
Counting Is Easy

JOEL I. SEIFERAS

University q/Rochester. Rochester. New York

AND

PAUL M. B. VITANYI

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Abstract. For any fixed k, a remarkably simple single-tape Turing machine can simulate k independent
counters in real time.

Categories and Subject Descriptors: E.2 [Data]: Data Storage Representations-contiguous representa
tions; F.1.1 [Computation by Abstract Devices]: Models of Computation-relations among models;
bounded-action devices; F.2.2. [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems-sequencing and scheduling; F.2.3 [Analysis of Algorithms and Problem
Complexity]: Trade-offs among Complexity Measures; G.2.1 [Discrete Mathematics]: Combinatorics
combinatorial algorithms

General Terms: Algorithms, Design, Theory, Verification

Additional Key Words and Phrases: Abstract storage unit, counter, counter machine, multicounter
machine, oblivious simulation, one-tape Turing machine, on-line simulation, real-time simulation,
recursion elimination. redundant number representation, signed-digit number representation, simula
tion between models

I. Introduction

In this paper we describe a remarkably simple real-time simulation, based on just
five simple rewriting rules, of any fixed number k of independent counters. On a
Turing machine with a single binary work tape, the simulation runs in real time,
handling an arbitrary counter command at each step. The space used by the
simulation can be held to (k + ~)log2n bits for the first n commands, for any
specified ~ > 0. Consequences and applications are discussed in [10]-[11], where
the first single-tape, real-time simulation of multiple counters was reported.

Informally, a counter is a storage unit that maintains a single integer (initially 0),
incrementing it, decrementing it, or reporting its sign (positive, negative, or zero)
on command. Any automaton that responds to each successive command as a
counter would is said to simulate a counter. (Only for a sign inquiry is the response

The work of J. I. Seiferas was supported in part by the National Science Foundation under grant MCS
81-10430.

Authors' addresses: J. I. Seiferas, Computer Science Department, University of Rochester, Rochester,
N.Y. 14627; P. M. B. Vitanyi; Centre for Mathematics and Computer Science, P.O. Box 4079, 1009
AB Amsterdam, The Netherlands.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish. requires a fee and/or specific permission.

© 1988 ACM 0004-5411/88/1000-0985 $01.50

Journal of the Association for Computing Machinery. Vol. 35. No. 4, October !988, pp. 985-!000.

986 J. I. SEIFERAS AND P. M. B. VITANYI

of interest, of course. And zeroness is the only real issue, since a simulator can
readily use zero detection to keep track of positivity and negativity in finite-state
control.) To simulate k independent counters, an automaton must respond to 3k
commands: "increment counter number i," "decrement counter number i," and
"report the sign of counter number i" (l :s i :s k). If there is some fixed bound on
the time needed by a simulator to respond to the successive commands it receives,
then it simulates in real time.

Our real-time k-counter simulator will be a single-tape Turing machine. Such an
automaton consists ofa finite-state control unit with read-write access to an infinite
but initially blank binary storage tape (0 in every bit position). Each next step is
determined by the current control state, the bit currently scanned by the read
write head on the storage tape, and the most recently received input symbol (in
our case, the last command not yet responded to). Each step can involve any of
the following actions: A change to the bit scanned by the head on the storage tape,
a shift left or right by that head to an adjacent bit position, emission of an output
symbol (in our case, a command response), and a state transition by the finite-state
control unit.

An apparently stronger notion of real-time simulation would require response
to each successive command just one step after submission. In the special case of
counter simulation, however, any real-time simulation actually does also yield a
real-time simulation in which the command-response delay is just 1. (It is well
known that a larger delay can be "swept under the rug" by increasing the size of
the alphabet used on the storage tape, but that is not necessary in our case.)

PROPOSITION. If a single-tape Turing machine can simulate k counters in real
time with command-response delay bound d, then a similar single-tape Turing
machine (still with only binary tape alphabet) can do so with delay bound 1.

PROOF. The rough idea is for the delay-I simulation to use a delay-d simulation
to store an appropriate fraction of the contents of each of its counters and to
maintain all the remainders in finite-state control.

More accurately and precisely, the delay-I simulation can operate in "phases"
of 2kd steps, maintaining the following invariant from phase to phase, for the
absolute value I c I of each count c:

I C I == Co + C1 (2kd),

where either

C1>0 and 2kd :S Co :S 8kd

or

C1 == 0 and 0 :S Co :S 8kd,

and where Co and the signs of c and C1 are stored in finite-state control, and c 1 is
stored in the corresponding counter of the delay-d simulation. The 2kd commands
received in each phase can be handled within finite-state control, increasing or
decreasing each Co by at most 2kd. Meanwhile, the 2kd steps are enough for one
increment or decrement of and one interrogation of each c1 • In each case the
simulation should increment C1, as part of a "carry" from c0 , if c0 > 6kd held when
the phase began; and it should decrement Ci, as part of a "borrow" for c0 , if
Co < 4kd held when the phase began, unless C1 was already zero. For each count,
if Ci was positive when the phase began, then 2kd :s c0 :::;; 8kd will hold when it

Counting Is Easy 987

ends. If C1 was zero when the phase began, however, c0 might "underflow" almost
to -2kd; but, in that case, c1 will remain zero, so that a sign change in finite-state
control will suffice to restore the invariant. Finally, note that there will always be
enough information in finite-state control to determine whether a count is currently
zero: Each count will be zero just when its c0 is zero and its c1 was zero when the
current phase began. D

Prior to the breakthrough in [10] and [11], there were at least three weaker
simulations in the literature. M. Fischer and Rosenberg (4] showed that the
simulation is possible in the case in which only simultaneous zeroness of the k
counters has to be reported. P. Fischer, et al. [5] showed that a full simulation is
possible in cumulative linear time (i.e., with average delay bounded by a constant,
but with no fixed bound on the delay for each individual command). A while
later the latter authors showed that four Turing machine tapes are as efficient
as k counters for sequence generation [6]. Fti.rer's full linear-time simulation [7]
requires more than one tape, but two suffice even if they are otherwise occupied.

