
Module Algebra

J. A. BERGSTRA

University of Amsterdam. Amsterdam, The Netherlands
University of Utrecht, Utrecht, The Netherlands

J. HEERING

Centre/or Mathematics and Computer Science, Amsterdam, The Netherlands

AND

P. KLINT

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands
University of Amsterdam, Amsterdam, The Netherlands

Abstract. An axiomatic algebraic calculus of modules is given that is based on the operators combination/
union, export, renaming, and taking the visible signature. Four different models of module algebra are
discussed and compared.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications-lan
guages; D.2.2 [Software Engineering]: Tools and Techniques-modules and interfaces; D.3.3 [Program
ming Languages]: Language Constructs-abstract data types, modules; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages-algebraic approaches to semantics

General Terms: Languages, Theory

Additional Key Words and Phrases: Abstraction, algebraic specification module, Craig interpolation
lemma, export, first-order specification module, information hiding, module algebra, module compo
sition, module expression, renaming, signature, signature expression, union of modules, visible signature

I. Introduction

I. I GENERAL. The study of modules and modularization is one of the central
issues in software engineering. Three notions are basic to an understanding of
modularization as a software engineering technique:

(i) Information Hiding/Abstraction. Modules generally contain hidden (auxil
iary, local, internal, invisible, ...) items without which it would be difficult or

Partial support was received from the European Communities under ESPRIT projects 348 (Generation
of Interactive Programming Environments-GIPE) and 432 (An Integrated Formal Approach to
Industrial Software Development-METEOR).

Authors' addresses: J. A. Bergstra, Programming Research Group, Faculty of Mathematics and Com
puter Sciences, University of Amsterdam, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands;
J. Heering, Department of Software Technology, Centre for Mathematics and Computer Science,
Kruislaan 413, I 098 SJ Amsterdam, The Netherlands; P. Klint, Department of Software Technology,
Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1990ACM0004-5411/90/0400-0335 $01.50

Journal of the Association for Computing Machinery, Vol. 37, No. 2, April 1990, pp. 335-372.

336 J. A. BERGSTRA ET AL.

even impossible to specify them. These items must remain inaccessible from the
outside so as not to spoil the intended semantics of the module [36]. Examples are
the hidden variables and functions that have to be introduced in specifications of
data types in programming languages, and the hidden sorts and functions needed
in initial algebra specifications of data types [10].

(ii) Compositionality of Module Operations. Modules can be adapted and
combined by means of various operations like renaming of sorts and functions and
importing a module in another one. Each such operation should preferably be a
simple, effectively computable operation on the textual representation of modules.
Import of a module in another module, for instance, should correspond to textual
substitution plus renaming of hidden items to avoid name clashes. Simplicity at
the textual level is not enough, however. The textual operation should have a
semantical counterpart that is a reflection of the textual one, that is, the semantics
of module operations should be compositional [25]. If these two requirements can
be met, computations involving modules become both practicable and meaningful.
In our case, compositionality is guaranteed by the fact that we use algebraic
semantics (cf. [25, Chapter II]).

(iii) Reusabi/ity of Modules. Some modules can be used as part of many
programs or specifications. These are said to be reusable. Such modules resemble
the constructs in programming or specification languages, which are also highly
reusable. Reusability of modules can be enhanced by choosing the right module
composition operations, but the requirement of compositionality imposes a restric
tion on the module operations that are acceptable. For instance, creating a new
module by performing some editing action on the text of an existing one is also a
very general form of reuse, of course, but this will not always correspond to an
acceptable change in the semantics of the module and hence not to a valid module
operation.

1.2 OUTLINE OF THIS PAPER. Each specification module (at least implicitly)
contains a syntax part defining the language used in it. Composition of modules
entails, first of all, composition of the corresponding languages and hence compo
sition of the corresponding syntax definitions. In principle, these may be arbitrary
grammars, but in this paper we limit ourselves to signatures defining strongly typed
first-order expression languages. In Section 2.1, we discuss signatures in general
terms, and in Section 2.2 we give an initial/final algebra specification of the algebra
of signatures. Basic operators of this algebra are renaming(.), combination/union
(+),intersection (n), and supersignature (:2).

In Section 3.1, the definition of the algebra of signatures is extended to a
definition of the basic algebra of first-order logic modules BMA [fol], where fol is
many-sorted first-order logic with equality. The main operators of this algebra are
taking the visible signature (:E), renaming(.), combination/union(+), and export
(0). We do not discuss parametrization (actualization) in this paper. In Section
3.2, we prove a normal form theorem for closed module expressions. In Section
3.3, we introduce hiding (.6.) and common export. The former is complementary
to export. The latter is a generalization of export allowing a rather elegant axiom
atization. In Section 3.4, we discuss four well-known types of construction/
development steps, namely, abstraction, enrichment, extension, and refinement,
from the viewpoint of module algebra.

In Section 4, four different models for BMA [fol] are given:

(1) the initial algebra II(BMA [fol]),
(2) the algebra M(fo/) of full model classes of modules

'

Module Algebra 337

(3) the algebra Mc(fol) of classes of countable models of modules, and
(4) the algebra 'TI'(fol) of first-order theories of modules.

We show that there are homomorphisms M(/o/) ~ Mc(/ol) and Mc(fol)-+
'Tr(fol), and also that M(fol) ~ Mc(/ol) ~ 'TI'(fol).

The implications of our results for algebraic specifications (viewed as equational
theories or initial algebras) are discussed in Section 5.1. In Sections 5.2 and 5.3,
the expressive power of many-sorted equational logic, many-sorted conditional
equational logic, many-sorted first-order logic with equality, and many-sorted
equational logic in the presence of Boo leans are compared with each other. Section
5.4 gives an overview of related results in the field of algebraic specification.

A more informal discussion (in Dutch) of many topics discussed in this paper
can be found in [l].

1.3 RELATED WORK. The introduction of composition/construction operators
for modular specifications is, of course, not new. Such operators occur, for instance,
in CLEAR [13], OBJ2 [18], OBSCURE [29], and PLUSS [20]. In particular, the
operators union, export, andforget in PLUSS are similar to our operators+, D,
and A. Ganzinger [19], Klaeren [27], and Ehrig and Mahr [17] have given a
category-theoretic treatment of the +-operator in the context of initial/final algebra
semantics. Further developments in this direction can be found, for instance, in
papers by Blum et al. [11] and Parisi-Presicce [35].

A structure theory of algebraic specifications based on a set of construction
operators was given by Kaplan [26], Lipeck [30], and Wirsing [41]. The work of
Lipeck is also based on category theory, but Wirsing uses first-order logic and
model theory as his point of departure. Our approach is similar to that of Wirsing.
In fact, the full model class semantics M(fol) was discussed by him in [41] and
several laws of BMA [fol] can be identified there, although not yet in a uniform
setting. The importance of the Craig interpolation lemma [15] in the context of
specification languages was pointed out by Maibaum et al. [31, 32], who used it to
characterize the composability of implementations. We obtain two distributive
laws for the export operator 0, both of which, in the context of the first-order
theory interpretation 'TI'(fol) of module expressions, are equivalent to the Craig
interpolation lemma.

In [2], several case studies using the algebraic specification formalism ASF are
presented. ASF is similar to OBJ or PLUSS. Our motivation for the present work
was both dissatisfaction with the import and export mechanisms of ASF and the
feeling that we needed a firmer foundation for our formalism.

As far as we know the following points in our paper are new:

(l) the specification of the algebra of signatures;
(2) the laws of BMA [fol];
(3) the normal-form theorem for closed module expressions;
(4) the models Mc(fol) and 'Tf(/o/) of BMA[fol] (with the understanding that

M(fol) was discussed earlier by Wirsing [41]);
(5) the fact that equations and conditional equations have equal power for a variety

of different semantics;
(6) the fact that in the presence of Booleans equations are as powerful as full first

order logic.

2. Signatures

2.1 GENERAL. The language in which the axioms of a specification are ex
pressed consists of a logical and a nonlogical part. The latter is defined by the

338 J. A. BERGSTRA ET AL.

signature of the specification. We only consider specifications in many-sorted
(conditional) equational logic and in many-sorted first-order logic with equality
(but no other predicates). Signatures of such specifications are sets of declarations
of sorts, typed constants, and typed functions. The equality predicate is part of the
logical language and as such does not occur in the signature of any specification.

Figure 1- shows a simple example of a signature Sig both in textual and graphical
form. Because the constant symbol 0 and function symbol S are declared more
than once with different types, they are said to be overloaded. The circles in the
graphical representation correspond to sorts while the arrows denote constants or
functions. In general, the types of n-adic function symbols (n ~ 2) are not uniquely
determined by the graphical representation, but only up to an arbitrary permutation
of the argument sorts.

The ambiguity problems caused by overloading may be circumvented by attach
ing an explicit type to each nonlogical symbol in a sentence. Let .9"(x) be the set
of correctly and explicitly typed expressions (terms) that can be formed from the
constant and function symbols declared in a signature x plus the first-order variable
symbols declared in some separate variable declaration, and let ..2"(x) be the set
of correctly and explicitly typed first-order sentences over x. Some expressions
belonging to .9"(Sig) (Figure 1) are

ON,

SN-N(ON),

sL-L(jLXL-+L(kL, fL)),

where k and / are variables. Types are given by superscripts. Some expressions not
in !T(Sig) are

0

5L-+L(ON)

jLXL-+L(QL)

(not explicitly typed)

(incorrectly typed)

(j is not a monadic function).

Usually, most of the explicit typing is redundant. For instance, the ..2"(Sig)
equations

SL-+L(OL) = OL,

sL-LuN-L(nN)) = jN->L(sN-N(nN)),

sL-L(JLXL-+L(kL, [L)) = jLxL-L(sL-L(F), SL-+L(IL)),

where k, l, n are variables, can in principle be abbreviated to

S(OL) = 0,

S(i(n)) = i(S(n)),

S(f(k, !)) = f(S(k), S(l)),

because all types except that of 0 and S in the first equation can be deduced from
the context in which the constant and function symbols occur. This example shows
that if all explicit typing is dropped the intended typing cannot always be inferred
mechanically. In Section 3.5, we introduce a notation that allows us to drop the
explicit typing from axioms in many cases.

Module Algebra

0

s

sortsN, L
constants

0: N
0: L

functions

0

S: N-->N
i: N-->L

S: L-->L
f: LXL-->L

s
FIG. I. Example of a signature Sig-textual and (almost)
equivalent graphical representation.

339

2.2 THE ALGEBRA OF SIGNATURES. Composition of specification modules en
tails, first of all, composition of the corresponding signatures. Hence, we first give
an initial/final algebra specification of the algebra of signatures (Figures 2 and 3).
Signatures are basically sets of atomic signatures. The latter are declarations of a
single sort or function. The primary operations on signatures are renaming (.),
combination/union (+), intersection (n), and supersignature (;d).

Atomic signatures are constructed by means of the S-constructor (sort declara
tion) and the F-constructor (function declaration). Functions are typed, that is, a
nonempty sequence of (sort) names is attached to them. For reasons of brevity,
names are natural numbers 0, N(O), ... in the specification, but in the text we
always use ordinary names for constants and functions. Functions whose type
consists of a single name correspond to constants. Although their declaration is
not forbidden, sorts that occur in the type of a constant or function need not be
introduced explicitly. Sorts that do not occur in the type of any constant or function
must be declared explicitly by means of the S-constructor, however. Signatures are
constructed from atomic signatures by means of the +-operator. Because we allow
overloaded constants and functions, unrestricted union of signatures is no problem.

Atomic renamings are constructed by means of rs (rename sort) and if(rename
function/constant). To avoid ambiguities due to overloading, the third argument
of rf should contain the type of the name to be renamed. Atomic renamings can
be applied to (atomic) signatures by means of the .-operator.

Renaming is permutative, that is, if a is renamed to b, b is simultaneously
renamed to a. Due to its permutative character, renaming never causes name
clashes. Names that are different are never made equal by a renaming. Any injective
renaming can be realized by an appropriate sequence of applications of atomic
renamings.

340 J. A. BERGSTRA ET AL.

FIG. 2. The signature of the algebra of signatures.

The use of the auxiliary functions I and inv I will become clear later on when
restricted renameability of hidden functions in modules is discussed (Section 3.1).

