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We show that some well-known rules in a Hoare-style proof system for total 

correctness of recursive procedures can interact in such a way that they yield 

incorrect results. The problem is connected to the quantification scope of certain 

variables in the proof rules. By defining some restrictions on the applicability of the 

rules a system is obtained that is sound and complete. However, the completeness 

proof differs substantially from the original one. This technique is also applied to 

dynamic logic, where we show that the original proof rules for recursive procedures 

can be replaced by simpler and more natural ones, and that it is not ncessary to 

extend the programming language in order to arrive at a sound and complete proof 
system. 1 1990 Academic Pre~~. lni.: 

I. INTRODUCTION 

A vast field of research in theoretical computer science is the formalisa­
tion of program correctness. This research has resulted in a variety of 
programming logics, of which we mention: Hoare logic (Hoare, 1969 ), 
dynamic logic (Hare!, 1979 ), and temporal logic ( Pnueli and Manna, 1982 ). 
In Hoare logic, one of the formalisms that we shall use, a program is seen 
as state transformer: A state assigns a value to each program variable and 
a program transforms an initial state (before the execution) into the corre-
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sponding final state (after the execution). One specifies the input/output 
behaviour of programs by means of triples 

{p}S{q}, 

where p and q are formulas of first-order predicate logic and S denotes a 
program. The formula p is called the precondition of S: it specifies a set of 
initial states. The corresponding set of final states is denoted by the formula 
q, which is called the postcondition of S. 

There are two common ways to interpret these Hoare triples. One inter­
pretation of { p} S { q} is 

If the execution of Sis a state satisfying p terminates, it does so in 
a state satisfying q. 

This gives rise to what is called partial correctness. On the other hand, total 
correctness uses the interpretation: 

Every execution of S starting in a state satisfying p terminates in 
a state satisfying q. 

Note that the total correctness interpretation additionally guarantees the 
termination of S when started in a state satisfying the precondition p. 

The first subject of this paper is a Hoare-style logic to reason about the 
total correctness of programs. We shall be concerned with a proof system, 
i.e., a set of axioms and rules by which one can derive correctness formulas. 
(In this paper we shall use the term "correctness formula" to refer to either 
a first-order formula or a Hoare triple as described above). For such a 
proof system two concepts are especially important: A proof system is 
called sound if every correctness formula that can be derived from it is 
indeed valid, i.e., if it really describes the behaviour of the corresponding 
program. (Of course, this should be measured against some formally 
defined semantics of the programming language.) On the other hand, a 
proof system is called complete if it can derive any valid correctness 
formula. 

The programming language we consider will contain recursive, 
parameterless procedures. The basic statements of this language are 
assignments and procedure calls. Complex statements are constructed from 
these basic ones by sequential composition, conditional, and the while 
construct. 

In Sokolowski ( 1977) a rule for proving the total correctness of recursive 
procedures is presented Apt ( 1981) however, proved that this rule does not 
enable one to derive all valid correctness formulas. In addition one needs 
s?me rules which formalise the reasoning about certain invariance proper­
ties of procedure calls, properties stating that the initial value of a variable 
that is not used in the procedure equals its final value (the value after the 
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execution of the particular procedure). The resulting proof system, presen­

ted in (Apt, 1981 ), however, turns out to be unsound, that is, one can derive 

from it correctness formulas which are not valid. The unsoundness of the 

system is due to the interaction of the recursion rule, the rule which enables 

one to reason about procedure calls, on the one hand, and those rules 

which formalise the invariance properties of these calls on the other hand. 

It turns out that the problem is due to the fact that the two sets of rules 

need different interpretations with respect to the scope of the implicit 

quantification applied to free variables. 

We will formulate some restrictions on the applicability of those rules 

which can interact in an incorrect way and prove that the resulting system 

is sound. Furthermore we will prove that even with these restrictions the 

resulting proof system is still complete. The proof of the completeness 

theorem differs from the one given in (Apt, 1981) because in the proof 

given there, our restrictions are not satisfied. As the proof in (Apt, 1981) 

of the completeness theorem for total correctness follows the same pattern 

as the one for the proof system for the partial correctness for the same 

programming language, we may conclude that reasoning about total 

correctness differs from partial correctness in a substantial way which has 

not been recognised till now. 

After that we show that the techniques mentioned above can also be 

applied fruitfully to dynamic logic (Hare!, 1979) another formalism to 

reason about the correctness of programs. In this logic the quantification 

scope can be mentioned explicitly. With our techniques, it is possible to 

give simpler and more natural rules for recursive procedure than the ones 

given in (Hare!, 1979 ). In particular, in our system it is not necessary to 

artificially extend the programming language. 

Our paper is organised as follows: In the following section we present 

the programming language and define its semantics. In the third section we 

give the proof system as presented in (Apt, 1981 ), and analyse its unsound­

ness. Then, in Section 4, we formulate some appropriate restrictions on the 

applicability of those rules which may interact in an incorrect way and 

prove that these restrictions give rise to a sound proof system. The com­

pleteness of this new system is proved in Section 5. In Section 6 we apply 

our technique to dynamic logic and Section 7 presents some conclusions. 

