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0. Introduction 

We present a study of three concurrent imperative languages, called L0 , Li, and 
L> For each of them we shall define an operational semantics O; and a denotational 
semantics <!l!;, for i = 0, 1, 2, and give a comparison of the two models. (We shall 
use the terms semantics and semantic model as synonyms.) This comparison is the 
main subject of our paper, rather than the specific nature of the languages themselves, 
or the particular properties of their semantics. 

The languages L; have been defined and studied in much detail in [ 4, 5, 3]. We 
rely heavily on these papers, using many definitions taken from them literally, and 
others in an adapted version. (The languages L0 , L 1 , and L2 used here are called 
L0 , L 2 , and L 3 in the previous papers.) 

Let us try to characterize in a few words the languages under consideration. They 
all belong to the wide class of concurrent (parallel) imperative programming 
languages. We shall discuss parallel execution through interleaving (shuffle) of 
elementary actions (in L0 ), together with synchronization and communication (in 
Li) and extended with (an elementary form of) message passing (in L 2 ). Imperative 
concurrency is further characterized by an explicit operator for parallel composition 
on top of the usual imperative constructs, such as elementary action and sequential 
composition. Herein it differs from another widely used style, so-called applicative 
concurrency, where the parallelism is implicit. Further, L0 and L 1 are uniform and 
L 2 is nonuniform. In L 0 and Li the elementary actions are left atomic, whereas in 
L2 an interpretation of these actions is supplied. They consist of assignments, test 
and send and receive actions. Another important feature is the presence of local 
nondeterminacy (in L0 ) and global nondeterminacy (in L 1 and L2 ). (Sometimes this 
is called internal and external nondeterminacy.) The difference between the two has 
major implications for the different semantic models. (For an extensive discussion 
of this matter see, e.g., the introduction of [3]). 

For our semantic definitions we shall use metric structures, rather than order­
theoretic domains, following the approach of Nivat [14] and De Bakker and Zucker 
[6]. The metric approach is particularly felicitous for problems where histories, 
computational traces and tree-like structures of some kind are essential. Moreover, 
it allows for the definition of the notion of contraction, which we discuss in more 
detail in a moment. Our operational models O; are based on the transition system 
technique in [10, 16, 17]. They are closely related to the ones defined in [3], but 
there are some differences. We use labeled transitions and (in 0 1 and 0 2 ) communica­
tion is treated somewhat differently. Our denotational models D; are almost exactly 
the same as in [3]. They are defined compositionally, giving the meaning of a 
compound statement in terms of the meaning of its components, and tackling 
recursion with the help of fixed points. For D 1 and D 2 we use a reflexive domain, 
being a solution of some domain equation in the style of [ 15, 19]. We shall not give 
the details of solving this type of equation in a metric setting, but refer the reader 
to [ 6], where a solution was presented first, and [ 1 ], where this metric approach is 
reformulated and extended in a category-theoretic setting. 



Contractions in comparing concurrency semantics 

Although the semantic models presented here are (roughly) the same as in (3 ], 
there is one major difference, i.e., the way in which they are defined. In this paper 
we define both the operational and denotational models as fixed points of contrac­
tions. 

A contraction f: M--'> M on a complete metric space M has the useful property 
that there exists one and only one fixed point x EM (satisfying .f(x) = x). This 
elementary fact is known as Banach's fixed point theorem (see Proposition A.5(b) ). 
Such a fixed point x is entirely determined by the definition off: any other element 
y EM satisfying the same properties as x, that is, satisfying f(y) = y, is equal to x. 
The contractions <P we use in this paper are always of type 

that is, they are defined on a complete metric function space M 1 _,. M". Then the 
fixed point of <P is a function from M 1 to M 2 • 

The fact that our denotational models can be obtained as fixed points of suitable 
contractions is not very surprising, fixed points traditionally playing an important 
role in denotational semantics. It is interesting, however, to observe that the same 
method applies to the definition of operational models. One might wonder whether 
the models thus obtained still deserve to be called operational. That this is the case, 
follows from the fact that they equal the models defined in the usual manner, without 
the use of fixed points (see Lemma 1.16). 

The main advantage of this style of defining semantic models as fixed points is 
that it enables us to compare them more easily. This brings us to the discussion of 
what has been announced above to be the main subject of this paper: the comparison 
of operational and denotational semantic models, which we shall also call the study 
of their semantic equivalence. About the question why this would be an interesting 
problem we want to be brief. Different semantic models of a given language can be 
regarded as different views of the same object. So they are in some way related. We 
want to capture their precise relationship in some formal statement. 

Let us now sketch the way we use contractions in our study of semantic equivalen­
ces. Let L be a language. Suppose an operational model t for L is given as the 

fixed point of a contraction 

<P:(L_,, M)--'> (L_,, M), 

where M is a complete metric space. Suppose furthermore that we have a denota­
tional model <ZiJ for L of the same type as l!J, that is, with 0J: L-> M, for which we 
can prove <P( 0J) = '2l!. Then it follows from the uniqueness of the fixed point of <P 

that (F) = '!l!. 
In the context of complete partial ordering structures similar approaches exist (see, 

e.g., [10, 2]). There, the operational semantics (J' can be characterized as the (with 
respect to the pointwise ordering) smallest function :JP satisfying <P( :§') = g;, for 
some continuous function <P. Then it follows from <P(f0) = <Z/J that 0 is smaller than 
9. In order to establish fJ = '!lJ it is proved that (} satisfies the defining equations 
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for rziJ, from which it follows that rziJ is smaller than f!J. Please note that within the 

metric setting we can omit the second part of the proof. 

In general l!J and 0:J have different types, that is, they are mappings from L to 

different mathematical domains. In the languages we consider, this difference is 

caused by the fact that recursion is treated in the denotational and operational 

semantics with and without the use of so-called environments, respectively. There­

fore, 0 and rziJ cannot be fixed points of the same contraction. Now suppose () and 

0J are defined as fixed points of 

<P:(L--+M1)->(L->M1) and P:(L-> M2)~(L->M2 ) 

respectively, where M1 and M2 are different complete metric spaces. Then we can 

relate l!J and '7f, by defining an intermediate semantic model for L as the fixed point 

of a contraction 

<P': (L-> M') _,. (L-> M'), 

and by relating <P, <P' and P as follows. If we define 

f;:(L ....... M1)->(L->M 1
) and f 2 :(L->M2)->(L->M'), 

and we next succeed in proving the commutativity (indicated by *) of the following 
diagram 

<P 
L->M1 -- L->M1 

11 l *1 lf; 
<P' 

L->M' -- L->M' 

f21 * 2 112 

'i' 
L-> M 2 -- L->M2 , 

then we are able to deduce the following relation between l!J and rziJ: 

It is straightforward from *1 and *2 , and the fact that <P, <P', and Pare contractions. 

This will be the procedure we follow for the models 00 and rziJ 0 of L 0 in Section 

l. !1 and !2 are such, that for closed statements (i.e., containing no free statement 

variables) s E Lo, we have l!J(s) = 20(s). Once this result has been achieved for L0 , 

it is straightforward to adapt the definitions, lemmas and theorems involved to 

deduce a similar result for L1 and L 2 • (For the latter languages there is one slight 

complication. It appears to be convenient to relate L ....... M 1 and L-> M2 via two 

intermediate types, L-> M' and L-> M".) In [ 4, 5, 3] proofs for the semantic 

equivalence of operational and denotational models for L0 and L 1 have been given. 
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These proofs, however, are quite complicated and not so easy to understand. 
Furthermore, the proof of L1 is much more complex than that for L0 , involving an 
intermediate ready-set domJlin. 

The method of proving semantic equivalence as described above is general in the 
sense that it is applicable to very different languages, such as L0 , L 1 , and L 2 • 

This paper has four sections. This introduction is followed by the treatment of 
L 0 , L 1 , and L 2 in Sections 1, 2, and 3, respectively. Then, in Section 4, some 
conclusions and remarks about future research are formulated. In addition, Appen­
dix A gives the basic definitions of metric topology. 

1. A simple language (L0) 

1.1. Syntax 

For the definition of the first language studied in this paper, we need two sets of 
basic elements. Let A, with typical elements a, b, ... , be the set of elementary actions. 
For A we take an arbitrary, possibly infinite, set. Further, let Stmv, with typical 
elements x, y, ... , be the set of statement variables. For Stmv we take some infinite 
set of symbols. 

1.1. Definition (Syntax for L0 ). We define the set of statements L 0 , with typical 
elements s, t, ... , by the following syntax: 

where t EL~, the set of statements which are guarded for x, to be defined below. 

A statement s is of one of the following six forms: 
• an elementary action a. 
• the sequential composition s1 ;s2 of statements s1 and s2 • 

• the nondeterministic choice s 1 u s2 , also known as local nondeterminism [9]: s 1 u s2 

is executed by executing either s 1 or s2 chosen nondeterministically. 
• the concurrent execution s 1 II s2 , modeled by the arbitrary interleaving (shuffle) of 

the elementary actions of s 1 and s2 • 

• a statement variable x, which is (normally) used in 
• the recursive construct µ,x[t]: its execution amounts to execution of t where 

occurrences of x in tare executed by (recursively) executing µ,x[t]. For example, 
with the definition to be proposed presently, the intended meaning of µ,x[(a;x) u 
b] is the set a*· bu{aw}. 

An important restriction of our language is that we consider only recursive constructs 
µ,x[ t], for which t is guarded for x: t E L~. Intuitively, a statement t is guarded for 
x when all occurrences of x in t are preceded by some statement. More formally: 
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i.2. Definition (Syntax for L(; ). The set L~ of statements which are guarded for x 
is given by 

t::=a 

t;s, forsELo 

I I I u t 2 I t I II t 2 

1 y, for y"' x 

I µx[1] 

I µy[t'], for y¥x, t'EL~nL(i. 

1.3. Remark. In order to avoid possible confusion about the definitions of Lo and 
L~, let us give a more extensive definition, for which the ones given above are 
shorthand. We define L0 and, for every x E Stmv, Lti simultaneously and in stages: 

Stage 0: 

L0(0l =Au Stmv, 

Stage (n+l): 

L(~(O) =Au (Stmv\ {x} ). 

L0(n+ l) = L0(n) u {s1;s2I S1, S2 E Lo(n)} 

u { s 1 u s 2 Is i. s 2 E L 0 ( n)} 

u {s1 II s2 I s1, s2 E Lo(n)} 

u {µx[ t] I t E L<~ ( n)}. 

L,~ ( n + l ) = L(~ ( n) u { t; s I t E L~ ( n), s E L0( n)} 

u { t 1 u t 2 I t i. t 2 E L~ ( n)} 

We define 

u { t 1 II t 2 I t 1 , t 2 E L~ ( n)} 

u{µx[tJltE Lti(n)} 

u { µ y [ t] I y ;t x 11 t E Lti ( n ) n L{; ( n ) } . 

Lu= U Lo(n), L~ = LJ L(~(n). 
n1:;;-N nEN 

1.4. Remark (Empty statement). It turns out to be useful to have the languages 
under consideration contain a special element, denoted by E, which can be regarded 
as the empty statement. From now on E is considered to be an element of L0 , and 
L~. We shall still write L0 for L0 u {£}and Lti for Lti u {£}.Please note that syntactic 
constructs like s; E or E II s are not in L0 . 

Now that we have formulated the notion of guardedness for x, we can easily 
generalize this. 
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t.5. Definition (Guarded statements). The set L[i of guarded statements (guarded 

for all x) is defined as 

U= n L~. 
xE:Srmv 

As L0 and L~, also LPi has a simple inductive structure. 

1.6. Lemma. The set L~ can be given by the following syntax: 

t::=a I t;s I t1 u t2 I t 1llt2 ! µx[t] 

where s E L0 • 

We need yet another notion of syntactic nature, that is, the notion of closedness. 

1.7. Definition (Free variables, closed statements). For every statement s E L0 we 

define the set FV(s) of all statement variables that occur freely in s as usual: 

FV(a)=0, FV(x) = {x}, FV(µx[s]) = FV(s)\{x}, 

FV(s 1 op s2) = FV(s1) u FV(s2), for op=;, u, II. 

We call a statements closed (notation closed(s)), whenever FV(s) = 0. Finally, we 

define for L = L0 , Lt~, and L~: 

Lc1 = {s Is E Llclosed(s)}. 

We have (L0 )°1 = (L(~)° 1 = (L~)°1. 

We expect that the reader may benefit from a few examples. 

