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Properties of the finite continuous Jacobi transform are given. Two inverse 
integral transforms are found whose kernels involve Jacobi functions. The range of 
the original transform is characterized to some extent and the inverse is shown to 
be both a left and a right inverse. n 1990 Academic Press, Inc. 

I. INTRODUCTION 

The Jacobi differential operator 

(1-x 2 )d 2/dx2 +({3-rx-(r:t.+{3+2)x)d/dx ( 1.1) 

has regular singularities at -1, I, and oo. Its spectral theory on the finite 
interval ( - 1, 1) reduces to expanding a function as a (discrete) series of 
Jacobi polynomials. On the other hand, the spectrum on the infinite inter
val (I, oo) is continuous and leads to (continuous) expansions of Jacobi 
functions; cf. Koornwinder [7]. In the case of the finite interval, the 
integral defining the Fourier-Jacobi coefficient remains meaningful if one 
replaces the degree n in this integral by arbitrarily complex numbers. Thus 
one obtains a transform which maps quite general functions on ( -1, 1) 
into a class of entire functions of exponential type at most n. This trans
form is called the finite continuous Jacobi transform, which we will invert 
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by means of an integral over the real axis instead of a series. We will also, 
to some extent, characterize the image of the transform. 

The methods and results are quite different from the inversion problem 
for the Jacobi transform for the interval (1, cx:i ), although in Section 3 some 
estimating techniques from the infinite case are used. The finite continuous 
Jacobi transform was already inverted for the special Gegenbauer cases 
rx=/3= integer ~Oby MacRobert in the 19th century; cf. Robin [8]. The 
interest in this transform was revived by the work of Butzer, Stens, and 
Wehrens [2], who dealt with the Legendre case r:t. = f3 = 0 by methods dif
ferent from those of MacRobert and who pointed out the relationship with 
sampling theory. Their results were extended to Jacobi transforms for 
values of the parameters r:t. and f3 satisfying a+ f3 = 0 by Deeba and Koh 
[3]. Subsequently Walter and Zayed [I I] found similar results for values 
such that a+ f3 is a non-negative integer. 

In this work we remove the restriction on a and {3, requiring only that 
a> - l and f3 > -1. We shall not use the standard Jacobi normalization 
since in that case, the transformed function would not always be entire. 
Rather we shall use the same normalization as the Legendre functions, viz., 
that the value of the Jacobi function at x = 1 be 1. We shall derive a 
number of properties of the resulting Jacobi transform, and find two 
different expressions for an inverse transform. We then find sufficient 
conditions for a function to belong to the range of this transform. 

Our principal concern will be to construct the inverse transform. A 
number of approaches are possible. The simplest perhaps involves contour 
integrals, in which a Jacobi series is written first as a sum of residues. This 
leads to an inverse integral transform in which the integration is over a 
contour in the complex plane. This is similar to the procedure followed in 
[6] for Laguerre transforms. However, we are interested in obtaining an 
inverse transform of the same form as in the references involving an 
integral over the real axis. Another approach used in [ 11 ] uses a series to 
obtain the kernel of the inverse transform. Our approach will differ from 
both of these; we will use the Poisson summation formula as our principal 
tool. 

In Section 2 we present preliminary formulae and notation which 
because of our renormalization of the Jacobi function is not always 
standard. In addition we present a few facts from Fourier analysis which 
we shall require in the subsequent sections. In Section 3 we collect a 
number of estimates on the kernel and the transformed function of the 
Jacobi transform. We also introduce an appropriate space on which the 
transform operates, and derive some properties of the orthogonal system 
obtained by transforming the Jacobi polynomials. 

In Section 4 we present our main results, namely the inversion formula 
for the continuous finite Jacobi transform. We obtain two integral trans-
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forms which recover the original function when applied to the transformed 
function. One involves the eigenfunction of ( 1.1) which is regular at 1 while 
the other involves the eigenfunction regular at - 1 as part of the inverse 
kernel. The last section gives sufficient conditions for a function to be a 
Jacobi transform. This enables one to obtain a sampling theorem for such 
functions. 