2. THE PROGRAMMING LANGUAGE 

In this section we present the programming language which is the subject 

of our study. We shall give a formal definition of its semantics. We con­

clude this section by formally defining the total correctness interpretation 

of correctness formulas. 
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2.1. Syntax 

We fix a set L of function and predicate symbols (and containing the 
equality symbol), a set Var of variables, typical elements of which are 
denoted by x, y, :::, ... , and a set Proc of procedure identifiers with typical 
element P. A term of L is a construct built up from variables and the func­
tion symbols of L. Terms are denoted by t, .... A boolean expression of L is 
a construct built up from the terms, predicate symbols of L, and the usual 
logical connectives like v , A , -->, and 1. Boolean expressions are 
denoted by b, .... 

First-order predicate logic formulas of L are denoted by p, q, ... . By 
FV(p) we denote the set of variables occurring free in the formula p. By 
p(x 1 , •• .,x,,) we mean a formula p such that [x 1, •.• ,x,,}c:;FV(p). A 
sequence of variables x 1 , ••• , x 11 will sometimes be written as .\'. Equally we 
shall sometimes denote a sequence t 1, ••• , t,, of terms by{. Now p[t/."1:] will 
denote the result of the simultaneous substitution of t, for the free 
occurrences of x 1, assuming that the x 1 are distinct. When it is clear from 
the context which variables are substituted for, we sometimes abbreviate 
p[fj.\'] to p(t} We shall denote syntactic equality by the symbol "'= ". 

We define the class of statements by means of the grammar: 

S : : = P I x : = t I S 1 ; S 2 I if h then S 1 else S 2 fi I while h do S od 

By Var(S) we denote the set of variables occurring explicitly in S. 
Programs are of the form: 

<P1 <--SI, .•. , pll <-- Sii i S), 

where all the P, are distinct, and only the procedure identifiers P 1 , ••• , P,, 
occur in S 1 , ••• , S,, and S. The first part of a program consists of declara­
tions, associating with each procedure identifier P1 a statement S 1, which is 
called the hody of the procedure P,. The second part of a program is called 
its initial statement. Execution of the program means execution of its initial 
statement in the context established by the declarations. Note that 
occurrences of P1 in Si, 1 ~ i,j ~ n, give rise to the phenomenon of 
(mutual) recursion. 

Just for the sake of convenience we shall restrict ourselves in this paper 
to programs of the form < P <-- S0 IS). Furthermore we shall drop the 
declaration P <-- S0 and just write S, assuming the declaration P <-- S 0 to be 
fixed. It is a straightforward, but tedious task to generalise the results of 
this paper to programs with more than one procedure. 

2.2. Semantics 

An interpretation I of L consists of a set ID, which is called I's domain 
of values, and a mapping which associates an operation on In with each 
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function symbol of L and a relation on I 0 with each predicate symbol of 
L. Throughout this paper we shall mostly assume a fixed interpretation /. 
We denote the elements of In by d, .... 

We define the set I:(!) of states (over /) by 

I:(J) = Var ~In. 

Typical elements of I:(I) are denoted by er, .... 
By I:(/).L we denote the set I:(/) extended with some new element ..L 

(pronounced "bottom"). We assume the following partial ordering on 
I:(l) .L: For er 1, er 2 EI:(/) .L we put 

This ordering turns E(I) .L into a complete partial order. The least upper 
bound of a sequence (a 11 ) 11 of elements of I:(/).L such that a 11 ~a11+ 1 will be 
denoted by LJ,, (Jn· 

Given a EE(/) and a term t, a(t) will denote the result of evaluating t in 
the state a (so a(t)Elnl· For a sequence i of terms, a(t) denotes the 
sequence of values cr(ti), .. ., cr(t 11 ). 

Given a first-order formula pin L and a state er EE(/), the truth of p in 
a with respect to the interpretation /, denoted by a f= / p, is defined as 
usual. We shall write f= / p if a f= / p for every er EI:(/). 

Let a EI:(/), a a sequence of elements of I 0 , and x a sequence (of the 
same length) of distinct variables, then we define cr{d/x} E.l:(I) such that 

{ - } {di 
(J dj.~ (y) = ( 

a y) 

if y::x,. 

otherwise. 

To construct a semantics of the programming language as defined in the 
previous section it is convenient to extend the language by the following 
statements: skip, execution of which consists of doing nothing, and n, 
execution of which never terminates. 

DEFINITION 2.1. We define for an arbitrary program S the semantic 
function 

transforming any initial state to the corresponding final state, as follows 
(we assume the declaration P +-- S0 ): 

M 1(S)(..L) = ..L for arbitrary S. Assume from here on that <J #- ..L. 