2. A Peek at an Oblivious Solution

Using a straightforward unary (or "tally") notation, an automaton with just one
storage tape (i.e., a single-tape Turing machine) obviously can simulate a single
counter in real time. An appropriate redundant variant of binary notation also
suffices and requires much less space on the storage tape [4].

To simulate more than one counter in real time using a single tape is much
harder. For any k, in fact, it is hard to imagine how fewer than k separate tapes
can suffice to simulate k counters in real time. Since the contents of the counters
to be simulated can fluctuate completely independently, we seem to be forced to
consider simulations that actually handle the separate counters separately, say on
k separate "tracks" of the one available tape. The problem is to ensure that the
simulator's one tape head is always in the right place for every one of these separate
handlings, since the next command might be addressed by any of the simulated
counters.

Each "separate handling" above is essentially a real-time simulation of one
counter. The requirement that the tape head is always in the right place can be
formulated most clearly if our counters are "enhanced" to handle one additional
command, a command to "do nothing." (Any efficient simulation of an un
enhanced counter trivially yields an efficient simulation of an enhanced one,
anyway: Simply handle each "do nothing" as if it were an "increment" followed
by a "decrement.") Then we can view each command to a multiple-counter storage
unit as a tuple of commands, one to each separate counter. What we need, therefore,
is a real-time, single-counter simulation that is "oblivious" in the sense that neither
its head position nor its times of interaction with the outside world (to respond to
commands and to receive new ones) depend at all on the particular command
sequence. Our real-time simulation of a k-counter storage unit is indeed based on
performing, on a separate track of the one available storage tape, just such a
simulation for each of the k simultaneous command streams.

In the rest of this section, without further motivation, we preview the entire
oblivious simulation of a single counter. In the following sections, on the other
hand, we return to an evolutionary top-down development of the simulation, with
each successive refinement motivated by some outstanding inadequacy or loose
end. Having previewed the final concrete result, the reader will better appreciate
the direction and progress of that evolution.

988 J. I. SE!FERAS AND P. M. B. VITANYI

For transparency, we actually implement our oblivious one-counter simulation
on a single-tape Turing machine model that is apparently stronger than the one
defined above. The stronger model can write and read symbols from some slightly
larger alphabet on its storage tape, and each next step can depend on, change, and
shift among all the symbols in some small neighborhood of the head position on
the storage tape. By coding in binary, and by conceding a somewhat larger (but
still fixed) bound on command-response delay time, however, we could straight
forwardly replace any such oblivious real-time simulator by an oblivious one of
the promised variety.

Each nonblank storage tape symbol used by the simulator includes a base symbol
from the set {-3, -2, -1, 0, 1, 2, 3, * l and a left or right overarrow. Optionally, it
can also include an underline and one or two primes. The purpose of the base
symbol* is to mark the position of the read-write head. The initial storage contents
is treated as if it were

... 0 00'; 0 0 0 .. '•
With such a rich storage tape alphabet, our simulator does not have to remember

anything in finik-state control-a single state will suffice. Therefore, since even
the head position will be implicit in the contents of the storage tape, the transition
rules will be just a set of context-sensitive rules for rewriting the storage tape. We
promised five such rules, but they are actually five entire schemes:

b; c' ~;be
b; c ~ c'; b,

a b ; c ~ ac" ; b,
b; c" d ~ b; d c',
b ; c" d e ~ h ; d c" e,

propagating into b, and then from b to c,
propagating into b, and then from b to a,
propagating from d to c,
propagating from d to e.

Each of a, b, c, d, and e can be any member of !-3, -2, -1, 0, 1, 2, 3 j. Except on
the symbol with base c, primes are not shown and are unchanged by the transitions.
Similarly, arrows not shown are unchanged by the transitions. The mirror-image
reflections of the rules describe the transitions when * lies beneath a right arrow;
thus, for example, the very first transition is according to the first of the five
schemes, yielding

Note that the rule for each next transition will be determined by the number of
primes on c and the direction of the arrow over b or d, and that the symbols playing
these ro:t•s vill be determined by the direction of the arrow over*· It remains only
to give the rules for information "propagation," for maintenance of the underlines
(not shown in the rule schemes), and for generation of responses to the commands.

"Propagation from b to c" is essentially a "carry" or "borrow" operation: If b
is 3, then reduce it by 4 (to - I) and add l to c. If b is -3, then increase it by 4
(to 1) and subtract I from c. If either of these actions changes c to 0, and c was not
underlined, then remove the underline from b; and, if either action changes c from
0, and b was not underlined, then add an underline to b. Leave all other underlining
unchanged.

"Propagation into b" depends on the next input command. On a command to
increment or decrement the counter, bis incremented or decremented accordingly.
The result is a count ofzero if and only if the resulting bis 0, without an underline.