2. PRELIMINARIES AND NOTATION 

For any complex numbers a, b, and c with c;60, -1, -2, ... the hyper
geometric function is given by 

~ (a)dbh k 
F(a, b; c; z) := ~ ( ) k' z , 

k=O Ck· 
lzl < l. (2.1) 

The Jacobi function R:"'.rn for a finite interval is defined by 

R:"'·lll(cos (}) :=F(-t, t+a+f3+ l;a+ l;sin 2 ~(}), 0 ~ () < 7t, (2.2) 

where a, f3 > -1 and t e C. A more usual normalization and notation (cf. 
[ 11]) is 

p(a. tn ·= I'( t +a+ 1) R(a./ll 
I • I'(ix+l)I'(t+l) I • 

(2.3) 

Our choice avoids singularities in t and will yield the lowest possible 
exponential type (namely n) in t. We denote 

(2.4) 

and observe the symmetry 

(2.5) 

The function t f--+ IR ~':~_1 ( cos (}) is an even entire analytic function. The 
hypergeometric differential equation ( cf. [ 4, 2.1 ( 1 ) ] ) translates into 

(2.6) 

where 

and 

w"'.11(()) :=(sin ~e)2a+ I (cos Wl211+ i. (2.8) 
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For n = 0, 1, 2, ... the functions P~"·'n given by (2.3) become the Jacobi 
polynomials. We will work with the renormalized Jacobi polynomials 
R~a,f1>. They satisfy the orthogonality relations 

m,11=0, I, 2, ... , (2.9) 

where 

{ 

I'(2,1, + 1) 

W (a,/Ji _ I'( IX+ J ) I'(f3 + J )' 
" - (2n + 2,1,) I'(n +IX+ 1) I'(n + 2,1,) 

I' 2(1X + 1) I'(n + l) I'(n + /3 + 1)' 

(2.10) 

n=O, 

n= l, 2, ... ; 

cf. (4, 10.8(4)]. The functions 8i-+R!,•·f1>(cos 8), n=O, 1, 2, ... ,form a com
plete orthogonal system in L 2((0, 11:), w •. p(8) d8). 

Let f be a function on (0, n) such that 

(2.11) 

is well-defined for all t EC. Then J is called the finite continuous Jacobi 
transform off In particular, we put 

S~· 1 (t-A.):=w~•.ll>(R~"·P>acos)" (t) 

and obtain from [11, (2.9)] that 

SU'>(t-A.) = w(a,/Jl f" R(a,/il(cos (]) R 1•·/l.l(cos 8) w (8) d(] n n 11 t - J'. et:,/J 
0 

( 2n + 2,1,) I'( n + 2,1,) sin n: (t - ,1, - n ) I'( t - ,1, + 1 ) 
= I'(n+l) · n(t 2 -(A.+n) 2 )I'(t+A.) · 

(2.12) 

Clearly, S~.)(t- A.) depends on IX and f3 only through their sum, and by 
(2.9) we have 

m, n = 0, l, 2, .... 

We will make ample use of the formula 

1! 
I'(z) I'(l -z) =-. -, 

sm(nz) 

(2.13) 

(2.14) 
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cf. [ 4, 1.2( 6) ], and the function 

ij;(z) := r'(z)/I'(z), (2.15) 

which satisfies the identity 

!/J(z)-ij;(l-z)= -ncotg(nz); (2.16) 

cf. [4, 1.7(11)]]. 
We will need a few but crucial facts from classical Fourier analysis. 

Define the Fourier transform :JF by 

C~r/>)(x):=r i/J(t)e 2rritxdt, 
r 

(2.17) 

PROPOSIT!ON 2.1. Let <P be an entire analytic function such that, for some 
p> 1 and y, C>O, 

\r/>(t)\~C(l+\t\) "e2"i'11m11, tEC. 

Then 

(ffr/>)(x)=O if' \x\;::: y. 

PROPOSIT!ON 2.2. Let <P be a continuous function on IR such that, ./(Jr 
some p > 1, there is a constant CP such that 

I q)( t) I :( c p( 1 + It lr ", t E IR, 

\(.~q))(x)\:::::;Cp(l+\x\)"" XEIR. 