The initial model of Signatures is a computable algebra [8]. Every closed
signature expression of sort S/G can be brought in the normal form

m n

(m, n ~ 0),
k=l k=I

with sk ¥- s, (k ¥- /), ({k, tk) ~(.ft, t1) (k ¥-/),and sk $. t1, that is, only sorts not
occurring in the type of any constant or function are declared explicitly. (Due to
the equation

i(F(l, t)) = i(F(l, t)) + S(t),

sorts that occur in the type of a constant or function need not be introduced
explicitly by means of the S-constructor.) Two signatures are equal if and only if
the corresponding normal forms are syntactically identical modulo associativity
and commutativity of+ and modulo associativity of*·

Furthermore, the initial and final model of Signatures are isomorphic, that is,
the initial model does not have nontrivial homomorphic images and all nontrivial
minimal models are isomorphic (cf. [8]). There are two reasons for this. First, on
all sorts except A TREN an eq-function is defined with the property that for all

Module Algebra

closed expressions x and y

I- eq(x, y) = T <:::} f- x = y,

I- eq(x, y) = F <:::} V x = y.

341

On these sorts any equality that is stronger than provable equality immediately
leads to inconsistency. Second, all atomic renamings with the same behavior are
provably equal and hence no stronger equality on ATREN is possible without
inducing a stronger equality on ATSIG as well.

We are not interested in "nonstandard signatures," that is, we only consider the
nontrivial minimal model of Signatures.

We call an equation w-derivable if all of its closed instances are equationally
derivable. An equation is w-derivable if and only if it holds in the initial model
(cf. [23]). Some equations that are w-derivable from Signatures are:

(x + y) n x = x,

x + (x n y) = x,

r.(r.x) = x,

r.(x n y) = (r.x) n (r.y),

r.(a Li x) = (r.a) Li (r.x).

For reasons of readability we use a somewhat different notation for signatures
from now on. Instead of

i(S(n)),

i(F(c, i(n))),

i(F(f, (- · · (i(n1) * · · · * i(nk-1)) * i(nd)))

we write, respectively,

For instance,

S:n,

F:c:n,

F:f:n 1 x · · · x nk-1 - nk.

(k > I),

i(S(n)) + i(S(m)) + i(F(f, (i(n) * i(m)) * i(n)))

becomes

S: n + S: m + F :f: n x m - n.

3. Basic Module Algebra
3.1 BMA [Joi]. In this section we concentrate on many-sorted firs~-order ~ogic

with equality (fol). The only predicates are true, false, and the eq~ahty p_redicate
=. These are part of the logical language and as such do not occur m the signature
of any [Of-sentence. . .

Module expressions are modular /of-specification~ .. The~ basically consist of
module constants/variables and the operators~ (the v1s1ble signature of a module).

342

module Booleans
begin

sort BOOL
constants F. T: BOOL
functions

•: BOOL _,. BOOL
V, I\: BOOL x BOOL _,. BOOL

variables X, Y, Z: BOOL
equations

•F= T
••X = X
XV T= T
XVF=X
XV •X= T
(XV Y) V Z = X V (Y V Z)
XVY=YVX
XVX=X
X /\ Y= •(•XV -iY)
(X V Y) /\ Z = (X /\ Z) V (YI\ Z)

end Booleans

module Signatures
begin

import Booleans
sort NAMES
functions

O:NAMES
N: NAMES_,. NAMES
eq: NAMES x NAMES_,. BOOL
a: NAMES x NAMES x NAMES-> NAMES

variables/, m, n: NAMES
equations

eq(O, 0) = T
eq(O, N(l)) = F
eq(N(l), 0) = F
eq(N(I), N(m)) = eq(l, m)
a(/, m, I)= m
a(/, m, m) =I
eq(l, n) = F & eq(m, n) = F ==>a(/, m, n) = n

sort TYPES (Sequences of one or more names)
functions

i: NAMES_,. TYPES
•: TYPES x TYPES_,. TYPES
a: NAMES x NAMES x TYPES_,. TYPES
E: NAMES x TYPES_,. BOOL
eq: TYPES x TYPES_,. BOOL

variables
I, m, n: NAMES
t, 11, v: TYPES

equations
(I• u) • v = t • (u • v)

a(/, m, i(n)) = i(a(/, m, n))
a(/, m, t • u) =a(/, m, t) •a(/, m, u)
/E i(m) = eq(l, m)
I E (t • u) = (/ E I) V (/ E u)

eq(i(/), i(m)) = eq(l, m)
eq(i(l) • t, i(m) • 11) = eq(I, m) /\ eq(t, u)
eq(i(I), t • 11) = F
eq(t • 11, i(/)) = F

J. A. BERGSTRA ET AL

(Equality)
(Elementary renaming)

(Renaming is
permutative)

(Injection)
(Concatenation)
(Renaming)
(Membership)
(Equality)

FIG. 3. Initial/final algebra specification of the algebra of signatures.

Afodule Algebra

sort ATSIG (Atomic signatures)
functions

S: NAA!ES x ATSJG (Sort cons/ructor)
F: NAJ!ES x TYPES--. ATSIG
eq: ATSJG x ATSIG HOOL

(Consrant /fimcl ion construe/or)
(Equalily)

\'ariables
I, m: l\'AMES
t, 11: TYPES

equations
eq(S(/), S(m)) = eq(/, m)
eq(S(I), F(m, I)) = F
eq(F(I, I), S(m)) = F
eq(F(I, t), F(m, u)) = eq(I, m) I\ eq(t. 11)

sort ATREN (Alomic renaming.1·)
functions

rs: NAMES x NAA!ES--. ATREN
1/: NAMES x NAMES x TYPES-. ATREN
.: ATREN x ATS!Ci--. ATSIG

variables
I, m, n: NAMES
t, 11: TYPES

equations

(Sort renaming constructor)
(Function renaming constructor)
(Apply atomic renaming)

rs(/, I) = rs(m, m)
rs(m, m) =(/"(/,I, t)
({(/,I, t) = (f(m, m, u)

rs(/, m) = rs(m, I)

) (ldentifr all identity renamings)

rf(/, m, t) = 1/(m, /, /)

rs(/, m).S(n) = S(a(/, m, n))

rs(/, m).F(n, I)= F(n, a(/, m, I))

({(/, m, I).F(n, l) = F(cr(/, m, n), 1)

eq(l, 11) = F=* ({(/, m, l).F(n, 11) = F(n, 11)

r((l, m, l).S(n) = S(n)

sort S!G (Signa/ures)
constant 0: SIG (Emply signature)
functions

i: ATSJG-. SIG
+: S/G x SIG __, S!G

S: TYPES--+ SJG

(1 nject ion)
(Combinal ion/Union)

(Convert type to set ()j'sorts)
(Apply atomic renaming)
(Signature a.ffec!ed by atomic renaming)

343

. : ATREN x SIG--> SIG
~: ATREN .- SIG
inv~: ATREN--> SIG
E: ATS!G x S!G .-BOOL
n: S/G x SIG-> SIG

(Signature used by but invariant under atomic renaming)
(Membership)

~: ATSIG x SJG .- S!G
;;;) : S/G x SIG--> BOOL
eq: SIG x S!G---. BOOL

variables
I, m: NAi'v!ES
t, u: TYPES
a: ATS!G
r: ATREN
x,y, :::SIG

equations
x+0=x
x+x=x
x+y=y+x
(x + y) + z = x + (y + z)
i(F(/, t)) = i(F(I, t)) + S(t)

(Intersection)
(Deletion)
(Supersignature)
(Equality)

(A constanl or.function implicitly
declares the sort(s) occurring in its type)

FIG. 3. (Conlinued)

344

S(i(/)) = i(S(/))
S(t • 11) = S(I) + S(u)

r.0=0
r.i(a) = i(r.a)

r.(x + y) = (r.x) + (r.y)

r.(rs(I. /)) = 0 (This catches all identity renaminxs)
eq(/, m) = F= '2:.(rs(I. m)) = i(S(/)) + i(S(m))
eq(!, m) = F= '2:.((f(/. m, t)) = i(F(I, 1)) + i(F(m, t))

inv::!:(rs(/, m)) = 0
eq(I. m) = F= inv'J.(I/(/, m, t)) = S(t)

aE0=F
S(I) E i(S(rn)) = eq(/, m)
S(I) E i(F(rn. I))= I EI
F{l, I) E i(F(m. 11)) = eq(I. rn) 11eq(t.11)
F(/, 1) E i(S(m)) = F
a E (x + y) =(a Ex) V (a E y)

xn0=0
xnx=x
xny=ynx
(x n y) n::: = x n (y n .::)
S(I) Ex= F = i(S(/)) n x = 0
F(I. /)Ex= F= i(F(/, I)) n x = S(I) n x
a Ex= T =* i(a) n x = i(a)
(x + y) n.:: = (x n :::) + (y n .::)
aEx=F=:,aj.x=.\·
a:i.i(a) = 0
I Et= T = S(I) j. i(F(m, I))= S(/) ..l. S(t)
a ..l. (x + y) = (a j. x) + (a L> y)
x=y+::=x2y= T
aEy=T&aEx=F=x2y=F
eq(x, y) = (x 2 y) II (y 2 x)

end Signa1ures

FIG. 3. (Continued)

J. A. BERGSTRA ET AL.

(renaming of a module), T (conversion of a signature to a module without
axioms), + (combination/union of modules), and 0 (restriction of the visible
signature of a module).

Each first-order sentence <P corresponds to a module constant (<P) whose asso
ciated signature '2:((<1>)) = '2:(</J) is the smallest signature x such that <jJ E ..'l'(x).
Remember that <jJ is explicitly typed (Section 2.1) so that x is uniquely determined
by <jJ. We assume free variables in first-order sentences to be universally quantified.
A finite first-order theory corresponds to a module expression

(<1>1) + ... + (<J>,,),

where + is the above-mentioned combination operator on modules. The signature
of such a theory is

where the +-operator occurring in the right-hand side is the + on signatures.
Renaming of signatures is extended in the natural way to renaming of first-order

sentences. So r.<jJ is the sentence obtained from <P by applying atomic renaming r
to it, and (r.<jJ) is the corresponding module constant. Clearly, '2:((r.<jJ)) =
r.'2:((<i>)).

Module Algebra 345

In addition to (infinitely many) constants (</>), there are module expressions
T(x) for each signature x. These represent modules that do not impose any
constraint on x-algebras.

The set of flat module expressions consists of expressions involving only the
constants (</>) and the operators +, ., and T. These represent ordinary finite first
order theories. From the viewpoint of first-order logic, T(x) is equivalent to (cp)
with cp a tautology and 2: ((cp)) = x.

Non.flat expressions involve the export operator D. Consider, for instance,

x 0 ((efJ1) + (efJ2)),

which is to be read as "export x from (</J1) + (cp2) ". The intended meaning of this
module expression is a module whose visible signature is restricted to those sorts
and functions of 2: ((ef; 1) + (ef;2)), which also occur in x, that is,

2: (x D ((</>1) + (</>2))) = x n 2: C< r/J1) + < </>2)).

Sorts and functions not occurring in x become hidden, that is, inaccessible from
the outside. One of the main properties of hidden sorts and functions is that they
can be renamed without affecting the meaning of the specification in which they
occur, as long as name clashes between hidden names as well as between hidden
and visible names are avoided.

The axioms of basic module algebra for modular fol-specifications (BMA [fol])
are given in Figure 4. A graphical representation of the corresponding signature is
shown in Figure 5. While designing BMA [fol], we kept the following requirements
in mind:

(A) All axioms of BMA[fol] would have to hold in the algebra M(fol) of full
model classes of modules, which we consider to be a natural standard model
for modular fol-specifications. In M(fol), the +-operator is interpreted as
generalized intersection of model classes (not union of model classes!) and the
export operator 0 is interpreted as restriction of the signature of the models
in a class. M(fo/) is discussed in more detail in Section 4.

(B) As an extension of Signatures (Section 2.2) BMA [fol) would have to leave
Signatures unaffected in the sense that every closed S/G-term over the signa
ture of BMA [fol] would have to be provably equal to a closed S/G-term over
the signature of Signatures, and no new identities between closed terms over
the signature of Signatures would be introduced.

