
Abstract

On the Power of Subsumption
and Context Checks

Roland N. Bol1

Krzysztof R. Apt1 ,2

Jan Willem Klop 1,3

Loop checking is a mechanism used to prune infinite SLD-derivations. Here we study two classes of loop
checking mechanisms - subsumption checks and context checks. We analyze their soundness,
completeness relative strength and related concepts. We prove their soundness (no computed answer
substitution to a goal is missed) and demonstrate their completeness (all resulting derivations are finite) for
some classes of logic programs. The completeness theorems for the subsumption checks make use of a
simple version of Kruskal's Tree Theorem [K], called Higman's Lemma [HJ.

This paper is a sequel to Apt, Bol and Klop [ABK] where a formal framework for studying loop checking
mechanisms was introduced and where so-called equality checks were studied.

1. Introduction

Logic programming is advocated as a formalism for writing executable specifications. However, even when
these specifications are correct in the logical sense, their execution by means of a PRO LOG interpreter may lead
to divergence. This problem motivated the study of loop checking mechanisms which are used to discover
some form of looping in SLD-derivations (see [B], [BW], [C], [PG], [SGG], [SI], [V]).

The use of a PROLOG interpreter augmented with a loop check allows us to use a larger class of logic
programs as correct executable specifications. Which class it is depends on the selected loop check. To study
such problems in a rigorous way, we introduced in our previous paper Apt, Boland Klop [ABK] a number of
natural concepts like soundness, completeness and relative strength of loop checks. We also introduced there
the concept of a simple loop check arising when the loop checking mechanism does not depend on the analyzed
logic program and showed that no sound and complete simple loop check exists, not even for programs without
function symbols. Then we analyzed a number of natural simple loop checks based on the equality between
goals, respectively resultants, of the derivations. Finally we introduced a class of logic programs, called
restricted programs, in which a restricted form of recursion is allowed, and established the completeness of
these loop checks for restricted programs without function symbols.

In this paper we study a more powerful class of simple loop checks based on the inclusion between goals,
respectively resultants, of the derivations. We call these loop checks subswnption checks. Subsumption checks
are stronger than the corresponding equality checks and therefore they prune SLD-derivations earlier than their
counterparts. This makes it more difficult to establish their soundness but opens a possibility for completeness
for a larger class of programs than restricted ones. We show that subsumption checks are complete for three
natural classes of logic programs without function symbols. These completeness theorems make use of a
simple version of Kruskal's Tree Theorem, called Higman's Lemma ([H]). While the use of this theorem to
establish tennination of term rewriting systems is well-known (see e.g. [D] or [K]), we have not encountered
any applications of this theorem in the area of logic programming.

Finally we study a simple loop check introduced by Besnard [B], which we call a context check. As for the
equality and subsumption checks, some variations on this context check can be made. It appears that the context
checks are sound and complete for restricted programs without function symbols.

1 Centre for Mathematics and Computer Science
P.O.Box 4079, 1009 AB Amsterdam, The Netherlands
2 Department of Computer Sciences, University of Texas at Austin,
Austin, Texas 78712-1188, USA
3 Department of Computer Sciences, Free University of Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
This research was partly supported by Esprit BRA-project 3020 Integration.

132

For reasons of space, most proofs are omitted.

2. Basic notions

In this section we recall some basic concepts presented in [ABK]. Throughout this paper we assume familiarity
with the basic concepts and notations of logic programming as described in [L]. For two substitutions cr and 't,
we write cr:::; 't when cr is more general than 't and for two expressions E and F, we write E:::; F when Fis an
instance of E. We then say that Fis less general than E. An SLD-derivation step from a goal G, using a clause
C and an idempotent mgu 0, to a goal His denoted as G :::)C,9 H. By an SLD-derivation we mean an SLD­
derivation in the sense of [L] or an initial fragment (subderivation) of it.

2.1 Loop checks
The purpose of a loop check is to prune every infinite SLD-tree to a finite subtree of it containing the root. We
define a loop check as a set of SLD-derivations (depending on the program): the derivations that are pruned
exactly at their last node. Such a set of SLD-derivations L(P) can be extended in a canonical way to a function
fi:._(P) from SLD-trees to SLD-trees by pruning in an SLD-tree the nodes in { G I the SLD-derivation from the
root to Gisin L(P) }. We shall usually make this conversion implicitly.