Counting Is Easy 989

The delay between the handling of successive input commands is at most three
steps, counts of zero are detected correctly, and no base symbol is ever required to
overflow past 3 or to underflow past -3, although these facts are not at all clear
from just the rules. It is clear from the rules that the simulation is both deterministic
and oblivious.

As an example, suppose every command is to increment the counter. Then the
results of the first six transitions are as follows:

... ooo; oo oo .. .

... o o O' ; T o o o .. .

... ooo T 7o oo .. .

... o o o O" -; 2 o o .. .

... o o O' o -; 2 o o .. .

... ooo' -=-1 ;y, oo .. .

(by rule 1),
(by rule 2),
(by rule 1),
(by rule 3),
(by rule 4),

(by rule 2).

Continuing in this way, the result of the first 2,980,000 transitions, including the
execution of l, 191,993 commands to increment the counter, is

... o o O' o' o t" O' 2 -1"-; TT' o 2" -TT O' O' o o
(For now, this should seem pretty obscure as a representation for I, I 91,993. It will
turn out that the base symbols are a scrambled radix-4 representation for that
number:

(1021(-l)OOI(-1)21)4 = (1191993)10.

The unscrambled order is implicit in the arrows and primes. The underlining
indicates which radix-4 digits are significant, except that the leading significant
digit is not underlined. (In a radix number, a digit is significant as long as it is not
a leading 0.))

3. Oblivious Counting

There is a relatively familiar technique that makes it possible to maintain a counter
obliviously in real time if the oblivious order of position access can be nonsequen
tial. The oblivious version [9] of the classical two-tape simulation [8] of multiple
Turing machine tapes is based implicitly on the technique. The technique involves
a liberalization of ordinary fixed-radix notation, allowing an expanded rangr of
"signed digits" in each position [1, 2]. This, in turn, allows some choice on nm .'.bers'
representations and some optional delay in carry propagation. To maintain such a
representati,.m as the represented number is incremented and decremented, we
need only visit the various positions often enough to avoid overflow and underflow.
The following two requirements, which are oblivious to the particular sequence
of commands, are sufficient for such a scheme to be able to handle commands
in real time:

(1) There is a chance ("0-opportunity") to propagate information (increments and
decrements) into position 0 at least once every 0(I) steps.

(2) There is a chance ("(i + I)-opportunity") to propagate information (carries and
borrows) from position i into position i + 1 at least once every 0(1) times
there is an i-opportunity.

These requirements are met, for example, by a schedule that provides a
0-opportunity every other step, a I -opportunity every other remaining step,

990 J. I. SEIFERAS AND P. M. B. VITANYI

a 2-opportunity every other still remaining step, etc.:

01020!030!020104010201030102010501020103010201040102

This is the sequence of carry propagation distances when we count in binary, so
let us call it the binary carry schedule.

To see that the requirements suffice, consider using a radix r that is large
compared with the constants ("0(1)") with which the requirements are satisfied.
Symmetrically allow as "digits" all integers d satisfying -r < d < +r. (For our
ultimate use, the radix r = 4 will be large enough; this explains the use of the digit
set l-3, -2, -1, 0, 1, 2, 3} in Section 2's preview of the simulation.) As suggested
in Section 2, maintain an underline beneath each significant digit except for the
leading one. Propagate information from position i to position i + 1 according to
the following simple rules:

"Carry" if the digit is greater than r/2.
"Borrow" if the digit is Jess than -r/2.
Do nothing if the digit is bounded by r/2 in absolute value.

(To "carry," reduce the digit in position i by r, and increment the digit in position
i + 1 by l. To "borrow," reduce the digit in position i + 1 by I, and increment the
digit in position i by r.) By induction, the properties of the maintenance schedule
ensure that no digit will have to exceed r - I in absolute value. As a consequence,
the only digit that might change from zero to nonzero, or vice versa, is at position
i + 1 above, so that only the underlining at position i might have to change, and
so that correct underlining can be maintained without any additional access to the
digits of the counter. As another consequence, the leading significant digit (if there
is one) will always correctly indicate the sign of the entire count, so that the count
will be 0 only when the frequently observed digit at position 0 is a 0 with no
underline.

4. Permutation for Sequential Access

With only sequential access, it seems impossible to visit the positions of a radix
number according to the scheduling requirements above. The first requirement
keeps us close to the low-order digit, while the second requirement draws us to
arbitrarily high-order digits. This intuition is wrong, however; even with the strictly
sequential access available on a single Turing machine tape, we can satisfy the
requirements. The trick is to maintain, on the main track of the tape, an appropriate
dynamically (but obliviously) changing permutation of the radix positions. We turn
now to a top-down development and implementation of a suitable permutation
procedure.

Since the permutation procedure will be oblivious to the actual contents of the
radix positions, and since position numbers will greatly clarify the permutation
being performed, we speak as if we are permuting the position numbers themselves.
It is important to remember, however, that it will be impossible with any finite
tape alphabet for our simulator to maintain these unbounded position numbers on
its tape without using too much space and time. To recognize what may be obvious
from the position numbers, the ultimate simulator will have to maintain appropri
ate auxiliary markers from some finite alphabet (primes, double primes, and
overarrows in the simulation we describe) on an auxiliary track of its tape.