(C) Every closed module expression (closed term of sort M) would have to be
provably equal to a normal form containing at most a single instance of the
export operator D. Normalization of module expressions is a basic operation
that will have to be implemented in any system for manipulating specifications.
In Section 3.2, we show that BMA[fol] satisfies this requirement.

(D) Let X and Y be closed module expressions. We call Yan extension of X if it
says more than X, and we call it an enrichment of X if it says more than X but
only about new signature elements. The axioms of BMA [Jbl] must guarantee
that enrichment is a special case of extension. This is discussed in Section 3.4.

The axioms of BMA [jol] mainly describe the interaction between the +- and
0-operators. Although this cannot be done without aiming at a specific semantics
for+ and D (see (A) above), it turns out that:

(i) The axioms of BMA[fol] are convincing on a priori grounds even without
such a semantics.

346

module BMA[.fi;l]
begin

import Signawres
sort M (Modules)

J. A. BERGSTRA ET AL.

constants
(q,):A.f (For each first-order sentence q, E .:?(x) with signature x. (<P > is a cons/an! <~f'sort M;

free variables in q, are assumed to be universally quantified)
functions

2::: lvf __,. SIG
T: SJG __,. M
. : ATREN x M-> M
+: Mx M->M
0: S/G x M--> M

variables
r:ATREN
x. y: SIG
X. Y, Z: Ai

equations

(Signature)
(Injection)
(Apply atomic renaming)
(Combination/ Union)
(Export)

2::((1/>)) = "2:(</!) (SI)
2::(T(x)) = x (S2)
2::(X + Y) = "2:(X) + 2::(Y) (S3)
2::(x D Y) = x n 2::(Y) (S4)
2::(r.X) = r.2::(X) (S5)

r.(</>) = (r.</>) (Rl)
r.T(x) = T(r.x) (R2)
r.(X + Y) = (r.X) + (r. Y) (RJ)
r.(x 0 Y) = (r.x) D (r. Y) (R4)
r.(r.X) = X (R5)
2::(r) n 2::(X) = inv2::(r) ==> r.X = X (R6)

X+ Y= Y+X (Cl)
(X + Y) + Z = X + (Y + Z) (C2)
T(x + y) = T(x) + T(y) (C3)
X + T(L(X)) = X (C4)
X + (y 0 X) = X (C5)

2::(X)DX=X (El)
x 0 (y D Z) = (x n y) D z (E2)
x 0 (T(y) + Z) = T(x n y) + (x 0 Z) (E3)
x ;:;! (2::(Y) n 2::(Z)) = T ==>

x D (Y + Z) = (x D Y) + (x 0 Z) (E4)
end BMA[fol]

FIG. 4. Basic Module Algebra.

(ii) BMA[fol] has several different semantics including the "natural" ones.
(iii) The +-, D-, and ~-operators cannot be treated separately from each other.

General axioms describing their interrelation are necessary if a useful inter
pretation of these operators is to be obtained. Trying to find a meaning for
the structuring operators of modular specifications without any axiomatic
preliminaries is not a well-defined problem.

Models of BMA Lfi:1!] (like JM.(fol)) are module algebras. A module is an element
of the carrier M of a module algebra. A module expression is a term of sort Mover
the signature of BMA [fol]. As such, it is a textual representation (presentation) of
a module.

Comments

(Sl)-(S5) are the natural identities for~-

(Rl)-(R3) are self-evident.

Module Algebra 347

F10. 5. The signature of BMA[Jol]. (The
signature is only partially shown. It is an
extension of the signature of Signatures
shown in Figure 2).

(R4) postulates unrestricted distribution of renaming over export. The permutative
character of renaming is crucial here (see Section 2.2). Consider, for instance, the
closed module expression

x = (S:A + F:a:A) 0 <aA-¥:- bA).

Whereas straightforward nonpermutative renaming of a to b cannot be allowed as
it leads to the inconsistent result

(S:A + F:b:A)O (bA ¥-bA),

permutative renaming of a to b by means of (R4) does not cause a name clash:

~/'(a, b, A).X <~J (rf(a, b, A).(S:A + F:a:A)) 0 (rf(a, b, A).(aA ¥: bA))

= (S:A + F: b:A) 0 (bA ¥: aA >.
(RS) says that, due to its permutative character, renaming is an involution.

(R6) postulates restricted renameability of hidden items. The condition

I;(r) n L:(X) = invL:(r)

does not allow renaming of items that are visible, or renaming of hidden items
causing a clash between hidden and visible names. Clashes between hidden names
cannot happen due to the permutative character of renaming. The following
conditional equation is equivalent to (R6) and w-derivable from BMA [fol]:

invI;(r) ;;2 (L:(r) n 1:(X)) = T=* r.X = X. (R6')

(Cl) and (C2) together with the idempotent law X + X = X express the fact that
modules are sets of axioms. The idempotent law for + is a special case of (CS)
(take y = 1:(X) and apply (El)).

(C3)-(C4) are self-evident.

(CS) is a generalization of the idempotent law for +, expressing the fact that
enrichment is a special case of extension (requirement (D)-see Section 3.4).

348 J. A. BERGSTRA ET AL.

(E 1)-(E2) are self-evident.

(E3) says that hidden.parts of the signature that are not used in any axiom may be
deleted.

(E4) postulates restricted distribution of D over +. Of course, it would be nice to
have unrestricted distributivity, but this is simply not true in the models of
BMA[fol] we have in mind. Consider the following simple counterexample:

x = S:B + F: T:B + F:F:B,

Y = T(x + F:c:B) +(TB= cB),

Z = T(x + F:c:B) + (FB + cB).

Note that cB is not exported by x D Y and x D Z due to the fact that F: c: B $. x.
Now, on the one hand x D (Y + Z) implies TB= ps by way of TB= cB = pB
and "J:,(TB = FB) ~ x. On the other hand (x D Y) + (x D Z) does not imply
T 8 = F 8 , as one may choose cB = TB in x D Y and cB = FB in x D Z. Hence,
x D (Y + Z) =F (x D Y) + (x D Z).

The following equations are equationally derivable from BMA [Joi] and hence
valid in all its models:

(1) X + T(0) = X,
(2) x D T(0) = T(0),
(3) x D T(y) = T(x n y),
(4) x D (T(y) + Z) = (x D T(y)) + (xD Z).

PROOF

(1) X + T(0) <~l (X + T(2:(X))) + T(0) <~l X + (T(~(X)) + T(0))
<~l X + T("J:,(X) + 0) = X + T(~(X)) c~i X.

(2) x D T(0) <;,;l x D ("J:,(T(0)) D T(0)) <~l x D (0 D T(0))
(~) (x n 0) D T(0) = 0 D T(0) = T(0).

(3) x D T(y) = x D T(y + 0) <~ix D (T(y) + T(0))
c~i T(x n y) + (x D T(0)) ~ T(x n y) + T(0) \,;/ T(x n y).

(4) x D (T(y) + Z) <~l T(x n y) + (x DZ)~ (x D T(y)) + (x DZ). D

Conversely, (E3) follows immediately from eqs. (3) and (4).

As we explained in Section 2.2, we are not interested in models containing
nonstandard signatures. Hence, when proving equations over M, we may use
equational deduction plus equations over SJG like x + (y n x) = x, which are
valid in the initial algebra of Signatures (w-derivable from Signatures) but not
equationally derivable from Signatures. The following equations are valid in all
models of BMA[fol] that do not contain nonstandard signatures:

(5) (~(X) + y)DX=X,
(6) "J:,(X) D (T(y) + X) = X,
(7) "J:,(X) D (X + Y) = X + (~(X) DY),
(8) "J:,(X) n ~(Y) = 0 & 0 DY= T(0) ==> ~(X) D (X + Y) = X. (The second part

of the condition means that Y is consistent. See Section 5.2.)

Module Algebra 349

PROOF

(5) p;(X) + y)DXc~l (2:(X) + y)D(~(X)DX)
(~) ((~(X) + y) n ~(X))DX= (l:(X) + (yn ~(X)))DX
= (withx+(ynx)=x)2::(X)DX=X.

(6) ~(X) D (T(y) + X) (~) T(~(X) n y) + (k(X) DX) c;p T(~(X) n y) + x
(~) T(~(X) n y) + T(k(X)) + X
<~l T((~(X) n y) + 2":(X)) + X
= (with x + (y n x) = x) T(2: (X)) + x<~l X.

(7) From x + (x n y) = x follows that 2":(X) ;;;/ (2::(X) n 2::(Y)) = T. Hence, (7) is
a special case of (£4).

(8) ~(X) D (X + Y) (;)_ X + (2": (X) DY)(~) X + (2":(X) D p;(Y) DY))

(~J X + ((2::(X) n 2::(Y))D Y)

= (with the first part of the condition) X + (0 D Y)

= (with the second part of the condition) X + T(0) \;/ X. D

3.2 THE NORMAL FORM THEOREM. In this section we show that EMA [fol]
satisfies requirement (C) of the previous section, that is, that every closed module
expression is provably equal to a normal form containing at most a single instance
of the export operator D. This means that, although using multiple levels of export
in a module expression may be advantageous from the viewpoint of modularization,
it is never essential as far as expressive power is concerned. The meaning of hiding
is independent of the "depth" at which it occurs. The proof of the normal-form
result hinges on the conditional distributive law (E4).

In the sequel ME[fol] will be the set of module expressions, that is, expressions
of sort Mover the signature of BMA[fol], and CME[Jol] ~ ME[fol] will be the
set of closed module expressions.

Definition 1. An expression X E CME[Jol] is flat if it does not contain the
0-operator.

The set offlat closed module expressions will be called FCME[fol].

THEOREM 1. For every X E FCME[fol], there is an X' E FCME[Jol] of the
form

n

T(x)+2;(</>;) (n::::: 0, x a signature, the summandT(x) may be absent)
i=l

such that EMA [fol] I- X = X ', where I- means conditional equational provability.

PROOF. By structural induction using axioms (Rl)-(R3) and (C2)-(C4). D

Definition 2. A term X E CME[fol] is in normal form if X has the form y D Z
with y a signature and Z flat.

THEOREM 2 (NORMAL FORM THEOREM). Each x E CME[Jol] has a normal
form X' E CME[fol] such that BMA[fol] I- X = X'.

For V, Wk CME[Jol] we write

BMA[fol] I- Vk W, ifforallXE Vthereisa YE WwithBMA[fol] 1-X= Y,

BMA[jol]l-V= W, ifBMA[fol]I- Vs W andBMA[fol]l-W~ V.

350 J. A. BERGSTRA ET AL.

Using this notation the normal form theorem can be restated very simply as

BMA[fol] I- CME[fol] = SJG 0 FCME[fol].

For the proof of the normal form theorem we first need the following lemma:

LEMMA 1. Let x, x' be signatures and YE FCME[fol]. Then there is a Y' E
FCME[fol] such that BMA[fol] I- xO Y= x 0 Y' = (x + x') 0 Y'.

PROOF. Transform x 0 Y into x 0 Y' by repeatedly applying (R6) in such a
way that all names occurring in 2: (Y) but not in x are replaced by names not
occurring in x + x'. We then have

x D Y = x O Y' <~> x O (2: (Y') D Y') <~> (x n 2: (Y')) O Y'

= ((x + x') n 2:(Y')) 0 Y' = (x + x') 0 Y'. 0

PROOF OF THE NORMAL FORM THEOREM. Let the 0-depth d of a closed module
expression be defined inductively as follows:

d(X) = 0

d(r.X) = d(X),

d(X + Y) = max(d(X), d(Y)),

d(x 0 Y) = d(Y) + 1.

if X E FCME[fol],

We use induction with respect to the 0-depth: If d(X) = 0, X is flat and X can
simply be brought into the desired normal form by applying (E 1):

X=2:(X)DX.

Now assume that for some n 2:: 0 all X E CME[fol] with d(X) :s n can be
brought into the desired normal form and consider an X E CME[fol] with
d(X) = n + 1. Without loss of generality, we may take X of the form

k

l: (u;OX;) (k 2:: 1)
i=l

with d(X;) :s n. (Flat summands can be brought into the form u; 0 X; by means of
(El), and renamings encompassing any outermost 0-operators can be moved
inward by means of (R3) and (R4) without changing the 0-depth.) By the induction
hypothesis we may normalize X; to V; 0 Y; with Y; E FCME[fol] (l :s i :s k), and
we obtain

k k
(E2)

X = l: (u; O (v; O Y;)) = l: ((u; n v;) O Y;).
i=l i=l

If k = 1, this is the desired normal form and we are finished. Assume k 2:: 2 and
let

k

y = l: (u; n v;).
i=l

Using Lemma 1, we can find for each i a Y; E FCME[fol] such that

(u; n v;) o Y; =yo y;.