Then 

.Y: 

(2.18) 
n = -._,_, n = '.-:0 

Formula (2.18) is the Poisson summation formula; cf. [9, Chap. 7, (2.7)]. 

3. EsTIMA ms 

In this section we collect all estimates which will be needed in the sequel. 
In particular, we will derive estimates for R~,· 1~_l( cos e) and/( t ). 

Let us start with the case of Jacobi series. From the equiconvergence 
theorem ( cf. [ 10, Theorem 9.1.2]) and from well-known properties of 
Fourier-cosine series we obtain: 
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LEMMA 3.1. Let fe L2((0, n), wx.ti(8) d8) and let f be once continuously 
differentiable on (0, n). Then 

Oh 

f(8) = I /(). + n) w~"--fil R~•.fil(cos 8), 0< 8<n, 
n=O 

uniformly on compact subsets of (0, n ). 

Next we consider the integral representation 

x I: cos(tifl) (cos~ if! - cos~ 8 r- 112 

x F (~ /3 ~ _ {3· ~-cos !8 - cos !t/J) d·'· 
2 + • 2 • a + 2' 2 cos ie 'I'· 

2 

O<O<n, teC, a>-!, /3> -1; (3.1) 

cf. [7, (5.8)] (where the factor (cos!ifl-cos!0)""- 112 is missing) or [7, 
(2.16), (2.19)] (by analytic continuation with respect tot) or [5, (6), (8)] 
(by quadratic transformation of the hypergeometric function). The hyper
geometric function in the integrand of (3.1) can be rewritten as 

[ cos W +cos !t/JJ- 112 fi 

2 cos to 
( 1 1 _ cos to - cos tt/J) 

x F 2 + {3, a + {3; a + 2; cos te +cos tt/J ' 

cf. [4, 2.1(22)], which is non-negative for ex>-!, /3~ -!, a~ -{3. 
Similarly it may be expressed as 

[ cos !f,l +cos !t/JJ" - 112 [cos !t/JJ/i ·-" 
2 cos to cos w 

[ 1 1 1 cos 2 WJ 
xF 2 (a-/3), 2 (a-f3+1);ex+2;1-cos2 ~t/J, 

cf. [4, 2.11(24)], which again is non-negative for a~ f3 > -1, ex>-!. Thus 
the function in (3.1) satisfies 

F(~ /3 ~-{3· ~-cos !O-cos 11/1) 
2 + ' 2 ' a + 2' 2 cos to 
~ 0, 0 < if! < 0 < n, 
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if ex> - ~, ex~ - i{J(, /3 > -1. For these values of a,/3 the integral in (3.1) 
is dominated by a simimar integral with cos (ttf;) being replaced by 
sup 0 <t#<t1 (cos(t!/!)I. Hence 

IR~" 1~.\cos 11)1:::::; e0110111 R1'·f11 (cos 0) 

= e0
1

1m 11 F(A, ).; a+ l; sin 2 ~11). (3.2) 

The function z 1--> F( A, ).; ex + 1; z) is regular at 0 and is a solution of a 
hypergeometric differential equation for which the regular singularity at 1 
has exponents 0 and -/3. Thus IF().,).; ex+ I; z)i is dominated on [O, 1) by 
a constant multiple of (1-z) /3 if /3>0, of 1 +!log (1-z)I if fi=O, and of 
I if /3 < 0. 

If ex, jJ > - I and the inequalities et.> - ~. a~ - I/JI are not both satisfied 
then they will be satisfied when cx is replaced by ex+ I. We can express 
Jacobi functions of order (ex, /3) in terms of Jacobi functions of order 
(et+ 1, fi) by 

[( ). + 1)(). +I- R) Ria+. l,/i) - (l- t)(A- t- R) Ria+ l,/il] 
R(>./ll= f' I-A f' --/-), . (3.3) 

1 ' (2t(ex+I)) 

This in turn may be substituted in (3.1) to obtain 

R~"· 1~. 1 (cos 0) 

