Metric Pomset Semantics for a
Concurrent Language with Recursion

J.W. de Bakker
J.H.A. Warmerdam

Centre for Mathematics and Computer Science,
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

ABSTRACT: We study the semantics of a simple language with concurrency and
recursion. Our semantic domain consists of (sets of) finite and infinite partially
ordered multisets (pomsets) in order to model true concurrency (i.e. non-
interleaved parallel execution). It will be shown that the set of pomsets can be
turned into a complete ultra-metric space. With the induced notion of conver-
gence, it is possible to provide meaning to infinite computations. Operational and
denotational semantics for the considered language are provided and their
equivalence is established by showing that both are fixed points of a contracting
higher order operator. In a final section we give a tentative denotational semantics
for an extension of the language with synchronization.

KEY WORDS AND PHRASES: denotational semantics, operational semantics, w-proof
rule, true concurrency, pomsets, metric topology.

1. Introduction

In earlier semantic investigations of the Amsterdam Concurrency Group (e.g. [BZ82,
BKMOZ86, BM88, KR88, AR89, B89, BR89]), fruitful use has been made of the frame-
work of complete metric spaces. Computations have a small distance (say 27 ") if they
differ only after n steps, and the induced metric turns many functions encountered in
the semantic design into contracting mappings which have unique fixed points (by
Banach’s theorem). Elsewhere we have exploited these ideas to

22

- handle recursion and infinite processes in concurrency,

establish equivalence of several semantics,

define semantic operators modeling syntactic operators such as sequential and parallel
composition,

treat advanced language families such as parallel object-oriented and logic program-
ming (ABKRS9, B88]).

In our investigations up to now, we have always adopted the so-called interleaving
approach to concurrency (as suggested by the equation #(a||b) = { ab, ba }). In the
present paper, we show how the metric techniques may as well be applied to the nonin-
terleaving (or partial order) approach to concurrency. As a case study, we provide a
metric treatment of partially ordered multi sets (or pomsets, for short), as introduced
and studied by Grabowski [Gr81], Pratt [Pr86], Gischer [Gi84], and Gaifman [Ga89]
(for other references see [BRR89]). Our investigation of pomset semantics was inspired
by a paper by Meyer and De Vink ((MV89]), where the semantic model is based on an
order between pomsets which generalizes the usual stream order, and on the Smyth
order between (certain) sets of pomsets.

The emphasis in our paper is on the development of the metric framework for pom-
sets, rather than on the study of some especially interesting programming language con-
cepts. Therefore, we have chosen to illustrate our techniques firstly on a very simple
parallel language, that does not even include a notion of synchronization. Later we
include a CCS-style (but noninterleaving!) synchronization to this language. We show
that a ’pure’ noninterleaving treatment would fail in our setting and propose therefore a
what might be called hybrid approach.

After introducing the metric and partial order preliminaries in Section 2, in Section 3
we present the metric framework proper to handle (sets of) pomsets. A distance is
introduced which turns the collection of pomsets into a complete metric space. Next,
we discuss the usual operators of sequential ('¢’) and parallel ('||”) composition. The
pomset setting allows a particularly succinct definition of these. Extension of them to
sets of pomsets requires some justification (in comparable situations, e.g. in [BM88], we
usually handled this through the use of higher-order operators). A compactness lemma
turned out to be useful here (cf. [BBKMS84, theorems 2.9, 2.10 for related issues).

Section 4 contains the definition of the operational (¢) and denotational (2) seman-
tics. O is defined in terms of an (SOS-style) transition system with quite simple transi-
tions : they are all of the form s £, E, with s a statement, p a pomset, d a declara-
tion (mapping procedure variables to their bodies) and E the empty (or terminated)
statement. On the other hand, the transition system includes some not-so-standard
means to handle recursion. We mention here the introduction of a kind of w-rule into

23

the system. (Further comments will follow in section 4.2.) The denotational semantics

2 is obtained as the (unique) fixed point of a higher order contracting mapping ®.

Since we also established that O satisfies a lemma which may, equivalently, be phrased

as ®(0) = 0O, the desired equivalence @ = 2 is direct by Banach’s theorem.

Section 5 contains a possible denotational semantics for the language extended with
synchronization.

We conclude this introduction with a few words on future work :

- The operational semantics may be refined by also including transitions of the form
s 25, s’ (and by adapting the way the successive steps are assembled into the
operational semantics @).

- The pomset framework is (noninterleaving but) of the linear time variety : it assigns
the same meanings to a;(b,+b,) and (a;b)+(a;b3). In a paper in preparation, we
show how four (systems of) domain equations may be defined which allow to define
four pairs of equivalent semantics (¢; = 2, i =1,...,4), for each of the combinations
interleaving / noninterleaving and linear time / branching time.

- We expect (or in some cases, know) that the pomset model may be replaced, without
undue complications, by other models such as event structures or (sets of) directed
acyclic graphs, preserving essentially the same metric approach.

Acknowledgements. We are indebted to John-Jules Meyer and Erik de Vink who showed

us the way into the (erstwhile unknown to us) realm of true concurrency. We are also

grateful to Erik de Vink for his detailed and constructive comments on preliminary ver-
sions of this paper. The members of the Amsterdam Concurrency Group provided use-
ful comments on earlier presentations of the work.

2. Mathematical preliminaries

First of all we adopt the convention that a phrase like ’let (x €)X be .. introduces a
set X with variable x ranging over X.

For convenience, we introduce IN = {12,3 ..}, Ny =INU{0},
IN® = IN U{ oo }andIN§° = IN U{ 0, oo }.

2.1. Metric spaces

DeFiNtTiON 2.1.1 A metric space is a pair (M, d) with M a non-empty set and 4 a map-
pingd : M X M — [0, o), that satisfies the following properties.

(a Vxy e M:dx,y) =0ex =y,

) Vx,y e M:d(x, y) = d(y, x),

(© Vxy,z e M :d(x, y)<dx, y) + d(y, 2).

A metric space is called 1-bounded if d : M X M — [0, 1] (so the distance never

24

exceeds 1). In the sequel we assume that all metric spaces are 1-bounded.
A metric space is called uwltra-metric or non-Archimedean if dJ satisfies
Vx,y,z € M : d(x, y) < max{ d(x, y), d(y, 2) }.

Derintrion 2.1.2 Let (M, d) be a metric space and let (x;); be a sequence in M.
1. (x;); is called a Cauchy sequence if Ve>0 : IN € IN : Vn,m > N : d(x,, xp) <€
2. (x;); is called a converging sequence if
Ix e M :Vex>0:3IN e IN: V>N 1 d{x,, x) <e
We say (x;); converges to x or the limit of (x;); is x (which is unique) and write
lim; x; = x.
3. Wecall (M, d) complete if every Cauchy sequence is a converging sequence.

Dernrrion 2.1.3 Let (M, d;) and (M5, d;) be metric spaces. Let f: M| — M.

1. We call f continuous whenever
Vx e M} :Ve>0:30>0:Vy e M, :di(x, y) <d=dy(f(x), f() <e or
equivalently, for all converging sequences (x;); with lim; x; = x we have that
fim, f () = f ().

2. Lety=0. With M, »Y M, we denote the set of all functions f: M; — M
such that Vx,y e My : dao(f(x), f(») < 7vy-di(x,y). Functions
feM, M, are called non-distance-increasing (N.D.L), functions
feM, - M, with e < 1 are called contractions.

Proposrrion 2.1.4

1. Let (M,,d)) and (M,, d;) be metric spaces. For every y=0 and
f € My - M, we have that f is continuous.

2. (Banach’s fixed-point theorem)
Let (M, d) be a complete metric space anid f : M — M a contraction. Then there
exists an x € M such that the following holds.
- f(x) = x (xis a fixed point of f),
- VYyeM:f(y)=y=y = x (xis unique),
- Vy e M:lim, f(y) = x, where f' = fand f"+! = fof™.