• M 1 (x := t)(a) =a{ a(t)/x} 

• M1 (skip)(cr)=o-
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MAil)(<T) = ..L 
M 1 (P)(<T) = LJk M 1 (S )ik 1)( <T ), where S ~1° 1 = Q, S &k + 1 l =So [S6k 1 / P] 

and where S[S'/P] denotes the result of replacing every occurrence of Pin 
S by S'. 

M 1(S 1 ; S2 )(a) = M1(S2 ) (M1(S1 )(a)) 

M 1(if b then S 1 else 5 2 fi)(a)=M1(Si)(a) if <Tp1b; =M1(S2 )(0') 
otherwise 

M 1 (while b do S od)(<T)=LJkM1 (S 1k})(<T) where 

S :o l =if b then Q else skip fi 

S l k + 1 : = if b then S; S : k} else skip fi. 

This definition is inductive on the complexity of statements, measured as 
follows: We define C(S) to be a triple of natural numbers, and we order 
these triples lexicographically. The first component of C(S), denoted by 
Ci(S), is 1 if P occurs in Sand is, 0 otherwise. The second component of 
C(S), denoted by C 2(5), gives the maximal nesting level of while 
statements occurring in S, and the third component of C(S) give the length 
of S. Now for the semantic definition of a procedure call we have a 
decrease in the first component, since C1{P)= 1, while C 1(S6k 1)=0. For 
the semantic definitions of the sequential composition and the conditional 
we have a decrease in the third component, while the first two components 
do not increase. Finally, for the while statement we have a decrease in the 
second component, while the first one does not increase. 

The well-dcfinedness of this semantics follows from the following 
propositions: 

PROPOSITION 2.2. For any natural number k EN, f(1r any a EI:(/), and 
for any statement S we have 

where we assume S :q to be defined with respect to some fL'(ed boolean 
expression b. 

Proof Induction on k. I 

PROPOSITION 2.3. For arbitrary statements S, S1 , and S 2 such that 
1\I1(Si)(a) I;; M1(S2)(a) for every <TE I:(!), we have 

for every a E L(I). 
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Proof Induction on the complexity of S. I 

PROPOSOTION 2.4. For all k EN and.for all (J E £(/), we have 

M,(Sbk 1)(a) i;; M1 (S~k+ 1 ')(a). 

Proof Induction on k, using Proposition 2.3. I 

135 

We conclude this subsection with some propositions that will be used in 
the proofs of the soundness and the completeness theorem. 

PROPOSITION 2.5. For an arbitrary interpretation I, a state a E £(/), a 
sequence i of terms, and a sequence -~ of distinct variables, we have 

iff (J { a(l)j.~} I= Ip. 

Proof Induction on the complexity of p. I 

PROPOSITION 2.6. Let I he an arbitrary interpretation, p a .formula, and 
let a, a' E .E(I) such that CJ agrees with 0" 1 on the variables occurring .free in 
p. Then 

Proof Induction on the complexity of the formula p. I 

PROPOSITION 2.7. Let I he an interpretation, Sa program, Y a sequence 
<~(variables such that ji n Var(S, S0 ) = 0, and d a sequence of data in In· 
Let a E £(/),put a'= M 1 (S)(CJ), and suppose CJ'#- ..L. Then 

0" 1 { djy} = M 1(S)( CJ{ d/ji }). 

Informally speaking, this means that a program S only depends on and 
accesses the variables that occur explicitly in S or in So. 

Proof Induction on the complexity of S. I· 

LEMMA 2.8. For any statement S and any state CJ EI:(/) we have 

M 1 (S)(CJ) = LJ M,(S[S6k) /P])(CJ). 
k 

Proof Induction on the complexity of S. The following property of the 
ordering on .E(I)J_ is heavily used: If (J = uk(Jk> where the (Jk form a non­
decreasing sequence, then there exists a k 0 such that CJ= O"k for all 

k ~ko. I 
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PROPOSITION 2.9. For any state (J EI(!), we have 

Prool Applying Lemma 2.8 to S 0 we get 

M,(S0 )(cr) = lJ M1(So [S(1k> /PJ)((J) 
k 

= LJ MI ( s 6k + i ) ) ( (J) 
k 

= LJ MI ( s bk ) )( (}" ) 
k 

2.3. Total Correctness 

Correctness formulas are triples of the form { p} S{ q }, where p and q are 

first-order formulas of L. We shall interpret such correctness formulas with 

respect to so-called arithmetical interpretations (Hare!, 1979 ), as defined in 

DEFINITION 2.10. Let L + be the set of symbols of L extended with some 

one-place predicate "nat" and with the usual function and relation symbols 

for describing the arithmetic of the natural numbers (like addition, multi­

plication and comparison). An interpretation I of L + is called arithmetical 

if the following conditions are satisfied: 

In contains the standard model of Pea no arithmetic, that is, (a 

copy of) the set N of natural numbers. 

The predicate nat is interpreted in such a way that for arbitrary 

·EI(!), 

(J F= 1 nat(x) iff cr(x)EN. 