Module Algebra
351

Hence

k

X = 2: (y D Yf).
i=l

If each term of the _form (y 0 Zi) + (y 0 Z2) can be written as y O Z3 (with z1 ,

Z2, Z3 flat), the desired normal form can be obtained ink - I steps. So consider

2 = (y 0 Z1) + (y 0 Z 2).

In general, the condition

y :;;2 2:(Z1) n 2:(Z2)

is not satisfie?, so (E4) cannot be applied directly, but using Lemma J we can

transform 22 into 22 E FCME[fol] such that

y 0 Z2 = y 0 Z2

and

y 0 Z2 = (y + 1:(Zi)) 0 22.

Taking the signature of both sides of the latter equation gives

y n ~(22) = (y + 2:(Z1)) n ~(Z2) :;;2 2:(Z1) n 1:(Z2),

so

y :;;2 2;(21) n ~(Z2).

Now, if Z2 is replaced by Z2, (E4) can be applied:

Z = (y 0 Z1) + (y 0 Z2)
, (E4)

= (y 0 Z1) + (y 0 Z2) = y 0 (Z1 + Z.2) = y 0 Z3 . 0

3.3 Two ADDITIONAL MODULE OPERATORS: HIDING AND COMMON EXPORT.

Two useful operators for constructing specifications are the hiding operator .6.:

ATSIG x M - M defined by

a 6. X = (a 6. ~(X)) 0 X, (H)

and the common export operator 0: M x M - M defined by

X 0 Y = (2:(X) n 2":(Y)) 0 (X + Y). (CE)

The 6.- and 0-operators occurring in the right-hand side of (H) and (CE) are the

deletion operator 6.: A TSIG x SIG - SIG and the export operator 0: SIG x M

- M, respectively (see Figure 6).
Hence, both operators are defined in terms of operators of BAJA [JV!]. As such,

they are superfluous from a theoretical viewpoint and adding them to BAJA [j()/]

would only complicate the theoretical development. They are useful in practice,

however. Hiding is complementary to export, and common export is a generali

zation of export in the sense that

x 0 Y = T(x) 0 Y.

PROOF

T(x) 0 y<CJl (2:(T(x)) n 2::(Y))O (T(x) + Y) = (xn i(Y))O (T(x) + Y)

(~) T(xn 1:(Y)) + ((xn 2:(Y)) 0 Y) (~) (xn 2:(Y)) 0 Y = xO Y. 0

352 J. A. BERGSTRA ET AL.

FIG. 6. Extended signature for BMA [fol]. Note the
overloading of D.

As Koymans pointed out to us, (E4) can be replaced by a remarkably symmetrical
non conditional equation if the common export operator is used in addition to the
export operator:

(~ (Y) D X) + (~ (X) D Y) = X D Y. (E4*)

PROOF. We first show that BMA[jol] + (CE) I- (E4*):

(~(Y) DX)+ (L(X) DY)= (L(Y) D (L(X) DX))+ (L(X) D (~(Y) DY))

= ((L(X) n L(Y)) DX)+ ((L(X) n 2:(Y)) DY)
(~> (L(X) n L(Y)) D (X + Y) <~> X D Y.

Secondly, we show that BMA [fol] - (E4) + (CE) + (E4*) I- (E4). Consider
x D (Y + Z) with x :2 L (Y) n L (Z). Without loss of generality, we may assume
that

x k L(Y) + ~(Z).

(Letx' =xn(1;(Y)+ ~(Z)). Then

We prove

x' ~ ~(Y) + ~(Z),

x D Y = x D (~ (Y) D Y) = (x n L (Y)) D Y

= (x' n ~(Y)) D Y = x' D Y,

xD Z= x' DZ,

x D (Y + Z) = x' D (Y + Z).)

x D (Y + Z) = (x D Y) + (x D Z)

Module Algebra

by taking Y ' = T(x) + Y and Z' = T(x) + Z and showing that

(a) Y' 0 Z' = x 0 (Y + Z)
(b) Y' 0 Z' = (x D Y) + (x 0 Z).

First observe that

L(Y') n ~(Z') = (x + ~(Y)) n (x + ~(Z))

353

= (x n x) + (x n ~(Y)) + (x n ~(Z)) + (1:(Y) n ~(Z))
= x (with x;;;;) L(Y) n 1: (Z)),

and

Y' + Z' = T(x) + Y + T(x) + Z = T(x) + Y + Z
(C4)
= T(x) + T(L(Y + Z)) + Y + Z = T(x + 1:(Y) + L(Z)) + Y + Z

= (with x k ~(Y) + ~(Z)) T(L(Y) + L(Z)) + Y + Z = Y + Z.

To prove (a), we apply (CE):

Y' DZ' (~l (1:(Y') n ~(Z')) D (Y' + Z') = x 0 (Y + Z).

To prove (b), we apply (E4*):

Y' DZ' <E;,,·i (1:(Z')DY')+ (L(Y')DZ')

(~_3)

((~(Y')n 1:(2'))0 Y')+((4(Y')n 2:(Z'))DZ')

(xD Y') + (xDZ') =(xD(T(x) + Y)) + (xD(T(x)+ Z))
T(xnx)+(xD Y)+T(xnx)+(xDZ)
T(x) + (xD Y) + (xO Z)

(withXk i(Y) + ~ (Z)) T(xn (L(Y) + 2": (Z)))

+ (xD Y) + (xO Z)
T((xn ~(Y))+(xn 1:(2))) + (xD Y) + (xOZ)

T(L((xD Y) +(xOZ))) +(xD Y)+(xDZ)=(xO Y)+(xOZ). 0

Remark. By eliminating the common export operator by means of (CE) and
putting z = L (X) n 2": (Y), (E4 *) is easily seen to be equivalent to

z = 2":(X) n 1:(Y) => z D (X + Y) = (z DX)+ (z 0 Y), (E4-)

which is a special case of (E4). So the above result can be stated somewhat differently
by saying that (E4) can be replaced by the slightly weaker axiom (E4-) in BMA [fol].

3.4 ABSTRACTION, ENRICHMENT, EXTENSION, AND REFINEMENT. The theory of
modular specification is relevant to the study of transformational program devel
opment. Both require a classification of the various possible construction/devel
opment steps. We first discuss such a classification informally, and then give precise
definitions of the notions involved in the context of module algebra.

Let S: X ~ Y be a transformation step from a specification X to some other
specification Y. In accordance with more or less established terminology, we may
say that

(1) S is an abstraction (Y is an abstraction of X) if Y is obtained by deleting
(hiding) information from X.

(2) S is an enrichment (Y is an enrichment of X) if Y covers more issues than X
without in any way changing or constraining the meaning of X.

354 J. A. BERGSTRA ET AL.

(3) Sis an extension (Y is an extension of X) if Y describes more than X in a way
consistent with X and perhaps even in a more specific way than X. (An
enrichment is a conservative extension.)

(4) S is a refinement (Y is a refinement of X) if Y describes the same as X but in a
more specific way (essentially by adding constraints).

These informal definitions can be translated into precise ones for specifications
X, YE CME[fol], as follows:

Definition 3. For X, YE CME[fol], we say that

(1) Yis an abstraction of X if Y = ~(Y) 0 X;
(2) Y is an enrichment of X if X is an abstraction of Y, that is, X = ~ (X) 0 Y;
(3) Yis an extension of X if Y = Y + X;
(4) Y is a refinement of X if Y is an extension of X and ~ (Y) = ~ (X).

Comments

(1) If Y = ~(Y) 0 X (Y is an abstraction of X), Y is obtained by hiding information
(in this case a part of the signature) from X.

(2) If X = ~ (X) 0 Y (Y is an enrichment of X), Y says more about new signature
elements (i.e., sorts and functions in ~(Y) - 1:(X)), but does not add any
constraints to X.

(3) If Y = Y + X (Y is an extension of X), Y says more than X.
(4) If Y = Y + X and ~(Y) = 1:(X) (Yis a refinement of X), Y says more than X

about the same signature.

The combination operation X,Z ~ X + Z can be viewed as producing an ex
tension Y = X + Z of X. Furthermore, both enrichment and refinement are
(simpler) forms of extension. Indeed, if Y is an enrichment of X, then

X= ~(X) 0 Y,

and hence
(CS)

Y+X=Y+(~(X)OY) = Y.

Hence, BMA [fol] satisfies requirement (D) of Section 3.1. Refinement is by
definition a special case of extension.

Every extension can be split into a refinement and an enrichment:

LEMMA 2 (FACTORIZATION LEMMA). For any extension x ~ z with X, z E
CME[fol] there is a YE CME[fol] such that X ~ Y is a refinement and Y ~ Z
is an enrichment. (See Figure 7.)

PROOF. Let Y = ~(X) 0 Z. We must verify that

(a) Y= Y +X,
(b) ~(Y) = ~(X),
(c) Y= ~(Y)O Z.

(a) Y = ~(X) 0 Z = ~(X) 0 (Z + X) = (cf. equation (7) of Section 3.1) (~(X) 0
Z) +X= Y+X,

(b) ~(Y) = ~(X) n ~(Z) = 2:(X) n ~(X + Z) = (~(X) n ~(X)) + (~(X) n
~(Z)) = ~(X),

(c) Immediate from (b) and the definition of Y. 0

Module Algebra

X ___ Ex_tens_i_on __ ..,.

Refinement

y (=- ~(X)OZ)

FIG. 7. Graphical summary of Definition 3
and the factorization lemma.

355

Remark. Whether an extension is an enrichment or not depends on the
semantics used. As we have not yet discussed the semantics of EMA we postpone
further discussion of this point to Section 4.2.

3.5 NOTATIONAL CONVENTIONS. From now on we use the :-operator, which
allows us to drop the explicit typing from axioms in most cases (see also Section
2.1). Let a signature be called unambiguous if each of its function symbols is
declared at most once as a function symbol of arity n (n ~ 0). Thus, the signature

F:f:M ~ M + F:f:N x N ~ N

is unambiguous (/is declared once with arity 1 and once with arity 2), but

F:f:M ~ M + F:f:N ~ N

is ambiguous (f is declared twice with arity 1). Now x: Y with unambiguous
signature x means that whenever a function symbol f of arity n occurs without
explicit typing in an axiom of Y and x contains F:j:A 1 x · · · x An~ A, then/
is an abbreviation of

Here Y must be viewed purely syntactically rather than as an expression subject to
the laws of module algebra.

We abbreviate axioms in module expressions still further by omitting universal
quantifiers and variable declarations. The type of variables must be inferred from
the context in which they occur. For instance,

and

(S:B + F: T:B + F:F:E):((T=F- F) + (x =TV x = F))
= (TB "# FB) + (\:/ XB XB = TB v XB = FB)'

(S:N + F:O:N + F:S:N ~ N + F:add:N x N ~ N)
:((add(x, 0) = 0) + (add(x, S(y)) = S(add(x, y))))
= < \:/ XN add NXN->N (xN, ON) = xn)

+ (\:fxN\:fyNaddNXN->N(XN, SN->N(yN)) = sN-N(addNxN-N(XN, yN))).

4. Semantics of EMA[fol]
Although we had the full model class interpretation M.(fol) in mind while designing
the axioms of EMA (requirement (A) of Section 3.1), the resulting system turns
out to have other interesting and important interpretations. It should be emphasized

356 J. A. BERGSTRA ET AL.

that the normal-form theorem (Theorem 2) can be applied independently of the
particular interpretation chosen. There is no need to worry about semantics when
calculating a normal form. Note, however, that everything in this section applies
only to }al-specifications. Algebraic specifications (viewed as equational theories or
initial algebras) are treated separately in Section 5.

4.1 DEFINITIONS. We first introduce some notation for classes of algebras and
logically closed theories and then define suitable operators on them .

.2"(x) = the set of first-order sentences over signature x. (Free variables in
sentences are assumed to be universally quantified . .2"(0) contains
the 0-ary connectives true and false.)