Derintrion 2.1.5 Let (M, d) be a metric space and let X be a subset of M.
1. X is called closed, whenever the limit of every converging sequence in X is an ele-
ment of X.

2. X is called compact, whenever every sequence in X contains a subsequence that
converges to an element in X.

25

3. The closure of X is the smallest closed subset in M containing X or, equivalently,
the closure of X is the set of all limits of converging sequences in X. We denote the
closure of X by X.

DeFinrTION 2.1.6

Let (M, d), (M, dy), ..., (M,, d,) be metric spaces and let X be a set.

1. With X > M we denote the set of all functions from X to M.
We define a metric df on XM by de(fi, f2) =
swp { d(f1(0), f2(0)) | x € X).

2. We define a metric dp on M X...X M, by
dp((x1, s Xn)s (P15 o yn) = max {di(x;, y) | i = 1, .., n }.

3. Let#,(M)denote { X C M | Xis non-empty and closed }.
We define a metric dy on 9',,‘.(M), called the Hausdorff distance, by
dyX, Y)=max {sup {d(x, ¥V) | x e X },sup{d(y, X) |y € Y }}, where
dix, 2y =inf{d(x,z) |z e Z },forx e MMand Z C M.

ProposiTiON 2.1.7

Let (M, d), (M, d,), ..., (M, d,) be metric spaces and let X be a set.

1. If (M, d), (M, dy), ..., (M, d,) are complete metric spaces then (X — M, dr),
(M, X..X M,, dp) and (#,.(M), dy) are complete metric spaces.

2. If M, d,(M,,dy), .., (M, d,) are ultra-metric spaces then (X — M, dp),
(M, X..X M,, dp) and (#,. (M), dy) are ultra-metric spaces.

Only the proof of the completeness of (#,.(M), dy) is not so elementary. A proof can

be found for instance in [BZ82].

If in the sequel we write X — M, M| X..X M, or #,.(M) we mean the metric spaces
with the metric defined above.

2.2. Partially ordered sets

DEeFINITION 2.2.1 A partially ordered set, or just partial order, is a pair (X, <) where X is
a set and < is a subset of X X X (notation : x < y instead of (x, y) € <), that
satisfies the following conditions.

. VWxeX: x <x,

2. VxyeX:x<yandy < x= x=),

3. VxyzeX:x<yandy<:z=x =<z

We will adopt the notations x << y, x =y, x > y for respectively x < y A x %),
ysxy<s<x N x#Fy.

26

DerinrTiON 2.2.2

1. For a partial order (X, <) and x € X we define lev(x) € IN® by
lev(x) =sup{n|Ax;..5, EX: x] <x3;<..<Xx, =x}.

2. For a partial order (X, <), we define length((X, <)) € IN§° by
length (X, <)) = sup { lev(x) | x € X }, which is equal to
sup{n|3I3x;.x EX: x; <x3<..<Xx}
(with the convention that suyp @ = 0).

DermnrTION 2.2.3 Let (X, <) be a partial order and A C X.
We call A downward-closedifVx € X :[Ja € A x<a]=x € A.

3. Pomsets

In the first subsection, the notion of pomset is defined, and some technical properties
about pomsets are derived. In the second subsection, the set of pomsets is turned into
a complete metric space and additionally a compactness property of pomsets is given.
The third subsection, contains definitions of some operators on pomsets.

3.1. Definition of pomsets

Let o7 be a fixed set (finite or infinite) of atomic actions and & be a fixed (infinite) set
of nodes, also called events.

DeFinrTioNn 3.1.1 A labeled partial order or causality structure o is a three-tuple
(X, <,N), where X is a subset of 2, < is a partial order on X, satisfying
VhneIN:{x|lv(x)<<n}isfiniteand Vx € X : lev(x) < o0, and A : X > & isa
labeling function. We call act(o) = { A(x) | x € X } the action set of o.

The intended meaning of a labeled partial order is the following. % is a set of names of
events and x| < x; means event x; has to precede x,. The meaning of A is that A(x)
is the action of event x or stated otherwise, x is an occurrence of A(x). The two restric-
tions on the partial order are essential for the proof of proposition 3.1.10 which, in
turn, is needed to verify that the distance function, introduced in subsection 3.2 is
indeed a metric. Furthermore they imply that every event has only a finite numbers of
predecessors. Note that different events (even concurrent ones) may be labeled by the
same action (our framework does not exclude so-called auto parallelism).

With a causality structure o we associate X4, <;, A, and also x <, y, x =, y, X >,).
A pomset will be a causality structure modulo renaming of nodes, as introduced in
Derinrrion 3.1.2

1. Two structures o and p are called isomorphic, if there exists a bijection

27

¢ : X; = X, such that ¢(x) <, ¢(y) & x <, yand A\,°¢ = A,.

2. A pomset is an isomorphism class of causality structures. Let (p, ¢ € }PQH
denotes the collection of pomsets. [o] denotes a pomset with representative o.
act([o]) is defined by act(o) (which is independent of the representative). The
empty pomset [(F, &, &)]is denoted by [].

We will draw pomsets by using Hasse diagrams of the partial order belonging to some
representative causality structure, with the labels at the place of the nodes, as in

S }
p P
By the length of a structure, we mean the length of the order belonging to that struc-
ture. Note that length(o) < © < #X, < co. We also extend the notion of length
to pomsets by taking the length of some representative. (This is independent of the
choice of the representative.)
In section 4.2 we need another set of atomic actions (viz. &/,). In that case we will
denote POH# w.r.t. o (resp Z,) by PO L) (resp POMAL,)).
We need the notion of truncation for defining a metric on #0# in subsection 3.2.
DerFinrriON 3.1.3
1. For a causality structure ¢ and a downward-closed subset X of X, we define
ol X = (X, < N (XXX),ATX). olXis a causality structure and lev(x) w.r.t.
o [X is equal to lev(x) w.r.t. o.
2. For a causality structure o and n € IN; we define
oln] =ol{x € X, | lev(x) <n}.
3. plnl={oln]l|oep) € Sk

ExampLE 3.1.4 Let p be the following pomset.

—sC.

(s>

Then length(p) = 4, act(p) = { a, b, ¢ } and p has for instance one ¢ at level 3 and
one ¢ at level 4. (To be more precise : every representative of p has two nodes labeled
with ¢, one at level 3 and one at level 4) The truncations p[0], p(1], p[2], p[3], p[4],
pI[5], ... are respectively

28

(1B <) () [(s

Levma 3.1.5 Let o be a structure.

1. If X C Y downward-closed and ¥ C X, downward-closed then (of Y)Y X = ol X.
2. If X C X, downward-closed then (of X)[n] = (o[n) (Xo(n) N X).

3. ofn]lm] = o[min{ n, m }].

4. For a pomset p we have that p[n][m] = p[min{ n, m }].

Proor

1. Easy verification.

2. (@X)n]=(@XN{xeX|levx) wrt. ol X <n} =
XN {xeX|lev(x) wrt. o<n} =ol{x € X |lev(x) wrt. o <n} =
(o {x e X, |lev(x) wrt. o<n DX N {x € X, | lev(x) wrt._o<n})

= (o[n]f (Xo[n] NX).