1.8. Examples. First we observe that Lg£ L(~ £ L 0 • Further we have that 

y;xEL~,y;xEL[;, 

µ,x[y;x] E L0 , µy[y;x]E L0 , 

µy[a;µx[y;x]] E L 0 • 

1.2. Operational semantics 

We first introduce a semantic universe for both the operational and the denota­

tional semantics for L0 • 

1.9. Definition (Semantic universe P0). Let A"-', the set of finite and infinite words 

over A, be given by A"°= A* u Aw. For the empty word we use the special symbol 

E. Let dA"' denote the usual metric on A ex: (see Example A.2). We define P0 = ~0JA x), 

with typical elements p, q, ... , the set of all non-empty, compact subsets of A"'. As 

a metric on P0 we take dp0 = ( dA') H. the Hausdorff distance induced by dx'. 

According to Proposition A.8 we have that P0 together with the metric di>., is a 

complete metric space. 
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The operational semantics for Lo is based on the notion of a transition relation. 

1.10. Definition (Transition relation for L~). We define a transition relation - ~ 
Lri x Ax Lo (writing s - as' for (s, a, s') E - ) as the smallest relation satisfying 

(i) a ._a E (for all a EA), 
(ii) for all a EA, s, t E Lt s', SE L0 • Ifs'~ E, then 

s ~ s' ==> (s;s ~ s';s 

a a 
t1 s u r- s' t1 tu s - s' 

fl sll t ~ s'll t fl tl/s ~ t/ls' 
a 

f\ f.LX[s]- s'[f.Lx[s]/x]), 

where the latter statement is obtained by replacing all free occurrences of x in s by 
,ux[s]; and ifs'= E, then 

s~E ==> (s;s~s 
a a 

t1sut-Et1tus-E 

t1 s 11 t ~ t f\ t 11 s ~ t 

t1,ux[s]_:E). 

Intuitively, s -as' tells us that s can do the elementary action a as a first step, 
resulting in the statement s'. We now give the definition of 0 0 , the operational 
semantics for L~1 • (It is defined on closed statements only, because we do not want 
to give an operational meaning to, e.g., a ;x: what should it be?) It will be the fixed 
point of the following contraction. 

<Po(F)(s) = {{uc}{ F( ')I I Lei a } a· s s E 0 11 a EA 11 s - s' 

for FE L~1 - P0 and s E L~1 • 

if s=E, 

if s.,t. E, 

1.12. Remarks. (I) It is straightforward to prove that <P0 is contracting. 
(2) Please note that closed(s) and s-a s' imply closed(s'). 
(3) We have that <P0(F)(s) is a non-empty, compact subset of A"'", because 

{aj3s'E L~1[s-0 s']} is finite and non-empty (this follows from Lemma 1.6) and 
F(s') is compact for every s' E L~1 • This implies that <P0(F) E L~1 - P0 • 
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1.13. Definition (0'0 ). V0 = FixedPoint(cP0 ). 

1.14. Remark. We use open brackets to denote application of V0 to an argument 
s: Vo[4 

In [3] another, seemingly more operational, definition of 0 0 is given. We shall 
repeat a slightly different version of it here and show that it is equivalent to this 
fixed-point definition. 

1.15. Definition (On. Let sEL~1 , srfE. We define O(l':L~1 -+P0 by putting wEA00 

in V(l'[s] if and only if one of the following two conditions is satisfied: 

(i) 
a 1 a 2 a 3 a 11 

s--'> S1--'> S2--'> ... --'> Sn/\ Sn= E /\ w =al . .. an, 

(ii) 
al Q2 a3 an an+l 

S--'> S1--'> S2--'>' ··--+Sn~·''/\ W =al ... anan+I · .. 

(where s -+a' s' -+a2 s" abbreviates s -+a' s' As' -+a2 s"). Ifs= E, then O(l'[s] = {e-}. 

1.16. Lemma. V0 = 06. 

Proof. Let w EA 00
, s E L~1 , with s rf E. We have 

w E V(l'[s] ~ 3a E A3s'E L~1 3w'E A°" [s_: s' Aw= a· w' /\ w'E O'(l'[s]] 

(definition V(l') 

~ w E cP0 ((1J'j)(s) (definition <P0 ). 

Since <'.J'(l' E L~1 --+ P0 , it follows that 06 = <P( O'(l'). Thus, 06 = V0 • D 

We give yet another characterization of 0'0 • It is based on the following definition 
and will be the one we use in proving semantic equivalence. 

1.17. Definition (Initial steps). We define a function 

I: L3-+ 9Jlfi 0 (A x Lo) 

(where 9Jlfi 0 (X) = {YI Y ~ X /\finite ( Y)}) by induction on L3: 
(i) J(E)=0, and I(a)={(a, E)}; 

(ii) suppose J(s) ={(a;, s;)}, I(t) = {(bj, t1)} for s, t E L3, a;, bj EA, S;, tj E Lu. (The 
variables i andj range over some finite sets of indices, which we have omitted.) Then 

I(s;s) ={(a;, s;;.n} (for sE L0), 

I(s u t) = J(s) u I(t), 

I (s II t) = { (a;, S; 11 t)} u { ( bj, s II t)}, 

J(,ux[s]) ={(a;, s;[,ux[s]/x])}. 
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t.18. Remark. Please note that for all s 7" E the set l(s) is finite and non-empty. 

This definition is motivated by the following lemma, which can be easily proved. 

U9. Lemma. Va E AV s E L~V s' E L0 [s -->" s' <:::>(a, s') E l(s)]. 

l.20. Corollary. 

<P0(F)( s) = U {a· F(s') I (a, s') E I ( s)}, 

for F : L~1 --> P0 , s E L~\ { E}. 

1.3. Denotational semantics 

The second semantic function we define for L 0 will be denotational. We call a 
semantic function F: L 0 __,. M (where Mis some mathematical domain) denotational 
if it is compositionally defined and tackles recursion with the help of fixed points. 
The first condition is satisfied if for every syntactic operator op in L 0 we can define 
a corresponding semantic operator op: M x M _,. M (assuming op to be binary) 
such that 

As semantic domain for the denotational semantics of L 0 we take again P0 • The 
semantic operators corresponding with ; , u, and II, the syntactic operators in L0 , 

will be of type P0 x P0 --> P0 • 

1.21. Definition (Semantic operators). The operators ,, u, II: P0 x P0 _,. P0 are 
defined as follows. Let p, q E P0 , then 

( i) 

(ii) 

(ii) 

ifp={E}, 

otherwise. 

p 0 q = p u q (set-theoretic union). 

~ {p 
Pllq= q 

U {a· (pa ~q) I Pa °I' 0}u U {a· (p~qa) lqa 7" 0} 

where for every p E P0 and a EA we define 

Pa={wjxEA"'i\a· WEp}. 

(We often write op rather than op if no confusion is possible.) 

ifq={E}, 

ifp={E}, 

otherwise, 

1.22. Remarks. (1) This definition is self-re(erential and needs some justification. 
We shall give it for ; and leave the case of II to the reader. We define a mapping 
<P: (Pox Po_,. Po)--"'(PoxP0 --"' P0 ) by 

<P(F)(p,q)={q ifp={E}, 
U {a· F(pa, q) Ip °I' 0} otherwise. 
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It i~ not ~ifficult to show that <P is contracting. Then we define ; = FixedPoint( <P ), 

which satisfies the equation of Definition 1.21. 

(2) If we define the left-merge operator lL by 

pll_q={0 ifp={E}, 
U {a· (Pa JJq) [Pa-¥- 0} otherwise, 

then we have that 

P II q = P lL q u q lL P 

(using the fact that p'Jlq' = q'JI p', for all p' and q'). This abbreviation will be helpful 

in some future proofs. 

We need the following properties, which are easily verified. 

1.23. Lemma. (a) For op=;, u, and JI we have 

\Ip, p', q, q' E P0 [ dp0 ( pop q, p' op q'),,;;;, max{dp,,( p, p'), dn,(q, q')}]. 

(b) For p, p' E P0 with EE p, EE p', and q, q' E P0 we have 

dnJp;q, p';q') = max{dp0(p, p'), ~ · dn,(q, q')}. 
-

(c) The operators ; , u, and II preserve compactness. 

We shall treat recursion with the help of environments, which are used to store 

and retrieve meanings of statement variables. They are defined in the following. 

1.24. Definition (Semantic environments). The set I' of semantic environments, with 

typical elements y, is given by 

r = Stmv-lin P0 • 

We write y{p/ x} for a variant of y which is like y but with y{p/x}(x) = p. 

Now we have defined everything we need to introduce the denotational semantics 

for L 0 • 

1.25. Definition ( 1/f0 , D 0 ). We shall define Du as the fixed point of 

1Po: (Lo_.. r-1 P0)- (Lo- r- 1 Po) 

which is given by induction on L0 • (Here r- 1 P0 denotes the set of non-distance­

increasing functions (see Definition A.4( c) ).) Let FE Lo-> I' - 1 Po, then 

(i) 1/f0(F)(a)( y) ={a}, 1P'0(F)(x)( y) = y(x), Po(F)(E)(y) = {E}, 

(ii) 1Jr0 (F)(sop t)(y) = P 0(F)(s)(y) op Po(F)(t)(y), 

(iii) 1/f0 (F)(µ,x[s])( y) = 1:P'0(F)(s)( y{F(µ.x[s])( y)/x}) for s EL;~, 

for op=;, u, JJ, and op as in Definition 1.21. (We define P 0 (F) only for those s 

and y, such that FV(s) ~ dom( y ).) Now we set D0 = FixedPoint( Po). 
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1.26. Remark. We have D 0[µx[s]Il(y) = Do[sil(y{Do[µx[s]Il( y)/x}). (As for (Jo, we 
also use open brackets for ::00.) 

It is not obvious that 1f/0 is contracting. The fact that we consider only guarded 
recursion is essential for proving it. 

L27. Lemma. (a) If FE Lo--'> r -" 1 Po, then 1Jto(F) E Lo-'> I' -'? 1 Po. 
(b) ~(FE Lo-" r -'> 1 Po, then for ally,' Y2 EI', s E Lo 

(*) 'rfyEStmv [seLb ~ Y1(y)=y2(y)] ~ 

(**) dPrJ 1Jr0 (F)(s)(y1), \fro(F)(s)(y2))~~ · dr(y,, Y2). 

( c) \fr0 is contracting on Lo-" I' -" 1 P0 • 

Proof. (a) The proof of (a) goes along the lines of (b ), which is more interesting. 
(b) Let FE L 0 ........ 1 P0 , let Yi, y 2 Er We use induction on L 0 . 

(i) For s=a we have dp0 (1Jr0 (F)(a)(y1), \fr0 (F)(a)(y2 ))=0. Let s=x, with XE 

Stmv. Suppose ( *) holds for x. Then 

= 0 because of ( *). 

(ii) We only treat sequential composition and recursion. Let s = s 1;s2 , with 
s 1, s2 E L 0 • Suppose (b) holds for s, and s2 • Suppose(*) holds for s 1;s2 • This implies 
that(*) holds for s,. Thus, we have(**) for s1 • Now: 

dPi,( \fru(F)(s,;s2)( Y1), \fro(F)(s,;s2)( Y2)) 

= dl'r,( \fro( F)( s i)(y, ); 1Jr o( F) ( Sz) ( Y 1 ), \fro( F) ( s1)(y2);1P°0( F)( s2)( Y2)) 

~ max{dPi,( 1Jru(F)(s1)( y,), \fro(F)(s1)( Y2)), 

! · dp"( 1Jto(F)(s2)( Y1), 1Jro(F)(s2)( Y2))}, 

for alls E Lo\{E}, F and y we have EE \fr0(F)(s)( y); 
thus Lemma l.23(b) applies 

:s; maxH · dr( Yi. Y2), ~ · dr( y,, y2)} (**) for s 1; (a) for s2 

=! · dr(y1, Y2). 

(The proof for S1 u Sz and s1 lls2 is similar.) Next we treat recursion. Let s 1 E L 0 and 
suppose that µx[si] satisfies(*). Then s, satisfies it. Thus, we have(**) for s 1 • Now 

dPi,( 1Jro(F)(µx[s 1])( y 1), 1Jr0(F)(µx[s 1])( 1 2 )) 

= dPr,( \fru( F)( s) ( 'Y1 { F(µx[s 1])( y1) / x}), 

1Jto(F)(s )( Y2{ F(µx[s 1])( 'Yz)/ x})) 
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,,.;;! · drb1{F(µ,x[s 1])('y1)/x}, y2{F(µ,x[s 1])( y2)/x}) (*) holds for s1 , 

also w.r.t. y;{F(µ,x[s 1])( ')';)/ x}, for i = 1, 2, thus so does ( **) 

,,.;; 1 · max{dr( 'Y1, ')12), dp0 (F(µ,x[s1])( ')11 ), F(µ,x[s 1])( y2))} 

,,.;;! · dr( 'Yi. ')12), (a) for µ,x[s 1]. 