In this paper, we shall restrict ourselves to an even more restricted form of a loop check, called simple loop
check, in which the set of pruned derivations is independent of the program P. This leads us to the following
definitions.

DEFINITION 2.1.
Let L be a set of SLD-derivations.
RemSub(L) = { De L I L does not contain a proper subderivation of D } .
L is subderivationfree if L = RemSub(L). D

In order to render the intuitive meaning of a loop check L: 'every derivation D e Lis pruned exactly at its
last node', we need that Lis subderivation free. Note that RemSub(RemSub(L)) = RemSub(L).

In the following definition, by a variant of a derivation D we mean a derivation D' in which in every
derivation step, atoms in the same positions are selected and the same program clauses are used. D' may differ
from D in the renaming that is applied to these program clauses for reasons of standardizing apart and in the
mgu used. It has been shown that in this case every goal in D' is a variant of the corresponding goal in D (see
[LS]). Thus any variant of an SLD-refutation is also an SLD-refutation and yields the same computed answer
substitution up to a renaming.

DEFJNITION 2.2.
A simple loop check is a computable set L of finite SLD-derivations such that
- for every derivation D: ifD e L then for every variant D' ofD: D' e L;
- Lis subderivation free.

DEFJNITION 2.3.

D

A loop check is a computable function L from programs to sets of SLD-derivations such that for every program
P, L(P) is a simple loop check. o

DEFINITION 2.4.
Let L be a loop check. An SLD-derivation D of Pu{G} is pruned by L if L(P) contains a subderivation D' of
D. D

EXAMPLE 2.5 (see also [B] and [vG]).
We define the Variant of Atom (VA) check as:
VA = RemSub((D I D = (Go :::)c1,e1 Gr :::) ... :::) Gk-1 :::)Ck,9k Ok) such that for some i and j, 0 ~ i :::; j < k,
Gic contains an atom A that is - a variant of an atom A' in Gi and

- introduced while resolving A'0i+1···0j, the further instantiated version of A',
that is selected in Gj }). o

133

2.2 Soundness and completeness
The most imponant property of a loop check is definitely that using it does not result in a loss of success. Even
the loss of solutions is undesirable. Finally, we would like to retain only shorter derivations and prune the
longer ones that give the same result. This leads to the following definitions, where for a derivation D, IDI
stands for its length, i.e. the number of goals in it.

DEFINITION 2.6.
i) A loop checkL is weakly sound if for every program P and goal G, and SLD-tree T of Pv{G}: ifTcontains
a successful branch, then fL(P)(T) contains a successful branch.
ii) A loop check L is sound if for every program P and goal G, and SLD-tree T of Pv{ G}: if T contains a
successful branch with a computed answer substitution a, then fL(P)(T) contains a successful branch with a
computed answer substitution CJ' such that a' !'> CJ.

iii) A loop check Lis shortening if for every program P and goal G, and SLD-tree T of Pv{ G}: if T contains a
successful branch D with a computed answer substitution cr, then either f:L(P)(T) contains D or fL(P)(f) contains
a successful branch D' with a computed answer substitution a' such that a' :;; CJ and ID'I < IDI. O

Obviously, a shortening loop check is sound, and a sound loop check is weakly sound. In [ABK] it is shown
that the VA check of Example 2.5, although intuitively appealing, is not even weakly sound.

The purpose of a loop check is to reduce the search space for top-down interpreters. We would like to end
up with a finite search space. This is the case when every infinite derivation is pruned.

DEFINITION 2.7.
A loop check Lis complete (w.r.t. a selection rule R) if every infinite SLD-derivation (via R) is pruned by L. D

In general, comparing loop checks is difficult The following relation comparing loop checks is not very
general: most loop check will be incomparable with respect to it. Nevertheless it turns out to be very useful.

DEFINITION 2.8.
Let Li and L2 be loop checks.
Li is stronger than L2 if for every programP and goal G, every SLD-derivation D2 e L2(P) of Pu{G} contains
a subderivation D1 e L1(P). D

In other words, Li is stronger than L2 if every Sill-derivation that is pruned by L2 is also pruned by Li.
Note that the definition implies that every loop check is stronger than itself. The following theorem will enable
us to obtain soundness and completeness results for loop checks which are related by the 'stronger than'
relation, by proving soundness and completeness for only one of them.