3. (oln]im] =
(ol {x € Xy | lev(x) wrt._o <n DN{ x € Xopn) | lv(x) wrt _oln]<m} =
of{x € Xopn) | lv(x) wrt. o <m} =
of{x e X, |lev(x) wrt. o<n NAlev(x) wrt_ o<m} =
of{x € X, | lev(x) wrt_o<min{n m}} = of[min{ n, m }]

4. Direct from 3. a

Lemma 3.1.6
Let o and p be structures.
Let (Y}), be a sequence of downward-closed subsets of X, such that Vn : Y, CY, +1.
Let ¢ : X, - X, be a mapping such that
n : ¢t Xoppn) 2 o{n] — pl' Y, is an isomorphism.
Then ¢ : 6 — pf (| Y,) is an isomorphism.
n

Proor Easy verification. Uses the fact that | X, = X,
n

Lemma 3.1.7

Let 0 and p be structures and let ¢ : X, — X ;.

Then ¢ : 6 — p is an isomorphism < Vn : ¢ Xy, : o[n] — p[n] is an isomorphism.
Proor

”=" The only thing to check is ¢[X ;] = X,n)- This holds since lev(¢(x)) w.r.t._p
= lev(x) wr.t_o.

29

<" previous lemma : take Y, = X, then J Y, = X,.
n

Next we are going to define a partial order < on ##. We use this partial order to
prove Corollary 3.1.11 which, in turn, is needed to verify that the distance function,
defined in subsection 3.2 is indeed a metric. Moreover, the partial order makes it possi-
ble to express that { p | p < ¢ } is compact (proposition 3.2.5), which is used to prove
that the operators, introduced is subsection 3.3, are well-defined.

Derintrion 3.1.8 We define a relation << on 204 by putting p < ¢ iff 30, X : X CX,
downward-closed, ¢ = [o], p = [of X]. In this case we say that p is initial to gq.

ProposiTION 3.1.9 ”<C" is a partial order.

Proor

(1) If p = [o] then [of X,] = [0] = p so p=<p.

(2) Assume p < g and ¢ < p. Let p, Xp, 0, X be such that ¢ = [p], p = [pl X3},
p =[o] and ¢ = [0l X;]. So 6 ~pl X, and p ~ ol X}, say ¢ : 0 — pf X, is an
isomorphism and ¢ :p-—>olX; is an isomorphism. Then also
W Xon) 2 o[n] = (of X2)[n] = p[n (X, NX2) and
WX) 2 pn] = (o X1)[n] = o[n] (Xp») N X)) are isomorphisms. Since Xy
and X, are finite sets, we can conclude that X,,;NX; = X, and thus
Vn : ¢ Xy 2 o[n] — p[n] is an isomorphism so ¢ : 0 — p is an isomorphism so
p=1lol=p] = q.

(3) Assume p < g and ¢ < r. Say ¢ = [p] and p = [pl X] with X C X, downward-
closed and r = [{] and ¢ = [{TY] with YCX; downward-closed. Say
¢ : p — {1Y is an isomorphism then ¢! X : pf X — ({T V)M ¢{X] is an isomorphism.
Sop = [prX] = [T N HX]] = [{Te[X]], sop < r. o

Prorosrtion 3.1.10[Vn : p[n] < gq]l=p < ¢

Proor

Letp = [o] and g = [p].

We will show that there exist a downward-closed subset X of X, and an isomorphism
¢ : 0 — pl' X, which proves that p = [o] = [ol X] or equivalently p < q.

We will make a tree of isomorphisms in the following way.

As nodes we take triples (¢, X, n) where (1) n € INg, (2) X C X, is downward-closed,
and (3) ¢ : o[n] — pl X is an isomorphism.

We put an arc between (¢, X, n) and (¢, X', n) if(MHn=n+1 02 X DX and
Q) ¢TX = ¢.

30

First we show that this indeed defines a rooted tree with (&, @, 0) as root, as follows.
If (¢ X,n+1) is a node then ¢:o[n+1]— pl X is an isomorphism, so
ot Xq[n]: ofn] - pl [X)) is an isomorphism thus (¢ X, $[X o)) #) Is a node
and there is an arc from this node to (¢, X, n +1).

Next we show that this tree contains infinitely many nodes. In fact we show that
Vn : 3¢,X : (¢, X, n) is a node, as follows. Let us fix some n. Since p[n] < ¢, by
definition there exist p’ and X’ such that p[n] = [pTX"] and [p'] = ¢q. Let ¢’ : p’ > p
be an isomorphism. Also ¢TX : pTX — pl¢[X'] is an isomorphism, so take
X = ¢'[X). Then X C X, is downward-closed and o[n] ~ pT X’ ~ pl X. So there
exists an isomorphism ¢ : o[n] — pl X so (¢, X, n) is a node.

Since the number of events in ofn] is finite, say m, and there exist only a finite number
of downward-closed subsets of X, with m number of elements, we know that the tree is
finitely branching. Konig’s Lemma guarantees the existence of an infinite path :
(@n, Yoy 720 Wb Xy € Kyvy a0d g1l X, = 0 Now take ¢ = U ¢, and

n=

o0
X = (U X,. Then, by lemma 3.1.6 ¢ : ¢ — p' X is an isomorphism. .
n=0

CoroLLarY 3.1.11 [Vn : p[n] = ¢q[n]]=>p = ¢q

Proor

Vn:pln]l=gqnl<gsop <gq.

Analogous g < p.

Sop = 4. O

3.2. Metric for pomsets
We define a metric on POMH as follows.
Dermvirion 3.2.1 d : PAHXFPAH — [0, 1] is defined by

d(p1, p2) = inf {27 | p1[n] = pa[n] }

Prorostrion 3.2.2 (PA#, d) is a complete ultra-metric space.

Proor Proposition 3.1.5.4 and corollary 3.1.11 imply that (#Q#, d) is an ultra-metric
space. What remains is the verification of the completeness. Let (p,) =1 be a Cauchy
sequence. Take a nondescending chain ()R =1 such that
Vm € IN : Vk >ny, : pi[m] = p, [m].

Define 0,,, m € N, recursively such that o,, € p, [m] and 0,,1[m] = o,,.

31

(1) Takeo; € p, [1].
(2) If 0, has been defined then o, € p, [m] = p, ., [m] = p, , [m+1][m] so there

exists a 6,, +1 € p, . [m+1] with 6, 4 {[m] = 0,

0 " [ee] o0
Now defineo = (| X,,, U <o, UA,,) and p = [o].

i=1 i=1 i=1
Then p,—>p (n >) Dbecause o, = olm] 0 pn [m] =plm] so
Vk>n,, : pylm] = plm]soVm € IN : Vk>n,, 1 d(py, p) < 27". |

See example 4.2.5 for a converging sequence in PO4.
ProposrTion 3.2.3 For p € #A4# : lim, p[n] = p.

Finally, the semantic domain will be a collection of subsets of #A#. The need for sets
of pomsets in our semantic domain, arises from the presence, in the language to be con-
sidered, of the concept of nondeterministic choice.

DerinrTiON 3.2.4

Let (P, Q € YPQ#* is the set of all closed and non-empty subsets of FQA# (i.e.
P, (POH)).

POk is a complete (ultra-)metric space if it is endowed with the Hausdorff' distance
(see proposition 2.1.7).

Next we are going to define a useful compactness property.

ProrosiTion 3.25 Vg : { p | p < ¢ } is compact.

Proor Let (p;); be a sequence with p; < ¢g. We are going to define (;); (an increasing
sequence of natural numbers) inductively such that if ng, ..., n; are defined, it holds
that

(1) Vij:i<j<k:pylil=pyli),

@ #{i|plk]l=pnlkl}
k = 0 : choose ng arbitrary. (1) and (2) are trivially satisfied.

k > k+1: denote I = {i|pfk] = p,[k]}. Since Vi:pfk+1] <g[k+1] and
glk +1] is finite, there exist only finitely many distinct p;[k + 1], so there exists an
ng+1 € I such that ng+; > n and #{i | plk+1] = p, , [k +1]} = 0. More-
over, Vi<<k : p, , [i] = pn,, [Ki] = pulklli] = pnli]l = puli]. So (1) and (2) are
satisfied.