= . sm-8 2"+ 12I'(ex+2)(. I ) 
ll 12 I'(ex + 3/2) 2 

2a 2 ( 1 ) - /I 1/2 
cos 2 e 

x Jo().+ t)(}. + t- /3) cos((t + ~)tf;)- (). - t)().- t-/3) cos((~ - t)tf;) 

o 2(ex+l)t 

x cos - ,,, - cos - fJ F - + /3 - - j]· ex + - · 2 2 d·'' _ ( 1 1 )'+ 1' 2 (1 1 3 cos ltJ-cos ltj;) 
2 'I' 2 2 · 2 ' 2 · 2 cos ~e 'I' 

Since the hypergeometric function in the integrand is non-negative, and by 
(3.2) we have 

we may conclude: 

LEMMA 3.2. Let ex,/3>-1; put z:=O ifa>-~. ex~ -1/31 and z:= 1, 
otherwise. Then there is a positive constant C a.fl such that, for 0:::::; fJ < n, 
tE C, 

{
C,,p( cos ~e) -211 ( 1 +I ti r ee11m 11 

IR~': 1~. 1 (cos 0)1:::::; C,, 11 (1 +I log( cos tO)I )(l + ltl )' e011 m 11 

C (1 + It(),' eOllm 11 
a, /I 

if jJ > 0, 
(f /3 = 0, 

if /3 < 0. 
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We now turn to estimates for/(!) (cf. (2.11)). Iffis continuous on [O, n] 
then, by Lemma 3.2,] is an even entire analytic function which for some 

constant c~,/! satisfies the estimate 

However, we will need functions f such that/ decreases on the real axis as 
rapidly as some inverse power. For this purpose we restrict our functions 
somewhat more. 

DEFINITION 3.3. Let p = 0, l, 2, .... The class C 2P consists of all even, 

2p times continuously differentiable functions on [ - rr, rr] for which 
/rkl(rr) = 0, k = 0, 1, ... , 2p - 1. 

Let/EC 2P, p~ I. Then, by (2.11) and (2.6), 

= f n (D 7 ·11j(8)) Rr 7 ,/1.l(cos 8) w (8) dB 
& I /. 7. /I 

0 

+J'(O) w (0) !!._ Rr>-tn(cos O)] n 
7./i de I /. 0 

The two integrated terms disappear. This follows from 

d ,.1 2 - t 2 1 1 
- R(", 11.1( cos 0) = -' -- sin - {)cos - Ii R I>+ Lfi + 11 (cos II) 
dli I /. (X + 1 2 2 I ( 1,2 )(> + /i + 3) 

(cf. (2.2) and [4, 2.8(20)]), from Lemma 3.2, from the oddness off', from 

f(rr)=O, and from .f'(O)=O(cosWl as Oirr. Next we observe that 
D'-fifE C2P 2 if /E C 2P, and conclude that 

Hence: 

LEMMA 3.4. Let a, {J > - 1 and i; = 0 or 1 as in Lemma 3.2, p = 0, 1, .... 
Let f EC 2P. Then there is a positive constant C,_ 11• P.f such that 

1./(t)I ~C»/i.p.f(l + ltl) 2p+.:enllm11, !EC. 
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The following two lemmas will be useful. 

LEMMA 3.5. Let a, b E c. Then there is a positive constant ca.b such that 

II'(a + t) T(b- t)l -1 ~ Ca,b(l + ltl )I - a--b enllm tl, t EC. 

Proof By (2.14) we have 

T(l-b+t)sin(n(b-t)) 

T(a + t) I'(b- t) I'(a + t) n 

I'(l -a - t) sin(n(a + t)) 
=~~~~~~~~ 

I'(b - t) n 

Now use the asymptotic formula [4, 1.18(4)] for the first factor. I 

LEMMA 3.6. n- 1 sin(nt)l/t( - t) is an entire analytic function oft which 
equals ( - 1 )' for t = 0, 1, 2, ... and 0 for t = -1, - 2, ... ; there is a positive 
constant C such that 

ln- 1 sin(nt) t/J( -t)I ~Clog( I+ ltl) enllm ' 1, t EC. 

