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P.J. VAN DER HOUWEN AND B. P. SOMMEIJER

CWI, Centre for Mathematics and Computer Science, P.0. Box 4079, 1009 AB Amsterdam, The Netherlands

SUMMARY

The iterated H-methods employing residue smoothing for finding both steady state and time-accurate
solutions of semidiscrete hyperbolic differential equations are analysed. By the technique of residue
smoothing the stability condition is considerably relaxed, so that larger time steps are allowed which
improves the efficiency of the method. The additional computational effort involved by the explicit
smoothing technique used here is rather low when compared with its stabilizing effect. However, in the case
where time-accurate solutions are desired, the overall accuracy may be decreased. This paper investigates the
effect of residue smoothing on both the stability and accuracy, and presents a number of explicitly given

methods based on the iterated implicit midpoint rule (8 = 1/2). Numerical examples confirm the theoretical
results.

INTRODUCTION

In References 2 and 3 function iteration methods for solving the implicit relations associated with
implicit linear multistep methods were studied in the case of semidiscrete parabolic differential
equations. It was shown that iterated multistep methods could be stabilized considerably by using
residue smoothing techniques based on smoothing matrices. The impressive parabolic stability
boundaries derived in these papers tempted us to study residue smoothing techniques’in iterated
multistep methods for semidiscrete hyperbolic equations. However, a first investigation revealed
that the hyperbolic case is much more complicated than the parabolic case and therefore we
decided to start with the relatively simple case of an iterated one-step method; in fact, we chose
the iterated 6-method. In this paper, we show that, in hyperbolic schemes, residue smoothing may
also relax the stability conditions substantially. It turned out that the smoothers used in parabolic
problems are not suitable in the hyperbolic case, so that we have to construct new smoothing
matrices. It should be remarked that residue smoothing in solving hyperbolic problems has
already been used by Lerat,® Jameson* and Turkel,'® but these authors employ quite different,
usually implicit, smoothing operators.

The numerical schemes obtained in this paper are completely explicit and, by virtue of their
simple structure, they vectorize extremely well on vector computers. They can be used for finding
both steady state and time-accurate solutions of semidiscrete hyperbolic differential equations.
The methods are illustrated by integrating the hyperbolic initial-boundary-value problem

Ju

= = alx, z,u)z—j‘c, ulx, o) = g(x), w0, =bt) axu)<0, 0<x<1, t>t (1)

Suppose that this problem is semidiscretized by symmetric differences on a uniform grid

0029-5981/90/100271-20$10.00 Received 26 July 1988
© 1990 by John Wiley & Sons, Ltd. Revised 11 January 1990



272 P 5 VAN DER HOUWEN AND B P SOMMEUER

'x, = jAx ] and let the resulting svstem of differential equations be given by

dy, i

i

1
95 e - 3 .o o . "
dr 2@\\'“"” ----- Yok J=Lo o M =1 ap=atA oy, M= {2al

Ax
where v, = hityand v, = y,(1) approximates ulx ., 1). The last equation in this system asks for vy
In order to compute this component we add the equation
dL;;‘ = ;j;‘ vy — vy 4 Vo) (2bi

It should be remarked that the above symmetric semidiscretization is not necessarily a suitable
discretization of the space derivative for all initial functions gix) and coetficient functions aix, 1, u).
However. if these functions are such that the exact solution u(x, 1) is smooth, then svmmetric
spatial discretizations are justified. An important class of ‘real-ife’ problems described by
hyperbolic initial-boundary-value problems which do have smooth solutions are the shallow
water problems (see, e.g. Reference 9 and the references cited there). In fact, this work was carried
out at CWI as part of the VECPARCOMP project for designing numerical three-dimensional
shallow water models on vector and parallel computers. Moreover, for such problems the method
of lines approach (1e. the separate treatment of spatial discretization and time integration) is guite
usual and will be followed mn this paper.

In the Appendix to this paper. the final algorithm for the time integration of (2) together with
various smoothing matrices are explicitly given.

THE ITERATED 6-METHOD
Let the semidiscrete hyperbolic differential equation be given by the system of ordinary
differential equations

g =S 3)
and consider the so-called 6-method with stepsize h:=t,, | —t, (see, e.g. Reference 1, p. 199):
Varr =V F A, F 0 =) Y OV — 0 O << 4)
This method requires in each step point t = 1, , solving the equation
Ryt.vyi=v—v,— Wi, + 00 —t, Ly, +8(y -y =0 (5)
for 3. One way to solve this equation is by means of the one-point function iteration method
.\"0' =y )-U‘! — yu‘ o ru‘an(tU- li‘ yU' ll'
(0 =g =T = T — g, — B

wherej=1,.. .. mand {7} are relaxation parameters. When we accept 3™ as an approxima-
tion to the exact solution n of (5), thatis we set y, , , = y"™, then this scheme may be interpreted as
an m-stage, one-step Runge-Kutta method. By applying the well-developed Runge -K utta theory.
the relaxation parameters can be determined in such a way that y, , | has order of accuracy 1 or 2,
and possesses optimal stability for hyperbolic problems. Unfortunately, it turns out that, in order
to achieve sufficient stability for a realistic integration step, the number of iterations should be
relatively large and hence a lot of computational effort is required. In order to save computing
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time, we consider the following modification:
YO =y yD = YU _ pIgR (=1 i1y

(O =g D) = D U ]
2 n

(6)

wherej =1, ..., m Here, Sisa smoothing matrix which is defined by a polynomial of degree k of
a difference matrix D, i.e.