Counting Is Easy 991

Consider the problem of visiting the positions of a radix number according to
the binary carry schedule. The key to the schedule is that it brackets each visit to
position i + 1 by full "tours" of positions 0, ... , i, denoted by tour(i):

tour(i + 1):
tour(i)
visit i + 1
tour(i)

tour(O):
visit 0

Noting that appending "visit i + 1; tour(i)" onto the end of tour(i) always gives
tour(i + 1), we see that tour(oo) makes sense:

tour(oo):
visit 0
visit 1; tour(O)
visit 2; tour(1)
visit 3; tour(2)

In fact tour(oo) is precisely the entire binary carry schedule.
For a Turing machine implementation of all this touring, we must permute to

keep the head, represented by * as in Section 2, always near position number 0.
Thus we might try the permutational side effect

tour(i): * 012 · · · i(i + l) ~ i .. · 210 * (i + 1)

as preparation for the first visit to i + l. But then tour(i) (or even its symmetric
mirror image) would no longer complete the desired analogous preparation (i.e.,
tour(i + 1)) for the first visit to i + 2. With the latter goal in mind, we are led to
push position i + 1 left during the second (mirror-image) iteration of tour(i)
and to introduce into tour(i + 1) a third iteration of tour(i), to get back to posi
tion i + 2. This way, the permutational side effect of tour(i + 1) is from * 012 . ·.
i(i + 1) initially, to i · · · 210 * (i + l) after the first iteration of tour(i), to
(i + 1) * 012 . · · i after the second iteration, finally to (i + 1)i . . . 210 * after the
third iteration, as desired. This leads us to refine our terminology in order to reflect
the two variants of i-tour (tour(i) above):

tour(i, -): * 012 . · · i ~ i · · · 210 *
tour(i, -): i · · · 210 * ~ * 012 · · · i

tour(i, +): j * 012 · · · i ~ i · · · 210 * j

(mirror image)

tour(i, +):i ... 210 *}~} * 012 ... i (mirror image)

We refer to these variants as negative i-tours and positive i-tours, respectively,
depending on whether some position j is not or is being "transported." Note that
we do not distinguish notationally between a tour and its mirror image, since only
one of the two can be applicable at a time, depending on the current location of
position 0. Similarly, we do not incorporate into the notation the position j being
transported by a positive tour, since there is never any choice.

Suppressing explicit visits now (since convenient i-opportunities will arise at a
different point in our scheme, and since the visits do not affect the actual

992 J. I. SEIFERAS ANO P. M. B. VITANY!

permutation process anyway), we arrive at the following mutually recursive imple
mentations for our evolving tours (the program locations are labeled (a) through
(e) for later reference):

tour(i + I, -):
tour(i, -)

(a) tour(i, +)
(b) tour(i, -)

tour(i + 1, +):
tour(i, +)

(c) pushback
(d) tour(i, +)
(e) tour(i, -)

(start with * 012 · · · i(i + 1))
(permute to i · · · 210 * (i + 1))
(permute to (i + 1) * 012 · · · i)
(permute to (i + l)i · · · 210 *)

(start with j * 012 · · · i(i + 1))
(permute to i . · · 210 * j(i + 1))
(permute to i · · · 210 * (i + l)j)
(permute to (i + 1) * 012 · · · ij)
(permute to (i + 1)i · · · 210 * j)

The recursive strategy for tour(i + l, -) is as described previously, but the strategy
for tour(i + 1, +) is new. Note that the latter requires a new permutation step,
called a pushback, to push the nonzero position currently adjacent to the head
beyond the next adjacent position. Finally, since appending

(a) tour(i, +); (b) tour(i, -)

onto the end of tour(i, -) always gives tour(i + 1, -), we again have a well-defined
infinite limit:

tour(oo, -):
tour(O, -)

(a) tour(O, +); (b) tour(O, -)
(a) tour(!, +); (b) tour(!, -)
(a) tour(2, +); (b) tour(2, -)

It is tour(oo, -) that we actually implement.

5. Recursion Elimination

(start with * 012345 .. ·)
(permute to 0 * 12345 · · ·)
(permute to 10 * 2345 · · ·)
(permute to 210 * 345 · · ·)
(permute to 3210 * 45 · · ·)

By induction, the entire permutation process tour(oo, -) involves just three,
symmetric pairs of atomic moves:

tour(O, -): * 0 =l» 0 *
O*=l»*O

tour(O, +): j * 0 =l» 0 * j
O*)==l»j*O

pushback: 0 * ji =l» 0 * ij
ij * 0 =lo> ji * 0

Our simulator will have to determine which of these local permutations to perform
at each step. The problem is analogous to the derivation of a nonrecursive solution
to the "Towers of Hanoi" problem from the more obvious recursive solution [3].
In this section we solve the problem by adding a small number of carefully chosen
notations to the symbols being permuted.

Because position 0 will always be to the immediate left or right of the head, the
simulator will be able to maintain the correct current direction to position 0 in
finite-state control, narrowing the possibilities to just one atomic move from each

Counting Is Easy 993

pair above. The remaining problem is to determine whether the next step should
be a negative 0-tour, a positive 0-tour, or a pushback.

0BSERVA TION 1. For every i, the respective first moves l~(tour(i, -) and
tour(i, +) are tour(O, -) and tour(O, +).

Except for the initial situation, when tour(O, -) is required explicitly, program
locations (a)-(e) account for all situations. By Observation l, it will suffice always
to know whether the next move starts a negative tour (program locations (b), (e)),
starts a positive tour (program locations (a), (d)), or is a pushback (program loca
tion (c)). A good clue would be the largest action that the previous move ended;
this clue is not readily available, however, since negative (i + 1)-tours and positive
(i + I)-tours both end with the same move, a negative 0-tour.