The arithmetical function and relation symbols in L + are given the 

standard interpretation, i.e., they are mapped to the standard operations on 

the natural numbers in In. 

There exists a formula of L + defining some coding of the finite 

sequences of In· More precisely: There exists an injective mapping f from 

the set of finite sequences of elements of ID to ID itself, and a formula 

if>(x, y, n) which represents this mapping in the following sense: For 

arbitrary er E .E(I) we have er F= / if>(x, y, n) iff, for some sequence di, ... , dk in 

D1J( <di, ... , dk)) = a(x), I,;:; cr(n),;:; k, and (J(y) = d,, 111 >. 
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Arithmetical interpretations are important for the following reasons: 
First, the basic pattern in reasoning about termination involves a well­
foundedness argument, that is, with the body of a procedure or while 
statement we associate a formula p(x), where the variable x ranges over 
some set on which some well-founded ordering is defined, termination of 
the particular procedure, or while statement is then proved by showing 
that p(x) holds initially, and that p(x) holds after every execution of the 
corresponding body for some smaller value of x. It is always possible to 
take the set of natural numbers with the standard ordering for this 
purpose, and by requiring that this set is contained in the interpretation /, 
we can carry out the above termination argument in a formal way. 

The second reason is that, to prove completeness, the interpretations we 
consider must have sufficient expressive power to represent the notion of an 
execution in our assertions. In order to do this, we must be able to reason 
about natural numbers and about sequences of data elements. 

In any case, it is shown in (Apt, 1981) that even for a language without 
recursive procedures (but with while statements) there exists no adequate 
proof system for total correctness that is sound for arbitrary (nonarithmeti­
cal) interpretations. 

Now we define the truth, or validity of a correctness formula {p} S{q} 
with respect to some arbitrary interpretation /: 

DEFINITION 2.11. Let I be an arbitrary interpretation. For <r EI:(/) we 
write <r f= / { p} S { q} iff <r f= / p implies that there exists a <r' # .l such that 
<r'=M1(S)(<r) and <r' f= 1 q. We write f= 1 {p} S{q} iff for all <rE.E(/) we 
have <r F1 {p} S{q}. 

Although we have defined f= / for any arbitrary interpretation /, we shall 
be interested in it only if I is arithmetical. 

3. THE PROOF SYSTEM G0 

In this section we give the proof system G0 as presented in (Apt, 1981 ). 
We give two examples of derivations in this proof syst~m, ~f which one 
leads to a valid correctness formula and the other to an mvahd one. 

DEFINITION 3.1. The proof system G 0 consists of the following axioms 

and rules: 

Assignment: {p[t/x]} x := t{p} 

{p} S 1 {r} {r} S2{q} 
Sequential composition: { p} S 1 ; s 2 { q} 
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Conditional: 

Iteration: 

Recursion: 

Invariance: 

Elimination: 

Substitution: 

Consequence: 

AMERICA AND DE BOER 

{pAb}Si{q} {pA 1b}S2 {q} 

{ p } if b then S 1 else S 2 fi { q } 

{p(m+l)}S{p(m)} p(m+l)--+b p(0)--+1b 

{ 3mp(m)} while b do Sod { p(O)} 

provided m ~ Var(S) u Var(S0 ). 

1p(O) {p(n)} P{q} f- {p(n+ !)} S0 {q} 

{3np(n)} P{q} 

provided n ~ FV(q) u Var(S0 ). 

{p} P{q} 
{p /\ r} P{q /\ r} 

provided FV(r) n Var(S0 ) = 0. 

{p}P{q} 
{3zp} P{q} 

provided z ~ FV(q) u Var(S0 ). 

{p}P{q} 

{p[y/z]} P{q[y/z]} 

provided y, z~Var(S0 ). 

p--+p1 {pi}S{qi} q1--+q 

{p}S{q} 

The variables n and m occurring in the rules for recursion and iteration 
are supposed to range over the set of natural numbers, that is, p(n ), for 
example, is an abbreviation of p(n) /\ nat(n ). 

The premise { p(n)} P{ q} f- { p(n + l)} S0 { q} of the recursion rule states 
that it is possible to derive {p(n+ 1)} S0 {q} if one takes {p(n)} P{q} as 
an assumption. The intuition behind the recursion rule is that the value of 
the variable n in a state satisfying p(n) gives an upper bound to the number 
of nested calls necessary to complete the computation of the procedure P 
starting from this state. 