S = 5.(D) (7Ta)
where D is some (possibly rough) approximation to the normalized Jacobian matrix of the right-
hand-side function:

J 0
DL, 1= 100, -t v, + 00— y) (7b)

P dy
with p denoting the spectral radius of the matrix J. The smoothing polynomial S,(x) is required to
satisfy the condition S,(0) = 1, so that S approximates the identity matrix in the space spanned by
eigenvectors of D with eigenvalues close to the origin. Examples of smoothing polynomials are

Thv (1 +2x) -1 Tier(1 +2x%) =1 Un(/1 +x%)
Si(x) = Ak + 12x ° Sa(x) = 2k + 1)2x2 s Sulx) = “—“‘276“;“1*’“_ ®)

Here, 7,, and U,, denote Chebyshev polynomials of the first and second kind. For special values of
k these polynomials allow an extremely efficient implementation of the corresponding smoothing
matrices (cf. Reference 2). The first family of these polynomials is appropriate in parabolic
problems.

The scheme (6) may be interpreted as an m-stage, one-step Runge-Kutta method in which the
Runge-Kutta parameters are replaced by matrices. Thus, the iterated 8-method can be re-
presented by a Butcher array. For example, the Butcher arrays for m = 1 and m = 2 are given by

0 0 0
, or ) or)s 0

r® - @55 28

In practice, however, the representation (6) is more suited for implementation.

Amplification polynomial

In view of the special form (6), the most obvious approach is to choose the relaxation
parameters such that the iteration error is rapidly decreased in magnitude. Since the iteration
error in (6) is approximately given by

Cni1 =N — Yps1 X Pu(SU — 0Z])e,, Pn(x):= ] [1—=rIx], Z:=hJ )

=1
we should choose the amplification polynomial P,,(x) of the 6-method appropriately. Usually, the
iteration error e, is dominated by eigenvectors of S[I — 6Z] with eigenvalues close to 1. This
suggests that we should choose P,,(x) such that it is small in magnitude in the neighbourhood of
x = 1. Ideally, we should minimize P,,(x) on the set of eigenvalues of S[I — 6Z7] which are close to
1. However, owing to the introduction of the polynomial S,, these eigenvalues are located on a
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complicated curve in the complex plane and it seems unlikely that we can exploit its particular
form. Therefore, we consider the spectrum of S[I — 6Z] as an arbitrary set of points in the
complex plane, and, by applying Zarantonello’s lemma (cf. Reference 11), we see that, as far as
damping of the iteration error is concerned, we cannot do better than concentrating all zeros of
P,(x) at a fixed point in the centre of the region where we want P,,(x) to be small in magnitude.
Obviously, this leads us to equal values for ¥ and, since at least one relaxation parameter should
be 1, we find ¥ = 1 for all j, so that

P,(x):=[1—x]" (10)

In the next section, where we investigate the linear stability of the iterated 6-method, we shall see
that this polynomial is also obtained by solving the order conditions derived from the stability
polynomial of the iterated §-method.

Stability polynomial

In order to derive the stability polynomial for the iterated 6-method, we have to establish a
(approximate) relation between y, ., and y, when the method is applied to the linear test equation
y'=Jy=h"'Zy From (9) we have

= Vn+1 =Pm(S[['—HZ])[’7—yn] (9,)
and from (5) we find that
n=[-0Z1"'[I+(1-60Z1y,

Substitution of x into (9') and using (7a) yields

L+ [1=0—P,(S(x)[1 —6z])]z
1 — 6z

VYar1 = R(D, Z)y,, R(x,z):= (11)
R(D, Z) will be called the stability matrix and R(x, z) the stability polynomial. Notice that R(x, z)is
a polynomial in both x and z. We remark that in the ideal case (the so-called model situation)
where D equals the normalized Jacobian, ie. if D = p~'J = (hp)~ ! Z, the stability polynomial
R(x,z) = R((hp)™ 'z z) is a polynomial of z alone. This ‘simplified’ stability polynomial plays a
central role in our (linear) stability considerations.