THEOREM 2.9 (Relative Strength). Let Li and Li be loop checks, and let LJ be stronger than Li.
i) If Lz is weakly sound, then Li is weakly sound.
ii) If LJ is sound, then Li is sound.
iii) If Lz is shortening, then Li is shortening.
iv) If Li is complete then L1 is complete.

PROOF. Straightforward.

2.3 The existence of sound and complete loop checks

D

The undecidability of the halting problem implies that there cannot be a sound and complete loop check for logic
programs in general, as logic programming has the full power of recursion theory. So our first step is to rule
out programs that compute over an infinite domain. We shall do so by restricting our attention to programs
without function symbols, so called/unction-free programs.

So our question can be reformulated as: is there a sound and complete loop check for function-free
programs? In this paper, we shall only address this question for simple loop checks.

THEOREM 2.10. There is no weakly sound and complete simple loop check for junction-free programs.
PROOF. Let L be a simple loop check that is complete for function-free programs. Consider the following
infinite SLD-derivation D, obtained by repeatedly using the clause A(x)+-A(y),S(y,x) (using the leftmost
selection rule): D = +-A(xo),B(xo) => +-A(x1),S(x1,xo),B(xo) => +-A(x2),S(x2,xi),S(xi.xo),B(xo) =>

134

Since L is a complete loop check, D is pruned by L and since L is simple, the goal at which pruning takes
place is independent of the program used for this derivation. Suppose that D is pruned by L at the goal
f-A(xn),S(xn,Xn-1), ... ,S (x 1,xo),B(xo).

Now let P = { S(i,i+l)f- I 0 :Si< n) u { A(O)f-, A(x)f-A(y),S(y,x), B(n)f- }. Extending D to an SLD­
tree of Pu{ G) (still using the leftmost selection rule), we see that the only successful branch of this SLD-tree
of Pu { G} goes via the goal that is pruned by L. Hence L is not weakly sound. D

3. Equality checks

In this section, we introduce some simple loop checks. For each of them, there exist two versions: the first one
is weakly sound, the second one shortening. The second, shortening version is obtained by adding an
additional condition to the first one. By this construction, the first version is always stronger than the
corresponding second version.

Starting with the Variant of Atom check, we can make three independent modifications of it
1. Adding this additional condition, dealing with the computed answer substitution 'generated so far'. A neat

formulation of this condition can be obtained by the use of resultants instead of goals in SLD-derivations.
When considering a derivation Go ::}c1.e1 G1 ::} .. ., to every goal Gi = f-Si there corresponds the resultant

Ri = So01 ... 0if-Si. Resultants were introduced in [LS].
2. Replace variant by instance. This yields the Instance of Atom (IA) check. This check is still unsound: it is

even stronger than the VA check. Besnard [B] has introduced a weakly sound version of this loop check.
This check and related ones (derived from VA; shortening versions) are discussed in section 5. We shall
refer to these checks as the context checks.

3. Replace atom by goal. This yields the Equals Variant of Goal (EVG) check. Informally, this loop check
prunes a derivation as soon as a goal occurs that is a variant of an earlier goal. Replacing 'variant' by
'instance' again yields the Equals Instance of Goal (EIG) check. The shortening versions are called Equals
Variant of Resultant (EVR) and Equals Instance of Resultant (EIR).

Taking goals instead of atoms as a basis for a loop check yields two independent choices again.
3a. Whereas equality between atoms is unambiguous, equality between goals is much less clear. In SLD­

derivations, we regard goals as lists, so both the number and the order of occurrences of atoms is
important. However, we may also regard them as multisets, where the order of the occurrences is
unimportant.

So we shall consider two EVG checks: EVGL (for list) and EVGM (for multiset). The same holds
for EIG, EVR and EIR. We shall refer to these eight loop checks as the equality checks. These checks
are discussed in the remainder of this section.

3b. Finally, we may replace 'G2 is a variant/instance of G1' by 'G2 is subsumed by a variant/instance of
G1'. We define 'G1subsumes02' as 'G1~02'. Thus we can make a distinction between 'subsumed
by a variant' and 'subsumed by an instance'. Usually in literature, 'subsumed by a variant' is not
considered, 'subsumed by an instance' is simply called 'subsumed' (see e.g. [CL]). Subsumption can
also be defined forresolvents.

