) is almost as good as 
PDIRKAS(EXT,10). If the parameter Tolcorr used in PDIRKAS(EXT,4) is smaller than 10-9 , 

this is no longer true. Comparing PDIRKAS(EXT,10) and PDIRKAS(EXT,30), it turns out that 
the performance of the stepsize mechanism in PDIRKAS(EXT,10) is slightly better than that of 
PDIRKAS(EXT,30), because of a. better convergence behaviour (see mav)· Assuming that there 
are sufficiently many processors, PDIRKAS(EXT,10) is the best of the three PDIRKAS(EXT) 
methods. 

For PDIRKAS(BDF), the experiments show that PDIRKAS(BDF,4) is slightly less efficient 
than PDIRKAS(BDF,10). From the tables it is apparent that PDIR.KAS(BDF,30) is better tha.n 
PDIRKAS(BDF,10), although the differences are small. Therefore, taking into account the large 
number of extra processors needed, PDIRKAS(BDF,10} is to be preferred. With respect to the 
van der Pol equations (11),(12), we remark that PDIRKAS(BDF) can not handle this problem, 
because the order of accuracy of BDF is too low. 

6.4. Comparison of PDIRKAS(EXT) and PDIRKAS(BDF) 

Comparing PDIRKAS(EXT,10) and PDIRKAS(BDF,10), we conclude that the first method is 
more efficient and more reliable than PDIRKAS(BDF,10). Comparing PDIRKAS(EXT,10) with 



Step-Parallel Algorithms 21 

PSODE shows tor a broad class of test problems that the speed-up factor ranges from 2 to 3.5. 
Recall that PSODE is twice as efficient as LSODE. Consequently, PDIRKAS(EXT,10) is 4 to 7 
times more efficient than LSODE. 

REFERENCES 

l. P.J. van der ROUW«! and B.P. Sommelj«, Iterated Runge-Kut.ta methods on parallel computers, SIAM J. 
Sci. Sta.t. Comput. 12, 1000-1028 (1901). 

2 P.J. van der Houwen and B.P. Sommeijer, Analysis of parallel diagonally implicit iteration of Runge-Kut.ta 
methods, APNUM 11, 161H88 (1993). 

3. W.L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential 
equations, Math. Comp. 21, 303-320 (1967). 

4. A. Bellen, R. Vermiglio and M. Zennaro, Parallel ODE-aolvers with stepsize control, JCAM 31, m-293 
(1990). 

5. A Bellen, Parallelism across the steps for difference and differential equations, In Lecture Notea in Mo.the· 
ma.tica, p. 1386, Springer-Verlag, (1987). 

6 P. Chartier, Parallelism in the numerical solutions of initial value proble!llll for ODEs and DAEs, Thesis, 
Universite de Renne& I, France, (1993). 

7. P.J. van der Houwen, B.P. Sommeijer and W.A. van der Veen, Parallelism across the steps in iterated 
Runge-Kutta methods for stiff initial value problems, Numerical Algorithms 8, 293-312 (1994). 

8. W.A. van der Veen, J.J.B. de Swart and P.J. van der Houwen, Convergence aspects of step.parallel iteration 
of Runge-Kutta methods, APNUM (1995) (to appee.r). 

9. B.P. Sommeijer, Parallel-iterated Runge-Kutta methods for stiff ordinary differential equatiOM, JCAM 45, 
151-168 (1993). 

10. E. Hairer, C. Lubich and M. Roche, The numerkal solution of differential-algebn.ic &yStems by Runge-Kutta 
methods, Lecture Notes in Mathema.tiCJ, p. 1409, Springer-Verlag, (11)89). 

11. W. Kampowski, P. Rentrop and W. Schmidt, Claaaifica.tion and Numeri.ca.l Simulation of Et.ectric Circuit$, 
Math. Inst. Tech., Univ. Munchen, (1991). 

APPENDIX 

Table l. Results for the Ring modulator using PDffiKAS(EXT,K), with K=l,2,4, 
8,10 and Tolcorr = 10-9 . 