Unfortunately, when using the smoothing polynomials (8), the method generated by the
amplification polynomial (10) has poor stability properties. As an alternative and more successful
approach, we choose the smoothing polynomial in such a way that the resulting stability
polynomial of the §-method is suitable for integrating hyperbolic equations. Since stability
polynomials govern not only the stability but to some extent also the overall accuracy of one-step
methods we shall derive accuracy and stability conditions at the same time. In this approach, we
may profit from the many results available in the literature on stability polynomials for
hyperbolic equations (e.g. References 3, 6 and 7). In this connection, we observe that if we succeed
in identifying R((hp)~ 'z, z) with a given stability polynomial with constant coeflicients, then we
obtain smoothing polynomials of the form

Six)=1+s;x+ ... +5x (12)

with s; = c;(hp)’, where the c; are constants. As a consequence, the non-zero coefficients of x/z in

R(x, z) are proportional to (hp)i. This feature should be taken into account in the following
accuracy considerations.
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Accuracy conditions. The order of accuracy can be estimated by the local error &, ;:= y(t,+;)

— Yn+1> Where y(t) denotes the exact solution through the point (t,, y,). In order to derive an

expression for this error we first observe that, by virtue of the property that the components of y(t)

form a grid function defined on a grid with mesh size A, we may assume the existence of an integer
p for which the grid functions

_Diyo) .
V0= =% =012

are bounded as A tends to 0 (p may be considered as the order of the difference matrix D).
Furthermore, we use a notation by means of the forward shift operator E, i.c.,

Ey;(t) = yj+1(2)
We can now express the local error in the form
tns1(A ) = h[I = R.(D,0)]y'(t,) + 3h*[I — R..(D, 0)1y"(t,) + O(h*)
= h[1 — R,(APE, 0)]yo(t,) + 3h*[1 — R..(APE, 0)1y5(t,) + O(h®)  (13)

The expansion (13) indicates that, for sufficiently smooth grid functions y’(z,) and y”(t,), the
global error defined by h™ e, (A, h) is controlled by the ‘error’ function

Ani(AP, h): =1 — R,(A%,0) + h[1 — R_.(A?, 0)] + * (14)
Writing
Ap(A7, B) = Y a hi AT | (15a)
ij
we obtain
Global error = Y |a;;|O(h'A'P) (15b)
i

In the actual derivation of the error constants g;; it is convenient to write the amplification
polynomial in the form
Po(x)=1+40;x + ayx? +a3x>+ ... + o, x™ (16)

so that the stability polynomial can be represented as

R =1-z 3 o,[S()][L 027" (11')
j=1

is
Here, the coefficients a; are easily expressed in terms of the relaxation parameters. We can now

express the error function A,,(A? h) in terms of 6, the coefficients «; and the smoothing
polynomial S,. It is easily verified that

Rix 0= = 3 S0, Rulx0=20 3 (= DlS,09)

so that
A (AP h) =1+ h+h*+ Z o;[1 —2h6(j — DILS(AP) ]!

ji=1

The error constants a;; can be determined by writing

(17)

mk ) di ) 0
Amid A%, ) = Z a;(WA”?, a;:= -|aj(i)
i=0 ildh
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The first three coefficient functions a;(h) are given by

agh)y=1+h+h*+ Y o;[1—2h00(j—1)]
i=1

m

a,(h) = led,-[l —2h6(j — 1)1s,

ax(h) = ¥, jay[1 = 20007 — 1)]Lsa + 4 = Dsi]

(as in (12), the parameters s; denote the coefficients of the smoothing polynomial S;(x)).

We distinguish the case where the coefficient «; is constant and s; is of order K/ and the case
where both o; and s; are constant. The corresponding values of the error constants a;; are listed in
Tables I and II.

We shall use the method parameters 6 and «; to make the first error constants a;; and the
smoothing parameters s; vanish to maximize the stability boundary. In Table III the correspond-
ing parameter values of 6 and o;, and the resulting relaxation parameters together with the orders
of the global error are listed for m = 1, 2, 3. Since 6 = 1/2 for all m, we are in fact iterating the
implicit midpoint rule. Furthermore, since the relaxation parameters all equal 1, the amplification
polynomial P,,(x) is identical with (10). Of course, this is a consequence of our decision to use all
method parameters 6 and o for increasing the order of accuracy. If one or more of the method
parameters are used for improving the stability, then the amplification polynomial will not
necessarily be equal to (10). Without claiming that it is the best strategy, we shall confine our
considerations to methods with 8 = 1/2, ¥ = 1 (j = 1, . .., m), and with smoothing polynomial

Table 1. Error constants a;; for «; constant and s; = ¢ (hp)!

j=0 i=1 ji=2
i=0 1+ o 0 0
ji=1
i=1 1=20% (j— 1y cp Y, jo 0
j=1 =1
i=2 1 —20c,p z - 1)%‘ p? Z j“j["z"'%(j‘l)cf]
j=1 j=1

Table I1. Error constants a;; for «; and s; constant

j=0 j=1 j=2
i=0 1+ Y o Sy Y o > joilsy +3(j — 1)s?]
i=1 j=1 j=1
i=1 1-20 Y (j— Dy —20s, ¥ j(j— Do, =20 Y j(j— Doy[s, + 3(j — 1)si]
j=1 j=1 i=1

i=2 1 0 0
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Table II1. Specification of the Method(m, S,)

Global error

m 0 oy oy oy rH r2 r® s, =c;(hp) s; constant

1 1 -1 1 O(h + hpAP) O(h + A?)

2 1 -2 1 1 1 O(h? + h2pAP) O(h? + hAP + A??)
3 1 -3 3 -1 1 1 1 O + h*p*A%)  O(h* + A?P)

S, such that the stability is optimal in some sense. These methods will be denoted by
Method(mS,).