The notion of derivability is defined relative to some interpretation: 

DEFINITION 3.2. Let I be an arithmetical interpretation. We write 
f- 1 { p} S { q} to denote that the correctness formula { p} S { q} is derivable 

from the axioms and rules of the proof system, making use of the (first­
order) theory of the interpretation I in the iteration, recursion, and conse­
quences rules. (In other words, every assertion p such that f= / p can be 
used as an axiom.) 
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Let us give an example of a derivation which illustrate the use of the 
recursion, elimination, invariance, and the substitution rules. Consider the 
well-known recursive procedure which calculates the factorial of the 
number stored in the variable x: 

P+-ifx=O 

theny := 1 

else x := x - 1; P, x := x + 1; y := y x x 

fi 

We shall prove that this procedure indeed calculates the factorial of x, 
and moreover that the value of x after the execution equals the initial value 
of x. For the latter purpose, we use the variable z, which does not occur 
in the program, as a "freeze variable." Since we know that the program 
does not change the value of z (see Proposition 2.7), we can use z to 
remember the value of x in the initial state. Therefore, we want to derive 
the correctness assertion 

{x=z~O} P{x== /\ y=x!}. 

We will do so by first proving that 

{ x =.: = n - 1 ~ 0} P{ x = = /\ y = x!} f-- / 
{ x = z = (n + 1 )- 1 ~ 0} S0 { x = = /\ y = x! }, 

where S0 is the body of the procedure P, as defined above. We take an 
arbitrary arithmetical interpretation I, of which we shall only use the valid 
formulas that deal with natural numbers. Let S = x := x- 1; P; x := x + 1; 
y := y x x and reason as follows (within the proof system): 

1. { x =.: = n - 1 ~ 0} P{ x =.: /\ y = x! }, our assumption. 

2. {x=u=n-l~O}P{x=u/\y=x!}, from 1 by the substitution 
rule. 

3. { x = u = n - l ~ 0 /\ u = z - 1 } P { x = u /\ y = x ! " u = z - 1 } , from 
2 by the invariance rule. 

4. {x=u=z-1 =n-1 ;:::O} P{x=.:-1 /\ y=x!}, from 3 by the 
consequence rule. 

5. {3u(x= u=::-1 =n-1 ;:::O)} P{x=z-1 "y=x!}, from 4 by 
the elimination rule. 

6. { x = z - 1 = n - 1 ~ 0) } P { x + 1 = z /\ y x ( x + l ) = ( x + 1 ) ! } , from 
5 by the consequence rule. 
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7. {x-l=z-l=n-l>O}S{x=:Ay=x!}, by applying three 
times the assignment axiom and the rule for sequential composition, 
using 6. 

8. {x =.? = (n + 1) - 1 > 0 A 1 x = 0} S{ x =.? A y = x! }, from 7 by 
the consequence rule. 

9. {x=.?=(n+l)-1>0Ax=O}y:=l{x=:Ay=x!}, by the 
assignment axiom and the rule of consequence. 

10. {x=:= (n+ 1)-1 >0} S0 {x=z A y=x!}. by applying the rule 
for the conditional to 8 and 9. 

In addition we have f= 1 1 (x = z = 0 - I > 0 ). so applying the recursion 
rule yields 

{3n(x=z=n-1 ~0)} P{x=z Ay=x!}. 

Now f= 1x =: ~ 0---+ 3n(x =: = n - 1~0 ), so applying the consequence rule 
gives us the desired result. 

Note how we have used the rules for substitution, invariance, and 
elimination to change the context in which the procedure P is called. More 
precisely, we have renamed the freeze variable z, in order to call the proce­
dure P for a different value of x. 

The above derivation might give the impression that all works well. 
However, we shall now give an example of a derivation the conclusion of 
which is invalid (with respect to any interpretation), thus establishing the 
unsoundness of the system G0 . Consider the following declaration: 

P .-- P; P. 

(The simplest example would be P +- P, but the above example is clearer 
because it has P ;;!= S0 .) It is obvious that every computation of P diverges, 
so the correctness formula 
{true} P{ true}, stating that every computation of P terminates, is invalid. 
Nevertheless, the following derivation establishes the derivability of 
{ true } P {true } : 

1. {n>O} P{true}, assumption. 

2. { 3n(n > 0)} P{ true}, by the elimination rule. 

3. {true} P{ true}, by the consequence rule. 

4. {3n(n>O)}P;P{true}, by applying the sequential composition 
rule to 2 and 3. 

5. {n+ I >0} P; P{true}, by the consequence rule. 

6. { 3n(n > 0)} P {true}, by applying the recursion rule to l -5 (Note 
that f= 1 1(0>0).) 

7. {true} P{true}, by the consequence rule. 
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Note that in the first and last application of the consequence rule we made 
explicit use of the fact that the variable n ranges over the natural numbers, 
and that > denotes the usual notion of "greater than." 

To understand what went wrong in this derivation we shall investigate 
where exactly a formal justification breaks down. Establishing soundness 
consists of proving that, for every arithmetical interpretation I and for 
every correctness formula {p} S{q}, if f- 1 {p} S{q} then f=,{p} S{q}. 

Usually one proves the soundness of a proof system by first showing that 
the axioms are valid and then that the validity of the premisses of an 
arbitrary rule implies the validity of its conclusion. But with respect to the 
present proof system one runs into the difficulty that the recursion rule is 
really a metarule. To overcome this problem we follow the strategy 
presented in (Apt, 1981) of transforming the proof system into an ordinary 
one, and reducing the problem of proving the soundness of the original 
system to proving the soundness of its transformed version. 