This yields the subsumption check. Since this modification is again independent of the others, there
are also eight subsumption checks. These checks are discussed in section 4.

The equality checks are studied in detail in [ABK]. In the rest of this section we recall the basic definitions and
results. In fact, we should give a definition for each equality check. This would yield eight almost identical
definitions. Therefore we compress them into two definitions, trusting that the reader is willing to understand
our notation. The equality relation between goals regarded as lists is denoted by =r.,; similarly =M for multisets.

DEFINITION 3.1.

For Type e {L,M}, the Equals Variant/Instance of Goalrype check is the set of SLD-derivations
EVG/EIGrype = RemSub({ D I D = (Go ::}c1,a1 G1 => ... ::} Gic-1 =>CJc,0k Ciic) such that for some i,

0 :Si < k, there is a renaming/substitution 't such that Gic =Type Gi't }). o

135

DEFINmON 3.2.
For Type e {L,M}, the Equals V ariantllnstance of Resu/tantType check is the set of SLD-derivations

EVR/ElRType = RemSub({ D ID= (Go ~c1,e 1 G1 ~ ... ~ Gk-1 ~Ck.Bk G0 such that for some i,
0 :Si < k, there is a renaming/substitution 'C such that Ok =Type Gi'C and
Go61 •.. f% = Go61 ... 6j'C }). D

Usually, once a loop check is defined, we shall present two kinds of results. First, we prove it soundness
(in fact, the loop checks we present are either weakly sound or shortening). After that, we define one or more
classes of programs, for which we then prove that the loop check is complete.

THEOREM 3.3 (Equality Soundness).
i)All equality checks based on resultants are shonening. Afortiori they are sound.
ii) All equality checks based on goals are weakly sound.

PROOF. See [ABK]. D

DEFINmON 3.4.
The dependency graph D p of a program P is a directed graph whose nodes are the predicate symbols of P and

(p,q) e Dp iff there is a clause in P using pin its head and q in its body.
Dp* is the reflexive, transitive closure ofDp. When (p,q) e Op*, we say thatp depends on q.
For a predicate symbol p, the class of p is the set of predicate symbols p 'mutually depends' on:
clp(p)= { q I (p,q) e Dp* and (q,p) e Dp* }. D

DEFINITION 3.5.
Given an atom A, let rel(A) denote its predicate symbol. Let P be a program.
A clause Ao+- A1, ... ,An (lli::O) is called restricted w.r.t. P if for i = l, .. .,n-1, rel(Ai) does not depend on
rel(Ao) in P. The atoms Ai.An-1 are called non-recursive atoms of the clause Ao +-A1,. .. .An·
A program P is called restricted if every clause in P is restricted w.r.t. P. D

THEOREM 3.6 (Equality Completeness).
All equality checks are complete w.r.t. the leftmost selection rule for function-free restricted programs.

PROOF. See [ABK]. D

4. Subsumption checks

As already stated, there are eight subsumption checks. We define them by means of two parametrized
definitions, again trusting that the reader is willing to up.derstand our notation. The inclusion relation between
goals regarded as lists is denoted by Q.; similarly l:M for multisets. Note: Li Q. L2 if all elements of L1 occur
in the same order in~; they need not to occur on adjacent positions. For example, (a,c) Q. (a,b,c).

DEFINITION 4.1.
For Type e {L,M}, the Subsumes Variant/Instance of GoalType check is the set of SLD-derivations

SVG/SIGType=RemSub({ DID= (Go~1.a 1 G1 ~ ... ~ Gk-1 ~Ck,0kG0 such that for some i,
0 :S i < k, there is a renaming/substitution 'C with Ok ::!Type Gi'C }). D

DEFINITION 4.2.
For Type e {L,M}, the Subsumes Variant/Instance of Resultantrype check is the set of SLD-derivations

SVRJSIRType = RemSub({ D ID= (Go ~Ci,91 G1 ~ ... ~ Gk-1 ~Ck.Ok G0 such that for some i,
0 :S i < k, there is a renaming/substitution 'C with Gk ::!Type Gi'C and
0001 ..• ak = 0001 ... ai-c }). o

LEMMA 4.3. All subsumption checks are simple loop checks.
PROOF. Straightforward. D

The following example shows the differences between the behaviour of various subsumption checks and
the equality checks.