Proof Use (2.16) and the asymptotic formula for t/J(z) [4, 1.18(7)]. I 
Finally, we estimate S~,n(t-11.). By (2.12) and (2.14), 

sin( A (-1t(2n+211.)T(n+211.) 
n. t - ) = I'( n + 1 )(A + n - t )(A + n + t) I'( A - t) I'( II. + t) 

Hence, by Lemma 3.5: 

LEMMA 3.7. s;;'»(t-A) is an even entire analytic function of t which 
satisfies the estimate 

for some positive constant c,,.;.. 

LEMMA 3.8. Let f E C 2P, where 2p > 1+B+max{2a+1, 2Jc, a+ 1/2} and 
B = 0 or 1 as in Lemma 3.2. Then 

ex, 

f(t) = L, f(ll. + n) s~· 1 (1-.lc) 
n=O 

with ahsolute convergence, uniform on strips of finite width in C around IR. 
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Proof By Lemma 3.1 we have 

x 

f(&)= I /(.!c+n)cu:,"' 1nR;,"- 1n(cosB), 0 < e < n. 
I/ =0 

There exist constants such that 

lw;,'· 1ill ~ const(l + n) 2'+ 1 

(by (2.10)), (3.4) 

IR~>./Jl(cos Bll ~ const( l + n rax:O./l - >. - 112 - , : 

(by [10, Theorem 7.32.1]). (3.5) 

Then, by these inequalities and the ones in Lemmas 3.2 and 3.4, we obtain 

w;,x.tlil/(X+n)I f: IR;,"· 111 (cos BJl IR~'· 1~.1 (cos B)I w,, 1J(&) dO 

~ const( (1 + I tl )" e"llm tl (I + n )- 2p +c + max{ 2':x + I. z;,,, + 1/2 l. 

Nowuse(2.ll)and(2.12). I 

4. ANALYTIC CONTINUATION OF THE INVERSION FORMULA 

Let fE C 2P (p ~ l ); by Lemma 3.1 we have 

x 

f(B)= I /U+n)R;,'·/J 1(cosB)oJ;,"· 1n, 0 < 0 < n, ( 4.1) 
n=O 

and, since 

Rt,,1i 1(cos 8) = ( - l )" (fi + l ),. R 11J,, 1( - cos 8) 
n (a+l)n " ' 

n = 0, 1, ... , ( 4.2) 

cf. [ 4, l 0.8( 13) ], ( 4.1) can also be written as 

X• 

f(8)= I /(X+n)R;fJ.> 1(-cosO) 
n=O 

~(,i.) 

x wn 
T( IX + 1 ) I'( /3 + I ) ' 0 < 0 < n, ( 4.3) 

where 

wui -{T(n + l ), 
n - 2(-l)"(n+.!c)T(n+2..1.)/n!, 

n=O, 
n = 1, 2, .... 

(4.4) 
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In their dependence on t, ](t), R~"_:fJ}(cos 8), and R~/J:~l( -cos 8) are even 
entire analytic functions with estimates given by Lemmas 3.2 and 3.4. It is 
our purpose to find h~"·Pl and Ji~.l.J, even entire analytic in t, such that (4.1) 
and ( 4.3 ), respectively, can be written as integrals 

/(8) = rX) ](t) R~"_:~l(cos 8) h~•./Jl dt, 
-00 

0 < e < n, ( 4.5) 

00 liY.J dt 
/(8) =Loo ](t) R~13--~_l(-cos e) I'(IX + /) I'(f3 + l)' 0<8<n, (4.6) 

provided p is sufficiently large. 
The idea of the derivation is as follows. Let us start, for instance, with 

( 4.3 ), for which we write the right-hand side as 

00 

I F(A.+n)w~.i.J, (4.7) 
n=O 

where F is an even entire analytic function satisfying ths estimate 

IF( t)I ::s; const( l + I ti i--m e2nllm rl' teC, (4.8) 

for a certain m. For 2A. rj; "£ we immediately find a natural analytic extension 
of w~.i.J in the form of an entire analytic function 

-(.l.J ._ 2nt 
u' · - sin( 2nA.) I'(l - A. + t) I'(l - A. - t)' 

(4.9) 

of t, satisfying the estimate 

18'~.l.JI ::s; const( 1 +It! )2.i. e"IIm 'I, teC, ( 4.10) 

by Lemma 3.5 and such that 

n = 0, 1, 2, .. ., 

n = -1, -2, .... 
( 4.11) 