We shall call the transformed system K. This system manipulates correct­
ness phrases of the form cP ..... 'P, where cP and 'Pare (possibly empty) sets 
of correctness formulas. 

DEFINITION 3.3. The proof system K is defined as follows: 

For each axiom <P of G0 , add the axiom cP-+ <P to K. 

For each rule 

of G0 , except for the recursion rule, add the rule 

to K. 

cP-+<P1.···•<P11 
cf>-+<Pn+I 

Finally add the following rules and axioms to K: 

cP ..... -, p(O) cP, {p(n)} P{q}-+ {p(n+ l)} S0 {q} 
<P-+ {:lnp(n)} P{q} 

provided that n does not occur free in <P, S 0 , or q, 

(cf>-+ </>1 · · · cJ>-+ <Pn)/(cJ>-+ <P1, ... , <P11) 

cP ..... <P, for every <PE cfJ. 

Let f- f cP ..... If/ denote the derivability of the correctness phrase <P-+ 'Pin 
K making use of the additional axioms cfJ' ..... p, for any first-order formula 
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p such that f= / p. f- 7° ljJ will now denote the derivability of the correctness 
formula ljJ in G0 making use of the first-order theory of I as additional 
axioms. We shall write <P f- 7° i/J to denote that i/J can be derived in the 
proof system G0 using as axioms the elements of <P (in addition to the first­
order theory of I). 

LEMMA 3.4. For any arithmetical interpretation I and any correctness 
phrases of the form <P-+ i/J, where i/J is a (single) correctness formula, we have 

implies f- f <J> --> i/J. 

Proof A simple induction of the length of a derivation for <J> f- 7° i/J. I 
It follows that for any arithmetical interpretation I and any correctness 

formula <ft, 

implies f- f 0 --> i/J. 

Thus, given a definition of validity for correctness phrases which agrees on 
correctness formulas with Definition 2.11, the soundness of K implies the 
soundness of G0 . 

We next look at two ways to interpret the correctness phrases. In either 
way, however, the system K will turn out to be unsound. 

First consider the following way to interpret correctness phrases: For an 
arbitrary interpretation I we define 

iff F= / <J> implies F= / 'JI, 

where F= / <P iff F= / </; for all <PE <J>. 

This definition, however, will make the recursion rule unsound: Consider 
the declaration P +-- P; P and take p(n) = n > 0, q =true. Take some 
arbitrary arithmetical interpretation I, then f= 1 1(0>0) and 

f=, {p(n)} P{q}-+ {p(n+ I l} S0 {q}, 

because it is not the case that f= 1 {p(n)} P{q}: For any state (JEE(/) such 
that (J(n)>O we have <r f= 1 p(n), but nevertheless M 1(P)((J)= _L Therefore 
the premises of the recursion rule are valid. However, it is not the case that 
f= 1 {3np(n)} P{q} (note that a f= 1 3np(n) for every (JEL(/)). 

The unsoundness of the recursion rule with respect to this interpretation 
is due to the fact that the variable n is universally quantified at both sides 
of the implication sign independently, so that it does not retain its value 
over the implication. 
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This suggests that one should define the validity of a correctness phrase 
as 

iff a I= / cf> implies <r I= / 'P for all <r EI:(/), 

where we define a I= / cf> iff a I= / r/; for all r/J E <fJ. 
This second way to interpret correctness phrases will, however, make the 

elimination rule unsound: Take the same declaration for P as above; then 
for any arithmetical interpretation I we obviously have 

F= / { n > 0 } P { true} ~ { n > 0 } P { true } , 

but it is not the case that 

I=, {n>O} P{true} ~ {3n(n>0)} P{true}. 

To see this take a a E E(I) with <r(n) = 0. Then <r I= / { n > 0} P{ true}, 
because a !;t=,n>O, but a fit=, {3n(n>0)} P{true} because a f= 1 3n(n>0) 
and P does not terminate. 

This analysis suggests the following solution: Introduce a set Count of 
variables ranging over natural numbers. Interpret such variables as 
described in the second case above, i.e., they are interpreted as being 
universally quantified, the scope of the quantification being the correctness 
phrase in which they occur. The other variables are interpreted as being 
universally quantified at both sides of the implication sign independently. 
We shall not allow variables of this set Count to occur in programs, to be 
quantified over by the elimination rule, nor to be substituted for in the 
substitution rule. On the other hand, only variables of the set Count are to 
be used in the recursion rule to establish termination of the particular 
procedure. This solution we shall work out in the following section. 

4. THE PROOF SYSTEM T 

The new proof system is defined by adding some restrictions on the 
applicability of some rules of the system G0 , as described in the previous 
section. 

Let Count be a set of variables ranging over the natural numbers. 
Variables of this set will be called counter variables. We do not allow 
counter variables to occur in programs. 