K Toi N nsd Kmax(Kav) ceff .. 
1av NreJect mav 

1 0.01 3174 5.8 1 27561 6.7 788 8.5 

2 0.01 3166 5.9 2(1.7) 14287 3.5 760 8.8 

4 0.01 3167 5.9 4(3.4) 10825 2.7 765 12.7 

8 0.01 319() 5.9 8(4.6) 10278 2.6 741 15.9 

10 0.01 3199 5.8 10(4.8) 10245 2.5 765 16.2 

Table 2. Results for the Rii:ig modulator. 

Method Thi N nsd Km&Jt.(Kav) ceff ;;v Nreject mav 

(EXT,4)1 0.01 3167 5.9 4(3.4) 10825 2.7 765 12.7 

0.002 4647 6.7 4(3.3) 15223 2.8 798 11.9 

(EXT,10) 0.01 3204 5.9 10(6.7) 10443 2.6 738 22.7 

0.002 4707 6.7 10(6.6) 15062 2.7 778 22.0 

(EXT,30) 0.01 3214 5.9 30(7.l) 10275 2.5 749 23.8 

0.002 4750 6.7 23(7.0) 15128 2.7 868 23.3 

(BDF,10) 0.01 3556 2.9 10(8.l) 11092 3.1 1112 26.2 

0.005 4766 3.4 10(8.3) 14762 3.1 1333 26.4 

PSODE 10-4 1978 4.3 l 12818 453 6.5 
10-s 3017 5.7 1 18655 675 6.2 

lo-6 4671 7.2 1 28438 974 6.1 

1(EXT,4) always uses Tulcorr = 10-9 



22 W. A. VAN DER. VEEN 

Table 3. Results for the Robertson kinetics example (10). 

Method Toi N nsd Kmax(Kav) Cetr i:v Nnject 1'11av 

(EXT,4) 0.1 91 7.3 4(2.0) 374 4.1 0 9.2 
0.01 127 7.3 4(2.2) 438 3.5 0 8.7 

(EXT,10) 0.1 93 7.3 10{3.3) 381 4.1 1 14.4 
0.01 128 7.3 10(3.2) 446 3.5 0 12.0 

(EXT,30) 0.1 93 7.3 10(3.3) 381 4.1 1 14.4 
0.01 128 7.3 10(3.2) 446 3.5 0 12.0 

(BDF,10) 0.1 85 7.3 10(5.1) 261 3.1 0 16.7 
0.01 132 7.3 10(5.3) 338 2.6 0 14.5 

(BDF,30) 0.01 132 7.3 26(8.0) 305 2.3 0 19.4 

PS ODE 10-4 94 5.9 1 616 0 6.5 
10-s 127 7.4 1 829 0 6.5 

Table 4. Results for the Van der Pol equation (11). 

Method Tol N nsd Kmax(Kav) Ceff 
.. 

Jav Nreject mav 

(EXT,4) 0.3 101 4.9 4(3.3) 410 2.9 49 14.4 
0.1 119 6.0 4(3.1) 432 2.5 40 12.3 
0.01 190 8.2 4(3.1) 514 2.0 43 9.4 
0.001 322 10.0 4(3.0) 673 1.9 23 7.3 

(EXT,10) 0.3 105 5.1 10(6.3) 431 2.8 49 26.6 

0.1 126 6.3 10(5.6) 407 2.1 50 19.0 

0.01 194 8.1 10(6.0) 484 1.8 42 16.0 
0.001 324 10.0 10(6.7) 652 1.8 27 14.4 

(EXT,30) 0.3 114 5.3 26(9.7) 425 2.2 60 36.9 
0.1 128 6.2 15{6.0) 415 2.1 53 20.5 

0.01 197 8.3 18(7.6) 476 1.6 48 19.3 
0.001 330 10.0 25(9.0) 650 1.6 38 18.7 

PSODE 10-4 132 6.3 1 883 26 6.7 
10-s 184 7.4 1 1193 32 6.5 
10-1 421 8.1 1 2670 39 6.3 
10-8 626 8.7 1 3738 43 5.9 

Table 5. Results for the Va.n der Pol equation {12). 