Then (4.7) equals 
,"f:., 

L F(A.+n)O'~;.ln· (4.12) 
n= -OC1 

Now let m > 2A. + 1. Then we can apply Proposition 2.2 in order to rewrite 
(4.12) as 

OC) 00 L e2nin.l. f F(t) a~ne .. 2nint dt, 
n=·-·OCJ -oo 

( 4.13) 
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which in turn, by applying Proposition 2.1 together with ( 4.8) and ( 4.10 ), 
can be written as 

r, F(t)a~',(1+2cos(2n(t-A.)))dt. 
- 00 

(4.14) 

Finally, we take the even part of 0'~' 1(1+2 cos(2n(t-A.))) and denote it by 
h-(.<). 

I , 

'JiO-l _ 4nt sin(2nt) 
I -I'(l-A+f)I'(l-A-f)' 

where 2). rt l. Thus we have proved that 

I F(A. + n) w~-) = f00 F(t) 'Ii;),) dt. 
n=O -oc 

In particular, (4.6) will be valid with this choice of 'Ji;.<>. 

(4.15) 

(4.16) 

While the derivation was done for 2). rt Z, the singularities in ( 4.9) for 
2). = 0, 1, 2, ... drop out in ( 4.15 ). By continuity one can expect that ( 4.16) 
also holds for 2). = 0, 1, 2, ... with the 'Iii', given by ( 4.15 ). However, for 
such ). there is a simpler expression which may be derived from ( 4.15 ): 

'/i(J.) = t(2 cos(n( t - ). ) ) - 2 cos(3nt + nA.) )(t -A.b;. 
I f - A ' 

2). = 0, I, 2, .... (4.17) 

For this choice of'li~"l, the terms with e± 3";' in the right-hand side of (4.16) 
drop out because of Proposition 2.1. Hence, ( 4.16) is valid with 

'JiO.J = 2t cos(n(t-A.))(t-A.b 
I f- A ' 2). = 0, I, 2, .... (4.18) 

There is an analogous road from ( 4.1) to ( 4.5) by the identities 

oc, oo 

L F(A.+n)w~~./1)= L F(A.+n)a~"/J 
n=O n = - oo 

= J"" F(t) a;"· 111(1+2 cos(2n(t-A.))) dt 
- "-

= f <YC F(t) h~"' 11 ' dt, 
-- 00 

(4.19) 
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where Fis an even entire analytic function satisfying the estimate ( 4.8) with 
m > 21X + 2 and t f-> a~x.fil is an entire analytic function satisfying the 
estimate 

f EC, (4.20) 

for all 6 > 0. For ix# 0, 1, 2, ... we find by reasoning as before that 

I'( ) ~(i.) 
a(>./i) = . -IX (JI 

1 f'( 1 + !X) I'( ( /3 - IX + 1 )/2 + f) I'( ( /3 - !X + 1 )/2 - f)' 
(4.21) 

, -(!.) 
h(x,/i)= . /(-IX)h, 

' I'( 1 +ix) I'((/3 - ix+ 1 )/2 + t) I'( (/3 - ex+ 1 )/2 - t)' 

(4.22) 

(li~;i given by (4.15) or (4.18)). Hence we have 

I F(), + n) u>;,rx./il = f' F(t) h ~>./i) dt 
n=O -- x 

(4.23) 

with h~" 11 l given by (4.22). 
This can be further simplified in a number of special cases. If 

IX, f3 = - ~, ~, ... and IX~ f3 then (4.22) can be written as 

( IX-/3-1) 
t(l-),b, t- 2 (sin(2rrt-rr/3)+sin(rr(a+l))) 

h'"-fi) = " /i 
I f' 2 (1X + l) sin(rr(c.: +I ))(t- ),) 

Hence, by Proposition 2.1 we also have (4.23) with 

a, 11 = - L ~, ... , a ?; 11. (4.24) 

If a= 0, I, 2, .. ., however, the previous formulae are not valid and we take 
another extension of w;,"11l: 

a(»/il _ ( - 1 t t( t - ..l + 1 )" ( - t - ), + I), sin(2rr( t - ), ) ) l/J(..l - t) 
I - nI'2(1X + J) ' 

Cl'. = 0, 1, 2, .... ( 4.25 ) 

640 611 ] . J 
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Then 

(>./3) _ _(-1)"1(1-A.+lL(-t-A.+l),t/l(A.-t) 
<r, (1+2cos(2n(t A.)))- nI' 2(ix+l) 

x (sin(2n(t - A.))+ sin(4n:( t - A.))). 