OBSERVATION 2. A positive tour ends with the head adjacent to the transported
position j.

OBSERVATION 3. By induction, at no time properly within a tour is the head
adjacent to a position not explicitly involved in the tour. (The positions explicitlv
involved in tour(i, -) are 0 through i, and the ones explicitl_v involved in tour(i, +)
are these and also the transported position).)

COROLLARY. The position j that gets pushed back at the outermost level of a
positive tour will next be adjacent to the head at the end of that positive tour.

This last corollary presents an opportunity to recognize the end of a positive
tour: The head can leave a "message" attached to the position that gets pushed
back, indicating that a positive tour is in progress. (In our ultimate implementation,
the messages will be single and double primes on symbols.) Consequently, the
simulator will be able to recognize when a positive tour is ending, at which time it
can delete the message (remove the single or double prime). (In the special case of
the one-move positive tour(O, +), there is no push back; in this case, for uniformity,
the same sort of message can be attached to the relevant position j, in the one
move that does take place.) The absence of such a message, therefore, will surely
indicate program location (a) or (d) and hence that the next move should be
tour(O, +). In the presence of such a message, however, it still remains to distinguish
program location (c) (which is followed by a pushback) from program locations (b)
and (e) (which are followed by tour(O, -)). For this purpose, we introduce an
auxiliary distinction between two varieties of positive tour, a distinction that we
try to record as part of the message corresponding to the positive tour. The
distinction is simply j = i + 1 versus j > i + 1:

tour'(i, +): (i + 1) * 012 · · · i ===:;. i · · · 210 * (i + 1)
tour'(i, +): i 210 * (i + 1) ===:;. (i + 1) * 012 ··· i

tour" (i, +):
tour"(i, +):

j * 012 ... i=:;. i ... 210 *j
i ... 210 *j=:;.j * 012 ... i

(j > i + 1)
(j>i+l)

In the correspondingly revised recursion, doubly primed positive tours are needed
only for the first subtour at the outermost level of each positive tour. Because
different messages have to be left, we begin now to distinguish between singly and

994 J. I. SEIFERAS AND P. M. B. VITANYI

doubly primed pushbacks. For use in our analysis, we add the recursion level of a
pushback to the notation, even though it is not algorithmically significant.

tour(i + I,-); (start with* 012 . · · i(i + 1))
tour(i, -) (permute to i · · · 210 * (i + 1))

(a) tour'(i, +) (permute to (i + I)* 012 · · · i)
(b) tour(i, -) (permute to (i + l)i · · · 210 *),

tour'(i + l, +): (start with (i + 2) * 012 · · · i(i + 1))
tour"(i, +) (permute to i · · · 210 * (i + 2)(i + 1))

(c) pushback'(i + 1) (permute to i · · · 210 * (i + l)(i + 2))
(d) tour'(i, +) (permute to (i + 1) * 012 · · · i(i + 2))
(e) tour(i, -) (permute to (i + l)i · · · 210 * (i + 2)),

tour"(i + l, +):
tour"(i, +)

(c) pushback"(i + l)
(d) tour'(i. +)
(e) tour(i, -)

tour(oo, -):
tour(O, -)

(a) tour'(O, +); (b) tour(O, -)
(a) tour'(!,+); (b) tour(l, -)
(a) tour'(2, +); (b) tour(2, -)

(start with}* 012 . · · i(i + 1))
(permute to i ·. · 210 * j(i + 1))
(permute to i ·. · 210 * (i + l)j)
(permute to (i + 1) * 012 · · · ij)
(permute to (i + l)i · · · 210 * j),

(start with * 012345 .. ·)
(permute to 0 * 12345 · · ·)
(permute to 10 * 2345 · · ·)
(permute to 210 * 345 · · ·)
(permute to 3210 * 45 · · ·)

As desired, now, the end of the doubly primed variety of positive tour will indicate
program location (c), and the end of the singly primed variety will indicate program
location (b) or (e).

It remains to find a way to recognize of which variety of positive tour each
pushback is a top-level part, and which is the variety of each positive 0-tour, so
that the right messages (single or double prime, corresponding to the singly or
doubly primed variety of pushback or positive tour) can be recorded. For these
purposes, we maintain with each position the direction in the current permutation
to its successor. (This is the purpose of the overarrows.) When we summarize in
Section 7, we indicate how to keep this information up-to-date. To see that this
directional information will help, we need one more inductive observation:

OBSERVATION 4. In each invocation oftour"(i, +)(only two possibilities above),
the first uninvolved position initially beyond position i is position i + l. (In either
case, the initial permutation will include}* 012 ... i(i + l) or its mirror image.)

In all our invocations of tour"(i + 1, +), therefore, the first uninvolved position
initially beyond position i + 1 will be position i + 2, so that the precondition
for pushback"(i + 1) will always be 0 * j(i + l)(i + 2) (or its mirror image).
The precondition for pushback'(i + 1), on the other hand, will always be
0 * (i + 2)(i + 1) (or its mirror image). The distinction can be recognized from
the directional information for position i + 1. Similarly, the precondition for
tour"(O, +) will always be 10 * j (or its mirror image), while the precondition
for tour'(O, +)will always be 0 * 1 (or its mirror image), a distinction that can be
recognized from the directional information for position 0.