Alg(x) =the class of all x-algebras (with x a signature). (A/g(0) = IA0 }, where
A0 is the unique "empty" algebra.)

Alg(x, </>) = the class of all x-algebras satisfying a sentence </> E .2"(x).

Algc(x) =the class of all countable x-algebras.

A!gc(x, </>)=the class of all countable x-algebras satisfying a sentence </> E .2"(x).
(Algc(x, </>) = Alg(x, </>) n Algc(x).)

We only consider algebras with nonempty carriers.

LCT(x) =the set of logically closed theories over signature x, that is, subsets
of 2'(x) that are closed under first-order logical deduction. (Notice
that TE LCT(x) always contains true and hence is never empty.
LCT(0) consists of the theories !true} and !true, false}. Further
more, the signature x can always be completely recovered from T
as all sort, constant, and function symbols occur in the various
tautologies that must always be present in T.)

Th(x) = {</> E .2"(x) 11- </> l (=the smallest element of LCT(x)).

Th(x, </>) = lir E ..2"(x) I</> 1- ir l for</> E ..2"(x) (=the smallest element of LCT(x)
containing </J).

Th(x, K) = I</> E ..2"(x) I VA E KA I= </> l with K k Alg(x).

i(A) = x for A E Alg(x).

x 0 A= the restriction of A to x n x' for A E Alg(x'). (If x n x' = 0, then
xDA = A0.)

xO K= lxDA IA EK} for KkAlg(x').

K + L = IA E Alg(x1 + X2) I X1 0 A E K, X2 0 A E L l for K k Alg(x1),

L k Alg(x2). (K + L =Kn L if X1 = X2.)

r.A =A renamed via r. For A E Alg(x), this yields an A' E Alg(r.x).

r.K = lr.A I A EK}. For K k Alg(x), this yields a K' k Alg(r.x).

x 0 T = ..2"(x) n T for TE LCT(x').

T + U = l<t> E 2'(x1 + x2) ITU U I-</>} for TE LCT(xi), U E LCT(x2).

r.T= Trenamed via r. For TE LCT(x), this yields a T' E LCT(r.x).

Module Algebra 357

Using the above definitions, we further define three semantical mappings Mod,
Mode, and Th on CME[fol] as follows:

X ~ Mod(X) ~ Alg(2: (X)),

X ~ Modc(X) ~ Algc(2:(X)),

X ~ Th(X) E LCT(2:(X)).

The precise inductive definitions are as follows:

Mod((1>)) = Afg(2:((</>)), </>),

Mod(T(x)) = Alg(x),

Mod(r.X) = r.Mod(X),

Mod(X + Y) = Mod(X) + Mod(Y),

Mod(x DY)= x D Mod(Y),

Modc((cJ>)) =Alge(~((</>)),</>),

Modc(T(x)) = Algc(x),

Modc(r.X) = r.Modc(X),

Modc(X + Y) = Modc(X) + Mode(Y),

Modc(x D Y) = x D Modc(Y),

Th((cJ>)) =Th(~((<!>)),</>),

Th(T(x)) = Th(x),

Th(r.X) = r. Th(X),

Th(X + Y) = Th(X) + Th(Y),

Th(x D Y) = x D Th(Y).

An equivalence relation can now be associated with each of these three mappings
in the following straightforward manner (with X, YE CME[fol]):

X =Mod Y <=> 2:(%) = ~(Y) & Mod(X) = Mod(Y)

X =Mode Y <=> 2:(X) = ~(Y) & Modc(X) = Modc(Y)

X =T/, Y <=> 2:(X) = ~(Y) & Th(X) = Th(Y).

4.2 FOUR MODELS OF BMA[fol]. BMA[fol] is an algebraic specification and
as such has an initial model II(BMA [fol]). It is obtained by factorizing the free
term algebra CME[fol], which consists of the textual representations (presenta
tions) of modular first-order specifications, with respect to the congruence

X = Y <=> BMA[fol] f- X = Y,

where f- means conditional equational provability. Hence,

II(BMA[fol]) = CME[fol]/=.

Although rather weak, this congruence is strong enough to make the normal
form theorem (Theorem 2) work. As a result, II(BMA [jol]) is a computable algebra
that can be implemented as part of a system for manipulating specifications.

358 J. A. BERGSTRA ET AL.

Three further models of BMA[fol] can be obtained by factorizing CME[fol]
with respect to the three equivalence relations '=Mod, '=Mode' and =Th, introduced
in the previous section. In fact, all of them are congruences on CME[Jol], so we
may write

M(fo/) = CME[fol]/=Mod,

Mc(fo!) = CME[fol]/=Mvdc•

T(fol)= CME[fol]/=rh·

Furthermore, it can be verified that each of these three constructions is a (minimal}
model of BMA [fol]. All verifications involved are straightforward except the
verification of T(fol) I= (£3) and T(fol) I= (£4), both of which turn out to be
equivalent to the Craig interpolation lemma. This lemma states that two Jo/
sentences p and q with

f-p~q

always have an interpolant, that is, ajo/-sentence r with signature

~(r) ~ ~(p) n ~(q),

such that
f-p~r

and

f- r~q.

By using the deduction theorem for first-order logic, the following equivalent
formulation of the interpolation lemma is obtained:

if

p f- q,

there always is an interpolant r with signature

~(r) ~ ~(p) n ~(q)
such that

P f- r f- q.

See also [12, Chapter 23], [15, Lemma 3], or [40, Section 5.4].

THEOREM 3. T(jo/) I= (E 3).

PROOF. We show that

x 0 (T(y) + Z) '=Th T(x n y) + (x DZ).

(a) ~(x D (T(y) + Z)) = x n (~(T(y)) + ~(Z)}
= (x n y) + (x n ~(Z)) = ~(T(x n y) + (x D Z)).

(b) Th(x D (T(y) + Z)) :2 Th(T(x n y) + (x DZ)): Let p E Th(T(x n y) + (x 0
Z)). Choose q E Th(x D Z) with q f- p. Clearly, q E Th(x 0 (T(y) + Z));
hence, p E Th(x 0 (T(y) + Z)).

(c) Th(x D (T(y) + Z)) ~ Th(T(x n y) + (x D Z)): Let p Ex D (T(y) + Z).
Choose q E Th(Z) with q f- p. According to the interpolation lemma there is

Module Algebra 359

an interpolant r with ~(r) ~ ::!:(q) n ::!:(p) ~ k(2) n x n (y + I;(2)) = x n
2:(2) such that q f- rand r f- p. Hence, r E Th(x D 2) and p E Th(T(x n y) +
(x DZ)). D

Remark. Conversely, (E3) implies the Craig interpolation lemma. Suppose
p f- q and let x =I; (q). From the fact that q E Th(x D (T(x) + < p))) = Th(T(x) +
(x D < p))) follows that there is an r E Th(x D (p >) such that r f- q. Hence,
p f- r f- q and k (r) ~ I; (q) n k (p), and r may be taken as interpolant.

THEOREM 4. !\(fo/) I= (E 4).

PROOF. We show that

x D (Y + 2) =n (x D Y) + (x DZ),

ifx:d::!:(Y)n2.:(Z).

(a) ::!:(x D (Y + Z)) = x n (::!:(Y) + ::!:(Z))
= (x n ::!:(Y)) + (x n ::!:(Z)) = ::!:((x DY)+ (x DZ)).

(b) Th(x D (Y + Z)) ;;;i Th((x D Y) + (x DZ)): Let p E Th((x D Y) + (x DZ)).
Choose q E Th(x D Y), r E Th(x D 2) with q /\ r f- p. Clearly, q, r E Th(x D
(Y + Z)), hence p E Th(x D (Y + Z)).

(c) If x :2 ::!:(Y) n 2:(2), then Th(x D (Y + Z)) ~ Th((x D Y) + (x DZ)): Let
p E Th(x D (Y + Z)). Choose q1 E Th(Y), q2 E Th(2) with q1 /\ l/2 f- p, then
q1 f- CJ2 ==> p. According to the interpolation lemma there is an interpolant r
with

::!:(r) ~ ::!:(qi) n 2:(q2 ==> p) ~ I:(Y) n (2":(2) + (x n (::!:(Y) + I;(2))))
= ::!:(Y) n (I;(2) + (x n ::!:(Y)) + (x n I;(Z)))
= (I:(Y) n 2:(Z)) + (x n 2-:(Y)) + (x n ::i:(Y) n l:(Z)) ~ x

such that q1 f- rand r f- q1 ==> p or, equivalently, CJ1 f- rand q2 f- r =l> p. Therefore,
r E Tlz(x D Y) and r ==> p E Th(x D Z), which implies p E Th((x D Y) +
(xD Z)). D

Remark. Like (E3), (E4) implies the Craig interpolation lemma. Suppose f- p
==> q. Let x = ::!:(p) n J:(q). Now xD ((p) + (•q)) =rn (x D (p)) + (x D (•q)).
Consequently, false E Th((x D (p)) + (x D (•q))). Choose r1 E Th(x D (p)),
r 2 E Th(x D (-iq)) with r 1 /\ r2 f- false. Then, p f- r1 f- •r2 f- q and we may take r 1

as interpolant.

The importance of the Craig interpolation lemma in the case of(E3) was pointed
out by Renardel de Lavalette [37]. Interestingly, the equivalence of (E3) and (E4)
in the case of modular first-order theories does not carry over to modular equational
theories (see Section 5.1).

In Section 3.1, we gave an example showing that the condition x ~ ~ (Y) n
i(Z) of (E4) is essential. It may be instructive to consider the same example once
again in the present context. Using the notational conventions introduced in
Section 3.5 the explicit typing may be dropped, and the example looks as follows:

x = S:B + F: T:B + F:F:B,

Y = (x + F: c: B): (< T = c)),

Z = (x + F : c: B) : ((F = c)).

360 J. A. BERGSTRA ET AL.

Clearly, x does not contain ~(Y) n ~(Z) = x + F:c:B. Furthermore,

Th(x D (Y + Z)) #- Th((x D Y) + (x 0 Z))

as Th(x D (Y + Z)) contains T = F, whereas Th ((x 0 Y) + (x 0 Z)) does not.
The relations between M(fo/), l?:Ac(fol), and 1f(fol) are as follows. For X E

CME[Ji'>l]

(a) Modc(X) = Mod(X) n Algc(1:(X))
(b) Th(X) =Th("'t(X), Modc(X)).

The proof of (a) uses the downward Lowenheim-Skolem theorem and (b) is
based on the completeness theorem. Both proofs use the normal-form theorem by
assuming that X is in normal form.

Furthermore, it follows that

X =uod Y =? X =111odc Y =? X =Th Y,

which implies that Mc(fo/) is a homomorphic image of M(jol) and that Frt(fol)
is a homomorphic image of Mc(fol).

For X, YE FCME[fol], we have trivially

X :=Th y =? X :=Mod Y.

Hence, for flat module expressions the three semantics are equivalent. For nonflat
expressions they are different, however:

THEOREM 5. m(fol) ~ Mc(fol) ~ Jr(.fo/).

PROOF. We first prove M(fol) ~ Mc(fol) by giving a pair of closed module
expressions X, YE CME[fol] such that Mc~ X = Y, but M ft: X = Y.

Let N4 and NB be defined as follows (see Sections 2.2 and 3.5 for the notation
used):

NA= (S:A + F:O:A + F:S:A ~A)
:((S(x) = S(y) =* x = y) + <S(x) ¥= 0)),

NB= (S:B + F:O' :B + F:S' :B ~ B)
:((S'(x) = S'(y) =* x = y) + (S'(x) ¥= O')).

NA and NB are identical up to renaming. Take

X = (S:A + S:B) D (NA+ NB)

and construct Y from X by adding a hidden bijection from A to B to it:

Z = X + ((F:j:A ~ B + F:g:B ~ A):((g f(x) = x) + <fg(y) = y)))

Y = l:(X) DZ.

Clearly, every (countable) model of Y is a (countable) model of X. Conversely, let
M be a model of X. Mis a model of Y if a bijection f: A ~ B and its inverse g can
be added to it. This is only possible if the carriers A and B of M have the same
cardinality. So only the models of X whose carriers have the same cardinality are
models of Y and Y has no other models. Notice that although models of Y
themselves do not contain f and g (~ (Y) does not contain them), it must be
possible to add them to satisfy Z.