DEFINITION 4.1. The proof system T consists of the same axioms and 
rules as the proof system G0 , but for the following restrictions: 

ITERATION RULE. The variable m occurring in the rule, used to establish 
termination of the iteration construct, may not he a counter variable. 
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RECURSION RULE. The variable n used to establich termination of the 
procedure P must be a counter variable. 

ELIMINATION RULE. The quantified variable - may not he a counter 
iiariahle. 

SUBSTITUTION RULE. Let y and z he the iiariables such that y is sub­
stitutedfor z in the conclusion of the rule. Then we require that y, z ~Count. 

Note that the derivation given in the previous section to establish the 
unsoundness of the system G0 is not a correct derivation in the system K, 
because the variable n must be an element of Count for the recursion rule 
to be applicable, but then application of the elimination rule is not allowed. 

4.1. Soundness 

In this subsection we prove the soundness of the system T. Let K' be the 
proof system which manipulates correctness phrases as described in 
Section 3, but now generated from T instead of G0 . To be able to reduce 
the problem of proving the soundness of T to that of K' we first have to 
define the notion of validity for correctness phrases. 

DEFINITION 4.2. Let <P be a set of correctness formulas such that no 
counter variable occurs free in r/J, for any r/J E </J, and let I be an arithmetical 
interpretation. We define 

I= I <P iff I= I r/J for all r/J E </J. 

DEFINITION 4.3. For any natural number k EN, let k be a constant 
term in the first-order language denoting k, that is, a( k) = k for any state 
a. Let n 1, •• ., n1 be all the counter variables occurring free in the correctness 
phrase <P-+ '!'. If k 1 , •• ., k, EN, then by [k 1 , •• ., kifn 1 , •• ., n1 ], abbreviated to 
[l<./ii], we denote the simultaneous substitution of k; for n;. More precisely, 
with ( { p} S { q} )[l<./n] we denote { p [l<.jn]} S { q[k/n] }, and with <P [l</n] 
we denote { r/J[l</n] I <PE <P }. Now for any arithmetical interpretation I we 
define 

iff for all !( in N I=, </J[l<./n] implies I=, 'l'[k/n]. 

Note that the notation I= / is used to denote both the truth of a correctness 
formula and that of a correctness phrase. The following proposition, 
however, states that this interpretation of correctness phrases agrees on 
correctness formulas with the interpretation as given in Definition 2.11: 
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PROPOSITION 4.4. For any arithmetical interpretation I and for any 

correctness formula [ p} S { q} we have 

f=I[p}S{q] iff for all k in N f= / { p [k./il]} S { q[l{/ii] } , 

where 11 consists of all the counter variables occurring free in { p] S { q}. 

Proof: ( =:> ) Let a f= 1 p[K./11]. then by Proposition 2.5 we have a 1 f= / p, 

where a 1 =a{k/i1}. Now if a'1 =M1(S)(a,), then a'1 f= 1 q, because 

f=i{p}S{q}. On the other hand, if we put a'=M1 (S)(a), then by 
Proposition 2.7 we get 

a',= M 1(S)(a,) = M 1 (S)(a{K/ii}) = rr'{/{/Fi} 

(note that rl n Var(S) = 0). Applying Proposition 2.5 again, we get 

a' f= / q[l{/11]. 
( <=) Let a f= 1 p and let furthermore a(n;) = k; for i = !, ... ,I. Then by 

Proposition 2.5 we have a f= / p[k/il], because a(k;) = a(n; ), so that 
a{a(k)/ii}=a. So for a'=M 1 (S)(u) we get a' f= 1 q[l{/ii]. Because 
n;~Var(S) we have a'(n,)=a(n;)=k; (this is implicit in Proposition 2.7). 

Therefore we can apply Proposition 2.5 again to get rJ' f= 1 q. I 

We prove the soundness of the recursion and the elimination rule in 

separate lemmas: 

LEMMAS 4.5 (Soundness of' recursion rule). Let I he an arithmetical inter­

pretation and <Pa set of' correctnessf(mnulas. Suppose that f= / <P - 1p(O) 
and 

f= 1 cP, [p(n)J P{q}- \p(n+ I)) S0 {q}. 

Thcn 

f= 1 <P- {3np(n)} P{q}, 

proPided n ~ FV( cP, q ). 

Proof: Let n 1 , ••• , n1 be all the counter variables occurring free in 

</J - { 3n p(n)} P{ q }. Let k,, ... , k 1 EN such that f= / <P[l{/ii]. It is not 
difficult to see that af= 1 (3np(n))[k/ii] iff there is a mEN so that 

a f= / p(m )[k/ii] (note that this only holds in arithmetical interpretations). 