Counting Is Easy 995

In summary, here are suitable specifications for the evolved versions of all the
tours and pushbacks (except for mirror images), now showing single- and double
prime messages (but not showing overarrows, since we are still showing explicit
position numbers):

tour(i, -):

tour' (i, +):
tour"(i, +):

I * 012 • • • i ==i> i "• • 210 *

(i + l) * 012 ... i ==> i ... 210 * (i + l)'
j * 012 ... i(i + 1) => i ... 210 * j"(i + 1) (j>i+l)

pushback '(i):
pushback"(i):

0 * (i + l)"i => 0 * i(i + 1)'
0 * j"i(i + 1) => 0 * ij"(i + l) () > i + 1)

It is easy to check inductively that the recursive implementations do maintain the
specifications:

tour(i + 1, -):
tour(i, -)
tour'(i, +)
tour(i, -)

tour'(i + 1, +):
tour"(i, +)
pushback' (i + l)
tour'(i, +)
tour(i, -)

tour"(i + 1, +):
tour"(i, +)
pushback"(i + 1)
tour'(i, +)
tour(i, -)

tour(ro, -):
tour(O, -)

tour'(O, +); tour(O, -)
tour'(l, +); tour(l, -)
tour'(2, +); tour(2, -)

(start with ' * 012 · .. i(i + 1))
(permute to i ... 210 * (i + l))
(permute to (i + 1)' * 012 ... i)
(permute to (i + l)i · ·. 210 *)

(start with (i + 2) * 012 ... i(i + 1))
(permute to i ... 210 * (i + 2)"(i + 1))
(permute to i ... 210 * (i + l)(i + 2)')
(permute to (i + l)' * 012 · · · i(i + 2)')
(permute to (i + l)i · · · 210 * (i + 2)')

(start with j * 012 . · · i(i + l)(i + 2))
(permute to i .. · 210 * j"(i + 1)(i + 2))
(permute to i .. · 210 * (i + l)j"(i + 2))
(permute to (i + I)' * 012 . ·. ij"(i + 2))
(permute to (i + l)i · · · 210 * j"(i + 2))

(start with ' * 012345 ...)
(permute to 0 * 12345 · ..)
(permute to 10 * 2345 · ..)
(permute to 210 * 345 ...)
(permute to 3210 * 45 ...)

6. Opportunities to Carry and to Borrow

We see from the above preconditions for pushback'(i + 1) and pushback"(i + 1)
(the "(i + 1)-pushbacks") that these operations can serve as (i + 2)-opportunities.
Similarly, tour'(O, +) and tour"(O, +) (the "positive 0-tours") can serve as
I-opportunities. Since the head is always adjacent to position 0, every step is a
good time to propagate increments and decrements into position O; if we designate
only the positive 0-tours as 0-opportunities, however, we will ultimately be able to
choose a slightly smaller radix for our notation.

OBSERVATION 5. If we omit j-pushbacks for j > i, then tour(oo, -) is an
infinite concatenation of negative and positive i-tours, the first of which is negative,
the second of which is positive, and no three consecutive of which are all negative

996 J. !. SEIFERAS AND P. M. B. VITANY!

or all positive. (To see the last part, make the analogous observation by induction
on i' :::: i for each negative and positive i '-tour, and finally note that tour(oo, -) is
the limit of the negative tours.)

COROLLARY. Jn tour(OJ, -), our information propagation requirements are
satisfied with respective constants 3 and 4:

(1) There is a 0-opportunity at least once every three steps.
(2) There is a 1-opportunity every time there is a 0-opportunity.
(3) There are exactly two (i + 1)-opportunities before the first (i + 2)-opportunity,

and at most four (i + I)-opportunities between (i + 2)-opportunities.

PROOF OF THIRD PART. The (i + 1)-opportunities are distributed one in each
positive i-tour. Using Observation 5 to focus on (i + 1)-tours, therefore, we see that
each negative tour presents one (i + I)-opportunity and no (i + 2)-opportunity,
and that each positive tour presents one (i + 1)-opportunity before its one (i + 2)
opportunity, and one after. The two initial (i + I)-opportunities come from the
initial negative and positive tours, and the maximum of four intervening (i + 1)
opportunities arise when a consecutive pair of negative tours is bracketed by
positive tours. D

Since 5 + 4 :::::; 10 - 1, it follows that r = l 0 will be a large enough radix. The more
careful analysis in Section 8 reveals that even r = 4 will be large enough.

7. Formal Summary

In Section 5 we showed how to annotate the symbols being permuted in the
recursively defined tour(OJ, -) in such a way that the very same permutation can
be carried out nonrecursively by a deterministic single-tape Turing machine, based
entirely on local cues. In Section 6 we observed that the same annotations provide
sufficient cues for adequate opportunities to perform the increments, decrements,
carries, and borrows required for our real-time simulation of a counter. In this
section we finally relate all this to the few simple rules previewed in Section 2.

For transparency, we summarize the rules we have derived in three increasingly
formal stages. In increasing order of difficulty, the four main cases are the first
move, the case in which a single-prime message is received, the case in which no
message is received, and the case in which a double-prime message is received.
The first move is always tour(O, -). When a single-prime message is received,
tour(O, -) is again the correct move. When no message is received, the correct
move is either tour' (0, +) or tour"(O, +), depending on whether position 1 is
adjacent to the head or beyond position 0; either way, a carry or borrow can be
propagated as described above, and an indicative message should be left with the
transported position. When a double-prime message is received, the correct move
is a singly or doubly primed pushback, depending on directional information near
the head as described above; either way, a carry or borrow can be propagated as
described above, and an indicative message should be left with the position that is
pushed back.