Hence, by Proposition 2.1 and Lemma 3.6, ( 4.23) is valid with 

h~cx,//) = ( -1)H 1 t(t- A+ l)cx( -I - A+ 1 ),, 

x (t/J(A.- t) sin(2n(A- !)) + t/J(A. + t) sin(2n(A. + t))) (4.26) 

2nI' 2(ix + 1) 

Formulas (4.23) and (4.16) cannot only be applied to (4.5) and (4.6) but 
can also be used to give orthogonality relations for the functions S~AJ as 
integrals. From (2.13) we obtain 

00 

" s0·>(k) s(..t)(k) w(•.fi) = w(•./IJ (J 
~ m n k n m,n, ( 4.27) 

k=O 
,,,, 
" so. 1(k) s(A 1(k) wc;.i = w(id J L.. m n k n m,n· ( 4.28) 

k=O 

Then, by Lemma 3.7, the function F(t) := S~(t-A.) s~:·i(t - A.) has the right 
behaviour in order that ( 4.23) and ( 4.16) hold. 

Let us summarize our results in the following theorem. 

THEOREM 4.1. (a) Let iWJ be given by (4.15) (general .l.) or (4.18). 
Then (4.16) is valid for entire even analytic F satisfying ( 4.8) with 
m > 2A. + 1. In particular, 

f Cf_ 710.J dt 
f(8) = ](t) R(fi.')(-cos 0)---'-1---

- x. 1 - I. I'( IX + 1 ) I'( {3 + 1 ) ' 
0 < 0 < n, (4.29) 

(ff E C 2P with p >A.+ e +-!and e as in Lemma 3.2, and 

f '"° sU·>(t-A.) s(Al(t - A) 7i 0·1 dt = (ij(}.I (J (4.30) 
m n t n nJ,n• 

-w 

(b) Let h~"· 131 be given by ( 4.22 ), ( 4.24 ), or ( 4.26 ). Then ( 4.23) is valid 
for entire even analytic F satisfying (4.8) with m > 2ix + 2. In particular, 

f(8)= r ](t) R:·:~l(cos 0) h:•.11 1 dt, 
- ,x) 

(4.31) 
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if f E C 2P with p >rt+ e + 1 and e as in Lemma 3.2, and 

f 00 S(J"(t- J...) s(A)(t - J...) h(x.{J) dt = w(~.rn {> 
nJ n t n m,11· 

- 00 

( 4.32) 

Formula (4.29) with 71~·0 given by (4.18) (2J... = l, 2, ... ) was obtained 
earlier in [ 11, (5.9), (5.11)]. Special cases of their result go back to [3, 
(3.4)] (2,l. = 1) and MacRobert (cf. [8, Chap. IX, (151), (152)]) 
(rt = f3 = 0, 1, 2, ... ) ; see also [ 2, Theorem 1 ] (rt = f3 = 0 ). The conditions on 
f vary and the methods differ from ours. 

The cases rt= f3 = ± 1 of ( 4.31 ) with ( 4.24) also follow from the inversion 
formulas for the Fourier-cosine and Fourier-sine transform in view of the 
two formulae 

R~ 112· - 112 l(cos 8) = cos(t8}, 

R(1;2. 112>( n)- sin(t8) 
1 _ I COS 0 - . n . 

t sm o 

5. THE INVERSE FINITE CONTINUOUS JACOBI TRANSFORM 

LEMMA 5.1. Let g be an even entire analytic function satisfying 

lg(t)I :::;C(l +It!) meitllm11, telC, 

( 4.24) 