Stability conditions. According to Table III and using (10) and (11), the stability polynomial of
Method(m, S, ) reduces to the form

L+ 5= (1= Six)[1 — 32])"]z

R(x, z):= 1,
-2

(18)

The region in the (x, z)-space where the modulus of this polynomial is bounded by 1 will be called
the stability region.

Example 1. Consider Method(1, S,) where S, (x) = 1 + s, x, s, being a positive constant. Then
the stability polynomial (18) is given by

R(x,z) =1+ z(1 + s,X)

In the (x, z)-plane, the stability region is given by |1 + z(1 + s,x)| < 1. Let us consider this region
for imaginary values of x and z. In Example 2 below, it will be shown that the largest possible
imaginary stability boundary equals 1 and is obtained for s, = 1. Setting x = i, z = ihp{ with
hp = 1and — 1 < ¢, < 1, we find that, in the (&, {)-plane, the stability region is bounded by the
lines { =0and {2 —28+(=0. O

In order to obtain manageable stability conditions, we consider the model situation where the
difference matrix D actually equals the normalized Jacobian (hp) ™' Z, so that S = S,((hp)~'2).
Evidently, for a given value of hp, the iterated §-method is stable if the modulus of the stability
polynomial R((hp)~ 'z, z) is bounded by 1 when z runs through the eigenvalues of the matrix Z.
Such a value of hp will be called a stable hp-value. In actual computation, where the value is
estimated during the integration process, it is recommended to require that there is a sufficiently
large interval of stable hp-values. To be more precise, suppose that the method has the interval
[, B] as its range of stable hp-values, and let p* be an estimate for the true spectral radius p.
Usually, we desire the largest possible step h, so that we set h = f/p*. Since it is required that
hp e[, B], we have only stability if p* satisfies the inequality p < p* < fp/a.

In this paper, we shall assume that the spectrum of the matrix Z is (essentially) imaginary. Thus,
we are faced with the problem to keep the values

1+ [3 =1 = S(hp) " 2)[1 — 32])"]z

R((hp)_lz, Z)I— 1 _%Z , ZE€E [ ~ihp, lhp] (19)

on the unit disk for a maximum range of hp-values by a judicious choice of the smoothing
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polynomial S,. In the ideal case where the whole interval [0, f] contains stable hp-values, B is
called the imaginary stability boundary and will be denoted by fiqag-

Example 2. Consider again Method(1, S,) of Example 1. It is easily verified that the poly-
nomial (19), i.e.
R((hp)™'z,2) =1+ z(1 + s:(hp) "' 2)
assumes values on the unit disk for all values of z in the imaginary interval
hp(2s, — hp)
st

provided that hp < 2s,. Thus, if z runs through the interval [ — ihp, ihp], then we should require
H = hp resulting in hp < 2s, /(1 + s2). This leads us to put s, = 1 to obtain the largest possible
imaginary stability boundary Bi,, = 1. O

[ —iH,iH], H:=

More generally, we have the following theorem on the maximal attainable imaginary stability
boundaries of the iterated implicit midpoint rule.

Theorem 1. The imaginary stability boundary of Method(m, S,) can never exceed m(k + 1) — 1

Proof. The polynomial R((hp) 'z,z) is of the form 1+z+ B,z% + B3z>+ ...
+ B+ 1)2™ D It is known'? that the imaginary stability boundary of such polynomials
cannot exceed the degree of the polynomial minus 1, i.e. fipee <mk +1)—1. O

In the following sections we consider one-stage, two-stage and three-stage methods in which
the smoothing polynomial is determined such that the stability polynomial (19) is a polynomial
with fixed coefficients possessing a large imaginary stability boundary f.,.,. As we already
observed, the coefficients of the polynomials S, obtained, and therefore the generated methods
Method(m, S,), are hp-dependent. Since it is sometimes convenient to have methods independent
of p, we also consider methods where hp is replaced by P, s0 that the coefficients of the
smoothing polynomial are constant. We remark that, as a consequence, the range of stable hp-
values may change.

ONE-STAGE METHODS

In this section we consider the Method(1, S,) defined in Table III. The stability polynomial of
these methods is given by

R(x,2) =1+ z8,(x) (20)

From this expression we immediately conclude:

Theorem 2. Method(1, S,) has a zero imaginary stability boundary if S, is real-valued. [
However, if the smoothing polynomial is complex-valued, then methods with non-zero
imaginary stability boundaries are easily constructed.
Methods of O(h + hpA?)

Our starting point is a result of Kinnmark and Gray? stating that the polynomials I, (z)
which satisfy I, ;(0) = I} +,(0) =1 and which assume values on the unit disk in the largest
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possible imaginary interval [ — ik, ik], are given by

e R )

Thus, by identifying R((hp) ™'z, z) with I, (z), that is,

_ Lisi(hpx) — 1

Si(x) hox

(22)

we achieve that (in the model situation) the range of stable hp-values is given by 0 < hp <k, so
that the imaginary stability boundary B, equals k. Notice that, according to Theorem 1, this
value is optimal. It follows from Table III that the method is O(h + hpAP). For future reference,
we list the first three smoothing polynomials (Table IV).