In the second stage, we reformulate our summary via formal rules in terms of
position numbers. For the messages corresponding to completion of singly and
doubly primed positive tours, we use single and double primes on the position
numbers. Except in the case of the special rule for the very first move (* 0 => 0 *),
the mirror image of each rule is also a rule; so we list only rules with position 0
initially to the left of the head. Only on the other side of the head do we show
primes explicitly, since these primes constitute the message being received.

Counting Is Easy

(1) Single-prime message: negative 0-tour

0 * i' =* * 0 i.

(2) no message: positive 0-tour

0 * 1 =* 1' * 0,
1 0 * j =* 1 j" * 0,

propagate into 0 and then from 0 to 1,
propagate into 0 and then from 0 to 1 (j > 1).

997

(3) Double-prime message: pushback

0 * (i + 2)"(i + l)=*O * (i + l)(i + 2)',
o *l'U+ l)(i+2)=*0 * U+ l)j"(i+2),

propagate from i + I to i + 2,
propagate from i + I to i + 2 (j > i + 2).

In our final, unavoidably obscure reformulation, we replace the position numbers
with nonnumeric base-symbol variables and the overarrows that are actually
present. For base-symbol variables whose overarrows are irrelevant and do not
change, however, we omit the explicit overarrows from the rules. To avoid explicit
reference to finite-state control, we replace the head marker * with either ; or -; to
indicate whether position 0 is just to the left or just to the right. Except for the start
rule(-; a=* a;), each rule again has an implicit symmetric rule.

=*-;be

~ c'-; b,
==> ac"-; b,

b; c" d ==> b; d c',
b ; c" d e ==> b ; d c" e,

propagating into b, and then from b to c,
propagating into b, and then from b to a,

propagating from d to c,
propagating from d to e.

The start rule closely resembles (the mirror image of) the first of the five more
general rules. If we initially provide a singly primed "endmarker" to the left of the
head, then the separate start rule actually does become redundant; the result, at
least if we use radix r = 4, is the simulation previewed in Section 2.

8. Space Analysis

The space used for the first n steps of the most space-efficient simulation of k
counters is within an additive constant of k log2n bits, in the worst case. For k
large, we see now that a straightforward implementation of our real-time, oblivious
simulation requires only about 2.5 times this much space.

Regardless of the particular (large enough) radix used, the number of distinct
positions involved by step n in the permutation process is within an additive
constant of log3n. To see this, note that the process first reaches position i + I at
the end of tour(i, -), and that the number of steps in a negative i-tour is exactly
-iY - 1i - i. The latter, along with the fact that the number of steps in a positive
i-tour is exactly -iY + ~i - i, can be proved by straightforward simultaneous
induction.

To minimize the space used for each position, we should choose the smallest
radix that works. The analysis below shows that 4 works. For each additional
counter, therefore, the space needed for each involved position is at most
4 = rlog2(7 . 2)1 bits. (Each of the seven signed digits has two versions, one under
lined and one not underlined.) The additional, counter-independent space
needed for each position is at most 3 = riog2(3 · 2)1 bits. (The message can be
absent, a single prime, or a double prime; and the overarrow can point to the left

998 J. I. SEIFERAS AND P. M. B. VITA.NY!

or to the right.) All together, therefore, the space used through step n can be
bounded by (3 + 4k)log3 n ~ (1.89 + 2.52k)1og2n bits.

It remains only to show that no overflow (past 3) or underflow (past -3) will
occur if we use 4 as the radix in our simulation. Until an overflow or underflow
does occur, each (i + I)-opportunity (and also the implicit initialization) will leave
each signed digit in position i in the range from -2 to 2. Therefore, it suffices to
show that, although there might be as many as four i-opportunities without an
intervening (i + I)-opportunity, at most one of these can actually result in a carry
(or, symmetrically, in a borrow).

LEMMA I. For each i ~ I, at most one i-opportunity in four can result in a
carry. For each i ~ 0, therefore, an (i + 1)-opportunity intervenes between every
pair of increments to the signed digit in position i. (Similarly for borrows and
decrements, by symmetry.)

PROOF. For each i ;::: 1, the second assertion follows from the first by the third
part of the corollary to Observation 5. For i = 0, the second assertion is an
immediate consequence of the second part of the same corollary.

The proof of the first assertion is by induction on i;::: I, and the general induction
step is itself an induction on time. Consider the first or next i-opportunity that
results in a carry. This carry leaves the signed digit -1 = 3 - 4 in position i - I.
By the (second) assertion for i - 1, this can increase to at most 0 by the next i
opportunity, to at most I by the third i-opportunity, and to at most 2 by the fourth
i-opportunity, none of which requires a carry. 0

9. Further Optimization

Our overriding objective so far has been to keep the simulation simple. At the
expense of some clarity, however, we can make the simulation even more efficient.

There is one easy way to save space in the simulation as presented above.
Positions of the separate representations and positions that are adjacent in the
current permutation need not be encoded separately. By suitable encoding,
therefore, the space used can be kept arbitrarily close to the unrounded limit
(log26 + k log214)log3n ~ (1.63 + 2.40k)log2n.

A more subtle observation leads to saving even more space. Because each
radix-4 signed digit is bounded by 3 in absolute value, the number of significant
signed digits in each counter's representation stays within an additive constant of
the base-4 logarithm of the counter's contents. With care, therefore, we might hope
to limit the number of positions involved in our simulation to the base-4 logarithm
of the largest counter contents so far. Even in the worst case that the largest counter
contents after the first n steps is n, this would reduce space usage by a factor of
log.in/log3n ~ 0.79.