136

EXAMPLE 4.4.
Let P = { A(y) +-A(O),C(y) (Cl),

A(O) +- (C2),
B(l) +- (C3),
C(z) +- B(z),A(w) (C4) },

and let G = +-A(x).

(C3) I
{x/l}+

+-A(w)
IEIG,EVG1-I -------

(~ly ~~)
{y'/wJ/ ~w/O}

+-A(O),C(w) D ({x!l l)
SIRt------------

I
(C2)i

+-C(w) +-A(O),C(O),C(w)

(C4)' I
{z'/w} ~

+-B(w),A(w')

(C3) !
{w/l} l

it
+-A(w')

jEIR,EVRI ...

(C2) I .,(Cl)"'
l .. ,~<:>-::::,
w \it,

+-C(O),C(w)

(C4)'i

{z'/0} i
·t

+-B(O),A(w'),C(w)

FIGURE 4.1

(C2) i .,'··-.......,~Cl)"
~ ,
~ ,,_
\a

+-C(O),C(x)

(C4)!

{1/0} ~,
+-B(O),A(w),C(x)

Figure 4.1 shows an SLD-tree of Pu{G} using the leftmost selection rule. It also shows how this tree is
pruned by different loop checks. First we explain the behaviour of the loop checks with respect to this tree.

137

Then we shall make some generalizing comments on this behaviour. In this example, the distinction between
list versus multisetbased loop checks does not play a role.

Starting at the root, the first loop check that prunes the tree is the SIG check. It prunes the goal
~A(O),C(x), because it contains A(O), an instance of A(x). Following the leftmost infinite branch two steps
down, the SVG check prunes the goal ~B(x),A(w), because it contains A(w), a variant of A(x). One step
later, the atom B(x) is resolved, so the EIG and EVG checks prune the goal ~A(w) for the same reason.

However, the loop checks based on resultants do not yet prune the tree. The computed answer substitution
built up so far maps x to x after the first three steps and to l later on. This clearly differs from
the substitutions {x/O} and {x/w}, which are used to show that A(O) resp. A(w) are an instance resp. a variant
of A(x).

Now the derivation repeats itself, but with x replaced by w. Therefore the loop checks based on resultants
prune the tree during this second phase, exactly there where the corresponding loop checks based on goals
pruned during the first phase. The side branch that is obtained by repeatedly applying the first clause (and
corresponding side branches later on) is pruned by the subsumption checks at the goal ~A(O),C(O),C(x). This
goal contains the previous goal ~A(O),C(x). Therefore both the resultant based and the goal based loop checks
prune this goal. In contrast, the equality checks do not prune this infinite branch because the goals in it become
longer every derivation step.

The loop checks based on goals all prune out the solution { x/l}, so they are not sound. Among these loop
checks, the SIG check prunes as soon as possible for a weakly sound loop check. Conversely, the SIR check
prunes this tree as soon as possible for a shortening loop check. 0

We have the following soundness results.

THEOREM 4.5 (Subsumption Soundness).
i) All subsumption checks based on resultants are shortening. A fortiori they are sound.
ii) All subsumption checks based on goals are weakly sound. 0

We now shift our attention to the completeness issues. From the results of the previous section and the fact
that subsumption checks are stronger than the corresponding equality checks we deduce the following result.

COROLLARY 4.6 (Subsumption Completeness 1). All subsumption checks are complete w.r.t. the leftmost
selection rule for function-free restricted programs.

PROOF. By the Equality Completeness Theorem 3.6 and the Relative Strength Theorem 2.9. D

However, since the subsumption checks are stronger than the corresponding equality checks, we can try to
find other classes of programs for which the subsumption checks are complete. We know that the subsumption
checks are not complete for all programs, not even in the absence of function symbols. For P =
{A(x)~A(y),S(y,x)}, a derivation of Pv{ ~A(x),B(x)} is not pruned by any of the subsumption checks, as
was shown in Theorem 2.10.