From (1) we can conclude that (p,,j) j 1s a Cauchy subsequence, and by proposition

0.

32

3.1.10 we know that the limitisin { p | p < ¢ },s0{p | p < g } is compact. a

3.3. Operators on pomsets

In this subsection we are going to define two operators on pomsets, namely sequential
and parallel composition. This is done in the following way. First we define the opera-
tors on structures (with disjoint sets of nodes only). Since the isomorphism relation will
be a congruence relation with respect to these operators, the operators can be defined
on pomsets. Finally, we will define the two operators on pomset-sets. As we go along,
we derive some properties of these operators.

Derintrion 3.3.1 Let 0 and p be causality structures such that X, N X, = &.
o, if #X, = oo (or equivalently length(o) = o©),
L oep=19(x,UuxX, <,U<,U(X,XX,), A\,U\,), otherwise.

2. ol p= X UX,, < U, AGUA).

Lemma 3.3.2
lev(x) wrt. o, if x € X,,

1. if o is finite then lev (x) w.r.t. oep = { lev(x) wrt. p + length(o), if x € X,.

lev(x) wr.t. o, if x € X,,

2. lev(x)wrtojp = {lev(x) wr.t. p, if x € X,.

3. oep and o||p are causality structures.
4. if length(o) = n then (oep)[n] = o[n];
if length(o) << n then (cep)[n] = o ® p[n —length(o)].
5. (llp)n] = oln] || pinl.
6. if o is finite then act(cep) = act(o) U act(p);
if o is infinite then act(cep) = act (o).
7. act(oj|p) = act(s) U act(p).

Now let us define the operators @ and || on pomsets.

DEerFintTION 3.3.3

o PAH X POH — PAH and || : POH X POH — POH are defined as follows.
If p = [o] and ¢ = [p], with X, NX,= &, then peq = [oep] and p || ¢ = [o] p].

Remarx 3.3.4 It is always possible to find representatives with disjoint set of nodes and
furthermore the definition is not dependent on the choice of the representatives.

33

ExamprEs 3.3.5
b
b b a<
(<) » [-) [0[] - N
Lemma 3.3.6

1. if length(p) = n then (peq)[n] = p[n];
if length(p) < n then (peq)[n] = p e g[n —length(p)].
2. (pligIn] = pin] || glnl.
3. if p is finite then act (peq) = act(p) U act(q);
if p is infinite then act (peq) = act(p).
4. act(pl|q) = act(p) U act(q).

Now we will define e and | on PA#*. Also an operator + is defined on 2Q#*, which

is just the set-theoretic union.

DerinrTION 3.3.7

1. o :P0#* X POH* — POA* is defined by
PeQ=({peg|pePandgeQ}

2. || - PQH* X POH* — PAH* is defined by
Plle={pliglpePandgeQ)

3.+ Pt X PAHT — PAK* is defined by
P+Q=PuUQ

We need to show that P e Q and P || Q are closed. (The fact that P + Q is closed is

immediate.) For this purpose, a lemma is given first.

Lemma 3.3.8

1. Vp,q.q € PO : d(peg, peq’) = 27 '8"(P) . 4(q,).

2. If lim, (peq,) = r with length(p) < oo, then 3gq : lim, g, = gand r = peq.

Proor

1. If length(p) = oo then both sides give 0. Now suppose length(p) = 1 < co.
(peq)in +1]1 = (peq)in+1]1 < peg[n] =pegn] & gn] = ¢[n]. From
this 1. follows immediately.

2. Let length(p) = 1. Since d(peq,, peq,) = 27'-d(g,, g,) and (peq,), is a Cau-
chy sequence, we have (g,), is a Cauchy sequence, say g, —¢. Then r =
lim, (peg,) = p ® lim, g, = peqg. O

34

ProposrTion 3.3.9

1. P e Qis closed.

2. P || Qis closed.

Proor

1. Letr = lim;r; withr; € Pe Q, say r; = p; ® q;, with p; € P and ¢; € Q. Since
rp—>r, we have that VI:3k :rMl] = r[l]. So r[I] = (pr ® q)ll], so0
Pilll < r{l] <r. By the compactness property(3.2.5), there exists an increasing
sequence I, such that (pg, [/, converges, say top € P. (Note p € P, since also
Pk,_ —>p and P is closed.)

If length(p) = oo then Vn : r[n] = lim; ((p; @ g;)[n]) = lim,, ((pk," ® qk,m)[n]) =
lim,, py, [n] = p[n]. Sor =p = (for instance) p @ gg € P @ Q.

If length(p) < oo then IM :Vm=M :p; [I,] = p. Moreover, since [, is
increasing, AM’ : Vm=M": p;, = p. According to lemma 3.3.8.2, we have that
r=poqwithlimmqk," =q € Q.

2. Letr =1lim;r; withr; € P || Q,say r; = p; || i, withp; € P and g; € Q. Since
ri = r, we have that V1 : 3k; : ri [I] = r[l]. So r[i] = ri,[1]1 = pi,[1] || gxl1]. So
Pill] < r[l] < rand g [l] < r[I] < r. By the compactness property, there exists
an increasing sequence I, such that (P, [In])m converges, say to p € P. Again by
the compactness property, there exists an increasing sequence m, such that
(‘Ik:_k[lm,.])n converges, say to g € 0. Now r = lim, T, = lim, (P"lm, Il qk,m) =
(timy, py,) || Aim, g,)=p g €P| Q. a

4. Semantics

In this section a simple language without synchronization .# is introduced and an

operational semantics ¢ and a denotational semantics 2 are given and are proved to be
equal.

4.1. The language
First we introduce the language. For this we need two basic sets. Let (g,b,c,... €) be

a (finite or infinite) set of atomic actions and let (x €)% be a set of procedure vari-
ables.

DEerinrTiON 4.1.1
a.

The class (s €)& of statements is given by

su=a | x| sy;sy | s1+sy | sylsa

35

b Theclass (g € \¥8 of guarded statements is given by

gu=a|gslgitgrlglg

c. Theclass (d €)Zecl of declarations consists of mappings from Pas to £ .
d. The class (t € }Pag of programs consists of pairs t = < d | s> with d € Dt
and s € Z.

A statement is made up from atomic actions and procedure variables, by means of
sequential composition, nondeterministic choice and (non-interleaved) parallel composi-
tion. A guarded statement is a statement in which every procedure variable is preceded
by an atomic action. A declaration is a mapping from procedure variables to guarded
statements and finally a program is a declaration plus a statement.

4.2. Operational semantics

The operational semantics is given with the aid of a labeled transition system (l.t.s.).
As labels we use pomsets (cf. [BoCa88, Ga89]). In an Lt.s. we encounter, besides state-
ments s € %, also the special symbol E that we use to indicate the empty (or ter-
minated) statement. In addition, we introduce a special atomic action e(& &), used
-in a way to be explained below- to handle recursion, and we put &, =& U { e }.
Let — C £ X PAMAL,] X Dect X { E } to be defined in a moment. Thus, we only
employ transitions of a particular simple form, which we shall write as s £5, E
(instead of (s, p, d, E) € —). Some explanations follow after definitions 4.2.1 and
422,

DrrFINITION 4.2.1 — C & X PAMA,] X Dect X { E } is the smallest relation satisfy-
ing

M a L5, E,

@ ifg £, E and d(x) = g then x 25, E,

(3) ifs; 2>, E and 5,225, E then s ;57 225, E and 5|53 ey, E,

(4) ifsl-%d E then s +s3 %d E and s; +s, ‘B—>d E,

(5) ifs25,E (i=12..)and lim; p; = p then s 25, E,

6 x L5, E.