One way to take advantage of this potential is to insert some extra pairs of
negative i-tours right before the positive i-tour that first transports and involves
position i + I. (The first halfof each such pair permutes from i ... 210 * (i + I)(i
+ 2) · · · back to the original configuration* 012 · .. i(i + I)(i + 2) · .. , and the
second half permutes up to i · · · 210 * (i + I)(i + 2) · · · again.) To do this, we
need only decide at the time we would normally first involve a new position
i + I (with a positive 0-tour) whether to start a negative i-tour instead (with a
negative 0-tour). We want to involve position i + 1 if and only if a significant
signed digit is already within a few positions of position i + 1.

Counting Is Easy 999

For this, we need a second version of each uninvolved position, to indi
cate whether the position is "ripe" for involvement, and we need appropriate
opportunities to mark uninvolved positions ripe. If i + 1 is the first uninvolved
position, then such an opportunity arises each time we reach the configuration
(i - 3) · · · 210 * (i - 2)(i - l)i(i + l) .. ·,say. It follows from the easy-to-check
inductive observation below that directional information will suffice to identify
this situation unambiguously. If significance has already reached position i - 2,
say, then position i + l can be marked finally as ripe for involvement, and it will
become involved in time to receive the first carry from position i.

OBSERVATION 6. At any time in the permutation process, if a b occurs any
where to the right of the head (or, symmetrically, if b a occurs a~ywhere to the left
of the head), with a prime or double-prime message attached to neither a nor b,
and if the position number of a is i, then the position number ofb is i + I.

At the expense of obliviousness, this yields a real-time multicounter simulation
that uses space only logarithmic in the maximum counter contents. It reduces
the worst-case space for a real-time simulation of k counters to about
(log26 + k log2 15)lo~n:::::: (1.29 + I.95k)log2n.

Although, with a slightly different designation of !-opportunities, we could reduce
the radix for our simulation's radix notation down to 3, it turns out to be more
space efficient to use a larger radix. At the mere expense of additional control
states, this will reduce the number of bits used for underlines, messages, and
overarrows. Repeating the analysis sketched above, but now for an arbitrary
radix r, we get a space bound of

(!ogo6 + 2k) (log26 + klog2(2(2r - 1) + l))log,n::::; k + -1 log2n.
og2r

For each€> 0, therefore, we can use a radix r so large that (k + €)log2n bits will
suffice for every k.

Note that the analyses above do give improved results even for oblivious
simulation. Since the counter with the largest contents determines head motion,
the simulator will be oblivious if it simulates one extra dominant counter of its
own, incrementing it at every step. This yields a space bound of (k + 1 + €)log2n
bits for oblivious real-time simulation of k counters.

ACKNOWLEDGMENTS. We thank Laura Sanchis for criticizing an early draft of the
paper and Janie Irwin for providing references [1] and [2]. Peter G:ics first suggested
that the space used by a nonoblivious version of the simulation could be kept
proportional to the logarithm of the largest counter contents. The result of the first
2,980,000 transitions was obtained by an implementation of the simulation in
PC Scheme, and later checked independently by John Tromp's implementation
in C.

REFERENCES

I. ATKINS, D. E. Introduction to the role of redundancy in computer arithmetic. Computer 8, 6
(June 1975), 74-77.

2. AVIZIENIS, A. Signed-digit number representations for fast parallel arithmetic. I RE Trans. Electron.
Comput. EC-JO, 3 (Sept. 1961), 389-400.

3. CULL, P., AND ECKLUND, JR .• E. F. Towers of Hanoi and analysis of algorithms. Am. Math. Afon.
92, 6 (June-July 1985), 407-420.

1000 J. I. SEIFERAS AND P. M. B. VITANYI

4. FISCHER, M. J., AND ROSENBERG, A. L. Real-time solutions of the origin-crossing problem. Math.
Syst. Theory 2, 3 (Sept. 1968), 257-263.

5. FISCHER, P. C., MEYER, A. R., AND ROSENBERG, A. L. Counter machines and counter languages.
Math. Sys!. Theory 2, 3 (Sept. 1968), 265-283.

6. FISCHER, P. C., MEYER, A. R., AND ROSENBERG, A. L. Time-restricted sequence generation.
J. Comput. Sys/. Sci. 4, I (Feb. 1970), 50-73.

7. FORER, M. Data structures for distributed counting. J. Comput. Syst. Sci. 28, 2 (Apr. 1984),
231-243.

8. HENNIE, F. C., AND STEARNS, R. E. Two-tape simulation ofmultitape Turing machines. J. ACM
13, 4 (Oct. 1966), 533-546.

9. PIPPENGER, N., AND FISCHER, M. J. Relations among complexity measures. J. ACM 26, 2
(Apr. 1979), 361-381.

10. VITANYI, P. M. B. An optimal simulation of counter machines. SIAM J. Compul. 14,
(Feb. 1985), l-33.

11. VITANYI, P. M. B. An optimal simulation of counter machines: The ACM case. SIAM J. Comput.
14. I (Feb. 1985), 34-40.

RECEIVED AUGUST 1985; REVISED SEPTEMBER 1987; ACCEPTED MARCH 1988

Journal of the Association for Computing Machinery. Vol. 35. No. 4. October 1988.