Module Algebra 361

Now, if M is a countable model of X the carriers A and B of M are both
cou~tab~y infinite (X does not have finite models), and thus have the same
cardmahty. Hence, Mis also a countable model of Y and W~c t= X = Y.

On the other hand, let M be a structure whose carriers A and B are both infinite
but of different cardinality, then ME Mod(X), but M $. Mod(Y). Hence. 1~ 11
X= Y.
_ Secondly, we prove Mc(fo/) ~ 1f(jol) by giving X, YE Civ!E[fol] such that

'Tf(fol) I= X = Y, but Mc(fol) It X = Y. Take

Z = (S: N + F: 0: N + F:S: N-'>N + F: add:Nx N -'>N)
: ((S(x) = S(y)=>x= y) + (S(x)#O) + (x# 0=> 3yS(y) =x)
+ (add(x, 0) = x) + (add(x, S(y)) = S(add(x, y))) + (add(x, S(y)) # x))

X = (F: add: N x N-'> N) Li Z,

where 6 is the hiding operator defined in Section 3.3, and construct Yby adding a
hidden "nonstandard" constant c to X:

boo/= (S:B + F: T:B + F:F:B):((T# F) + (x =TV x = F))

Z' = X +boo!+ ((2:(X) + L,(bool) + F:c:N + F:standard:N-'> B)
: ((standard(O) = T)
+ (standard(x) = standard(S(x))) + (standard(c) = F)))

Y = L,(X) DZ'.

The axiom add (x, S(y)) # x of X rules out models with cycles and the axiom x #
0 => 3 y S(y) = x eliminates models containing more than a single copy of the
standard model f;f of X. Hence, all models of X of cardinality l\ 1 consist of a
single copy of the natural numbers lf:!J and K 1 copies of the integers .'.Z. All these
models are isomorphic, so X is K 1-categorical. Furthermore, X has no finite models.
As a consequence, Th(X) is complete, that is, for any</> with 2:(</>) ~ 2:(X) either
</> E Th(X) or •<f> E Th(X). (This is an immediate consequence of the upward
Lowenheim-Skolem theorem-or see [14].)

Now, by construction Th(X) ~ Th(Y), but as Y is clearly consistent, the
completeness of Th(X) implies Th(X) = Th(Y). Hence, 1f(fo/) F= X = Y.

On the other hand Modc(Y) ~ Modc(X) by construction, but Modc(Y) does
not contain the standard model lf:!J of X or any model isomorphic to it. In fact,

Modc(Y) = Modc(X) - IM E Modc(X)I M ~ lf:!Jl.

Hence, Mc(fol) 11 X = Y. D

Remark. An immediate consequence of Theorem 5 is that there are homo
morphisms 1>1: M(jol)-'> Mc(fol) and <I>2: M.c(fol)-'>1f(fol), which are surjective
but not injective.

Remark. In Section 3.4, we stated without proof that whether an extension is
an enrichment or not may depend on the particular semantics used. We are now
in a position to give an example of this. In the first part of the above proof

Z + X = X + ((F :f: A -'> B + F: g: B -'> A)
: ((gf(x) = x) + (fg(y) = y))) + X = Z,

362 J. A. BERGSTRA ET AL.

so Z is an extension of X. In Mc(fol) it is an enrichment of X as well due to the
fact that

l'fi\c(/ol) F= ~(X) DZ= X.

but in F:Ji\(fol) it is not as

1¥1.(fol) If L(X) DZ= X.

Obviously, the logically closed theory Th(X) of a closed module expression X E
CME[fol] is recursively enumerable. By a theorem ofKleene on the power offirst
order logic with auxiliary (hidden) predicate symbols [28], the converse is also true.
For every recursively enumerable fol-theory T there is a closed module expression
X E CME[jOl] such that Th(X) = T. Thus the domain of '!!'(fol) consists precisely
of the recursively enumerable logically closed theories.

Can the characterization of M(jol), Jr!A\c(./bl), or 1rUbl) be improved by adding
to BMA [fol] some open equation not valid in the initial algebra H(Bl'vfA [fhl]) (not
w-derivable from BMA [j(JJ])? In other words, is there an open (conditional)
equation e over the signature of BMA [fol] such that, for instance,

1r(fol) F= e,

but

n(BM4 [fol]) If e?

Although this is still an open question, we suspect that there is no such e due to
the fact that the signature of BMA [jol] is "logic free" in the sense that it does not
describe the structure of ./bi-sentences, but considers them as atomic entities
(constants). As a result, any open equation e not valid in IT(BJIIA [./(>/])is probably
too general to be valid in M(fol), Mc(fo!), or 'lr(fol).

We have made no particular effort to add sufficiently many axioms to ElvfA L/(11]
to guarantee that every open equation valid in the initial model !l(EMA [jhl]) is
equationally derivable, that is, we have not attempted to make EMA [j(J/] w
comp!ete (cf. [23]). Although open module expressions and open equations valid
in IT(EMA [fol]) do not play an important role in this paper, they come to the fore
when module algebra is applied to parametrized specifications.

In summary, we may say that each of the four semantics discussed in this section
has some interesting property. The initial semantics IT(BMA [}bi]) is close to an
implementation of the formalism; lil:Ri.(jo!) corresponds to what seems to be the
most general intuition of module composition; !Af..\c(fol) is different from M(fi)/)
showing that first-order logic with hidden sorts and functions is strictly more
powerful than conventional "flat" first-order logic; and, finally, ·1r(jh/) is mathe
matically manageable and a potential candidate for becoming a standard semantics
of module composition operators.

5. Algebraic Speqjicationsfi"om the Vinvpoint of Module Algebra

We now return to algebraic specifications, which were the original motivation for
studying module algebra. The main questions are whether algebraic specifications
viewed as equational theories or initial algebras satisfy the axioms of EMA. These
questions are discussed in Section 5.1. In Section 5.2, the expressive power of
conditional equational logic and equational logic are compared with each other,
and in Section 5.3 the same is done for first-order logic and equational logic.
Finally, in Section 5.4, relations with earlier results on algebraic specifications are
briefly summarized.

Module Algebra 363

In the sequel, eq! means many-sorted equational logic and ceql means many
sorted (positive) conditional equational logic. In our setting a modular algebraic
specification corresponds to an expression in CME[eql] or CME[ceql] depending
on whether conditions are allowed or not. Clearly,

CME[eql] s CME[ceql] s CME[fo!].

5.1 WHY NOT BASE A MODEL OF EMA ON EQUATIONAL LOGIC OR INITIAL
ALGEBRAS? In addition to Mod, Mode, and Th, yet another semantic mapping
EqTh may be considered that is like Th but produces an equational theory at the
visible level rather than a first-order theory. The most appropriate domain for
EqTh is the domain of modular algebraic specifications CME[eql].

EqTh is defined as follows (we denote the set of equations over a signature x by
Eq(x)):

EqTh((<t>)) =Th((</>)) n Eq(L((cfJ))),

EqTh(T(x)) = Th(T(x)) n Eq(x),

EqTh(r.X) = r.EqTh(X),

EqTh(X + Y) = (EqTh(X) + EqTh(Y)) n Eq("J:,(X + Y)),

EqTh(x 0 Y) = Y(x) n EqTh(Y).

Notice that EqTh(X + Y) # EqTh(X) + EqTh(Y). The +-operator in the right
hand side produces the first-order deductive closure of EqTh(X) and EqTh(Y)
rather than the eq uational closure (see Section 4.1). Hence, an additional filtering
with Eq(L(X + Y)) is necessary to obtain EqTh(X + Y).

Clearly, EqTh(X) s Th(X). Let for X, YE CME[eql]

X =EqTh Y ~ ~(X) = ~(Y) & EqTh(X) = EqTh(Y).

We write

lEtQ!'IT'(eql) = CME[eql]!=EqTh·

Does lEtQ!'lT'(eql) satisfy EMA [eql]? As was shown in Section 4.2, in the case of
first-order logic (E3) and (E4) are equivalent to the Craig interpolation lemma.
Rodenburg and Van Glabbeek have proved that equational logic has an interpo
lation property as well (39]. Two finite sets of equations E and F with E I- F (i.e.,
EI- e for every equation e E F) always have an interpolant, that is, a finite (possibly
empty) set of equations I with

~(!) s ~(£) n ~(F)

such that

EI- I I- F.

This interpolation property turns out to be equivalent to (E3) in the case of
JE,tQ?'lr(eql) (39), so we have

THEOREM 6. lEtQ?1r(eq/) I= (E3).

In this respect modular equational theories behave in the same way as modular
first-order theories. Unfortunately, this does not apply to (E4):

THEOREM 7. lEtQ?'lr(eql) l:f (£ 4).

364 J. A. BERGSTRA ET AL.

PROOF. The equation

L;(Y)D(X+ Y)=(2:(Y)OX)+ Y

is a special case of (E4) (cf. Eq. (7) in Section 3.1). We give a pair of closed module
expressions X, YE CME[eq/] such that

Let

EqTh(L,(Y) 0 (X + Y)) =;i: EqTh((L,(Y) 0 X) + Y).

X= (S:A + F:f:A -A+ F:c:A):((/(c) = c))

Y = (S: A + F :f: A - A + F: h: A x A x A - A + F: a: A + F: b: A)
:((h(x, x, y) = y) + (h(x,f(x), a)= h(x,f(x), b))).

Clearly,

a= b E EqTh(L;(Y) 0 (X + Y))

as a= h(c, c, a)= h(c,f(c), a)= h(c,f(c), b) = h(c, c, b) = band L;(a = b) ~
L;(Y). We show, however, that

a = b $. EqTh((L;(Y) DX) + Y).

The first component

L;(Y) 0 X = (L;(Y) n L;(X)) 0 X = (S:A + F:f:A -A) DX

does not export c and we show that

EqTh(L;(Y) 0 X) = EqTh(T(S:A + F:f:A -A)).

By construction, EqTh(L;(Y) DX) :2 EqTh(T(S:A + F:f:A - A)) so we only
have to show EqTh(L;(Y) 0 X) ~ EqTh(T(S:A + F:f:A - A)). Let e E
EqTh(L;(Y) 0 X). Then e is valid in all models of X. Apart from the function
symbolf, e contains only universally quantified variables. Hence, e is valid in the
subalgebras of the models of X as well. Now, every model M of T(S: A + F :f: A
-A) is a subalgebra of the model M' of X obtained by adding an element c with
f(c) = c to M, so all models of T(S: A + F :f: A - A) occur among the subalgebras
of models of X. This means that e is valid in all models of T(S: A + F :f: A - A)
and as a consequence e E EqTh(T(S: A + F :f: A - A)).

Because EqTh(L;(Y) 0 X) is trivial, it contributes nothing to the total equational
theory:

EqTh((L;(Y)DX)+ Y)
= (EqTh(L;(Y) DX)+ EqTh(Y)) nEq(L;((L;(Y)OX) + Y))
= (EqTh(T(S :A+ F :f:A-A)) + EqTh(Y)) n Eq(L;(Y))
= EqTh(Y) n Eq(L; (Y)) = EqTh(Y).

Now consider the L; (Y)-algebra M with carrier la, bl and functions f and h defined
as follows:

f(a) = b

f(b) =a

h(x, y, z) = z if x = y

h(x, y, z) = a if x =;i: y.

M ~ EqTh(Y) by inspection, but M lj'= a =b. Therefore, a = b $. EqTh(Y). D

Module Algebra

Remarks

365

(i) The above proof fails for 'il'(fol) due to the fact that, whereas EqTh(2:: (Y) D
X) is trivial, Th(r. (Y) D X) contains the nontrivial sentence 3x f(x) = x. In
conjunction with Th(Y), this is enough to prove a = b. This also shows that for
the particular X and Y used in the proof

EqTh((I,(Y) DX)+ Y) ~ Th(("J:.(Y) DX)+ Y) n Eq(2:(Y)),

so, in general, we only have

EqTh(X) ~ Th(X) n Eq(2::(X)).

(ii) Let CondEqTh be the semantic mapping that assigns to each conditional
equational specification the corresponding conditional equational theory, and let

CCTE/Q).'il'(ceql) = CME[ceql]/=condEqTh,

then

CCTE©tlr(ceql) 11 (E4).