Methods of O(h + AP)
Let us define

I kx) — 1
Sk(x)= k+1(kx) (22*)
so that in the model situation where x = z/hp we have
- h kz
R((hp)~'2,2) = 1 +f-[1k+1 (E) - 1} 23)

The first three smoothing polynomials together with the ranges of stable hp-values of this stability
polynomial are given in Table V. It turns out that here the stability range equals [0, k] so that at
least for k < 3 the ‘fixed smoothing polynomial’ versions of Method(l, S,) possess a non-zero
imaginary stability boundary ., = k. We did not succeed in proving this property for all k.
Finally, we remark that the methods are O(h + AP) accurate for all values of k (cf. Table II).

Table IV. Smoothing polynomials for use in
Method(1, S,)

k Sk(x) ﬁimag
1 + hpx 1
1+ hpx + %(hpx)* 2

3 1 + $hpx + 5(hpx)? + gr(hpx)® 3

Table V. Smoothing  polynomials for use in
Method(1, S;)

Stable

k Sk(x) hp-range
1+x [0, 1]
1+x+ x? [0,2]

3 13 + 5x + 4x* + 4x3) [0, 3]
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TWO-STAGE METHODS

Next we consider the Method(2, S,) as defined in Table III. The stability polynomial of these
methods is given by

R(x,z) =1 + z8,(x){2 — Si(x)[1 — 321} (24)

For this polynomial we have

Theorem 3.

(@) If the eigenvalues of Z are purely imaginary, and if the smoothing polynomial is real-valued,
then the stability condition of Method (2, S,) is given by

S_(O)<S) <8, (0, [I<hp, —1<x<0 25)
where
S.(i=tEVEZ3T
2+

(b) If the conditions of (a) are satisfied, then the imaginary stability boundary cannot exceed the
value /4/3.

Proof.
(@) If S,(x) is real-valued and if z = i{ with { real, then we have
IR(x, 2)|* = [1 = $3(S,(x))*1* + CP[Sex)(2 — Si(x))] (26)
The stability condition |R(x, z)] < 1 leads to the inequality
[+ 22708,(x)]> — 48, (x) +3<0 27

for all non-zero values of S,(x). This leads straightforwardly to the condition (25).
(b) For real values of S,(x) condition (27) can be satisfied only if {* satisfies the condition

4> 3{2, that is
1< /%

Thus, the imaginary stability boundary can never exceed the value \/4/3. O

This theorem reveals that real-valued smoothing polynomials are not very effective in
hyperbolic schemes. Therefore, we have concentrated on more general complex-valued smoothing
polynomials in order to increase the imaginary stability boundary. However, since the coefficients
B; of R((hp)™'z,z) are not free but functions of the k smoothing coefficients s;, we should not
expect to find boundaries as large as the upper bound m(k + 1) — 1 stated in Theorem 1.

Methods of O(h? + h?pAP)
The Method(2, S,) employing the smoothing polynomial S,(x) = 1 + s;x + ... + 5. x* con-

tains the k free parameters {s,, . . . , 5} for maximizing the imaginary stability boundary f;,,. In
the model situation the stability polynomial is of the form
R((hp)™'z,2) = 1 + z8,((hp) ' 2){2 — Sil(hp) ' 2)[1 — 321} (24)

We used a numerical search in order to determine suitable parameter values. In Table VI we list a
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Table VI. Smoothing polynomials for use in Method(2, S;)

k Sk(x) Bimag
1 1+ thox 25
2 1 + Hhpx + & (hpx)? 375
3 1 + F5hpx + 135(hox)? + 335(hpx)? 6

few smoothing polynomials and the generated imaginary stability boundaries which are appro-
priate for use in Method(2, S;). These boundaries are about 83, 75 and 85 per cent of the upper

bounds given in Theorem I. According to Table III the corresponding methods are of
O(h* + h* pAP).

Methods of O(h* + hAP + A?P)

By replacing in Table VI the problem parameter hp by f,,,, we obtain smoothing polynomials
with constant coefficients generating methods of O(h* + hAP + A?P). In Table VII, the analogue
of Table VI is given. Unlike the case of one-stage methods, the price for having fixed smoothing
polynomials is a reduced interval of stable hp values. However, we shall see that in actual
computation the intervals of unstable hp values hardly influence the accuracy. Notice that the hp-
independent version of Method(2, S;) allows larger steps than the hp-dependent version.

THREE-STAGE METHODS
Finally, we consider the Method(3, S,) of Table IIL

Methods of O(h? + h2p?A?P)

Similar to the previous section we computed smoothing polynomials for use in the
O(h? + h?p? A?P) version of Method(3, S;). See Table VIIL.
Methods of O(h?® + A?P)

The analogue of Table VII is given by Table IX. Again the method using the third degree
smoothing polynomial is rather sensitive to an accurate estimate of the spectral radius.