DEeFINITION 4.2.2

1. £y L - PO#*[,) is given by Fy(s) = {p | s L4 E }.
2. 04: % — PO#*[) is given by O4(s) = Fu(s) N FAMA).
3. 0 :Pug—> PAH*] is given by 0 (< d | s =) = Oy4s).

36

First we discuss the system for ’—>’. Clauses (1), ..., (4) of definition 4.2.1 should be
clear. Clauses (5) and (6) are included in order to enable us to handle possibly infinite
computations of recursive procedures. Since we only work with transitions of the form
s 2>, E (which terminate in one step), we have no means to build up an infinite com-
putation without additional measures. These are provided by (5) and (6) : Axiom (6)
provides an arbitrary (cf. Banach’s theorem) starting point for the execution of a recur-
sive process. Rule (5) allows us to build up possibly infinite p in a s £>, E step.
This set-up would allow e to remain in the final outcome of a computation. Therefore,
we obtain the desired operational semantics & ,(s) by restricting (def. 4.2.2, part 2.) the
intermediate semantics #,(s) to those outcomes which contain only pomsets involving
actions from /. Example 4.2.5 should be helpful to understand our handling of recur-
sion.

Lemma 4.2.3

1. #;is well-defined, i.e. #;(s) is non-empty and closed.

2. 04(s) is non-empty and closed.

Proor

1. By induction on the complexity of s, one can easily show that #£,(s) %= & (use rule
(6) in case s =x). Because of rule (5), #,(s) is closed.

2. 04s) is closed since Fy(s) is closed. Proving @,(s) % & is more involved. We
construct a sequence p; € Fy(s) (i € INg) such that e & act(p[i]) and
Pi+1lil = pili]l. From this it follows that (p;); is a Cauchy sequence, say with
limit p. p € #y(s) and Vn € INy : e & act(p[n]), so e & act(p). We can con-
clude that p € O y(s).

The sequence is constructed in the following way. Fyu(s) #* &, so take a
Po € F4(s). If pp € Fy(s) with e & act(pilk]) then we can find a py 1) € Fyls)
with px 1[k] = pilk] and e & act(pg +1[k +1]), which is guaranteed by the fol-
lowing lemma. g

Lemma 4.2.4 If s-25, E and e & act(p[n]) then 3p’ : sZS,E and p'[n] = p[n] and
e & act(p'[n +1)).

Proor First we remark that Vg € £ :3p : g-£>5, E and e & act(p[1]), which can
easily be proved by induction on the structure of g and using lemma 3.3.6.

The lemma is proved by transfinite induction on the depth of the proof tree for
s-£>, E, defined in the usual way.

- If a 4>, E by (1) then we can take p’ = [a].

- If x££, E by rule (2) then g 2>, E with g = d(x). By induction 3p’ : g-Z->, E

37

with p/[n] = p[n] and e & act(p[n +1)). Now also x £, E.

- If 51359 21225, E (tesp. s, ||s2 2125, E) by (3) then 3p’),p% : 512>, E and
sz—EL}d E with e gact(p'1[n+1]), e & act(p2[n+1]), p'i[n] =p;i[n] and
paln] = paln). Now syjsy L1235, E (resp si|lsy L2235, E) and
e & act ((p'19p'2)ln +1]) and (Prop'n] = (prep)in] (tesp
e & act((p'1|p)n +1]) and (p'1||p2n] = (p1llp2)nD.

- If s1+s,2>, E by (4) then 5; 2>, E (i = 1 or2). By induction 3’ : 5; £, E
with p’'[n] = p[n] and e & act(p’[n +1]). Now also 51 +5, —£—>d E.

- If s£>, E by applying rule (5) then s £>, E (i =1,2..) and lim; p; = p. Now
Jig : pi,[n] = p[n]. By induction 3p’: S-L’—>d E and e ¢ act(p/[ln+1])) and
pP'n] = pi[n] = p[n].

- If x—m—>d E by axiom (6) and d(x)=g then g-£>, E with e & act(p[1]) and so
xL>, E. a

ExamprE 4.25 Let d(x) = a;(x||b);c and s = x. By applying rules (1), (2), (3), (6),
one can derive s 2>, E, forpy, pa, p3, P4, - equal to

.] [, [a<a<j:b:::]

Applying rule (5) gives s £>, E withp = lim; p; =

]
b

So F4(s) is the set of all pomsets listed above and O4(s) is only the singleton set with

the last pomset, as (only) member.

Lemma 4.2.6

L. a. {l[a]} = £4a),

Lag) U {[e]l} = Fulx),ifd(x) = g

Fuls1) @ Fylsy) = Fuls1;52),

Fuals1) || Lals2) = FLuls1]ls2),

Fuls1) U Fylsz) = FPulsy +s2)

O4a) = { [a] },

O04x) = Oy(g), whend(x) = g,

O04(s1;52) = Oulsy) @ Oy(s2),

I S

38

d. O4(s11152) = O4(s1) || Ouls2),
e. O4s1+s2) = 04(s1) U Oulsr).

Proor

1.

First we prove that a ... € hold with " C” instead of ”=". Only case c. is proved
because a. immediately follows from axiom (1) and b. from axiom (6) and rule (2),
d. is like c. and e. follows from rule (4).
Letp € £y(s1) ® Fy(s;). Then p = pep, withp, € £,(s;) and p, € F (s;). So
s1 BS54 E and sy 225, E so (rule(3)) syis, 222>, E or equivalently
P € F4ls1;52).
To prove " =", define £, as follows.
F(@) = {[a] }, £/ (x) = Fulg) U{ [e] }, when d(x) = g,
Fi(51552) = Fuls1) @ Fuls2), L'(s11ls2) = Fuls1) || Puls2) and
Fa(s1152) = Fyls1) U Fuls2).
It follows immediately that Vs : #,/(s) C#,(s) and £,;'(s) is closed.
Define —’ by s L5/, E < p € £,/(s)
—' satisfies rules (1)...(6) :
(1) trivial.
() ifg 25’y Eandd(x) = gthenp € £,/(g) CFy(g) T/ (x).
3 if s Z>,E and s-2>5,E then p; e £/ (s))CFs51) and
P2 € £ (52)CFulsy) sopi1epy € £ /(s1:52) and py||pa € (51 ([52)-
@) ifsy 2y Ethenp € £;/(s1) CFuls1) CFy' (51 +52) so s +s3 £’ E and
similar s, +s; 2>, E.
(5) F4(s) is closed.
(6) [e] € £4(x)so x 21>, E.
—> is the smallest relation satisfying (1)..(6), so —> C —>’ or equivalently
Fa(s) S (5)-
This proves 1.
2. 04a)=F,(a)NPUML] = { [a]) NFUML] = { [a] }.
b, 04(x)=24(x)NPUMA] = F4(g) NPAML] = O 4(g).
C. 04s1352) = Fyls1;82) NPAMA] = (Fy(s1) @ F4(52)) NPAMA] 2
Lals)NPAMAL]) o (Fy(s2) NPAAML]) = 0 y(s1) @ O 4(s7).
Maybe the equality marked with an «a needs some explanation.
"D is trivial : PAM] is closed under e.
To prove 7 C” : (£ (s1) ® Fy(s2)) NPOUH] =
{prop2 € POMA] | p1 € Fy(s1) and py € Fyls2) } = (*).
Let pjop; € (*). We have e & acr(p)).
If length(p 1) = oo then