The proof is identical to the proof of Theorem 7, but with EqTh replaced
everywhere by CondEqTh. Note in particular that CondEqTh(L,(Y) DX) is still
equal to CondEqTh(T(S:A + F:f:A - A)). Ymay be replaced by the equivalent
CME[ceql] expression

(S:A + F:j:A -A+ F:a:A + F:b:A):((/(x) = x ~a= b))

(cf. the proof of Theorem 9 in the next section).
Rodenberg has recently shown that

CCIECQ!'il'(ceql) t= (E3)

holds.

(iii) Another consequence of the proof of Theorem 7 is that (E4) cannot be
saved by considering the interpretation ClEqTh defined by

ClEqTh(X) = EqTh(X) n ClEq(J'.(X)), (X E CME[eql])

where C!Eq(x) is the set of closed equations over a signature x.
Renardel de Lavalette [38] and Rodenburg and van Glabbeek [39] have pointed

out that, in general, (E4) corresponds to a stronger interpolation property than
(E3). In the case of equational logic, this stronger property would be that for three
finite sets of equations E 1 , E2 and F with

there would always be a finite set of equations I with

and such that

and

By taking E2 = 0 the weaker form corresponding to (£3) is obtained as a special
case. Theorem 7 implies that equational logic lacks the stronger interpolation
property, a fact proved earlier by Maibaum and Sadler [31].

366 J. A. BERGSTRA ET AL.

In view of the foregoing we conclude that

(i) '!E<QYTf(eql) is a semantics of CME[eq/] only in the weaker sense of BMA [eql]
(E4).

(ii) '!ECQl'll'(eq/) is not a homomorphic image of'lf(eql) = CME[eql]/==:rr,, which is
the restriction of it(fo/) to CME[eq/].

(iii) As it makes essential use of (E4), the proof of the normal-form theorem
(Theorem 2) does not apply to lE,cQlil(eq/). This does not mean that the normal
form theorem is not valid for expressions in CME[eq/]. It may still be provable
using recursion theoretic methods, but such a proof is unlikely to lead to the
kind of effective normalization procedure required in a practical system.
Although 'iE<fJ)'Tr(eql) may at first sight seem a very plausible semantics, the
loss of (effective) normalization shows that it should be rejected.

Algebraic specifications are often interpreted as initial algebras. Does this lead to
a model of BMA[eq/]? Unfortunately, again the answer is no. Let /(X) be the
initial algebra of X E CME[eql]. Actually, /(X) is not a single algebra but an
isomorphism class of algebras. /(X) is well-defined provided ~(X) does not have
void (empty) sorts (see, e.g., [17] or [34]). Consider the following two closed module
expressions X, YE FCME[eql]

X = T(S: A + F: a: A + F: b: A),

Y = (S : A + F: a : A + F : b: A) : (<a = b >).

On the one hand,

l(X + Y) = I(T(~ (Y)) + Y) (;:) /(Y).

On the other hand, l(X) If= a= b ("no confusion") and/(Y) I= a= b, so using the
+-operator on classes of algebras defined in Section 4.1

l(X) + l(Y) = 0.

This simple example shows that initial algebras of algebraic specifications cannot
be combined in a straightforward way.

We can nevertheless define an initial algebra for specifications X E CME[eq!]
on the basis of the semantics 1f'(eql) which interprets algebraic specifications as
first-order theories rather than as equational theories. This is a consequence of the
following theorem which we do not prove here:

THEOREM 8. Let x be a signature and Y1 , Y2 E FCME[eq/] such that

BMA[eq/] 1- x 0 Y1 = x 0 Y2 •

Then, !l ~ (Yi) and ~ (Y2) have no void sorts and [/x 0 /(Yi) and x 0 /(Y2) are
both minimal algebras,

x 0 /(Y1) = x 0 l(Y2).

The initial algebra of an X E CME[eq/] is now defined as follows: First normalize
X, that is, take some YE FCME[eql] such that

BMA[eql] I- X = ~(X) 0 Y,

and then take

l(X) = ~(X) 0 /(Y).

Module Algebra 367

According to Theorem 8, the resulting /(X) is determined uniquely up to isomor
phism provided it is minimal.

Comments

(i) Let BMA[eql] f- X = ~(X) D Ywith YE FCME[eql], then

(a) Th(X) = Th(~(X) DY)= 2'(}:(X)) n Th(Y),
(b) /(Y) I= Th(Y),
(c) ~(X)D/(Y)l=..2"(}:(X))n Th(Y),
(d) l(X) I= Th(X).

This shows that the construction of I(X) is consistent with the 'Tf(eql)
semantics.

(ii) The normalization step that has to be performed prior to taking the initial
algebra is justified by the 'll'(eql)-semantics, which is not directly related to
equational logic.

5.2 CONDITIONAL EQUATIONS Do NOT ADD EXPRESSIVE POWER. From the
viewpoint of the full model class semantics M(fo/) (and hence also from the
viewpoint of the countable model semantics Mc(fol) and the theory semantics
'Tf(fol)) positive conditional equations have the same expressive power as uncon
ditional equations:

THEOREM 9. For every X E CME[eql], there is a YE CME[ceql} such that
M(fol) I= X = Y and, conversely, for every X E CME[ceql], there is a YE
CME[eql] such that M(fol) I= X = Y.

Using the notation introduced in Section 3.2, the theorem can be expressed as

M(fol) I= CME[ceql] = CME[eql].

PROOF. As CME[eql] k CME[ceql], the first half of the theorem is trivial. To
prove the second half take X E CME[ceql]. We have to find a YE CME[eql] such
that M(fol) I= X = Y. We only have to consider X of the form(</>} wh'ij.t"e </>is a
conditional equation with a single condition. The case of multiple eqµ'<:ttions with
multiple conditions can be dealt with in a similar manner.

Now let </> = t1 = t2 => t3 = t4 with t 1, t2 terms of sort Sand f3, t4 terms of sort U.
We show that</> can be replaced by a hidden function h: S x S x U ~ U (with h
a new symbol not in ~ (</>)) satisfying two unconditional equations

Define

e1 = h(x, x, u) = u,

e1 = h(t1, t2, f3) = h(t1, t2, t4).

Z = (F: h: S x S x U ~ U): ((e1) + (e2}),

Y=~((<t>})OZ.

Clearly, YE CME[eql] and ~(Y) = ~((</>}) n ~(Z) = ::Z((<f>)). Now M(fol) I=
(</>) = Y. Indeed, as ei. e2 f- </>, we have on the one hand Mod((</>)) ~ Mod(Y).
On the other hand, each model M of (</>) can be extended to a model M' of Z by
adding a function h satisfying e1 and e2 as follows:

h(s1, s2, u) = u

h(s1, s2, u) = Uo

if S1 = S2

if S1 ~ S2,

368 J. A. BERGSTRA ET AL.

where u0 is some fixed element of carrier U of M. Hence,

Mod((<f») ~ 2;((</>)) 0 Mod(Z) = Mod(Y)

and M F= (</> > = Y. 0

5.3 A COMPARISON OF THE EXPRESSIVE POWER OF FIRST-ORDER LOGIC AND
EQUATIONAL LOGIC. What is the precise difference between equational logic and
first-order logic from the viewpoint of module algebra? The following observations
on this problem are somewhat informal. We only give sketches of the proofs
involved.

We first need the following five definitions:

boo/cons = (S: B + F: T: B + F: F: B): ((T # F)),

boo/em= (S:B + F: T:B + F:F:B):((x =TV x = F)),

boo! = boo/cons + boo/em,

boolincons = (S :B + F: T:B + F :F:B): ((T = F)),

incons = boo/cons + boolincons.

Boo/cons expresses consistency, boo/em expresses the law of the excluded middle,
and boo!incons expresses inconsistency. The following disjunction holds in AA(/o/)
(and hence also in Mc(/o/) and 'TI'(fol)) for each X E CME[fol]:

(a) 0 0 X = T(0), or
(b) 0 0 X = 0 D incons.

Note that the "empty" algebra A0 (Section 4.1) is a model of T(0) but not of 0 D
incons. Hence, T(0) and 0 D incons are different in M(fol). In case (a) we may
say that X is consistent and in case (b) that it is inconsistent. Both boolincons itself
as well as boo/em + boolincons are consistent.

We now prove that boo/cons and boo/em are in a well-defined sense the only
first-order specifications that do not have algebraic equivalents:

(I) There is no X E CME[eql] such that M(/o/) t=X =boo/cons, or, equivalently,
using the notation introduced in Section 3.2, M(fo/) 7f= boo/cons E
CME[eql].

PROOF. Every model of boo/cons has a carrier B with at least two elements,
whereas an X E CME[eql] always has a trivial model all of whose carriers have
only a single element. Hence, Mod(X) # Mod(boolcons) and M(fol) 7f= boo/cons
E CME[eql]. D

(2) M(fol) If boolem E CME[eql].

PROOF. Boolem has a nontrivial model with two elements but it has no models
with more than two elements. Now let X = 1;(boolem) DX' E CME[eql] with X'
flat and assume that Mod(X) = Mod(boolem). Then, X' has a model M such that
M 7f= T = F. Let F: c: B $. 2; (X'). X' + T(F: c: B) is an equational specification
so it has an initial model I. If I l;t c = T, then Th(X') f- c = T and Th(X') f- x =
T which implies Th(X') f- F = T contradicting M 7f= T = F. Similarly, I 7f= c = F.
Consequently, sort B of L (X') D I has more than two elements. As L (X') 0 I E
Mod(X') by construction, I;(boolem) D I E Mod(X), but 1;(boolem) 0 I $.
Mod(boolem). This contradicts the assumption. D

Module Algebra

(3) M(fol) If boo/cons E CME[eql, boo/em].

PROOF. Similar to (1). D

(4) M(fol) If boo/em E CME[eq!, boo/cons].

PROOF. Similar to (2). D

(5) M(fol) I= CME[fol] = CME[eql, boo/].

369

PROOF. An X.E CME[fol] can be transformed to an equivalent YE CME[eql,
boo/] by performmg the following steps:

(a) Existential quantifiers in X are replaced by hidden Skolem functions. The
resulting X' contains only universal axioms and is equivalent to X in M(fol).

(b) Next, a hidden equality function eq8 : S x S ~Bis introduced for each (hidden
or visible) sort S of X '. Atomic formulas among the axioms of X' are replaced
by equations over B (t1 = t2 and t1 #: t2 with ti, t2 terms of sort Sare replaced
by eqs(l1, l2) = T and eqs(ti. l2) = F, respectively).

(c) Finally, the desired YE CME[eql, bool] is obtained by replacing the universal
axioms of X' by equations over boo/ using hidden boo/-operators like •, /\,
and V. D

Comments

(i) Boo/cons and boo/em are independent from the viewpoint of equational logic.
(ii) A more interesting proof of (5) would be based on a set of conditional rewrite

rules (conditional equations) for transforming an arbitrary X E CME[fol]
systematically into an equivalent YE CME[eql, bool]. An adequate presen
tation of such rules would require a detailed specification of first-order logic
similar to the specification of signatures we gave in Section 2.2.

(iii) There are two minor open questions:

(a) Let X E CME[eql, boo/cons]. Suppose that M.(jol) 'r:f X E CME[eql].
Does this imply M(fol) I= boo/cons E CME[eql, X]?

(b) The same question as (a) but with boo/em instead of boolcons.

What these questions amount to is whether boo/cons and boo/em are "primitive"
or "minimal" if one works "modulo equational logic."

5.4 RELATIONS WITH EARLIER RESULTS ON ALGEBRAIC SPECIFICATIONS. In this
section, we summarize known results on the power of initial/final algebra specifi
cation using the language of module algebra. As before, the initial algebra of an
X E CME[eqf] without void sorts is denoted by J(X).

(1) For a minimal algebra A with signature x the following two properties are
equivalent:

(a) A is semicomputable;
(b) A has an initial algebra specification with hidden sorts and functions, that

is, A e: x D /(Y) for some YE FCME[eqf].

The implication (b) =>(a) is immediate. The converse is proved in detail in [10]
for the single-sorted case. It is an open question whether Y can always be chosen
in such a way that no hidden sorts are introduced, that is, sorts(x) =sorts(2":(Y)).