Table VII. Smoothing polynomials for use in Method(2, §,)

k Si(x) Stable hp-range
$(8 + 5x) [1-25, 2:5]
#5(80 + 66x + 45x%) [0, 0-89] + [2-89, 3-75]
(50 + 84x + 54x + 81x?) [0, 0:94] + [4-62, 467] + [4:85, 5:02]

+ [513, 5:42] + [547, 6:25]




282 P.J. VAN DER HOUWEN AND B. P. SOMMEIJER

Table VIII. Smoothing polynomials for use in Method(3, S,)

k Sk(x) Bimag
1 1+ $hpx 26
2 1 + Fhpx + 135(hpx)? 55

3 1 + S5 hpx + 5555(hpx)? + sk5(hpx)® 575

Table IX. Smoothing polynomials for use in Method(3, S,)

k S(x) Stable hp-range
(40 + 13x) [0-58, 0-62] + [1-08, 2-6]
5656 (2000 + 825x + 1452x2) [0-63, 0-84] + [3-47, 5-54]
3 33555-(32000 + 33764x + 26979x2 + 24334x3) [5-61, 5:75]

SMOOTHING MATRICES

In our numerical experiments we integrated the semidiscrete hyperbolic problem given in (2).
However, in order to obtain a Jacobian matrix with an appropriate difference structure, we
modify this system slightly. Instead of substituting the boundary value y, in the equation for y,,
we convert the boundary condition y, = b(t) into a differential equation by analytical or
numerical differentiation. Thus, if b'(¢) is available, then we add to (2) the equation

do

o~ by (28)

The normalized Jacobian matrix of the right-hand-side function of the system {(2), (28)} is
approximated by

0 0
10 —1
oo -t
D=3 . . (29)
1 0 -1 0
1 0 —1
0 .o =1 4 -3

We shall use this difference matrix for generating the smoothing matrices S = S,(D) when
integrating problems of the form {(2), (28)}. Notice that (29) does have a difference structure
indeed, which would not be the case if y, is eliminated from the equation for y,.

For an efficient implementation it is desirable to compute S in advance. In the Appendix we
have listed the matrices S = §,,, associated with Method(m, S,) for all polynomials S, specified in
Tables V, VII and IX.
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NUMERICAL EXAMPLES

In our experiments, we chose problems of the form {(2), (28)} and we discretized the problems as
indicated in the Introduction. The initial and boundary conditions were taken from the exact
solution u(x, t). Thus, by specifying the functions u(x, t) and a(x, t, u), and the grid size Ax, the
initial-value problem {(2), (28)} is completely defined.

We represent the maximum absolute error (with respect to the solution u) at the end point of
the integration interval in the form 107, where sd may be considered as the number of correct
significant digits. In the sections below we present sd/sd*-values for a few problems. Here, sd and
sd* respectively correspond to the hp-dependent and hp-independent versions of the smoothing
polynomial occurring in Method(m, S,). To provide a reference, we also list the sd-value obtained
for the implicit midpoint rule, when solved exactly using Newton iteration. Unstable results are
indicated by an asterisk.

Model problem

Table X lists results for a model problem semidiscretized on a fixed grid with various values of
the time step h. From this table the following conclusions can be drawn.

1. All methods are stable when hp lies in the range given in the Tables IV-IX.

2. Except for Method(2, S;) the accuracy is not affected by the intervals of instability
associated with the hp-independent versions of the two- and three-stage methods.

3. The first-order and zero-order time discretization error of the hp-dependent and hp-
independent versions of the one-stage methods is clearly recognizable (in the two- and three-
stage methods, the time discretization error is hidden by the space and smoothing errors).

4. Except for the hp-independent version of Method(2, S,) the accuracy is not affected by the
degree k of the smoothing polynomial.

5. The hp-independent and hp-dependent versions of the three-stage method as well as the hp-
dependent version of the two-stage method produce results of the same accuracy as the
implicit midpoint rule; however, this rule requires much more computational effort.

Linear problem with varying coefficients

Our second problem differs from the model problem by an (x, t)-dependent coefficient function
a. From the various methods we selected the (m, k) = (1, 3),(2, 3) and (3, 2) methods which possess
the best stability characteristics. Together with the Newton iterated implicit midpoint rule the sd-
values obtained are listed in a box like

Method(1, S3) Method(2, S;)
Method(3, S,) Newton

Table XI presents the sd-values obtained. Again we observe the correct order behaviour of the
various methods and, similar to the model example, the intervals of instability associated with the
hp-independent version did not manifest themselves. A comparison of the accuracy behaviour of
the hp-dependent and hp-independent versions reveals that in the three-stage scheme both
versions yield the accuracy of the implicit midpoint rule. In the one- and two-stage methods,
however, we observe a difference in favour of the hp-dependent version.