39

take a p’y € O4(s2) = Fylsy) N PAMAL] (O4(sy) 7 Z). Sopiep; = py =
P1%p"2 € (Fuls) NPAMA)) @ (Fy(s2) NFAML]).
If length(p,) << oo then also e & act(p,) so
P1%p2 € (Fuls1) NPAH L)) © (Py(s2) NFAHA)).
d. like c. but now the corresponding equation marked with the « is direct.
e. liked. O

4.3. Denotational semantics
In this section we are going to define a denotational semantics for . This is done with
the aid of some higher-order operator, that will turn out to be a contraction. To prove
this, we need the following lemma.
Lemma 4.3.1
1. Vp,qp'.q € ZA# : if p 5= [] and p’ 5= [] then
1
d(peq, p'eq’) < max { d(p, p'), 3d(g ¢ }.
- Vpgpq € PO d(pllg p'llg) < max { d(p, p'), d(g, 4) }.
3. VP,Q,P,Q € #A0#* : if[] ¢ Pand[] € P’ then
1
d(PeQ, P'eQ’) < max { d(P, P'), 7d(Q, Q) }.
4. VP,Q,P,Q" e Pa#* : d(P|Q, P'||Q") < max { d(P, P'), d(Q, Q) }.
5. VP,Q,P',Q € AaH* :d(P+Q, P’+Q") < max { d(P, P), d(Q, Q") }.
Proor
1. If max { d(p, p), —;'d(q, q") } = 1then 1. holds trivially.
I max (d(p, p)), 3d(¢ q)) <277 (#=1) then p[n] =pln] and
gln—1] = ¢[n—1]. If length(p) = n then also length(p’) = n and we have
(peq)in] = pln] = pln] = (p'eq)[n]. If length(p) <n then p = p’ and so
(peq)[n] = p e g[n —length(p)] (because length(p) > 0) = p e g'[n —length(p)]
= (peq)in] = (p'eq)(n]. Sod(peg p'eq)<27".

2. Similar to 1.

3. This is a consequence of 1. Details can be found in the appendix.

4. Similar to 3.

5. Straightforward verification. O

Now we will define the higher-order mapping.
DerFiniTION 4.3.2 D : (& - PAH*) — (£ — PAA*) is defined as follows.
Let F € & —» #Q#*.

Du(F)a) = {[a] }

40

Dy (F)(s1552) = Pu(F)s1) @ F(s2)

D (F)(s1|1s2) = @u(F)s1) || Pa(F)s2)
O (F)(s1t57) = Qu(F)s1) + Pu(F)(s2)
D4(F)(x) = QyFNA(x))

Lemma 4.3.3

1. @4(F)is well-defined.

2.] & QuF)Gs)

3. @, is a contraction.

Proor 1. and 2. can easily be shown, first for guarded statements and then for general
statements, with induction on the complexity of the statements. For 3. one needs to
show Vs € Z: d(®(F1)s), ©u(F)E) < %d(F 1, F3). Again, this can be shown,

first for guarded statements and then for general statements, with induction on the
complexity of the statements. We only treat the case s = 51,5, as an example.
d(®4(F1)s1552) Ra(F2)s1582)) =
d(Q(F)s1) ® Fi(s2), ®4(F2)(s1) ® Fy(s)) < by part 2. and lemma 4.3.1.3
max{ d@,(F1)(s1), ®a(F2)(s1)), 7d(F1(s2), Fa(s2))} < by induction

1
_id(Fl) F2) O

DeFintTION 4.3.4
1. 92,:% - P0#* is defined by 2, = fixed-point 9.
2. 9D :Pug > PAH* is defined by D (< d | 5 =) = Dy(s)

4.4. Operational semantics = Denotational semantics

THEOREM 4.4.1 0 = 2

Proor We have to show that @, = D, for all d € Ze/. Since 9 is the unique fixed-
point of @, it is sufficient to prove that ®,(0,) = @,. This is a direct consequence of
lemma 4.2.6.2. a

5. Synchronization
In this section we incorporate a CCS-style synchronization to our language and give a

denotational semantics for this language. The most intuitive approach, where for
instance we would define

41

2(c|?) = {F} KB

leads to a parallel operator that does not satisfy the (necessary, see 4.3) requirement
that it be non-distance-increasing.

Consider, for example, the following pomsets.

Pl rofd omed

If we would define

plig= {[;—'c} c =]

p'uq’-—-{{?d}}

then d(p||¢, p'll¢) = 1, while d(p, p') < '%' and d(g, ¢) = 0 < %, showing that the

and

operator ’||’ fails to be non-distance-increasing.

The solution to this problem that we present here is more or less of a mathematical
nature; it doesn’t have a very clear semantic intuition. Maybe this approach will be a
stepping-stone for a more intuitive solution.

Instead of only delivering "pure’ non interleaved outcomes, we extend the denotational
semantics with all interleaved outcomes and all intermediate results.

With p and g as given above, we will have

Plg= {[2“‘“}, [a—r]. {a<§]

and

Plg= {[;_'d} [a(i} F')d} [a—d—c]. [a—e—d], [c—a—d])

|, o). [o)

42

making d(pllq, P'llg) = %, solving the problem mentioned above.

In subsection 5.1 we define the extended language. In subsection 5.2 we make the new
definition of the parallel operator precise and in subsection 5.3 we prove the fact that
this operator is non-distance-increasing. We conclude with the denotational semantics
and an example in subsection 5.4.

5.1. A language with synchronization

To extend the language with synchronization, assume & = # U € : the disjoint union
of a set of internal actions (g,b,... € }# and a set of synchronization actions (¢ €)¥.
Let ™ : ¢ — ¥ (notation : ¢ instead of (c)) be a bijection, such that T=¢ yielding
the matching synchronization action of ¢. There is some special element 7 € # denot-
ing successful synchronization.

DEerFinrrion 5.1.1

a. Theclass (s €)& of statements is given by

su=alc|x|s1;82 | s1+s2 | 51182 as&r
b. Theclass (g € M8 of guarded statements is given by

gu=alc|gs|gitgalgilg aZT

c. The class (d €)Zecl of declarations consists of mappings from Pas to £¥ .
The class (t € YPiag of programs consists of pairs t = < d | s> with d € S’
and s € Z.

5.2. The parallel operator
In order to give a semantics for this language, we need to change the definition of the
parallel operator (|). Let ||orp denote the parallel composition defined in section 3.3.
The new parallel composition will be defined by taking the result of the old parallel
operator and adding some more results. The additional results will be obtained by
transforming old results by two kinds of transformation steps : —”—js—Ee and A—Uc-;—}.
Two nodes in a structure, one labeled with c, the other labeled with T, are taken
together in a j—[ﬁ% step and the label is replaced by a 7. This step models the real
synchronization. To solve the problem mentioned in the introduction of this section,
we also add structures obtained by adding more causal dependencies in the structure.
For this purpose, we define the —A—Uﬁé steps.
DeFinrTION 5.2.1
1. For a structure o and x;, x; € X, independent (ie. x;%,x3 N x3%.x1),
we define a new structure o = (X,, <g, A;), where =<, = <, U

43

{(x, ») | x <4 x1 N x3 <,y }. Wewill use the notation o —f’-lc—(—x—“—xi} o.
2. We define 2Y95 ¢ gauxPau by p 45> p o Fo,6'ip = [0] Ap = [0]
A o AVEEL XS o for some pair of independent nodes x;, x; € X,.

REMARKS 5.2.2
1. Itis easy to see that o’ is indeed a structure.

2. Ifo 2¥EXX)S o and ¢ : 0 — p is an isomorphism
then apl ip AUG ($(x)), ¢(x2))> P,

and ¢ : ¢ — p’ is an isomorphism.
3. From 2. it follows that ~4YC is well defined.