(c) Let Fi. F2 E L 0 -. I' -. 1 P0 • We only treat recursion. Suppose 

dp0(P'o(F1)(s)(y), P'o(F2)(s)(y)),,.;;! · d(F1 , F2), 

for some s E L~, all '}' E r. Then 

dp0 (1P'0 (F1)(µ,x[s])( y), P'0 (F2)(µ,x[s])( y)) 

=dp0 (P'o(F1)(s)(y,), P'o(F2)(s)(y2)), ')l;=y{F;(µ,x[s])(y)/x}, i=l,2 

,,.;; max{dp/1P'o(F1)(s)( ')11), P'o(F2)(s)( 'Y1)), dp0 (P'o(F2 )(s)( y 1), P'o(F2)(s)( y2 ))} 

,,.;; max{! · d (Fi. F2), ! · dr( y 1 , y2)} (induction, (b)) 

= max{! · d(F,, F 2 ), ! · dp0(F1(µ,x[s])( y), F2(µ,x[s])( y))} 

=! · d(Fi. F2). D 

1.4. Semantic equivalence of 00 and 92!0 

An important difference between 92!0 and 00 is that recursion is treated with and 
without semantic environments, respectively. We have 

92!0[µ,x[sJn( y) = 9llo[s]( y{filJ0[µ,x[sJD( y)/x}) 

and 

00[µ,x[s]D = V'0[s[µ,x[s]/x]D. 

In the latter case the statement µ,x[s] is syntactically substituted for all free statement 
variables x in s, whereas in the first case the environment y is changed by setting x 
to the semantic value of µ,x[s]. We shall compare 00 and 92!0 by relating both to an 
intermediate semantic function V'b, which takes syntactic instead of semantic en­
vironments as arguments. It will be defined such that for syntactic environments 8, 

V'b[µ,x[s ]]( 8) = Ob[sD( 8{µ,x[s ]/ x} ). 

Here 8 is changed, the new value of x is the statement µ,x[s]. By first comparing 
0 0 and C''Jb and next Ob and 92!0 we are able to prove the main result of this section: 
0 0[s] = D 0[s]( y), for alls E L~1 and arbitrary 'YE I'. For the definition of Ob, we need 
the following. 

1.28. Definition (Syntactic environments). The set L1 of syntactic environments, with 
typical elements S, is defined by 

L1 = {8 j SE (Stmv _.fin L0) A (8 is normal)}, 

where the notion of normal environments is given in the following. 
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1.29. Definition (Normal environments). A syntactic environment 8 is called normal, 

whenever 
(i) V'xEdom(8)[8(x)EL~]. 

(ii) V's E L0 [FV(s) <;; dom( 8)=?3k;:;;.: O[s[8t E LZ1J], 
where s[8]°=s, s[8] 1 =s[8(x1)/x1 ,. •• ,8(xn)/xn] (with FV(s)={x1,. .. ,xn}) and 
s[8]"+ 1 = (s[8])[8]". For 8 normal and s E L 0 , with FV(s) <;; dom(8), we define 

s{8) = s[8J\ where k=min{m ls[8r E L~1}. 

1.30. Remarks. (1) From now on we shall assume whenever we considers E L 0 and 
8 E L1 together (as two arguments for a function, or as a pair) that FV(s) c:; dom(8). 

(2) Let 8 E Stmv .-fin L0 be such that for x, y E Stmv, 8(x) = y and 8(y) = x. Such 
an environment is not normal. It does not give us any useful information about the 

values of x and y. 
(3) It would be too restrictive to require for all 8 E Stmv ~fin L 0 that Vx E dom(8) 

[x[8]ELn An example may illustrate this. Let 8 be defined such that dom(S)= 
{x, y}, and 

8(y) = JLY[b;x;y], 8(x) = JLX[a;µ.y[b;x;y]]. 

We shall encounter such an environment when computing 0'0[µ.x[a;µ.y[b;x;y]]]. 
Now y[8] = 8(y)E L~1 , but y[8]2 E L~1 • 

Now that we have introduced syntactic environments, we can formulate a principle 
of induction for the set L0 x Ll, which we shall use extensively in the sequel. 

1.31. Theorem (Induction principle for L0 xL1). Let Es L 0 xL1. If 
(1) Ax.Lls;;E, 

( 2) { s, t} X L1 <;; E:::? { s: s, s u t, s 11 t} X L1 <;; E for s, t, s E L0 , 

(3) {s}xL1c;;E=?{JLx[s]}xL1\;EforsEL~, 

(4) (8(x), 8) E E=?(x, 8) EE for x E Stmv and 8 E L1, 

then E = L0 x L1. 

Proof. Let Es;; L0 xL1, suppose E satisfies (1)-(4). We first prove fact (a) and fact 
(b) given below, and next show that (a) and (b) imply E = L 0 x L1. So we have 

fact (a) Lfi x L1 s;; E, 
fact (b) VSs;; L0 xL1 [Ss;; E=?S's;; E], where 

S' = {(s, 8) I Cs, 8) E L 0 x L111 Vx E FV(s) [s e L~ =;> (8(x), 8) ES]}. 

To show that (a) holds, we use (1), (2), and (3), and induction on the structure of 
L~. We proceed with (b). Let S <;; L0 x L1 and suppose Sc:; E. Let S' be as above. 
We use (1)-(4) and induction on L 0 to show that S' <;;E. Let (s, 8) ES', for s E L 0 , 

8 E ..1. 

(i) s =a: (a, 8) EE, because (1). 

(ii) s 5 s 1 op s2: Suppose that if (s;, 8) ES', then (s;, 8) EE, for i = 1, 2. If (s, 8) E 

S', then also (si. 8) and (s2 , 8)E S'. Thus (si. 8), (s2 , 8) EE. By (2) we have 
(s1 ops2 , 8) EE. 
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(iii) s = µ,x[s1], for s1 EL~: Suppose that (s 1 , 8) ES' implies (s1, 8) EE. Because 

s 1 EL<~ we have: (s1,8)ES1 <:::>(µ,x[si],o)ES'. Because (µ,x[s1],8)ES' we have 
(s1, 8) ES. Thus, using (3), we have (µx[s1], 8) EE. 

(iv) s=x: If (x,8)ES 1
, then (8(x),8)ES, thus (because S,,;3) (8(x),8)EE. 

Because of (4), we then have that (x, 8) EE. 

Thus facts (a) and (b) hold. Next we show that E = L0 x .1. For this purpose we 

define, for all n EN. 

V0 = Lrix .1, 

V,, + 1 = { ( s, 8) [ ( s, 8) E L0 X L1 A V x E FV ( s) [ s E L~ :::} ( 8 ( x), 8) E Y,,]}. 

Then we have 

(*) 'efsELo'v'8EL13nEN [s[8]"EL~:::} (s,8)EV,,], 

which we prove with induction on n EN. Let s E L0 and 8 E Ll. Ifs[ 8]0 EL~, then 
s E L~1 c;; L~. Thus (s, 8) E Y0 • Now suppose (*)holds for n EN, and suppose s[8]"+ 1 E 

L~. Then (s[ 8])[ 8]" E L3, thus by induction (s[ 8], o) E V,,. This implies (s, 8) E V.a 1 , 

which proves ( *) for n + 1. Because all o E L1 are normal we have 

'ef(s, 8) E L0 x L13n EN (s(8]" E L3). 

Together with ( *) this implies 

'ef(s, 8) E L 0 x L13n EN ((s, 8) E Y11 ). 

Since V,, S L 0 x Ll, for all n EN, it follows that L 0 x L1 = LJ 11 cN V,,. Now V0 ,,;; 3 because 

of (a), and V,,,,;; E:::} V11 , 1 ,,;; E because of (b), so we conclude: E = L0 x Ll. D 

1.32. Remark. We cannot reason about a free statement variable x unless we know 

what statement it is bound to. Therefore, we consider non-closed statements together 

with syntactic environments, which give information about the free variables they 

contain. This explains why we have formulated an induction principle for L0 x L1 
instead of L0 only. 

Now let E c;; L0 x Ll. The first three conditions of the principle suffice to prove 

that L3 x .1 c::; E, since they express exactly the syntactic structure of Lfi (see Lemma 

1.6). (We have chosen Lfi here instead of Lg', because the latter set has no simple 

inductive structure.) Thus, also L~1 x L1 ( s L3 x L1) c::; E. Adding condition ( 4) enables 

us to prove L0 x L1,,;; S. This may be motivated by the following. For every statement 

s E L0 and normal environment 8 E L1 there exists an I EN such that s[ 8] 1 E L~1 ,,;; L3. 
Let us call k EN with k = min{ I [ s[ or E L~1 } the degree of closedness of s with respect 

to 8. Please note that every s E L~1 has degree 0, and arbitrary s E L0 has, for arbitrary 

8, a finite degree. Therefore, this degree can be used as a measure for the complexity 

of statements. Our induction principle is indeed a principle of induction on the 

degree of closedness. Conditions (l ), (2), and (3) are sufficient to prove E for all 

(s, 8) with degree 0. They form, so to speak, the basis of the principle. Condition 
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(4) expresses the "step part": if E holds for (8(x), 8), which has degree k, say, 
then E holds for (x, 8), which then has degree k + 1. 

We now proceed with the definition of l!Yb. It will be of type l!Yb: L0 - L1 - P0 , 

which could be called intermediate between l!Y0 : L~' - Po, and D 0 : L0 - I' - P0 • 

Instead of basing the definition of O& on some transition relation (as in Definition 
1.11), we use a variant of the initial step function (Definition 1.17). 

1.33. Definition (Initial steps with syntactic environments). We define a function 

J': L0 - L1 - ilPfin(A X L 0 x L1), 

using the induction principle for L0 x L1. The predicate E ~ L 0 x Ll we use is defined 
as 

E(s, 8)= I'(s)(8) is defined. 

We shall define I' such that E satisfies the induction conditions. Thus, we ensure 
that I' is defined for every s E L0 and 8 E L1 (with FV(s) ~ dom(8)). 

(1) J'(E)(8) =0, and J'(a)(8) ={(a, E, 8)}, for all a EA, 8 E Ll. 

(2) Suppose J'(s) = >..8 ·{(a;, S;, 8;)}, l'(t) = >..8 · {(bj, tj, 8j)} for s, t, S;, tj E L 0 , 

a;, bj EA, and 8;, 8j E Ll. (The variables i and j range over some finite sets of indices, 
which are omitted.) Then 

J'(s;s)( 8) = {(a;, s; ;s, 8;)} (for s E L 0), 

l'(s u t)(8) = J'(s)(8) u J'(t)(8), 

l'(s 11 t)(8) = {(a;, S; II t, 8;)} u { (bj, s II tj, 8j)}. 

(3) For the definition of I'(µx[s]) we have to consider clashes of variables. 
Therefore, we distinguish between two cases (supposing that J'(s) has already been 
defined): 

I'( x[s])( 8) = {I'(s)(8{µx[s]/x}) if x~ dom(8), 
µ l'(s)(8{µx[s]/x}) if xE dom(8), 

where x is some fresh variable with xe dom(8) and s= s[x/x]. 

(4) Suppose J'(8(x))(8) has already been defined. We set 

I'(x)(8) = 1'(8(x))(8). 

1.34. Remarks. (1) We have, if J'(s)(8) ={(a;, s;, 8;)}, then norrna/(8;), and thus 
8; E L1, for all i. 

(2) The definition of I'(µx[s])(8), with xEdom(8), is correct, because sands 
have the same complexity. 

(3) If J'(s)(8) ={(a;, s;, 8;)} then for all i: 

'rJxE Stmv[xE dom(8) n dorn(8;)=>8(x) = 8;(x)]. 

1.35. Definition ( c1>b). We define et> b: ( L0 - L1 - P0 ) - ( L 0 - L1 - P0 ) by 

c1>b(F)(s)(8) = {{€} ifs= E, 
U {a· F(s')(8') I (a, s', 8') E J'(s)(8)} otherwise, 

for FE Lo- L1 - P0 , s E L 0 , and 8 E Ll with FV(s) ~ dom(8). 
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1.36. Definition Oh== FixedPoint( <Pb). 