Table X. sd/sd*-values obtained for a:= — I, u =sin(t — x), 0 <r < 1 and Ax = 1/80
m=1 m=2 m=3
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3  Newton
* [ * */* * % * /* * /0.9 * /% * /* * 31
* [k * % */2:0 * /% 2:1/36 3-6/37 * % 3-6/36 36/3-6 37
*/* 2:2/2:2 2:2/22 4-2/4-2 4-3/3:5 4-2/3-8 4-1/41 4-1/4-1 4-1/4-1 41

2:5/2:5 2:5/2:5 2:5/2'5 4-5/4-4 46/4-4 45/36 44/4-4 4-4/4-4 4-4/4-4 44
28/2:7 2:8/27 28/2:4 46/3-7 4-6/4-2 4-6/35 4-5/45 4-5/4°5 4-5/4-6 45
3.1/2:6 31/2:6 31/2:4 46/4-3 4-6/42 4635 46/46 46/4:6 46/4'5 46
34/2:6 34/2:6 34/2:4 46/43 46/4-1 4-6/35 46/4:6 4-6/4-6 46/4:5 46

Table XI. sd/sd*-values obtained for a: = — x/(2(1 + 1)), u =sin(x>(1 + )" and 0 <t < 1
Ax =35 Ax =75 Ax = g5 Ax =155 Ax =355

h=1 1-8/17 28/23 1-8/1-8 29/29 %15 29/29 */1-4 */1-4 */1-4 *

2:9/3-0 30 30/3-0 31 31/3-0 32 A 32 * % 32
h=% 2:1/1-5 32/2-3 2:1/2:0 3-4/29 2:1/21 3-5/3:5 */1-8 36/3'5 */0-8 * /%

32/3-3 33 35/3-6 36 37/37 38 3-8/3-7 38 *[* 38
h=+4  24/14 3322  24/18 3728 2423  40/34  24/24  41/40 */1-8 3-6/41

34/3:3 34 38/3:8 38 4:2/42 42 43/43 44 44/44 44

=

&~

2-8/1-4 3-4/2-2 2:7/1-7 3:9/2-8 2:7/2-1 4-3/3-4 2:7/2:6 4-6/4-0 27727 47/4-6
34/3-4 34 3:9/39 39 4-4/4-4 44 4-8/4-8 4-8 4-9/5-0 50

=

&

3-2/1-4 34/2:2 3-0/1-7 3:9/2-8 3-0/2-0 4-5/3-4 3-0/2-4 4-9/4-0 3-0/29 52/4-6
34/3-4 34 39/39 39 4-5/4:5 45 5-0/50 50 54/54 54

$8¢
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Table XII. sd/sd*-values obtained for a: = —u, u =3 —1t + \/tz +4x)and 1 <1 <2

Ax =35 Ax =45 Ax = g5 Ax = 15 Ax =55
h=4 2217 3521 2120 323 %2 2826 *23 */29 */0-5 *x
41731 41 43/34 43 43/37 44 %05 44 *x 44
h=% 2:5/1-7 4-0/2-1 2:4/1:9 3-7/2-3 2:4/2:2 3-3/2:6 */2:5 31/2:9 * /¥ * ¥
43/31 43 47/34 47 49/37 49 46/40 50 *x 50
h=4% 2:8/1-7 4-3/2-1 2:7/1-9 4-3/2-3 2:7/2-2 3:9/2:6 2:7/2:5 3:6/29 */2-8 3-4/3-2
4-4/3-1 4-4 49/3-3 4-9 5-3/3-6 53 55/3:9 55 4-8/4-2 56
h=go 31/17 4-4/2-1 3-0/1-9 49/2-3 3-0/2-2 4-5/2-:6 30/2:5 41/29 2:9/2-8 3-8/3-2
4-4/3-1 44 5-0/3-3 50 5-5/3-6 55 59/39 59 6:1/4-2 61
h =1 3-4/1-7 4-4/2-1 3-3/19 50/2-3 3-3/2-2 5-1/2:6 3-3/2'5 47/2-9 3-2/2-8 4-4/3-2
4-4/3-0 44 5-0/3-3 50 5-6/3-6 56 6-1/39 61 6:5/4-2 65

SNOILVYNOF OITO4¥adAH Y04 AOHLIN-0
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Non-linear problem

Our third problem is non-linear, that is, the coefficient function a depends on u. The analogue
of Table X1 is given by Table XIL In this example, the difference in the accuracies produced by the
hp-dependent and hp-independent versions is much larger than in the previous examples,
especially for the two- and three-stage methods. Apparently, in this non-linear problem, the
influence of the smoothing error on the global error is rather large, resulting in a superior
behaviour of the hp-dependent version of the method, particularly for small h. However, we
should realize that in practical applications usually the largest possible step size will be used. For
these values of h the difference of both versions is much less pronounced.

Furthermore, we observe that the three-stage method using the hp-dependent version produces
(for all stable step sizes) almost the same accuracy as the implicit midpoint rule. However, this
Method(3, S,) requires considerably less computational effort than the implicit midpoint rule (in
our implementation we measured a factor 8).