(4.25) 

with m > 2rt + 2 + e, where e = 0 or 1 as in Lemma 3.2 for some constant C. 
Then 

f_'"- g(t) R~x,f~>(cos 8) h~x.fi) dt 
- .,_, 

"'-

= L g(J... + n) R~1"·P>(cos 8) w~"·fJl, 0:::;8<n. 
n=O 

Proof Let F(t) := g(t) R~~:r~>(cos 8). Then, in view of Lemma 3.2, F(t) 
satisfies the estimate ( 4.8) with m replaced by m - e and m - e > 2rt + 2. 
Hence ( 4.23) is valid. I 

LEMMA 5.2 ( Cf. Boas [I, Theorem 9.6.11 ] ). Let J... E 11\t Suppose g is an 
even entire analytic function satisfying 

g(t) = o(ltl -2).+ 1e"IIm11 ), (5.1) 

uniformly as ltl---+oo, and suppose g(J...+n)=O for n=0,1,2, .... If 
2J... = O, - 1, - 2, ... , suppose moreover that the zeros at J..., J... + 1, ... , -J... are 
double. Then g is identically zero. 
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The estimate for g in Lemma 5.2 cannot be further relaxed, as is shown 
by the example 

g(t) :=I'()..+ t) I'().. - t) 

This satisfies all conditions on g in the lemma except that 
g(t)=O(ltl-u+te"11m 11 ) rather than (5.1). However, g is not identically 
zero. 

Fix a, f3 > - 1 and let h ;,, 111 be given by ( 4.22 ), ( 4.24 ), or ( 4.26 ). Let g be 
an even function on IR such that 

g(8) := r g(t) R;"~~1 (cos 8) h;"·/J 1 dt 
-oc, 

(5.2) 

is well-defined for - n < {) < n. In view of ( 4.31) we call the transformation 
g Hg the inverse finite continuous Jacobi transform. 

THEOREM 5.3. Fix a, f3 > -1 and let e = 0 or 1 as in Lemma 3.2. Let 
µ>6)..+2e+3+max{a-f3,0} and p=max{l, [A+(e/2)+1/2]}. Let g 
be an even entire analytic function satisfying, for some constant C, 

t E IC, (5.3) 

and such that 

f0 g(t) 11;• + k) dt = 0, 
- "-

k = 0, 1, ... , 2p - 1. (5.4) 

Then g E C 2P and g = ( g) /\ . 

Proof By Lemma 5.1 we have, since µ > 2(a + I)+ e, 

"" 
g(8) = L g(J. + n) R~"·'11(cos 8) w~"· in. (5.5) 

n=O 

Now 

00 ( d )k L g(A + n) R~"-P 1(cos 8) w~".fJJ 
n=k d(cos 8) 

is absolutely convergent, uniform on IR, for k = 0, 1, ... , 2p. This follows 
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from the fact that the absolute values of the terms are dominated by a 
multiple of ( l + n) 1 ··' by the formula 

d w;,"'.rn R(a./l>(cos 8) 
d(cos 8) " 

=~(a+ 1) w;,"'_+/. 11+ 1>R;,,_+/./3+ 1 l(cos 8) 

and by ( 5.3 ), ( 3.4 ), (3.5 ). Hence g is 2p times continuously differentiable on 
!H. Also 

( d )k 
v ( ) 

d(cos 0) g n 

Y. 

=2 k(o:+ l)k L g(A+n)w;,"'\k.ff+k>R;,'\k./J+kl(-1) 
n=k 

2 k 

= I'(ct.+ l)T(fi+k+ 1)n~k g(A.+n)u)~_\kl 

2 k 'l - J g( t > h ~,- + k) dt = o 
-T(ct+l)I'(fi+k+l) Y. 

for k = 0, 1, ... , 2p - I, 

where we used (2.10), (4.4), (5.4), and Theorem4.l(a) since µ>2X+1. 
Hence, gE C 2''. Now, by Lemma 3.4, (g) A satisfies (5.1) and by the 
uniqueness of the Jacobi series, g- (g)" satisfies the assumptions of 
Lemma 5.2. I 

Remark. In [7, Theorem 5. 1] necessary and sufficient conditions were 
given in order that g =/with f being an even C '-'·-function with compact 
support inside ( - n, n ). 
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