A close analysis of the proof of this theorem shows that the problem is caused by three 'events' occurring
simultaneously, namely:
1. A new variable, y, is introduced by a 'recursive' atom, A(y).
2. There is a relation between this new variable, y, and an old variable, x, namely via the atom S(y,x).
3. The 'recursive' atom A(y) is selected before the 'relating' atom S(y,x).

It appears that, in order to obtain the completeness of the subsumption checks, it is enough to prevent any
of these events. Clearly, the use of restricted programs and the leftmost selection rule prevents the third event.
We shall now introduce two new classes of programs, preventing the first and the second event, respective! y.

DEFINITION 4.7.
A clause C is non-variable introducing (in short nvi) if every variable that appears in the body of C also appears
in the head of C. A program P is nvi if every clause in P is nvi. O

DEFINITION 4.8.
A clause Chas the single variable occurrence property (in short is svo) if in the body of C, no variable occurs
more than once. A program P is svo if every clause in P is svo. o

138

Clearly, in nvi programs the first event cannot occur, whereas in svo programs the second event is
prevented. We now prove that the weakest of the subsumption checks, the SVRL check, is complete for
function-free nvi programs. To this end we use the following (weakened) version ofKruskal's Tree Theorem.
called Higman's Lemma. (See [H]; for a formulation of the full version of Kruskal's Tree Theorem, see [D] or
[K].) We also need a specialii.ed formalization of the 'being a variant of relation.

LEMMA 4.9 (Higman's Lemma). Let wo,w1,w2 •... be an infinite sequence of (finite) words over a finite
alphabet I. Thenfor some i and k > i, Wi Q. Wk. D

DEFINITION 4.10.
Let X be a set of variables. We define the relation -x on resultants as Rt -x R1 if for some renaming p,
Rip = R1 and for every x e X, xp = x. Now let G be a goal and let k :<: 1. Then the relation -x,G,k stands for
the restriction of the relation -x to resultants 01 ~Gi such that 01 is an instance of G and 1021 S k:. D

LEMMA 4.11. Suppose that the language L has no function symbols and finitely many predicate symbols and
constants. Then for every finite set of variables X, every goal G and k::::l, the relation -x.G,k is an
equivalence relation with only finitely many equivalence classes.

PROOF. The proof is straightforward. D

For a resultant R, the equivalence class of R w.r.t. the relation -x,G,k will be denoted as [R]X,G,k. or just
[R] whenever X, G and k are clear from the context. In order to prove that the SVRL check is complete for nvi
programs, we prove that infinite derivations in which no new variables are introduced are pruned by the SVRL
check. We omit the proof that every derivation of an nvi program (and an arbitrary goal) has a variant that
indeed does not introduce new variables.

DEFINITION 4.12.
An SLD-derivation D = (Go =>c1.e1 01 => ...) is non-variable introducing (in short nvi) if var(Go) ::i var(01) :2

var(02) ::! D

LEMMA 4.13. In the absence of function symbols, every infinite nvi SID-derivation is pruned by SVRL.
PROOF. Let D =(Go =>ci,e1 01 => ...)be an infinite nvi SLD-derivation.

We take for .r. the set of equivalence classes of -vareoo).Go.I as defined in Definition 4.10. By Lemma 4.11,
:Eis finite. :ro apply Higman's Lemma 4.9 we represent for j <? 0 a goal Gj = ~A1j,. .. ,Anj.i (or rather the
corresponding resultant Go01 ... 0j+-0j) as the word [Oo01 ... 0j+-A1j] •... ,[Go01 ... 0j~An_µl over :E. The
sequence of representations of Go, 01, G2, ... yields an infinite sequence of words wo, w1, w2, ... over :E.

Now by Higman's Lemma 4.9, for some j and k > j: [Go01 ... 0j+-A1j] •... ,[Go01 ... 0j+-Anj.il Q.
[Go01 ... 0t~A11J, .. .,[Go01 ... 0t+-Ankkl· So by the definition of -var(Go).Go,l• there exist renamings
p1,. .. ,pni which do not act on the variables in Go, such that (Go01 ... ej~A1j)P1 ,(Go01 ... 0j+-Anj.i)Pnj Q..
(Go01 ... tlk~A1Ic),. . .,(Go01 ... 0t~Ank0.