370 J. A. BERGSTRA ET AL.

(2) If A is a minimal computable algebra with signature x, it has an initial algebra
specification with hidden functions only, that is, there is a YE FCME[eql]
such that

(a) A == x D /(Y);
(b) sorts(x) = sorts(2:(Y)).

See [8]. Majster [33] discovered that there are computable algebras for which there
is no YE FCME[eql] such that A == /(Y). In addition to (a) and (b), Y can have
several further properties (but not simultaneously):

(c) Y has a complete (i.e., confluent and terminating) term rewriting system.
See [7] for a proof of the single-sorted case.

(d) Both the number of equations of Y and the number of constants and
functions of 2:(Y) are linearly bounded by the number of sorts of x.
Moreover, J (Y) is also the final Y-algebra that means that I (Y) does not
have nontrivial homomorphic images. See [8]. (Signatures of Section 2.2
is an example of such a Y for the algebra of signatures.)

(e) 2: (Y) has only unary hidden functions. A proof of the single-sorted case
was given in [3]. A special case involving finite algebras was discussed
in [5].

(3) If A is a minimal cosemicomputable algebra with signature x, there is a Y E
FCME[ceqf] such that

(a) Y has a unique final algebra F(Y) (which in this case has the property that
each of its homomorphic images satisfying Y is either F(Y) itself or the
trivial 2: (Y)-algebra);

(b) A== x D F(Y);
(c) sorts(x) =sorts(~(Y)).

(See [9].)

(4) Let/: w - w be a recursive function. There is an open module expression
Y(X) E FME[eql] with free variable X of sort M such that for all n E w

/(Y(2:w:(Sn(O) = c))) is finite, and card(/(Y(2:w: (S"(O) = c)))) >f(n),

where 2:"' = S:N + F:O:N + F:S:N - N + F:c: N. (See [4].)
(5) In the absence of hiding conditional equations are more powerful than uncon

ditional ones from the viewpoint of initial algebra semantics. The following
example illustrates this fact:

L-N = S:N + F:O:N + F:S:N - N,

l-soN = 2:N + S:SETS + F:0:SETS
+ F: ins: N x SETS - SETS
+ F: #: SETS - N.

~ = J(T(2:N)) is the structure of natural numbers. It is enriched to a 2:soN
algebra A by interpreting SETS as the collection of.finite subsets of irl, 0 as
the empty set, ins as insertion, and # as the cardinality of a set. In [6] it is
shown that FCME[ceql] contains a Y with /(Y) :;; A, but that FCME[eql]
does not. Of course, in view of (2) (A is clearly computable) there also exists a
YE CME[eql] such that /(Y):;; A.

(6) Let

2:~ = 2:N + F:P:N - N

Module Algebra 371

where 2:"' is borrowed from (5). Enrich l!''l = /(T(.:2:,v)) to a 2:k-algebra lf'::lp by
defining P(n) = l if n is prime and P(n) = 0, otherwise. In [1 O], it is shown
that there is no YE FCME[ceql] such that l(Y) == f!!p, so k~p has no initial
algebra specification without hidden functions.

ACKNOWLEDGMENTS. We would like to thank N. W. P. van Diepen, R. J. van
Glabbeek, P.R. H. Hendriks, C. P. J. Koymans, E. Nieuwland, G. R. Renardel de
Lavalette, and P. H. Rodenburg for their many helpful comments and
suggestions.

REFERENCES

(References [16]. [2 l], (22]. and (24] are not cited in the text.)
I. BERGSTRA, J. A. Terminologie van Algebrai'sche Specijicaties. Kluwer, Deventer, The Netherlands.

1987 (in Dutch).
2. BERGSTRA, J. A .. HEERING, J., AND KLINT, P .. eds. Algebraic Specification. ACM Press in

association with Addison-Wesley, New York/Wokingham. 1989.
3. BERGSTRA, J. A .• KLEIJN, H. c. M .. AND NOUWT, P. On the algebraic specification of infinite data

types using monoidal auxiliary functions. Rep. 80-43. Institute of Applied Mathematics and
Computer Science, Univ. Leiden, Leiden, The Netherlands, J 980.

4. BERGSTRA, J. A., AND MEYER, J.-J. CH. Small specifications for large finite data structures.
Internal. J. Comput. Math. 9, 4 (1981), 305-320.

5. BERGSTRA, J. A., AND MEYER, J.-J. CH. The equational specification of finite minimal unoids
using unary hidden functions only. Fund. Jn.f V, 2 (1982), 143-170.

6. BERGSTRA, J. A., AND MEYER, J.-J. CH. On specifying sets of integers. E!ektronische
Informationsverarbeitung und Kybernetik 20, I0/ 11 (1984), 531-541.

7. BERGSTRA, J. A., AND TUCKER, J. V. A characterisation of computable data types by means
of a finite equational specification method. In Automata, Languages and Programming, 7th
Colloquium, J. W. de Bakker and J. van Leeuwen, eds. Lecture Notes in Computer Science, vol.
85. Springer-Verlag, Berlin, 1980, pp. 76-90.

8. BERGSTRA, J. A .. AND TUCKER, J. V. The completeness of the algebraic specification methods for
computable.data types. Inf Control 54, 3 (1982), 186-200.

9. BF.RGSTRA, J. A., AND TUCKER, J. V. Initial and final algebra semantics for data type specifications:
Two characterization theorems. SIAM J. Comput. 12. 2 (1983), 366-387.

10. BERGSTRA, J. A., AND TUCKER, J. V. Algebraic specifications of computable and semi-computable
data types. Theoret. Comput. Sci. 50 (1987), 137-181.

11. BLUM, E. K., EHRIG, H., AND PAR!SI-PRESICCE, F. Algebraic specification of modules and their
basic interconnections. J. Comput. Syst. Sci. 34 (1987), 293-339.

12. Bom.os, G., AND JEFFREY, R. Comp!llability and Logic, 2nd ed. Cambridge University Press,
Cambridge, England, 1980.

13. BURSTALL, R. M .. AND GOGUEN, J. A. The semantics of CLEAR, a specification language. In
Abstract S1?fiware Specijlcations, D. Bj11lrner, ed. Lecture Notes in Computer Science, vol. 86.
Springer-Verlag, Berlin, 1980. pp. 292-332.

14. CHANG, c. c .. AND KEISLER, H.J. Afodel Theory. North-Holland, Amsterdam, The Netherlands.
1973.

15. CRAIG, W. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symb. Logic 22 (l 957), 269-285.

16. EHRICH, H.-D. On the theory of specification, implementation, and parametrization of abstract
data types. J. ACAi· 29, I (Jan. 1982), 206-227.

17. EHRIG, H., AND MAHR, B. Fundamentals ofA/gebraic Specifications, vol. I, Eq11a1ions and Initial
Semantics. Springer-Verlag, Berlin, 1985.

18. FUTATSUGI, K., GOGUEN, J. A., JOUANNAUD, J. P .. AND MESEGUER, J. Principles of OBJ2. In
Proceedings oft he l 2th Annual A CM Symposium on Principles a/Programming Languagl!s. ACM,
New York, 1985, pp. 52-66.

19. GANZINGER, H. Increasing modularity and language-independency in automatically generated
compilers. Sci. Comput. Prag. 3 (1983), 223-278.

20. GAUDEL, M.-C. Toward structured algebraic specifications. In Esprit '85: Status Report of
Continuing Work. vol. l. North-Holland, Amsterdam, 1986, pp. 493-510.

372 J. A. BERGSTRA ET AL.

21. GOGUEN, J. A., AND BURST ALL, R. M. Introducing institutions. In Logics of Programs, E. Clarke
and D. Kozen, eds. Lecture Notes in Computer Science, vol. 164. Springer-Verlag, Berlin, 1984,
pp. 221-255.

22. GOGUEN, J. A., AND MESEGUER, J. Universal realization, persistent interconnection and
implementation of abstract modules. In Proceedings of the 9th International Conference on
Automata, Languages and Programming, M. Nielsen and E. M. Schmidt, eds. Lecture Notes in
Computer Science, vol. 140. Springer-Verlag, Berlin, 1982, pp. 265-281.

23. HEER!NG, J. Partial evaluation and w-completeness of algebraic specifications. Theoret. Comput.
Sci. 43 (1986), 149-167.

24. HORNING, J. J. Combining algebraic and predicative specifications in LARCH. In Formal Methods
for Software Development, TAPSOFT Proceedings, vol. 2, H. Ehrig, C. Floyd, M. Nivat, and
J. Thatcher, eds. Lecture Notes in Computer Science, vol. 186. Springer-Verlag, Berlin, 1985,
pp. 12-26.

25. JANSSEN, T. M. V. Foundations and Applications of Montague Grammar, Part I: Philosophy,
Framework, Computer Science. Tract 19. Centre for Mathematics and Computer Science,
Amsterdam, The Netherlands, 1986.

26. KAPLAN, S. Un langage de specification de types abstraits algebriques. These de 3eme cycle.
Universite de Paris-Sud, Paris, France, 1983 [in French].

27. KLAEREN, H. A. Algebraische Spezifikation. Springer-Verlag, Berlin, 1983 [in German].
28. KLEENE, S. C. Finite axiomatizability of theories in the predicate calculus using additional

predicate symbols. Memoirs of the American Mathematical Society JO (1952), 27-68. (Second
printing, with revisions, American Mathematical Society, Providence, R.I., 1967.)

29. LEHMANN, T., AND LOECKX, J. The specification language OBSCURE. In Recent Trends in Data
Type Specifications, D. Sanella and A. Tarlecki, eds. Lecture Notes in Computer Science, vol. 332.
Springer-Verlag, Berlin, 1988, pp. 131-153.

30. L!PECK, U. Ein algebraischer Kalkiil ftir einen strukturierten Entwurf von Datenabstraktionen.
Dissertation, Forschungsbericht Nr. 148, Abteilung Informatik, Universitat Dortmund, Dortmund,
BRD, 1983 [in German].

31. MAIBAUM, T. S. E., AND SADLER, M. R. Axiomatising specification theory. In Recent Trends in
Data Type Specification, 3rd Workshop on Theory and Applications of Abstract Data Types, H.-J.
Kreowski, ed. Informatik-Fachberichte 116. Springer-Verlag, Berlin, 1985, pp. 171-177.

32. MAIBAUM, T. s. E., VELOSO, P. A. S., AND SADLER, M. R. A theory of abstract data types for
program development: Bridging the gap? In Formal Methods for Software Development, TAPSOFT
Proceedings, vol. 2. H. Ehrig, C. Floyd, M. Nivat, and J. Thatcher, eds. Lecture Notes in Computer
Science, vol. 186. Springer-Verlag, Berlin, 1985, pp. 214-230.

33. MAJSTER, M. E. Limits of the "algebraic" specification of abstract data types . .ACM S/GPLAN
Notices 12, 10 (1977), 37-42.

34. MESEGUER, J., AND GOGUEN, J. A. Initiality, induction, and computability. In Algebraic Methods
in Semantics, M. Nivat and J.C. Reynolds, eds. Cambridge University Press, Cambridge, England,
1985, pp. 459-541.

35. PAR!SI-PRESICCE, F. Union and actualization of module specifications: Some compatibility results.
J. Comput. Syst. Sci. 35 (1987), 72-95.

36. PARNAS, D. L. On the criteria to be used in decomposing systems into modules. Commun. ACM
15 (1972), 1053-1058.

37. RENARDEL DE LAVALETTE. G. R. Modularisation, parameterisation, interpolation. Logic Group
Preprint Series No. 32, Department of Philosophy, University of Utrecht, Utrecht, The Netherlands,
1988.

38. RENARDEL DE LAVALETTE, G. R. Preliminary remarks on theories and interpolation. Unpublished
note, July 20, 1988.

39. RODENBURG, P. H., AND VAN GLABBEEK, R. J. An interpolation theorem in equational logic.
Report CS-R8838, Department of Computer Science, Centre for Mathematics and Computer
Science, Amsterdam, The Netherlands, 1988.

40. SHOENFlELD, J. R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.
41. WIRSING, M. Structured algebraic specifications: A kernel language. Thesis, Institut fiir Informatik,

Technische Universitat, Miinchen, BRD, 1983.

RECEIVED JUNE 1986; REVISED NOVEMBER 1988 AND MAY 1989; ACCEPTED MAY 1989

Journal of the Association for Computing Machinery, Vol. 37, No. 2, April 1990.