Method Toi N nsd Kmax(Kav) Cetr i:v Nreject mav 

(EXT,4) 0.1 191 6.3 4(2.6) 834 2.8 83 12.2 

0.01 288 7.9 4(2.3) 945 2.3 72 10.2 

0.001 471 9.8 4(2.6) 1264 2.4 36 7.9 

(EXT,10) 0.1 181 6.5 10(4.5) 734 2.6 89 19.2 
0.01 289 7.7 10(4.8) 929 2.3 69 17.0 
0.001 477 9.7 10(5.3) 1260 2.3 48 15.2 

(EXT,30) 0.1 190 6.5 14(4.7) 783 2.6 93 20.5 
0.01 294 7.8 19(6.0) 912 2.1 78 20.0 
0.001 479 9.7 23(6.9) 1214 2.1 44 18.3 

PSODE 0.01 112 3.9 1 852 6 7.6 
10-4 206 5.6 1 1430 36 6.9 
10-5 281 6.9 1 1880 52 6.7 
10-6 420 6.0 1 2739 59 6.5 
10-7 693 7.8 1 4721 50 6.8 
10-8 969 10.7 1 6310 42 6.5 



Step-Parallel Algorithms 23 

Table 6. Results for the linear Prothero-Robertson problem (13). 

Method Toi N nsd Kmax(K.,,v) 0.11 ;;v Nreject mav 

(EXT,4) 0.01 40 9.5 4(2.0) 141 2.9 6 7.8 
(EXT,10) 0.01 40 9.5 9(3.6) 141 2.9 6 13.7 
(EXT,30) 0.01 40 9.5 9(3.6) 141 2.9 6 13.7 

(BDF,10) 10-4 69 8.8 10(7.5) 144 2.1 11 16.3 
(BDF,30) 10-4 69 8.8 30(15.8) 125 1.8 11 28.3 

PSODE 10-6 49 8.1 1 411 0 8.4 
10-8 120 9.0 1 1066 0 8.9 
10-9 176 10.2 1 1414 0 8.0 

Table 7. Results for the electric inverter (14). 

Method Toi N nsd Kmo.x(Kav) Cetr i;v Nreject ffiav 

(EXT,4) 0.2 37 5.8 4(3.5) 169 3.5 13 17.0 

0.1 44 6.3 4(3.0) 171 3.0 12 13.8 
0.01 76 7.8 4(3.2) 206 2.2 17 9.7 

0.001 125 8.3 4(3.2) 272 1.9 14 7.9 

0.0001 217 9.6 4(3.1) 388 1.6 27 6.6 

{EXT,10) 0.2 40 5.1 10(7.0) 160 2.5 22 28.6 
0.1 47 7.1 10(6.3) 158 2.4 12 22.2 

0.01 78 7.5 10(6.3) 186 2.0 16 16.0 

0.001 130 9.0 10(6.9) 276 1.9 16 15.6 
0.0001 223 9.7 10(7.0) 400 1.6 28 13.8 

(EXT,30) 0.2 40 5.2 17(8.7) 163 2.5 20 35.0 
0.1 46 5.5 18(7.7) 154 2.5 12 26.5 
0.01 79 7.9 13(6.3) 196 1.9 16 16.5 
0.001 129 8.6 16(8.2) 269 1.4 24 18.4 

0.0001 224 9.8 20(9.5) 386 1.3 31 17.6 

(BDF,10) 0.01 73 7.5 10(6.6) 172 2.4 16 16.6 

0.001 137 8.6 10(7.8) 270 2.0 15 16.4 
0.0001 287 10.3 10(8.8) 472 1.6 16 15.4 

(BDF,30) 0.01 73 7.5 13(7.4) 169 2.3 16 18.2 
0.001 137 8.6 26(10.4) 268 2.0 15 21.2 

0.0001 287 10.3 25(13.8) 453 1.6 16 22.8 

PS ODE 10-4 57 6.0 1 377 14 6.6 
lo-6 131 8.8 1 795 29 6.0 
10-1 186 9.5 1 1089 32 5.8 