APPENDIX

For the actual computer solution to the semidiscretization {(2), (28)} of the initial-boundary-
value problem (1) by means of the hp-independent methods, the following explicitly written out
algorithm may be used,

. . . t, + U= Ya + (J-1
YO =y v =y “—Smk[y“ ”-yn—hf< R év

O=t; (Y=t,+h

where j = 1,..., m and where S,, is the smoothing matrix which is defined by one of the
following matrices (notice that the dimension of these smoothing matrices equals the number of
semidiscrete differential equations in {(2), (28)}):

2 0
1 2 -1 0
1 01 2 -1 0
Sll:_ P
0 1 2 -1 0
0 1 2 =1
0 -1 4 —1
4 0
2 3 =2 0
g 1 12 2 =2 0
2=y
0 2 2 =21

1 3 —-11
-1 5 -3 3
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6 0
4 4 -3 2
23 2 -2
1 2 2 2
Siy =
6
0 1 2
0 1
0
0
16 0
516 -5 0
i [ 0 s 16 -5
Sa=1¢
0
0
320 0
132 275 —132
45 132 230
1 0 45 132
S22=35;
0 45
0

—1

2

-2

0
-1

G W DN

5 16
5

o

45
—132
230

132
45

-2

—2
-6

-5
16
20

45

— 132
230
132

45
— 45

2
1
7
11

-1
-1
-3
-3

0

—5

45

— 132
230
177
183

45
— 132
95
33

45

149
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400 0
255 292 —174 108 —81 0
108 174 184 —93 108 —381
81 108 93 184 —93 108
0 81 108 93 184 —93
S23 ﬁ -
0 81 108 93 184
0 81 108 93
0 81 108
0 81
— 81
80 O
13 80 —13 0
(| 013 8 -13 0
$31=% L
0 13 80 —13 0
0 13 80 —13
0o —13 52 41
4000 0
825 3274 — 825 726 0
726 825 2548 — 825 726
0 726 825 2548 — 825
Sy, = @166 o
0 726 825 2548
0 726 825
0 726

— 726

P.J. VAN DER HOUWEN AND B. P. SOMMEIJER

- 81
108

-93
184
93

189
459

726

— 825
2548
1551
4257

0
—81 0
108 - 81 0
—-93 108 — 81
103 150 135
—285 751 —336
— 795 1209 - 392
0
726 0
— 825 726
370 1353
— 4686 5155



128 000

55361

26979

12167

0

S33

~ 128000

0
101021
43194
26979
12167

—431%
74042
31027
26979

12167
0

26979
— 31027
74042
31027

26979
12167
0

— 12167
26979
— 31027
74042
31027
26979

12167
0

0

— 12167
26979
— 31027

74042
31027
26979

12167
— 12167

0
— 12167
26979

— 31027
74042
31027

39146
58190

0
— 12167

26979
- 31027
61875

— 14996
— 61180

— 12167
26979
5474

126942
131514

0
— 12167
— 9522

— 35259
11643
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If these matrices are used, then the maximally stable time step is given by h = B,.p ™!, where p

denotes the spectral radius of df /0y and B, is given in the following table:

Bue |k=1 k=2 k=3
m=1|1 2 3

m=2]25 375 625
m=3126 554 575

If smaller steps are used, then weak unstable behaviour may occur for m > 2 (cf. Tables VII*
and IX*).

—

REFERENCES

. E. Hairer, S. P. Nersett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer-Verlag,

Berlin, 1987.

. P. J. van der Houwen and B. P. Sommeijer, ‘Improving the stability of predictor—corrector methods by residue

smoothing’, JIM A4, to appear.

. P. J. van der Houwen and B. P. Sommeijer, ‘Smoothed predictor—corrector methods for solving partial differential

equations’, Proc. Int. Conf. on Numerical Mathematics, Singapore 1988, ISNM 86, Birkhéduser, Basel, 1989, pp.
201-224.

. A. Jameson, ‘The evolution of computational methods in aerodynamics’, J. Appl. Mech., 50, 1052-1076 (1983).
. 1. P. E. Kinnmark and W. G. Gray, ‘One step integration methods with maximum stability regions’, Math. Comp.

Simulation, XX VI, 87-92 (1984).

. I. P. E. Kinnmark and W. G. Gray, ‘One step integration methods of third-fourth order accuracy with large

hyperbolic stability limits’, Math. Comp. Simulation, XXVI, 181-188 (1984).

. I P. E. Kinnmark and W. G. Gray, ‘Fourth-order accurate one-step integration methods with large imaginary

stability limits’, Numer. Methods Partial Differential Equations, 2, 63-70 (1986).

. A. Lerat, ‘Une class de schémas aux différence implicites pour les systemes hyperboliques de lois de conservation’, C.R.

Acad. Sci. (Paris), 2884, 1033-1036 (1979).

. A. R. Mitchell and D. F. Griffiths, The Finite Difference Method in Partial Differential Equations, Wiley, Chichester,

1980.

. E. Turkel, ‘Acceleration to a steady state for the Euler equations’, in Numerical Methods for the Euler Equations of

Fluid Dynamics, SIAM Publications, Philadelphia, 1985, pp. 218-311.

. R. S. Varga, ‘A comparison of the successive over-relaxation method and semi-iterative methods using Chebyshev

polynomials’, SIAM J. Appl. Math., 5, 3947 (1957).

. R. Vichnevetsky, ‘New stability theorems concerning one-step integration methods for ordinary differential equ-

ations’, Math. Comp. Simulation, XXV, 199-205 (1983).