Next, we compare (1)'0 and Ob. We can do this by relating I and J', since we have 

V'0[s] = U {a · Oo[s'] I (a, s') E I (s)}, for s E L~1 , s r6 E, 

V'b[s](8) = U {a· Ob[s'](8') I (a, s', 8') E J'(s)(8)}, for s E 1 0 , s # E, 8 E Ll. 

1.37. Theorem (Relating I and J'). For alls E L0 and 8 E Ll, with FV(s) c;; dom(8), 
we have 

'</aEAVs 1 EL0V8'E1J. [(a,s',8')EJ'(s)(8) ~ (a,s'(8'))El(s(8))]. 

For the definition of s(8), see Definition 1.29. 

Proof. We define 

E(s,o)=VaEA'</s'EL0'</8'EL1 [(a,s',8')EJ'(s)(8) ~ (a,s'(8'))EI(s(8))] 

and use the induction principle for L 0 x L1 to show that E = L 0 x L1. We only treat 
the case of recursion. Suppose s EL~ such that {s} x L1 c;; S. We have to show that 
{µ,x[s]} x .L1 c;; B. Let 8 E L1 and assume (without loss of generality) that x E dam ( 8 ). 
Then 

J'(µ,x[s])(8) = l'(s)(8') 

where 8'= 8{µ,x[s]/x} (by the definition of/'). On the other hand, we have 

J(µ,x[s](8)) = I(µ,x[s(8)]), x E dom(8) 

= J(s(8)[µ,x[s(8)]/x]) 

(the latter equality following from 

'<It EL~ [J(µ,x[t]) == J(t[µ,x[t]/x])]). 

We take a quick (but deep) breath and proceed as follows: 

s( 8)[µ,x[ s( 8) ]/ x] == s[ 8]( 8)[µ,x[ s( 8) ]/ x J (definition s( 8)) 

== s[8][µ,x[s(8)]/ x](8), 

x e dom(8), '</y E dom(8)[x e FV(8(y))J 

== s[8][µ,x[s]/x](8) 

== s[ 8'](8), 8' == 8{µ,x[s ]/ x} 

= s[8'](8'), XE FV(s[8']) 

=s(8'). 



196 1.N. Kok, 1.1.M.M. Rutten 

Thus, we have /(µx[s](8)) = /(s(8')). Combining this with I'(µx[s])(8) = P(s)(8'), 
which we saw above, yields 

E(µx[s], 8) ~ E(s, 8'). 

Because {s} x .1 s; Ewe may conclude E(µx[s], 8). D 

We formulate the relation of 00 and <!Jb in terms of their defining contractions <P0 

and <Pb. This can be elegantly done using the following. 

1.38. Definition. We define (): (Lg1 - P0)- (L0 - .1- P0 ), for every FE L~1 - P0 , 

by 

( )(F) = p<> (notation) 

=AsEL0 • A8E.1· F(s(8)). 

1.39. Remark. This mapping links two kinds of semantic functions, one using 
syntactic environments, and the other one not using environments. If FE L~1 - P0 , 

then p< > is an in a sense extended version of F: it can also take as an argument 
statements s E L0 that are not closed, provided it is supplied with a syntactic 
environment, which is to give the (syntactic) values for the free variables in s. 

1.40. Theorem (Relating <P0 and <Pb). VF E L~1 - P0 [ <Pb( p< >) = ( <P0 ( F)) < >]. 

Proof. The theorem is an immediate consequence of Theorem 1.37. Let FE Lg1 - P0 , 

let SE L0 , s~ E. 

<Pb(F0 )(s )( 8) = U {a· p< \s')( 8') I (a, s', 8') E J'(s )( 8)} 

= u {a. F(s'(8')) I (a, s', 8') E J'(s)( o)} 

=LJ{a· F(s'(8'))i(a,s'(8'))EJ(s(8))} (Theorem 1.37) 

=<Po(F)(s(8))=(<1>0(F)) 0 (s)(5). D 

Because <Po and <Pb are contractions with 00 and Ob as their respective fixed 
points, we have the following. 

Finally we relate 

Ob: L0 - .1 - P0 and 0J0 : L0 - I' - P0 • 

For this purpose we define the following mapping. 

1.42. Definition. We define - : ( L0 - I' - P0 ) - ( L 0 - Ll - P0 ) by 

-(F) =ft (notation) 
=As E L 0 • A8 E .1 · F(s)(§F) 

for FE La-: I'- Po, wh_:re §F is given by §F =Ax E dom(8) · F(8(x))(BF). (We 
often write 8 rather than 8 F if from the context it is clear which F should be taken.) 
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1.43. Remarks. (1) We have to justify the self-referential definition of §F. For this 
purpose we define 

5' (s, 8) = V x E FV(s) [s E Lt~__,. ( §F(x) is well defined)], 

for s E L 0 and 8 EL\, and use the induction principle to prove S = L 0 x .::t Then it 
follows for all xE Stmv with xE dom(8) that §F(x) is well defined. Conditions 
(1 )-(3) of the induction principle are trivially fulfilled. We prove condition ( 4 ). 
Suppose (8(x), 8) EE. Thus §F(y) is well defined for ally E FV(8(x)). This implies 
that § F ( x) is well defined, since 

§F(x) = F(8(x))(BF). 

(2) In the same way as ( ), also - links two different kinds of semantic functions, 
one using syntactic, and the other using semantic environments. Again ft is an 
extended version of Fin the sense that it takes syntactic environments as an argument 
instead of semantic ones. In the definition above a syntactic environment 8 E Ll is 
changed into a semantic version (according to the semantic function F) §F of it, 
which then is supplied as an argument to F. 

Next, we come to the main theorem of this paper. It relates the denotational 
semantics ::00 and the operational semantics O[i. which is a fixed point of <P[i. by 
stating that also ffi 0 is a fixed point of <P !i. From this it follows that O~ = ffio. 

Proof. Let E <::;:; L 0 x Ll be defined by 

E(s, 8) = <P;/ffio)(s)(8) = ffio(s)(8) 

for (s, 8) E L0 x Ll. We use the induction principle for L0 x L\ to show that E =Lox L\. 

Let 8 E Ll. 
(1) For a EA we have <Pb(ffi0)(a)(8) ={a}= ffio(a)(o), so Ax L\ <;;E. 
(2) Let s, ."I E L 0 and suppose E(s, 8). We show E(s;s, 8). 

<Po(ffio)(s;s)(o) = u {a'. ffio(s';s)(o') I (a', s', o') E J'(s)(8)} 
(definition <P 0 and I'(s;s)) 

=U {a'· (ffi0 (s')(8');ffio(S)(8'))i(a', s', 8')E I'(s)(o)} 

= U {a'· (0i0 (s')(8');ffio(s)(i5)) I (a', s', 8') E l'(s)(o)} 
(see Remark 1.34(3)) 

= (LJ {a'· 0io(s')(8') I (a', s', 15') E I'(s)(8)} );ffio(s)(8) 

(definition;) 

= <P 0 (0i0 )(s)(8);0i0 (."f)(8) (definition <Po) 

= ffi 0(s)(8);0i0 (."f)(8) (because E(s, 8)) 

= ffiu(s;s)( 8). 
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This proves B(s;s, 8). Now lets, tE L0 and suppose B(s, 8) and B(t, 8). We show 
E(s II t, 8). 

<Pb( ~o)(s II t )( 8) 

= U {a' · ~0(s'il t)( 8') J (a', s', 8') E I'(s )( 8)} 

uU{b'· ~0(silt')(8')J(b',t',8 1)El'(t)(B)} (definition <Pb and !'(slit)) 

= U {a' · (~o(s')( 8') II ~0( t)( 8')) J (a', s', B') E I'(s )( 8)} 

u LJ {b' · (~o(s)(o')ii05u(t')(8'))j(b', t', o')E /'(t)(8)} 

=U {a'· (05o(s')(8')11~0(t)(8)) I (a', s', 8') E /'(s)(8)} 

u U {b' · (~o(s)(8lll~o(t')(8')) I (b', t', 8') E J'(t)(8)} 
(see Remark 1.34(3)) 

= ((LJ {a'· ~0(s')( 8') J (a', s', 8') E J'(s )( 8)}) lL ~o( t)( 8)) 

u ( (LJ { b' · ~0(!')( 8') J ( b', t', 8') E I'( t )( 8)}) lL 050(s )( 8)) 
(definition ll_, see Remark 1.22(2)) 

= ( <Pb(f21o)(s)(8)ll_ 050(t)(B)) 

u ( <Pb(~0)(t)(c5) lL ~0(s)(8)) (definition <Pb) 

= (~o(s)(8)ll_~u(!)(8)) 

u (0i0 (t)(8)ll_0i0(s)(8)) (we have E(s, 8) and B(t, 8)) 

= 0io(s)(8)Ji05o(t)(8) = 05o(sJlt)(8). 

This proves E(sJit, 8). The case E(su t, 8) is simple. 
(3) Lets E Li and suppose {s} x .::1 s; B. We show B(µ,x[s], 8). Assume (without 

loss of generality) that x e dom(8). Then 

ct> 0 (0J0 )(µ,x[s])(8) = U {a'· 050(s')(8') J(a', s', 8') E J'(s)(8')} (definition 
<P 0 and l'(µ,x[s])(8); let 8'= 8{µ,x[s]/x}) 

= <Pb(050 )(s)(8') 

= f0 0(s)(8') (we have B(s, 8')) 

= ~0[s](8') 

= ~0[s](8{0J0[µ,x[s]](B)/x}) (definition B') 

= ~0[µ,x[s]](B) (definition 0J0 ) 

= 05o(µ,x[s])(8). 
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This proves E(µx[s], B). 

(4) Let x E Stmv, suppose E(B(x), B). Now 

<1>b(ffio)(x)(B) = <Pb(:iio)(o(x))(o) (definition <P;1 and J'(x)(B)) 

= ffio( B (x) )( o) (because 5' ( B(x ), B)) 

= ffi 0[B(x)](§) 

= 8(x) (definition §) 

= ffio[x](§) = :ii0 (x)(o). 

Thus E(x, B). The induction principle now implies E = L 0 x Ll. D 

As an immediate consequence of this theorem, we have the following. 

1.45. Corollary (e}b= :ii0 ). 'efs E L0'r/B E .1 [Ob[sll(B) = ffi0[s](8)]. 

199 

Now combining Corollaries 1.41 and 1.45 yields the main theorem of this section. 

() - ' -1.46. Theorem (00 =0J0 ). 'efsEL0'rlBE.1 [00[s(B)]=£21 0[s](B)]. 

1.47. Corollary. For alls E L~1 , and arbitrary y EI', 00[s] = £210[s]( y ). 

1.5. Summary of Section 1 

It may be useful to give a short overview of this section because we shall follow 

the same approach of proving semantic equivalence in the next sections. We have 

defined an operational semantics 0 0 for L0 as the fixed point of <P0 , and a denotational 

semantics ffi0 as the fixed point of 1Jl0 . We have related 00 and ffi0 via an intermediate 

semantic function eJ'b, defined as the fixed point of <Pb. To be more precise, we have 

related <P0 , 1Jl0 , and <Pb using mappings 0 and-, for which we have proved some 

properties, schematically represented by the following diagram: 

-r 
'1' 

L 0 ~I'~ P0 ~ L 0 ~I'~ Po. 
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The * in the upper rectangle indicates that it commutes, the symbol *fix in the lower 
rectangle indicates that it commutes only for the fixed point of 1fro (that is, 92la). 
Please note that *has been formulated as Theorem 1.40, and *fix as Theorem 1.44. 
The main result of Section 1 (Theorem l.46) follows from this diagram, because * 
implies Oi/ = Ob and *r.x implies O{i = ~o. 

1.48. Remark. The lower rectangle does not commute for arbitrary FE Lo-+ I'-+ Po. 
As an example take F =As· A 'Y • { E }. Then, for given a, b EA and o E Li: 

W)(a;b)(o) = 1Jr0(F)(a;b)(§'i'0<F» 

= 1fro( F)( a)( §'i'nl FJ); Po( F)( b) ( gvr"1 Fl) 

= {a};{b} = {ab}, 

whereas 

<P 0(F)(a;b)(o) ={a· F(b)(o)} ={a· F(b)(BF)} ={a}. 