However, D is nvi, so var(Gj) i;: var(Go) and therefore the renamings Ph do not act on the atoms Aij of Gj
(1 S h,i S nj). Thus Gj = GjPl Q. Gk and Go01 ... 0jPI = Go01 ... 0t. So Dis pruned by SVRL. D

LEMMA 4.14. Let P be a function-free nvi program and let Go be a goal in Lp. Let D be an irifinite SLD-
derivation of Pu{ Go}. Then a variant D' of D is an infinite nvi derivation. D

Now we have the following completeness results.

THEOREM 4.15. The SVRL loop check is complete for function-free nvi programs.
PROOF. By Lemma 4.3, 4.13 and 4.14.

COROLLARY 4.16 (Subsumption Completeness 2).
All subsumption checks are complete for function-free nvi programs.

PROOF. By Theorem 4.15 and the Relative Strength Theorem 2.9.

THEOREM 4.17 (Subsumption Completeness 3).
All subsumption checks are complete for function-free svo programs.

PROOF. The proof resembles the proof of Lemma 4.13.

D

D

D

139

5. Context checks

The problem with the Instance of Atom check is that it does not take into account the context of the atom. This
is incorrect: whereas solving +-A(x) or +-A(y) makes no difference, solving +-A(x),B(x) is essentially more
difficult than solving +-A(y),B(x). To remedy this problem we should keep track of the links between the
variables in the atom and those in the rest of the goal.

Roughly speaking, the IA check prunes a derivation as soon as a goal Gt occurs that contains an instance
kc of an atom A that occurred in an earlier goal Gi. But when a variable occurs both inside and outside of A in
Gi, we should not prune the derivation if this link has been altered. Such a variable x in Gi is substituted by
x8i+J ... ek when Otis reached. Therefore 'C and 8i+l···ek should agree on x. This leads us to a loop check
introduced by Besnard [BJ.

DEFINITION 5.1.
The Variant/Instance Context check on Goals is the set of SLD-derivations

CVG/CIG = RemSub((D I D = (Go :::)c1,e1 01 :::) ... :::) Gk-1 :::)Ck.ek Gk) such that for some i and j,
0 :5; i ~ j < k, there is a renaming I substitution 'C such that for some atom A in Gi:
A-c appears in Gt as the result of resolving A8i+1···8j in Gj and for every variable
x that occurs both inside and outside of A in Gi, x8i+l···ek = x-c }). D

Besnard describes the condition on the substitutions as follows: 'When A't is substituted for A8i+l···ek in
Gi8i+l···ek, this should give an instance of Gi.' We show that this formulation is equivalent to ours. Let
Gi = +-(A,S), that is A occurs in Gi and S is the list of other atoms in Gj. Then (A-c,S8i+1···8k) should be an
instance of (A,S), say (Acr,Scr).

Clearly, xcr = - x'C for x e var(A),
-x8i+l···0k forxevar(S),

so for x E var(A) n var(S), we have x'C = x8i+l· .. 0k.
The following example clarifies the use of the context checks.

EXAMPLE 5.2.
Let P = (A(O) +­

B (1) +-
A(x) +-A(y)
C f- A(x),B(x)

let G =+--C.

(Cl),
(C2),
(C3),
(C4) },

We apply the CIG check on two SLD-trees of Pu{G}, via the leftmost and rightmost selection rule,
respectively. This yields the trees in Figure 5.1.

f- c
+(C4)

A(x),B(x)

f- c
+(C4)

"\l~'/x} CIG prunes here

+-- A(x),B(x)

I (C2)
.{x/l}

+-- B(O) +-- A(y'),B(x)

(Cl)/ '\.(C3)"
1y·1oy "'{x"/y'}

+-- B(x) +-- A(y"),B(x)

I (Cl) (C,\)/ \CC3)"'
.{x/1} {y"/0/ \{x'"/y"}

0

FIGURE 5.1

+-- A(l)

I (C3)'
t{x'/l)

+-- A(y')

(C3t/ ~SI)
{x"/y'l/ ~y'/0}

+-- A(y") D

140

The goal G3 = ~A(y') in the righnnost tree, that was incorrectly pruned by the VA check, is not pruned by
the CIG check. Certainly, A(y') is the result of resolving A(l) in 02, the further instantiated version of A(x) in
G1. But replacing A(x)9203 by A(y') in G10z03 yields ~A(y'),B(l): not an instance of ~A(x),B(x). o

In Example 4.4, the context checks act exactly in the same way as the corresponding subsumption checks.
This shows that CVG and CIG are not sound. Again we can obtain sound, even shortening, versions by using
resultants instead of goals.