DeFINITION 5.2.3

1. Let o be a structure. We call (x;, x,) a matching pair in o if x;%,x;, x,%,X;
and A, (x1) € €, Ao(x2) € € and A, (x,) = Ay(x2).
We define a new structure ¢’ = (X4, <., Ay) associated with o and a matching
pair (x, x3), where
Xo’:Xo \ {x2}:
<o T (<o n (Xo’ X Xo’)) U

(G p) | x <gx1 Nxy<gp } U {(x,y)]| x <,sx3 Ax| <,y }and

Ay (x) = Ay(x), if x 5% x 1, and 7 otherwise.
We will use the notation ¢ £5EEL XD, o7,

2. We define % C POHXPOH by p —fyiE—}p’ « Jo,0':p =[0] A
p = (0] N o FEECL XS o for some matching pair of nodes x;, x3 € X,

Remarxks 5.2.4
1. Itis easy to see that o’ is indeed a structure.
2. Ifo E—SE(—X‘—?—Q% o’ and ¢ : ¢ — p is an isomorphism
then 3p’ : p LYSE@X). #D) i and ¢ 1 X : o/ — p’ is an isomorphism.
3. By 2. we have that —% is well defined.

Exawmpres 5.2.5 Let p, ..., p7 be equal to respectively

[;*C}, far]. [a<;}, {;c], [ie] [ac] [omae].

AUG \

. . FUSE
Then p,, ..., p7 are all obtained from p; by doing one or more > or >

steps. For instance p, is derived from p, by doing a —E—QS—E-% step, p 3 is obtained from
p1 by doing a AUGs step (with (x;, x7) equal to (the node belonging to a, the node

44

belonging to ©)) and p 5 can for instance be produced by doing a AUGS step from ps.

The next lemma states the following. If n € INj is fixed and ¢ can be transformed to p
by some transformation step then either o[n] = p[n] or o[n] can be transformed to a p’
that is equal to p up to level n (p[n] = p’[n]). This will be needed to prove that the
parallel operator is non-distance-increasing.
Lemma 5.2.6 Let n € INj be fixed.
1. Leto A%&Lxdy o
a. Iflev(xy) > n thenoln] = p[n].
b. Iflev(xy) < n A lev(xy) < n then
3p’ : ofn] AEEELIDS 1 A 0] = pin].
c. Iflev(x;) > n A lev(x;) < n then
Ixy :x1'Koxo A x9%ex1" N lev(xy)=n:
3 ;o ATEERX)S o A g[n] = pin].
2. Leto fBExLXIS
a. Iflev(x;) > n A lev(xy) > nthen o[n] = p[n].
b. Iflev(x;) < n A lev(xy) < n then
3p’ : ofn] LEECLXDS ot A 0] = pln].
c. Iflev(x;) > n A lev(xy) < n then
By’ x1'Kogx2 A x9%ex1" N lev(x,)=n:
3o ALECLXIN ¢ A gln] = g[n]
[Note that a —% step is replaced by a ﬂ} step!].
We omit the proof here because it is only technical and does not give any insight.
Moreover, for the most difficult case (2.c) we give an example after the next proposi-
tion.

Let A&F> = AUG) u LUSE > and let ﬂ%” denote the reflexive transitive clo-

sure of 4%55,

ProrosrTion 5.2.7 Let n € INj be fixed.
Ifp[n] = q[n] and p ﬂ—}p’ then p’[n] = g[n]or3q : g ﬂ} qg N plln] = ¢[n].
Proor
Casel:p 2Y9S . Sayo €p, o’ € p’ and o AYEEL XDy
If lev(x2) > n then ¢’[n] = o[n] so p'[n] = p[n] = q[n].
Assume now that lev(x;) < n. If also lev(x;) < n then o[n] 4YC&EL XDy v
with ¢”[n] = o'[n]. Let p € g and ¢ : o[n] ~ p[n]. Since x; and x, are incom-
parable in o we also have that ¢(x;) and ¢(x;) are incomparable in p so

45

AUG($(xy), Hxa)) N\ v
p 7P,
oln] AUG (¢(x), ¢(xz))> 0"

say, and since lev(¢(xi))<sn A lev(d(x,))<n,

with p”[n] = p’[n]. Since o[n] ~ p[n] we have 0"’ ~ p”
so o[n] = o"[n] ~ p”[n] = p'[n]. If now ¢ = [p'] then ¢ ﬂ—)q’ and
plln]l = [o[n]] = [p'[n]] = q[n].
The last case is lev(x;) > n and lev(x;) < n. Then Ix,’:lev(x,’) = n and
GM 6” and o”[n] = o'[n]. So this reduces this case to the previous
one.

Casell: p £ES . Sayo €p, o € p/ and o LLECL XS
If lev(x;) < n and lev(x,) < n then o[n] LLE&L XIS 7 and o/[n] = o'[n].
Let p € g and ¢ : o[n] ~ p[n]. Since (x;, x7) is a matching pair in o, we have
that (¢(x;), ¢(x2)) is a matching pair in p so p FUSE(@(x,). 4’(‘2))7 p’, say, and
since lev(e(x1)) < n Alev(d(xq)) < n, pln] LEELEDMXDN v wigy
p"[n] = p'[n]. Since o[n] ~ p[n] we have o’ ~ p” so
o[n] =o' n] ~p’[n] = pn]. If now ¢ =[] then ¢ 2>y and
plln] = [o'[n]] = [p'[n]] = q[n].
If lev(xy) > n and lev(x,) < n then 3x,’: lev(x’) = n and o
and o”[n] = o[n]. Case 1 "<” "<” gives p’ : p -AUGLED ey o a5
o”[n] = p[n] so o[n]~p[n]. If now ¢ =][p’] then ¢ —Aﬂé g and
pln]l = [o'[n]] = [p[n]] = ¢ln].
Case lev(x) < n and lev(x;) > n : analogous.
If lev(x;) > n and lev(x,) > n then o'[n] = o[n]sop’[n] = p[n] = q[n]. O

AUG(x)/, xz)> a”’

ExampLE 5.2.8 We give a little explanation about lemma 5.2.6 and proposition 5.2.7 for
the most difficult case namely 5.2.6.2.c and the corresponding Case I1 ”">" " <" of pro-
position 5.2.7. Let p, p’, g, ¢’ be equal to respectively

F e

We have p L5 p’ and p[1] = ¢[1] and since p7[1] 5 ¢[1] lemma 5.2.7 guarantees
the existence of a ¢ such that ¢ -% g and p’[1] = ¢[1]. Indeed the ¢ defined
above satisfies ¢ 2% ¢ and p[1] = ¢[1].

ol

Dermnrrion 5.2.9
1. syn : POH — FOH* is defined by syn(p) = { ¢ | p 2¥57 ¢).
2. syn : POH* — POHK* is defined by syn(P) = \J{syn(p) | p € P }.

46
3. || : Faw* X PO#* — PAH* is defined by || = syn ° | oLp-

The closures are taken to get closed sets and thus elements of ZQ#*. Moreover, pom-
sets that contain infinitely many synchronizations are added in this way (see example
5.4.1).

5.3. The parallel operator is non distance increasing

ProrosrriON 5.3.1 syn : PAH — PAA* is non distance increasing.

Proor Let p, g € PA# such that p[n] = g[n]. It suffices to show that
d{p | p 255 p) (g1 ¢ 22557 ¢ D < 27" or equivalently p 24557 p' >
i : ¢q ﬂ}‘ g N\ p'[n] = ¢ln] and vice versa. This is done by induction on the
number of steps in which p’ is obtained from p. Let us denote this by p ALF 5k P

k = 0 then p’ = p, so we can take ¢ = ¢q. If p &F k+1p’ then 3p, such that

p 2EENE " Pk 44PN p'. By induction there exists a ¢ such that g AN ¢ and
pxln] = q’[n] By proposition 5.2.7 we have that either p'[n] = [n] in which case we
can take ¢ = q’ or there exists a ¢’ such that q’ AdFy q and ¢'[n] = p'[n]. The sym-
metric case is similar. O

Proposrrion 5.3.2 syn : PAH* — FAH* is non distance increasing.