2. A language with communication and global nondeterminism (L1) 

2.1. Syntax 

For L 1 we introduce some structure to the (possibly infinite) alphabet A. of 
elementary actions. Let Cc:; A be a subset of so-called communications. From now 
on let c range over C and a, b over A Similarly to CCS [13] or CSP [11] we 
stipulate a bijection - : C ~ C with - 0 - = idc. It yields for every c E C a matching 
communication -(c), which will be denoted by c. In A\C we have a special element 
r denoting a successful communication. Let Stmv, with typical elements x, y, ... , 
again be the set of statement variables. 

2.1. Definition (Syntax.for L 1 ). The set Li, with typical elements s, t, .. . , is given by 

s::=a / si; s2 I si+s2 I sills2 Ix I µ,x[t] 

where t EL;, which is defined below. Please note that a EA 2 C. 

2.2. Definition (Syntax for L~). The set L~ of statements which are guarded for x 
is given by 

t::=a 

I t;s, for s E L 1 

I t i + t2 / t i II t2 

I .v. for .v "° x 

I µ,x[tJ 

I µ,y[ t'], for y :;t x, t' E L~ n Li'. 
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2.3. Definition (Syntax for Lf). The set Ly of statements which are guarded for all 
x E Strnv is defined by 

t::= ajt; slt1 + t2lt1ll t2l.ux[t], 

where s E L 1 . 

2.4. Remark. We extend Li, L~, and LT with the empty statement E (see 
Remark 1.3). 

The definitions of FV(s) (free variables of s) and of (syntactically) closed 
statements are as in Section 1. The language L 1 differs from L0 in two respects. 
First, the presence of communication actions entails a more sophisticated interpreta­
tion of s1 lls2 • Second, the operators of global nondeterminism s1 + s2 and of local 
nondeterminism S1 u s2 of L 0 are differently interpreted. For an extensive discussion 
of L1 we refer the reader to [3] (where, for obvious reasons, it is called L:J. After 
we have defined an operational semantics for L 1 , we shall briefly discuss the intuitive 
meaning of L 1 • 

2.2. Operational semantics 

2.5. Definition (Semantic universe P 1 ). Let, as in Definition 1.10, the set A" be 
defined as A"'·= A* u Aw. We extend this set by allowing as the last element of a 
finite sequence a special element a, which will be used to denote deadlock: 

A~=A*uA*. {a}uAW. 

Now we define a complete metric space P1 , with typical elements p, q, ... , as 
P1 = <!Jl nc(A:~), the set of all non-empty, compact subsets of A;~. As a metric on P1 

we take (dAc;;)H (see Definition A.7(d)). We shall use P1 as the semantic universe 
for the operational semantics of L 1 , which will again (as for l 0 ) be based on a 
transition relation. 

2.6. Definition (Transition relation for Lf). We define a transition relation 

->£LfxAxL 1 

as the smallest relation satisfying 
(i) a _,." E, for a EA (please note that it is also possible that a E C !), 

(ii) for all a EA, s, t E Ly and s', s E l 1 , ifs'¥- E, then 

s ~ s' ==> (s· s ~ s'· s , , 

a a 
fl s + t--> s' fl t + s --> s' 

fl silt~ s'jjt fl tjjs ~ tlls' 

f\ µ,x[s]~s'[µx[s]/x]), 
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and if s' = E, then 

Aµ.x[s]_:E). 

(iii) for all c EC, s, t EL~, s', t' E L1 , ifs'"" E ,P t', then 

(s~s'At..:.,_t') => sllt_:s'llt', 

and ifs'= E, then 

(s~EAt..:.,_t') => sllt_:t'. 

2.7. Definition (cfJ 1). Let <P 1 :(L~1 -'> P1 )-'>(L~1 _,. P1) be given by 

{
{c} ifs=E, 

<P,(F)(s)= {a} if{al3s'[s~s']AaEC}=0, 
U {a· F(s') Is~ s' A a EC} otherwise 

for FE L~1 _,. P1 and s E L~1 • 

2.8. Definition eJ\ = FixedPoint( <P 1). 

2.9. Examples. The following examples illustrate the intended meaning of L1 : 

(l)\[(a;c)ll(b;c)] = {abr, bar}, 

(i)\[(a;b)+(a;c)] = {ab, aa}, 

(i)\[a;(b+c)]={ab}, for cEC, a,bEA\C. 

Thus, with global nondeterminacy +, the statements s 1 = (a;b) +(a ;c) and s2 = 
a; ( b + c) have different meanings under (I)\. This difference can be understood as 
follows. If s 1 performs the elementary action a, the remaining statement is either 
the elementary action b or the communication c. In case of c, a deadlock occurs 
since no matching communication is available. However, if s2 performs a, the 
remaining statement is b + c, which cannot deadlock because the action b is possible. 
Thus, communications c create deadlock only if neither a matching communication 
c nor an alternative elementary action b is available. 

We again characterize the operational semantics by defining for each statement 
s a set of pairs of which the first element denotes a possible first step of s. 
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2.10. Definition (Initial steps). We define a function I: Lr - g;>fin(A x Li) by induc­
tion on Ly. 

(i) I(E) = 0 and J(a) ={(a, E)}. 

(ii) S~ppose_ J(s) ={(a;, s;)}, I(t) = {(b1, t1)} for s, t E L7, a;, b1 EA, and s;, 0 E L 1 • 

(The variables z and j range over some finite sets of indices, which we have omitted.) 
Then 

J(s;s) ={(a;, s;;s)} (for .~E Li), 

I(s + t) = I(s) u I(t), 

/(silt)= {(a;, s;jlt)}u{(b1 , slltJ)}u{(T, sdlt1 )ia; = h;}, 

J(µ,x[s]) ={(a;, s;[µ,x[s]/x])}. 

2.11. Lemma. Va E A'v's E Lf\/s' E Li [s -a s'~(a, s') E J(s)]. 

2.12. Corollary. For FE L~1 --" Pi and s E L~1 , such that {a I 3s'[s -as'] I\ a~ C} ;e 0, 

we have 

<1'>1(F)(s)=LJ{a· F(s')i(a,s')EJ(s)Aa~C}. 

2.3. Denotational semantics 

We follow [3] in introducing a branching time semantics for Li. First we have 

to define a suitable semantic universe. It is obtained as a solution of the following 

domain equation: 

Such a solution we call a domain, and its elements are called processes. We can read 

the equation as follows: a process p E P is either p0 , the so-called nil process 

indicating termination, or it is a (compact) set X of pairs (a, q), where a is the first 

action taken and q is the resumption, describing the rest of p's actions. If X is the 

empty set, it indicates deadlock (as does a in the operational semantics). For reasons 

of cardinality, ( *) has no solution when we take all subsets, rather than all compact 

subsets of Ax P. Moreover, we should be more precise about the metrics involved. 

We should have written ( *) like this. 

2.13. Definition (Semantic universe P1). Let (Pi, d) be a complete metric space 

satisfying the following reflexive domain equation 

P ~{po} 0 g>c0 (A X id112(P)), 

where, for any positive real number c, idc maps a metric space (M, d) onto (M, d') 

with d'(x,y)=c· d(x,y), and 0 denotes the disjoint union (see Definition A.7). 

(For a formal definition of the metric on P we refer the reader to Appendix A.) 

Typical elements of P1 are p and q, and are called processes. 
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We shall not go into the details of solving this equation. In [ 6], it was first 

described how to solve this type of equation in a metric setting. In [ l] this approach 

is reformulated and extended in a category-theoretic setting. 

2.14. Definition (Semantic operators). The operators;, +, II : Pi x P, -> P, are defined 

as follows. Let p, q E Pi , then 

(i) - {q 
p;q = {(a, p';q) I (a, p') E p} 

if p =Po, 
otherwise. 

(ii) 

(iii) 

p-tq={: 
puq 

if q =Po, 

ifp=po, 

otherwise. 

-
Pllq = 

p 

q 

{(a, p'~q_j(a, p')Ep} 

u {(a, Pllq'j(a, q')E q} 

u {(T, p'llq')j(c, p')Ep /\ (c, q')E q} 

ifq=po, 

if p =Po, 

otherwise. 

(We often write op rather than op if no confusion is possible.) For a justification 

of these definitions see Remark 1.22. 

2.15. Definition (Semantic environments). We use r to denote the set of semantic 

environments (as in Definition 1.24), with typical elements y, given by I'= 

Stmv ->fin Pi . 

2.16. Definition ( 1J1 i, ffii ). We define the denotational semantics 9Ll i of Li as 0li = 
Fixed Point( Pi), where Pi: Li-> I'-> Pi is defined exactly as 1/!'0 in Definition 1.25 

but for the following two clauses: 

1/J'i(F)(a)( y) ={(a, Po)}, 

We realize that it must be difficult for the reader who sees this type of denotational 

semantics for the first time to understand and appreciate it. Nevertheless, we consider 

it for our purposes preferable to refer the reader to [3 ], where he can find an 

extensive explanation. In this paper, we want to stress the technique of proving 

semantic equivalences, with which we now proceed. 

2.4. Semantic equivalence of <0\ and 9Lli 

It is quite obvious that the result of the previous section, as formulated in Corollary 

1.47, namely that 

V s E L~1"<f y EI' [<0'0[s] = 9il0[s]( y)], 

does not hold for the semantic functions Vi and ffi,. The semantic universe Pi of 
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Oi is a set of sets of streams, whereas Pi, the semantic universe for ~ 1 , is a set of 
tree-like, branching processes. Thus, when comparing the types of 0 1 : L1 - Pi and 

q/J I: L1 - r-> P1' we observe that besides the fact that 911 i takes a statement as an 
argument as well as an environment, which 0\ does not (as is the case with 9110 and 
00 ), there is a second difference between 0 1 and f0i. That is, they have different 
co-domains, P1 ¥Pi (which is not the case in the previous section). The strategy 
we shall follow to relate 19\ and f0i, is to define functions o;: L 1 - ..1 - Pi (where 
.1 will again be a set of syntactic environments) and f21;: Li - .1--+ Pi. and then 
relate Oi and o; (similarly as with 00 and 0:1), next fil; and fili (similarly as with 
Ob and f0 0), and finally compare o; and :?il; by using a suitable abstraction operator 
a: P1 - Pi. As in the previous section, we define o; (and @;) as fixed point of a 
contraction. We start with the comparison of 19\ and o;. 

2.17. Definition (Syntactic environments). The set .1 of syntactic environments, with 

typical elements 8, is given by 

..1 = {o I o E (Stmv _.fin Li)/\ (8 is normal)}. 

(For the notion of normal see Definition 1.29.) 

We formulate an induction principle for L 1 x ..1, as in Theorem 1.31. 

2.18. Theorem (Induction principle for L1 x ..1 ). Let Es;; Li x .1. If 
( 1) A x ..1 s;; E, 
(2) {s,t}x..1s;;E=:;.{s;s,s+t,sllt}x..1s;;E,fors,t,sEL1, 

(3) {s}x..1 s;; E=:;.{µ.x[s]}x.1 s;; E, for sE L~. 

(4) (o(x), 8) E E=:;.(x, 8) EE, for xE Stmv, and 8 E ..1, 

then E = L 1 x ..1. 

Proof. See Theorem 1.31. 

2.19. Definition (Initial steps with syntactic environments). As in Definition 1.33, we 

use the induction principle to define a function 

(1) J'(E)(B) =0, and J'(a)(B) ={(a, E, 8)} for all a EA, 8 E ..1. 
(2) Suppose I'(s)=AB·{(a;,S;,8;)} and l'(t)=AS·{(bj,thoj)} for s,tEL1, 

a;, bj EA, and B;, B; E ..1. Then 

I'(s;s)(B) ={(a;, s;;s, B;)} (for all sE L1) 

I'(s + t)( o) = I'(s )( 5) u I'( t)(B) 

J'(sll t)( 5) ={(a;, S; II t, o;)} u {(bj, sll tj. 8)} u {( 'T, S; II tj, O; u Bj) I ii;= b,}. 

(3), (4) As in Definition 1.33. 
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2.20. Remark. In the clause for s II t in the above definition we take the union of 

two environments, 8; and 8j. This we can always do, if we impose the restriction 

upon all 8; and 8; that 

if ii;= bJ, then (dom(8;)\dom(8)) 11(dom(8J)\dom(8))=0. 

If this condition is not satisfied (and in general it is not), a suitable renaming of 

variables should be applied. An example of a statement for which this should happen 

is µx[c;xJllµx[c;x]. 