DEFINITION 5.3.
The Variant/Instance Context check on Resultants is the set of SLD-derivations

CVR/CIR= RemSub({ D I D =(Go =>c1.e1 G1 => ... => Gk-1 =>ck.ek Gk) such that for some i and j,
O s; i s;j < k, there is a renaming/substitution t such that 0001 •.. 0ic = Go91 .•. 0it &nd for
some atom A in Gi: At appears in Gtc as the result of resolving A0i+1···0j in Gj and for
every variable x that occurs both inside and outside of A in Gi: x0i+l···ek = xt }). o

Using Besnard's phrasing, the conditions on the substitutions can be summarized as: 'When At is
substituted for A9i+1···0k in the resultant Ri0i+1···0k, this should give an instance ofRi.'

The following theorems state the soundness and completeness results for the context checks.

THEOREM 5.4 (Context Soundness).
i) The context checks based on resultants are shortening. A fortiori they are sound.
ii) The context checks based on goals are weakly sound. 0

THEOREM 5.5 (Context Completeness I).
All context checks are complete w.r.t. the leftmost selection rule for function1ree restricted programs.

PROOF. The proof resembles the proof for the equality checks as presented in [ABK], but is more complex. O

THEOREM 5.6 (Context Completeness 2). All context checks are complete for function-free nvi programs.
PROOF. The proof resembles the proof of Lemma 4.13, but is more complex. Then Lemma 4.14 can be used.O

References

[ABK] K.R. APT, R.N. BOL and J.W. KLOP, On the Safe Termination of PROLOG Programs, in: Proceedings of the Sixth
International Conference on Logic Programming, (G. Levi and M. Martelli eds.), MIT Press, Cambridge Massachusetts,
1989, 353-368.

[BJ Ph. BESNARD, On Infinite Loops in Logic Programming, Internal Report 488, IRISA, Rennes, 1989.
[BW] D.R. BROUGH and A. WALKER, Some Practical Properties of Logic Programming Interpreters, in: Proceedings of the

International Conference on Fifth Generation Computer Systems, (!COT eds), 1984, 149-156.
[CJ M.A. COVINGTON, Eliminating Unwanted Loops in PROWG, SIGPLAN Notices, Vol. 20, No. 1, 1985, 20-26.
[0.] CL. CHANG and R.C. LEE, Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York, 1973.
[DJ N. DERSHOWITZ,A note on Simplification Orderings, Information Processing Letters 9, 1979, 212-215.
[vG] A.VAN GELDER, Efficient Loop Detection in PROLOG using the Tortoise-and-Hare Technique, J. Logic Programming 4,

1987, 23-31.
[HJ G. HIGMAN, Ordering by divisibility in abstract algebra's, Proceedings of the London Mathematical Society (3) 2 (7),

1952, 215-221.
[K] J.B. KRUSK.AL, Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi's Conjecture, Transactions of the AMS 95, 1960,

210-225.
[L] J.W. IJ...OYD, Foundations of Logic Programming, Second Edition, Springer-Verlag, Berlin, 1987.
[LS] J.W. IJ...OYD and J.C. SHEPHERDSON,Partia1 Evaluation in Logic Programming, Technical Report CS-87-09, DepL of

Computer Science, University of Bristol, 1987.
[PG) D. POOLE and R. GOEBEL, On Eliminating Loops in PROLOG, SIGPLAN Notices, Vol. 20, No. 8, 1985, 38-40.
[SGG] D.E. SMITH, M.R. GENESERETH and M.L. GINSBERG, Controlling Recursive Inference, Artificial Intelligence 30, 1986,

343-389.
[SI] H. SEKI and H. ITOH, A Query Evaluation Method for Stratified Programs wukr the Extended CW A, in: Proceeclings of the

Fifth International Conference on Logic Programming, MIT Press, Cambridge Massachusetts, 1988, 195-211.
[VJ L. VIEILLE, Recursive Query Processing: The Power uf Logic, Theoretical Computer Science 68, No. 2, 1989.