Proor This is a consequence of proposition 5.3.1 and a small adaptation of the appen-
dix. O

ProposrTiON 5.3.3 || : PAH* X PAH* — PAK* is non distance increasing.
Proor The composition of two N.D.I. mappings is again N.D.I. a

S.4. Denotational semantics

In the previous subsection we showed that || is a non-distance-increasing mapping. So
lemmas 4.3.1.3, 4.3.1.4, and 4.3.1.5 hold in the new setting. We can now give the deno-
tational semantics for the extended language in the same way as we did in subsection
4.3 by substitution of the old || by the new ||.

ExampLE 5.4.1 Let d(x) = a;(b||c);x and d(y) = a;(c||d);y. Then 2(<d | x >)
contains for instance :

47

and 9(< d | y >) contains for instance :

/\/\/\
a\d/a\d/\d/a\

So 2(< d | x|y >) contains for instance :

b. b. b. b.
B e N N e
ST T
a'\d/a\d/a\d/a\d/a
but also :
[a—~b-—~c—-a—~b—»c—-a—-b-—-c—-a—~b—~c—-a]
6. Appendix

In this appendix, it is shown that lemma 4.3.1.3 is a consequence of lemma 4.3.1.1 by
applying some metric techniques.

Lemma 6.1 Let M, ..., M, and M be metric spaces.
Letf: M; X .. X M, > Mwith Ax;.f(x1, ..., Xj, ..., X) 1 M; > M.
Then F : #, (M) X ... X #,(M,) > P,.(M) defined by
FAq, ..,4) = {f(a1, ., ay) | g €A;,i=1,.. n} satisfies
M F(Aq, ..., Ajy ..y Ay) : Pre(M) -V P (M).
Proor We have to show that
d(F(Aq, ..., Aj, ..., Ay), F(Aq, ..., A, .., Ap) < v, -d(4;, A')
or equivalently :
Ve>0:d(F(A, ..., Aiy ..., Ap), F(Aq, .y A'jy s Ay) < v; ~d(A;, A)) + e
Let x € F(d4y, ..., A4}y -, Ap). We will show that there exists an
y € F(A4y, ..., A, ..., Ay) such that d(x, y) <y, -d(d4;, A’}) + € (the other part is
analogous).

Since x € { f(ay, ..., a,) | @ € A;, i =1, .., n}, there exist aj, ..,a, such that

d(x, f(ai, ..., ap) < By the definition of the Hausdorff distance,

£
2
da'; € A'; 1 d(a;, d'y) < + d(d4;, A’). Takey = f(ay, ..., @'}, -, ap).

€

48

Now d(x, y) < d(x, f(ay, .., ap)) + d(f(ay, ..., a;, .., ay), f(ar, ..., @}, .., ap))
< d(x) f(al: very an)) + Yi © d(ai> 0’,‘)
<

PGy s A S €ty d(dy, A%, -

To show lemma 4.3.13, let M, = PA#\ {[]} and My = M = PQ# and let
f=eol(M; X My): M; X My -» M. By lemma 4.3.1.1 f satisfies the premise of the
lemma with v, = 1 and y, = 5. The derived F is equal to ® on ZA#* X PQA* res-

tricted to #,.(M,) X PQ#*. That is, F is restricted in its first argument to pomset-sets
that do not contain the empty pomset. The derived property of F is exactly the one
formulated in lemma 4.3.1.3, since 2#* is an ultra-metric space.

7. References

[ABKR89] P. AMerica, JW. DE Bakker, J.N. Kok, J.JM.M. Rurten, Denotational
semantics of a parallel object-oriented language, Information and Computa-
tion, Vol. 83, pp. 152-205, 1989.

[AR89] P. Amzrica, JJMM. RutteN, Solving reflexive domain equations in a
category of complete metric spaces, Journal of Computer and System Sci-
ences, Vol 39, nr. 3, pp.343-375, 1989.

[B88] JW. pe Bakker, Comparative semantics for flow of control in logic pro-
gramming without logic, Report CS-R8840, Centre for Mathematics and
Computer Science, Amsterdam (1988), to appear in Information and
Computation.

[B89] JW. pE Baxker, Designing concurrency semantics, in: Information Pro-
cessing 89, G.X. Ritter (ed.), Elsevier, pp. 591-598, 1989.

[BBKMB84] J.W. pE Bakxer, J.A. BerasTrA, JW. K1op, J.-J.CH. MEYER, Linear time
and branching time semantics for recursion with merge, Theoretical Com-
puter Science 34 (1984) 135-156.

[BKMOZ86] J.W. pE Bakker, J.N. Kok, J.-J.Cx. Mever, E.-R. OLDEROG, J.I. ZUCKER,
Contrasting themes in the semantics of imperative concurrency, in Current
Trends in Concurrency: Overviews and Tutorials (JJW. de Bakker, W.P.
de Roever, G. Rozenberg, eds.), Lecture Notes in Computer Science, Vol.
224, Springer (1986) 51-121.

[BM8S] J-W. pE Baxkxer, J.-J.Cu. MEYER, Metric semantics for concurrency, BIT
28, pp. 504-529, 1988.

[BRR89] J-W. pE Bakxer, W.P. DE Roever, G. Rozeneerc (eds.), Linear Time,
Branching Time and Partial Order, Proc. REX School/Workshop,

[BR8Y]

[BZ82]

[BoCa88]

[Gas89]

[Gig4]

[Gr81]

[KRS8]

[MV89]

[Pr86]

49

Noordwijkerhout, June 1988, Lecture Notes in Computer Science, Vol.
354, Springer 1989.

J-W. pE Bakxer, J.JM.M. Rurten, Concurrency semantics based on metric
domain equations, Report CS-R8954, Centre for Mathematics and Com-
puter Science, Amsterdam (1989).

JW. pE Bakker, J.I. Zucker, Processes and the denotational semantics of
concurrency, Information and Control 54 (1982) 70-120.

G. Boupor, I. Casterrant, Concurrency and atomicity, Theoretical Com-
puter Science 59 (1988) 25-84.

H. Garrman, Modeling concurrency by partial orders and nonlinear transi-
tion systems, in Proc. REX School/Workshop, Noordwijkerhout, June
1988, (J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Linear
Time, Branching Time and Partial Order, Lecture Notes in Computer S.i-
ence, Vol. 354, Springer (1989), 467-488.

J- GiscuER, Partial orders and the axiomatic theory of shuffle, Ph.D. thesis,
Stanford University, 1984.

J. Gramowsxi, On partial languages, Fundamenta Informaticae IV.2
(1981) 427-498.

JN. Kok, JJMM. Rurten, Contractions in comparing concurrency
semantics, in Proc. 15th ICALP (T. Lepistd, A. Salomaa, eds.), Lecture
Notes in Computer Science, Vol. 317, Springer (1988), 317-332. (To
appear in Theoretical Computer Science.)

J.-J.Ch. Meyer, E.P. de Vink, Pomset semantics for true concurrency with
synchronization and recursion (extended abstract), in Proc. MFCS 89 (A
Kreczmar & G. Mirkowska, eds.), Lecture Notes in Computer Science,
Vol. 379, Springer (1989), 360-369.

V. Pratt, Modelling concurrency with partial orders, Int. Journal of Paral-
lel Programming 15 (1986) 33-71.