<t>;(F)(s)(8)= {il} if{(a,s',8 1)E/ 1(s)(8)JaEC}=0, {
{E} ifs=E, 

U {a· F(s')(8') I (a, s', 8') E J'(s )(8) /I a EC} otherwise, 

2.22. Definition o; = FixedPoint( <P; ). 

2.23. Theorem (Relating I and I'). 

'Ifs E L 1'\f8 E L1 [I'(s)(8) ={(a;, S;, 8;)} ~ J(s(8)) ={(a;, s;\8;))}]. 

Proof. See Theorem 1.37. D 

2.2.4. Definition. We define 0: ( L~1 ___,. P1) ___,. ( L 1 ___,. L1 ___,. P1) by 

OF= F 0 =As E L 1 • A8 E L1 · F(s(8)) 

for FE L~1 -> P1 • 

Proof. See Theorem 1.40. D 

Next we define 20;: L1 ___,. L1--> P1 as the fixed point of the contraction below and 
compare @1 and @;. 

1fr;(F)(s)(8) = {{E} 
{(a, F(s')(8'))i(a, s', 8') E J'(s)(8)} 

ifs= E, 

otherwise, 
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2.28. Definition. ffi; = FixedPoint( P;). 

2.29. Remark. As o; also ffi; takes syntactic environments as arguments. Their 
co-domains, however, are different: P1 ;to P1 • One could call <!iJ; a branching variant 
of V;. Another difference is that O;(c)(B)={a}, whereas £LJ;(c)(o)={(c,p0)}, for 
c E C and 8 E .d. 

In order to relate £.iJ; : L 1 - L1 --> P1 and <!iJ 1 : L 1 - I' - P1 we use the following. 

2.30. Definition. Let - : (L1 - r--> P1)- (L1 - L1 - P1) be given by 

-(F)= F=AsE L 1 ·AO E.1 · F(s)(B') 

for FE L1 - r - Pt' where §'is defined as §F =Ax E dom(S) . F(B(x))(BF). (For 
a justification of the definition of gr see Remark 1.43(1).) 

Proof. This theorem can be proved in essentially the same way as Theorem 1.44. 0 

2.32. Corollary. ffi; = 0i 1 • 

Finally we provide the only missing link in the chain that is to connect (1)'1 with 
ffi 1 : the comparison of o;: L 1 --> ..1-> P1 and !2ll;: L 1 --> ..1-> P,. We relate their 
different semantic universes P1 and P, in the following. 

2.33. Definition (Abstraction operator a). We define an abstraction operator 
a: P,......,. P, by a =streams o restr, where restr (for restriction) and streams are recur­
sively defined 

(i) restr: P1 - P1 

p >--> { f<(~' restr( p')) I (a, p') E p 11 a~ C} 

(ii) streams: P,--> P, 

{
{E} 

p>-> {a} 
U {a· streams(p') l(a, p') E p} 

ifp=p0 , 

otherwise. 

ifp=po, 

if p = 0, 
otherwise. 

2.34. Remarks. ( 1) Since the definition of restr and streams is recursive, we have 
to verify that it is well formed. It suffices to note that these functions can be defined 
as fixed points of contracting functions ( cf. Remark 1.22). 
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( 2) The abstraction operator a transforms a (branching) process p E P1 into an 

element a ( p) E P1 in two steps. First it cuts off all branches (all subprocesses) of 

p 1 that are labeled with an element of C: these can be regarded as failed (individual) 

attempts at communication. This is what restr does. Then streams takes all paths 

(streams) of the result of restr(p), putting a a symbol (denoting deadlock) at the 

end of all paths ending in the empty process. This can be understood as follows. 

When a path in restr( p) ends in the empty process this means that the operation 

restr has cut off everything at the end of the corresponding path in p. By definition 

of restr only elements of C could have been present. Thus, this path in p should 

be interpreted as indicating a situation in which only individual communication 

steps can be taken. Operationally, we consider this to be a case of deadlock. 

Therefore, we replace this empty process by a. This is what streams does. 

Now that we have defined a mapping a: P1 --+ P1 , we extend it in the following way. 

2.35. Definition. Let a: (L 1 -+ L\--+ P1)--+ (L 1 -+ L\--+ P1) be defined by 

a(F) == F" (notation) 

== AsE L,. Ao EL\. a(F(s)(8)) 

for FE L,-> .1-> P,. (Please note that we use again the symbol a. We trust that 

no confusion will arise from this slight abuse of language.) 

2.36. Theorem (Relating P; and <PD. VF E L 1 -> L\-> P1 [ <P; ( F") = ( P; ( F) )"]. 

Proof. Let FE L1 -> .1 -> P1 , let s E L1 and 8 E .1 be such that { (a, s', 8') E I'( s) x 
(o)ja.E C}r'(1. Then 

<P; ( F" )(s )( 8) = U {a · F" (s')( 8') I (a, s', 8') E /'(s )( 8) /\ a .E C} 

= U {a · (a ( F ( s ') ( 8 '))) I (a, s ', 8 ') E I' ( s) ( 8 ) /\ a E C } 

=streams({(a, restr(F(s')(8')))!(a,s', 8') E /'(s)(8) /\a pE C}) 

= streams 0 restr( { (a, F( s') ( 8')) I (a, s, 8 ') E I'( s) ( 0 )}) 

=a( P;(F)(s)(8)) = (1Jf;(F))"(s)(8). 

Ifs EL, and 8 E .1 are such that {(a, s', 8') E /'(s)(8) I a e C} = 0, then 

<P;(F)(s)(o) ={a} 

= streams(0) 

=streams 0 restr({(a, F(s')(8'))!(a, s', 8')E I'(s)(8)}) 

=(P;(F))"(s)(8). D 

2.37. Corollary {(20;)" = 0;). Iris E L 1V8 Ed [a(£O;[s](8)) == o;[s](8)]. 

Combining Corollaries 2.26, 2.32 and 2.37 h' h t 
(2.26 ) l":T\'= o;, , , w 1c sate 
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(2.32) f0; = ~1, 
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now yields the main theorem of this section. 

2.38. Theorem (o~> = (ffi 1)"). 'Vs E L1'r/8 E '1 [O,[s(8)] = a(2i\[s](B))]. 

2.39. Corollary. For all s E L~1 and arbitrary y EI': O\[s] = a(~ 1 [s]( y)). 

2.5. Summary of Section 2 

209 

We can again give a quick overview of the main theorem of this section by drawing 

a diagram as follows: 

L~1-7P1 
<PI 

L~1-;. P1 ~ 

01 * l () (Theorem 2.25) 

<P' 
L 1 -7 Ll -7 P1 

I 
L 1--;. d--;. ? 1 ~ 

"i * i" (Theorem 2.36) 

L1 -7 Ll --'> P1 
']f' 

I 
Li -7 d -7 P1 ---? 

-r *nx r- (Theorem 2.3 l) 

L1 -7 I'-'> Pi 
']fl 

L1 -7 I'-;. Pi ---? 

where (as in Section l.5) * indicates commutativity and *iix indicates commutativity 

with respect to the fixed point of 'P'i (that is, 20 1 ). Please note that if we could 

identify Pi and P1 , we could identify the second and the third horizontal lines of 

this diagram, leaving out the mapping a. This would yield a diagram of exactly the 

same shape as that of Section 1.5. This is just a way of rephrasing what has already 

been said above. The only new thing about proving semantic equivalence for L,, 

compared with L0 , is the presence of a difference between the semantic universes 

Pi and Pi of 0\ and 2tl 1 , which made the introduction of a necessary. Theorems 

2.25 and 2.31 are just (slightly) modified versions of theorems already present in 

Section 1 (namely, Theorems 1.40 and 1.44). 

3. A nonuniform language with value passing (L2) 

We devote the third section of our paper to the discussion of semantic equivalence 

for a nonuniform language. Elementary actions are no longer uninterpreted but 

taken as either assignment or tests. Communication actions c and c are refined to 
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actions c?v and c!e (with v variable and e an expression), and successful communi­

cation now involves two effects: both synchronization (as in the language L 1) and 

value passing: the (current) value of e is assigned to v. Thus, we have here the 

synchronous handshaking variety of message passing in the sense of CCS or CSP. 

We shall introduce a language L 2 which embodies these features and present its 

operational and denotational semantics 0 2 and r:!lJ 2 • Nonuniformity of L 2 calls for 

the notion of state in both semantic models. They now deliver sets of streams, or 

processes, over state transformations, not over uninterpreted actions as in the 

previous sections. The main goal of this section is to provide the reader with yet 

another example of a language to which the method for proving semantic 

equivalence, as developed in Sections 1 and 2, applies. Although L 2 will be in some 

sense more complex than L 1 and accordingly 0 2 and r:!lJ 2 more intricate than eJ\ and 

22!1' the proof of the equivalence of operational and denotational semantics will 

essentially be the same. Because of this emphasis on proving semantic equivalence, 

we shall not give very much explanation when defining the semantics. For this we 

refer the reader again to [3], which we (roughly) follow in our definition of 0 2 and 

22! 2 • Nor shall we give any proofs, because all of them can be obtained by straight­

forwardly modifying a corresponding one from Section 2. 

3.1. Syntax 

We now present the syntax of L2 • We use three new syntactic categories, viz. 

• the set Var, with elements v, w, of individual variables 

• the set Exp, with elements e, of expressions 

• the set Bexp, with elements b, of boolean expressions. 

We shall not specify a syntax for Exp and Bexp. We assume that (boolean) 

expressions are of an elementary kind; in particular, they have no side effects and 

their evaluation always terminates. Statement variables x, y, ... are as before, as are 

the communications c E C. The latter now appear syntactically as part of value 

passing communication actions c?v or c !e. 

3.1. Definition 3.1 (Syntax for L2 ). 

s: := v := elblc ?vie !els1;s2ls1 + s2is1 II s2 lxlµ,x[ t] 

where t EL;, defined in the following. 

3.2. Definition (Syntax for L;). The set L; of statements which are guarded for x 

is given by 

t ::= v := elbic?vlc !e 

lt;s, forsEL, 

I t I + t 2 I t 1 II t 2 

I y, ror y,., x 

I ,ux[t] 

I ,uy[ t'], for y 7' x, t' E L; n L~. 
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3.3. Definition (Syntax for L~). The set L~ of statements which are guarded for all 
x E Stmv is defined by 

where s E L2 • 

3.4. Remark. The sets L 2 , L~, and L~ are extended with the empty statement E ( cf. 
Remark 1.4). 

It will be useful to unite assignments v := e, tests b and communications c? v and 

c le into one set of basic steps. 

3.5. Definition (Basic steps). We define the set Bsteps of basic steps, with typical 

element a, by 

BStep = Comm u Bexp u Asg, 

where the set Comm of communications is defined by 

Comm= {c?v Jc EC, v E Var} u {c!eJ cE C, e E Exp}, 

and the set Asg, of assignments, is defined by 

Asg = { v := e Iv E Var, e E Exp}. 

The sets BSteps and Comm can be regarded as the nonuniform equivalents of 

the sets A of atomic actions and C of communications of the previous section. 

3.2. Operational semantics 

3.6. Definition (Transition relation for L~). We define -> <; L~ x BStep x L-c as the 

smallest relation satisfying 
(i) a _,a E, for all a E BStep. (Please note that it is also possible that a E Comm!) 

(ii) for all a E BStep, s, t E L~ and s', s E L2 , if s' .,c E, then 

a_: s' => (s ;s _: s';s 

a a 
/\ s+ f-'> s' /\ t+s-> s' 

/\ ,ux[s] _: s'[,ux[s]/x]); 
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and if s' = E, then 

a a 
As+t-EAt+s-E 

a a 
Asllt-tAtlJs-t 

a 
A J.LX[s]- E). 

(iii) for all s, t e L~. s', t' e L2 , and c?v, c le E Comm, ifs' o= E o= t', then 

c'e c''v v:=e v:= e 
(s~ s' At_:.__. t') ~(silt- s'Jlt' I\ tlls- t'Jis'), 

and if s' = E, then 

c!e c'?v v:=e v:=e 
(s~EAt-t') ~ (sllt-t'l\tlls-t'). 

For both operational and denotational models the notion of state is fundamental. 
Elements v, w in Var will have values in a set Val. A state is a function that maps 
variables to their (current) values. Accordingly, we define the following. 

3.7. Definition (States). The set I of states, with typical element u, is defined as 
I= Var- Val. 

We shall also employ a special failure state a, with a~ I, and define 

I;;"=I*uI* · {a}uiw. 

Elements of I~ will be denoted by finite or infinite tuples (ui. u 2 , ••• ). The empty 
tuple will be denoted by e. We shall write u for(a-). Concatenation is defined as usual. 

For expressions e e Exp and be BExp we postulate a simple semantic evaluation 
function, details of which we do not bother to provide. The values of e and b in 
state u will be denoted simply by [e]u(e Val) and [b]u(e {tt, ff}). 

3.8. Definition (Semantic universe P2). We define the semantic universe P2 by P2 = 
1: - (f} nc(I:), where (f} nc(I;;") is the set of all non-empty and compact subsets of .J:':'. 

3.9. Definition ( '1>2 ). Let '1>2 : (L~1 - P2 ) - (L~1 - P2) be defined by '1>2(F)(E) = { e}; 
if {ai3s'[s-as']A(aeAsgv(aeBExpA[a]u=tt))}=0, then '1>2(F)(s)(a-)={a}; 
otherwise 

b 
'1>2(F)(s)(u) = U {u · F(s')(u) Is - s' I\ [b]a- = tt} 
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for FEL~1 -" P2 and SEL2, and with erv:=e=a{[e]a/v}. (The notation av:=e will 

also be used in the sequel.) 

3.10. Definition. 0 2 =Fixed Point( <P2 ). 

3.11. Examples 

0 2[v:=O]=Aa· {(a{O/v})}, 

V'2[v:=Oll(v:=l; v:=v+l)] 

=A.er· {(a{O/v}, er{l/v}, er{2/v}), (er{l/v}, 

a{O/v}, er{l/v}), (o-{l/v}, o-{2/v}, cr{O/v})}, 

02[ v := O; µx[ v := v + 1; x ]] = Aa · { (er{O/ v}, er{l/ v}, er{2/ v}, ... ) }, 

o 2[ v := o; v < o] = A er · { (er { o / v}, a)}, 

0 2[c?v] =A.er· {(a)}, 

0 2[c?vllc!3] =A.er· {(er{3/v})}. 

We can again characterize the operational model using an initial step function. 

3.12. Definition (Initial steps). Let l: L~ __,, 21'ttn( BStep x L2 ) be defined by 

(i) J(E) = 0, !(a)= {(a, E)}, for a E BStep. 

(ii) Suppose J(s) ={(a;, s;)}, I(t) = {(bj, tj)} for s, t EL~, a;, b; E BStep, and s;, tj E 

L 2 • Then 

l(s;s) ={(a;, s;;.\'")}, for sE L 2 , 

J(s + t) = l(s) u /(t), 

/(silt) ={(a;, S;j\t)}u{(b1, slltJ} 

u { ( v := e, S; II t;) I (a; = c ?v A b1 = c ! e) v (a; = c ! e /\ b; = c? v)}, 

J(µx[s]) ={(a;, s;[µx[s]/x])}. 

3.13. Lemma. Va E BStep\fs E L~"i/s E L2 [s _,,a s'~(a, s') E l(s)]. 

3.14. Corollary. For FEL~1 -4 P2 , sEL~1 and erEl: with {(a,s')E/(s)\aEAsgv 

(a E BExp A [a]a = tt)}"" 0, 

<P 2(F)(s)(er) =U {er· F(s')(a)\(b, s')E J(s)A[b]er=tt} 

u u { erv =e . F(s')( erv:=e) I ( v := e, s') E I (s )}. 
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3.3. Denotational semantics 

As in Section 2.3 we start with the definition of a suitable semantic universe. It 
will be a process domain that is obtained as a solution of the following domain 

equation: 

P = {p0} u Pl'c0 (SSteps X P), 

where the set SSteps of semantic steps, with typical elements K, is given by 

SSteps = (J;--.. .J:) 

u (J: _,. { tt, ff}) 

u(Cx Var) 

u (C x (J:--.. Val)). 

We can read this equation as follows: a process p E P is either Po, the nil process, 
or it is a (compact) set X of semantic steps KE SSteps. Such a semantic step can 
have one out of four forms. First it can be a state transformation. These will be 
used to give a semantics to assignments. Then it can be a mapping from states to 
the set of truth values, corresponding with boolean expressions. Next, it can be a 
pair (c, v), corresponding with an input statement c?v. And finally it can be a pair 
(c,f), corresponding with an output statement c !e. Here, f is used to denote the 
value of e (that is, [e] E .J: _,. Val). 

As in Section 2.3 we should be more precise about the metrics involved. We give 
a formal definition below and refer the reader to Section 2.3 for further explanation 
and references. 

3.15. Definition (Semantic universe P2). Let (P2 , d) be a complete metric space such 
that it satisfies the following domain equation: 

with SSteps as above. Typical elements of P2 will be p and q. 

3.16. Definition (Semantic operators). The operators;, +,and~: P2 x i\- P2 are 
defined as follows. Let p, q E ?2 , KE SSteps, c EC, v E Var, and f E .J: - Val. Then 

( i) 

(ii) 

- {q ifp=p0 , 

p;q= {(K,p 1;q)j(K,p 1)Ep} ifp,,,,_Po· 

p.f.q={: 
puq 

if q=p0 , 

if p=p0 , 

otherwise. 
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- -
(iii) If p =Po, then pjjq = qjjp = q. If p -:P Po and q ;6 p0 , then 

- -
p[[q = {(K, p'jjq)[(K, p')Ep} 

U {(K, pjiq')[(K, q')E q} 

u {(Au· u{f( u)/ v }, p'[[q') I ( ((c, v), p') E p /\ ((c,f), q') E q) 

v (((c,f), p') Ep /\ ((c, v), q') E q)}. 

For a justification of these self-referential definitions see Remark 1.22. 

3.17. Definition (Semantic environments). r = Stmv -fin P2 (typical elements are')'). 

3.18. Definition ( 1/'2, 0'!2). We define the denotational semantics 0'!2 of L 2 as 

0'!2=FixedPoint(1/'2), where 1/'2: (L2 - r - P2)- (L2 - r - P2) is given, for 

Fe L2 - r - P2, by 
(i) 1fr2(F)(a)( 'Y) ={(Ka, Po)}, and o/i(F)(E)( 'Y) = p0, with 

{

AO"· O"v:= e 

Au· [a]u 
K = 

a (c, v) 

(c, Au - [ e]u) 

if a= v:= e, 
if a E BExp, 

if a= c?v, 

if a= c!e. 

(ii) 1fr2(F)(s opt)( r) = o/2(F)(s)( y) op 1fr2(F)(t)( y) for op=:,+, [[. 

(iii) 1Ji'2 ( F)(µ.x[s ])( 'Y) = o/2(F)(s )( y{F(µ.x[s ]( 'Y )/ x} ). 

Similarly to Lemma 1.27 we have that 1/'2 is contracting. 

3.19. Examples 

0'!2[v := O]( y) ={(Au· u{O/v}, Po)} 

0'!2[v := 1; v := v + 1]( y) ={(Au· u{l/ v}, {(Au'· u'{CT'( v) + 1/ v}, Po>m 

0'! 2[c?vj[c!3](r) ={((c, v), {((c, Au· 3), Po)}), 

((c, Au· 3), {((c, v), Po)}), 

(Au· u{3/v}, Po)} 

0'J2[v := O; µ.x[ v := v + 1; x]] ={(Au· u{O/ v}, p)}, 

where p E P2 satisfies p ={(Au· u{u(v) + 1/ v}, p)}. 

3.4. Semantic equivalence of 0 2 and 0'!2 

The proof of the semantic equivalence of 0 2 and 0'!2 is essentially the same as in 
the previous section. Therefore, we only give a brief outline of how to proceed, 
leaving out the details of some definitions, omitting all proofs, and stressing the 
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(small) differences. We define o; = FixedPoint( <P;) and f0; = FixedPoint( 'P;) with 
<P; and P; defined as follows. Let <P;: (L2 - L1 - P2) - (L2 - .::1 - P2) be given 
by <P;(F)(E)(B) = { e}; if {(a, s', 8 1) E I'(s)(B) I a E Asg v (a E BExp 11 [a]u = tt)} = 0, 
then <P;(F)(s)(B) ={a}; otherwise 

<P;( F)(s )( 8) = U { u · F(s')( u )( 8') I ( b, s', 8') E J'(s )( 8) A [b ]u = tt} 

u LJ{uv:=e · F(s')(8')(uv:=e) I (v := e, s', 8') E I'(s)(8)}, 

for FE L2 - L1 - P2 , s E L2 and 8 E .::1 (Ll and I' can be defined similarly to 
Definitions 2.6 and 2.19). Let o/;: (L2 - Ll - P2) - (L2 - .::1 - P2 ) be defined by 

{ Po ifs= E, 
P;( F)(s )( B) = {(Ka, F(s')( 8')) I (a, s', 8') E J'(s )( 8)} otherwise 

(with Ka as in Definition 3.18) for FE L2 - Ll - P2 , s E L 2 , and 8 E .::1. 
The definitions of <P; and P; are somewhat more involved than their counterparts 

from Section 2. What is different here is that a syntactic basic step does not literally 
coincide with the semantic step that represents its meaning. In the previous section 
we had elementary actions a and c both as syntactic and semantic entities. Here 
we have syntactic basic steps v := e, b, c !e, and c?v, all of which are semantically 
represented in a different way. 

Similarly to the Definitions 2.24 and 2.30 we can define mappings 

():(L~1 - P2)- (L2- L1 - P2) and -:(L2- r- P2)- (L2- L1- P2), 

and prove 

o; = o~> and 9J; = ~2· 

Finally, we can compare o; and 9J; by recursively defining a suitable abstraction 
operator a: P2-+ P2 by a(p0)(u) = { e}, and, for p ¥- p0 , by 

a(p )(u) = LJ {f(u) · a(p')(f(u)) l<J. p') E p 11f E 2: - 2:} 

u U { u · a (p')( u) I (f, p') E p 11 (f E 2: - {ff, tt}) 11f( u) = tt}, 

if { (f, p') I (f, p') E p 11 (f E 2: - 2: v (f E 2: - {ff, tt} 11f( u) = tt))} ;t. 0, and by 

a(p)(CT) ={a}, 

otherwise. (For a justification of this self-referential definition see Remark 1.22.) In 
a (p )(CT) all pairs (K,. p') E p with KE 2: - {tt, ff} and K(u) =ff, or KE C x Var, or 
KE C x (2:-+ Val), are neglected. This corresponds with the restriction operator of 
Definition 2.33. A second effect of applying a is that it transforms a (branching) 
process p E P2 into a function a( p) E P2 = 2: - 1!J nc(A~), which yields, when supplied 
with an argument CT, a set of streams (in a sense the paths of p ). In this respect a 
is similar to the operator streams of Definition 2.33. Applying a has yet another 
effect. If fE2:-+2: and (f,p')Ep, then f(u)·a(p')(f(u))Ea(p)(u): the state 
transformation f is applied to the current state u, and the resulting state f( u) is 
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concatenated with a(p')(f(cr)), in whichf(a), being the new state, is passed through 

to a applied to p', the resumption off In this way, the effect of different state 

transformations occurring subsequently in p is accumulated. A simple example may 

illustrate this. Consider 

Then 

p=9Ll2[v:=l; v:=v+lll 

= {(Aa · <Tv:=J • {(Aa' · <T~:=<T'(v)+i. Po)})}. 

a(p)(a) = {(av:=i. a({(Aa' · CT~:=<T'(vJ+i. Po)})(av:=1))} 

= {(av:=I • CTv:=2• a(po)(av:=2)}} 

= {(av:=l • CTv:=2)}. 

Next, we extend a to a mapping a: (L2 -+ L1-+ P2)-> (L2-> L1-> P2) by putting 

for FE L 2 -+ ..1-+ P2 

a(F) = F" =As· Ao· a(F(s)(B)). 

We shall prove that 

'VFEL2-+..1-+P2 [cf>i(F")=(Pi(F))"]. 

Let FE L 2 -+ ..1 -> P2, s E L2 , 8 E Ll, and a EI be such that 

Then 

{(a, s', 8') E J'(s)(8) I a E Asg v (a E BExp 11 [all a= tt)} ;t. 0. 

cPi(Fa)(s )( 8)( a) 

= U {a· F" (s')(B')(a) I (b, s', 8') E J'(s )(5) A [bllu = tt} 

U LJ { CTv:=e • F" (s')( 5')( CTv:=e) I ( V := e, s', B') E I'(s )( 5)} 

= U {a· (a (F'(s')( 8') )(a)) I (b, s', 8') E I'(s )( 5') A [blla = tt} 

U LJ { CTv:=e • (a (F'(s')( 8'))( CTv:=e)) J ( V := e, s', B') E I'(s )( B')} 

=a( {(Ka, F'(s')( 8')) j (a, s', 8') E I'(s )( 8')})( a) (with Ka as above) 

=a ( P~(F)(s )( 8) )(a)= ( Pi(F) )" (s )( B)( a). 

The case that 4>i(F)(s)(8)(a) ={a} goes similarly. This proves 

'VFEL2-+..1-+P2 [cf>i(F")=('P'i(F))"]. 

Now it follows that ( 9LJ i)" = O'i. Collecting the results from above, we see o~> = ( ~i)", 
or 

'VsE L2'V8 E L1 [02[s(B)Il = a(9Ll2[sll(S))], 

with the obvious corollary, that 

'VsE L~1'VyeI' [02[sil=a(Qil2[sD(-y))]. 
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4. Conclusions 

We have developed a uniform method of comparing different semantic models 

for imperative concurrent programming languages. We have defined operational 

and denotational semantic models for such languages as fixed points of contractions 

on complete metric spaces, and have related them by relating their corresponding 

contractions. Here, we benefit from the metric structure of the underlying mathemati­

cal domains, which ensures the uniqueness of the fixed point of such contractions 

( Banach's theorem). It turns out that once this method has been applied to a certain 

(simple) language (L0 ), it can be easily generalized for more complex languages 

(L 1 and L2 ). This we consider to be the strength of this approach. In [18], this idea 

is further explored. There a general method is designed for deriving denotational 

models from transition system specifications that satisfy certain syntactic constraints. 

Appendix A: Mathematical definitions 

A.I. Definition (Metric space). A metric space is a pair (M, d) with Ma non-empty 

set and d a mapping d : M x M ~ [ 0, 1] (a metric or distance) that satisfies the 

following properties: 

(a) \;/ x, y E M [ d ( x, y) = 0 <:::> x = y), 

(b) Vx,yEM [d(x,y)=d(y,x)], 

( c) \;/ x, y, z E M [ d ( x, y) ~ d ( x, z) + d ( z, y)]. 

We call (M, d) and ultra-metric space if the following stronger version of property 

( c) is satisfied: 

(c') 'rfx,y, zE M [d(x, y)~max{d(x, z), d(z, y)}]. 

Please note that we consider only metric spaces with bounded diameter: the distance 

between two points never exceeds I. 

A.2. Examples. (a) Let A be an arbitrary set. The discrete metric dA on A is defined 

as follows. Let x, y E A, then 

d ( ) -{o if x = y, 
AX Y -

, 1 if x ¥- y. 

(b) Let A be an alphabet, and let A 00 =A* v Aw denote the set of all finite and 

infinite words over A. Let, for x E A 00
, x(n) denote the prefix of x of length n, in 

case length(x);;. n, and x otherwise. We put 

d(x, y) = 2 sup{nlxln)=y(n)}' 

with the convention that T"''=O. Then (A00 , d) is a metric space. 
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A.3. Definition. Let ( M, d) be a metric space, let ( xi); be a sequence in M. 
(a) We say that (x;); is a Cauchy sequence whenever we have 
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(b) Let x EM. We say that (x;); converges to x and call x the limit of (x;); whenever 
we have 

Such a sequence we call convergent. Notation lim;-ao X; = x. 

(c) The metric space (M, d) is called complete whenever each Cauchy sequence 

converges to an element of M. 

A.4. Definition. Let (M1 , d 1 ), (M2 , d2 ) be metric spaces. 

(a) We say that (M1 , d 1 ) and (M2 , d2 ) are isometric if there exists a bijection 

f: M 1 ---'? M 2 such that Vx, y E M 1 [d2(f(x), f(y)) = d 1(x, y)]. We then write M 1 = M2. 

When f is not a bijection (but only an injection), we call it an isometric embedding. 

(b) Let f: M 1 ---'? M 2 be a function. We call f continuous whenever for each 

sequence (x;); with limit x in M 1 we have that lim;-oo f(x;) = f(x). 
(c) Let A~ 0. With M 1 -'?A M 2 we denote the set of functions f from M1 to M2 

that satisfy the following property: 

Functions f in M 1 ---'? 1 M 2 we call non-distance-increasing (NDI), functions f in 

M 1 ---'? • M 2 with 0:;;;; e < 1 we call contracting. 

A.5. Proposition. (a) Let (M1 , d 1 ), ( M2 , d2 ) be metric spaces. For every A~ 0 and 

f E M 1 -'?A M 2 we have that f is continuous. 

(b) (Banach's fixed-point theorem.) Let (M, d) be a complete metric space and 

f: M ---'? M a contracting function. Then there exists an x E M such that the following 

holds: 

(1) f(x) = x (x is a fixed point off), 

(2) VyEM [f(y)=y~y=x] (xisunique), 
(3) Vx0 E M[limn~oo f(n)(x0 ) = x], where f(n+I l(xo) = f(f(n)(Xo)) andf(O)(Xo) = Xo • 

A.6. Definition (Compact subsets). A subset X of a complete metric space (M, d) 

is called compact whenever each sequence in X has a subsequence that converges 

to an element of X. 

A.7. Definition. Let (M, d), (Mi. d 1), ••• , (Mn, dn) be metric spaces. 
(a) With M 1 ---'? M 2 we denote the set of all continuous functions from M1 to M2. 
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We define a metric dF on M 1 ---+ M 2 as follows. For every f1, f2 E M1 ~ M2 

drU~, f2) =sup {d2U1(x), f:Jx))}. 
xc l\.11 

For A ;3 O the set M1 -+A M 2 is a subset of M 1 ---+ M 2 , and a metric on M1 -+A M1 
can be obtained by taking the restriction of the corresponding dF. 

(b) With M1 o · ··OM,, we denote the disjoint union of M1, ... , M,,, which can 
be defined as {1} x M1 u · · · u {n} x M,,. We define a metric du on M1 0 · · · 0 M,, 
as follows. For every x, y E M 1 0 · · · 0 M,, 

, -{dj(x,y) ifx,yE{j}xM;, 1~j~n, 
du(x,i)- h. · l ot erw1se. 

(c) We define a metric dp on M 1 x · · · x M,, by the following clause. 
For every (x1, •.. , x,,), (y1 , ••• , y,,) E M 1 x · · · x M,, 

dp((x 1 , ••• ,x,,), (y 1 , ••• ,y,,))=max{d;(x;,y;)}. 
l 

(d) Let 97',,c(M) =def{XIXs;M 11X is compact and non-empty}. We define a 
metric dH on r!1'0 c(M), called the Hausdorff distance, as follows. For every X, YE 
:JJ,,c(M) 

dH(X, Y) = max{sup{d(x, Y)}, sup{d(y, X)}}, 
xcX ye y 

d r d r I where d(x, Z) = e inCz {d(x, z)} for every Z s; M, x EM. In (l}c0 (M) = e {X X s; 
M 11 X is compact} we also have the empty set as an element. We define dH on 
;JJ co( M) as above but extended with the following case. If X rf:. 0, then 

(e) Let c E [O, oo). We define idc(M, d) = (M, c · d). 

A.8. Proposition. Let (M, d), (M1 , d 1), ••• , (M,,, d,,), dF, du, dp and dH be as in 
Definition A.7 and suppose that (M, d), (M1 , d 1), ••• , (M,,, d,,) are complete. We 
have that 

(a) (M1---+ M1, dp), (M1 -+A M2 , dp), 
(b) (M1 0· ··OM,,, du), 
(c) (M1 x · · · x M,,, dp), 
(d) (;JJ11cCM),dH), and (;JJc0 (M),dH) 

are complete metric spaces. If ( M, d) and ( M;, d;) are all ultra-metric spaces these 
composed spaces are again ultra-metric. (Strictly speaking, for the completeness of 
M1---+ M1 and M 1 -+A M 2 we do not need the completeness of M 1. The same holds 
for the ultra-metric property.) 
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The proofs of Proposition A.8(a), (b), and (c) are straightforward. Part (d) is 
more involved. It can be proved with the help of the following characterization of 
the completeness of the Hausdorff metric. 

A.9. Proposition. Let (PPc0 (M), dH) be as in Definition A.7. Let (X;); be a Cauchy 
sequence in PPc0 (M). We have 

~im X; = {lim X; IX; EX;, (x;); a Cauchy sequence in M}. 
1~CO 1-00 

The proof of Proposition A.9 can be found in [12] as a generalization of a similar 
result (for closed subsets) in (7) and (8). 

Acknowledgment 

We are much indebted to Jaco de Bakker, John-Jules Meijer, Ernst-Rudiger 
Olderog, and Jeffrey Zucker, authors and co-authors of the paper [ 4, 5, 3], respec­
tively, on which we have relied heavily. We are also grateful to Jaco de Bakker for 
his many comments and suggestions made during our work on this subject. We 
thank Pierre America for pointing out an error in the definition of guardedness 
(which caused us considerable trouble and therefore increased our insights). We 
acknowledge fruitful discussions on our work in the Amsterdam concurrency group, 
including Jaco de Bakker, Frank de Boer, Arie de Bruin, John-Jules Meijer, and 
Erik de Vink. Finally, we express our thanks to Dini Verloop, who has expertly 
typed this document. 

References 

[l] P. America and J.J.M.M. Rutten, Solving reflexive domain equations in a category of complete 
metric spaces, J. Comput. System. Sci. 39(3) (1989) 343-375. 

[2] K. Apt and G. Plotkin, Countable nondeterminism and random assignment, J. ACM 33 (1986) 
724-767. 

[3] J.W. de Bakker, J.N. Kok, J.-J. Ch. Meyer, E.-R. Olderog and J.l. Zucker, Contrasting themes in 
the semantics of imperative concurrency, in: J.W. de Bakker, W.P. de Roever and G. Rozenberg, 
eds., Current Trends in Concurrency, Lecture Notes in Computer Science 224 (Springer, Berlin, 
1986) 51-121. 

[4] J.W. de Bakker, J.-J. Ch. Meyer, E.-R. Olderog and J.l. Zucker, Transition systems, infinitary 
languages and the semantics of uniform concurrency, in: Proc. I 7th ACM STOC, Providence, RI 
(1985) 252-262. 

[5] J.W. de Bakker, J.-J. Ch. Meyer, E.-R. Olderog and J.I. Zucker, Transition systems, metric spaces 
and ready sets in the semantics of uniform concurrency, J. Comput. System Sci. 36 (1988) 158-224. 

[6] J.W. de Bakker and J.I. Zucker, Processes and the denotational semantics of concurrency, Inform 
and Control 54 (1982) 70-120. 

[7] J. Dugundji, Topology (Allen and Bacon, Rockleigh, NJ, 1966). 
[8] E. Engelking, General Topology (Polish Scientific Publishers, 1977). . . 
[9] N. Francez, C.A.R. Haore, D.J. Lehmann and W.P. de Roever, Semantics of nondetermm1sm, 

concurrency and communication, J. Comput. System Sci. 19 ( 1979) 290-308. 



222 J.N. Kok, J.J.M.M. Rutten 

[ l O] M. Hennessy and G.D. Plotkin, Full abstraction for a simple parallel programming language, in: 
J. Becvar, ed., Proc. 8th MFCS, Lecture Notes in Computer Science 74 (Springer, Berlin, 1979) 

108-120. 
[11] C.A.R. Hoare, Communicating Sequential Processes (Prentice Hall, Englewood Cliffs, NJ, 1985). 
[12] E. Michael, Topologies on spaces of subsets, Trans. AMS 7l (1951) 152-182. 
[ 13] R. Milner, A Calculus a_( Communicating Systems, Lecture Notes in Computer Science 92 (Springer, 

Berlin, 1980). 
[ 14] M. Ni vat, Infinite words, infinite trees, infinite computations, in: J. W. de Bakker and J. van Leeuwen, 

eds., Foundations of Computer Science III.2, Mathematical Centre Tracts 109 (1979) 3-52. 
[15] G.D. Plotkin, A powerdomain construction, SIAM J. Comput. 5 (1976) 452-487. 
[16] G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Comp. Sci. 

Dept., Aarhus Univ., 1981. 
[ 17] G.D. Plotkin, An operational semantics for CSP, in: D. Bj111rner, ed., Formal Description of Program­

ming Concepts II (North-Holland, Amsterdam, 1983) 199-223. 
[18] J.J.J.M. Rutten, Deriving denotational models for bisimulation from structured operational seman­

tics, in: Proc. JFIP TC2 Working Conference on Programming Concepts and Methods (1990). 
[19] D.S. Scott, Domains for denotational semantics, in: M. Nielsen, E.M. Schmidt, eds., Proc. 9th 

IC ALP, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) 577-613. 