From this it follows that 

f= / { (3n p(n))[k/ii]} P{q[k/ii]} 

F= / { p(m)[k/ii]} P{ q[l{/fi] }. 

iff for all m E N 
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We now prove that for all m EN, 

f= / {p(m)[k/ii]} P{q[k/ii]} 

by induction on m: 

m = 0. By the hypothesis f= / <P--+ 1 p(O ), we have O' F=, 1 p(O) [l</ii] 
for every a E .E(J), so 

FI {p(O)[k/ii]} P{q[l{/fi] }. 

m>O. We know that n~FV(<P) so that n~{n 1 , ... ,n1} and 
f=:,<P[li:/ii][m-1/n]. Therefore, from f= 1 <P, {p(n)}P{q}-.{p(n+1)} 
S0 { q} it follows that 

f= / { p(n)[li./ii] [m -1/n]} P{ q[li./ii] [m - 1/n]} 

implies 

f= 1 {p(n+ l)[l</ii][m-1/n]} S0 {q[l{/fi][m-1/n]}. 

Now p(n)[l</ii][m-1/n] = p(m-1)[1{/fi], and p(n + 1 )[li./ii][m-1/n] = 
p(m -1+1 )[l{/fi]. Furthermore p(m -1+1 )[l</ii] is obviously semanti­
cally equivalent with p(m)[l</ii]. Finally, because n ~ FV(q) we have that 
q[l</ii] [m-1/n] = q[l<jii]. So we get 

f= / {p(m-1 )[l</ii]} P{q[l</ii]} implies f=: / {p(m)[l{/fi]} S0 {q[l</ii] }. 

Here the antecedent is just the induction hypothesis and the consequent is 
equivalent to 

f=J{p(m)[k/ii]} P{q[l</ii]} 

by Proposition 2.9. I 

LEMMA 4.6. (Soundness of elimination rule). Let, for some arithmetical 
interpretation I and some set of correctness formulas <P, 

f=,<P--t {p} P{q}. 

Then 

F=, <P --t { 3zp} P { q}, 

where:::~ Count u Var(S0 ) u FV(q). 

Proof Let n 1, ... , n1 be all the counter variables occuring in the correct­
ness phrase <P-. {3zp} P{q}. Let k 1 , ... ,k1EN be such that f=:, <P[l</ii]. Let 
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er f=i(3:::p)[k./ii], so that for some dEID we have cr{d/,::} f==,p[k/11]. 

Then we know p 1 {p[k/r!]} P{q[k/ii]}, so for cr'=M1 (P)(o-{d/:::}l we 

get o-' F= / q[k/ii]. Now :: ef= Var(S0 ) implies o-' { o-(::)/.::} = M,(P)(o-) by 
Proposition 2.7. Finally, ::ef=FV(q) implies o-'{o-(:::)/.:) f=,q[k/11]. We con­
clude: 

f==,{::Jzp[k/ii]}P{q[k./11]). I 

LEMMA 4.7. For every arithmetical interpretation I we have 

implies f= / cfJ --> 'f'. 

Prot!l The soundness of all the individual axioms and rules of K' can 

be shown along the lines of Lemmas 4.5 and 4.6. The soundness of the 

whole proof system then follows by induction on the length of a derivation 
of f- ~· rI> __, 'f'. I 

THEOREM 4.8. The proof system T is sound, that is.for aery arithmetical 

interpretation I we have 

f-J{p}S{q} implies f= / {p} S{ q }. 

Proof This is now an easy consequence of (a slightly modified version 
of) Lemma 3.4. Lemma 4.7, and Proposition 4.4. 

5. COMPLETENESS 

In this section we prove the completeness of the system T, that is, we 

show that for any arithmetical interpretation I and any correctness formula 

{p} S{q}, 

f=,{p}S{q} implies f- / {p} S{ q }. 

We assume the arithmetical interpretation I to be fixed throughout this 

section. To get started we need the following definitions and lemma: 

DEFINITION 5.1. For any program S and any natural number k, we 

define 

srkl=S[S~tl/P]. 

(Remember that S0 denotes the body of the procedure P and for S~t 1recall 

Definition 2.1.) 
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LEMMA 5.2. For any program S, any first-order formula q, and any 
variable n E Count there exists a first-order formula Pre(S, q, n ), such that 
for any (J E 1:(1) we have a f= / Pre(S, q, n) iff there exists a 

·(J, = M,(Slkl)(a) # J_ such that a' f= / q, where k = a(n). 

Proof The proof of this lemma is quite hard work. It consists of show­
ing that the computation of S rkl can be coded in the first-order language. 
Here the fact that sequences of elements of ID can be coded into single 
elements is essential. We shall not carry out the proof of this lemma here, 
but refer the reader to (Tucker and Zucker, 1988) and to the Appendix of 
(de Bakker, 1980 ), where similar proofs are carried out in full detail. I 

DEFINITION 5.3. Take some variable n E Count. We define 

p0(n) = Pre(P, .\' = ::, n), 

where .\' = Var(S0 ), :: n Count= 0, and :: n Var(S0 ) = 0. (Here .\' = i 
abbreviates the formula x 1 =z 1 /\ • • • /\ x,,, = z,,, ). 

To appreciate the meaning of this definition, note that the formula 
3np0(n) describes the "graph" of the function M 1 (P) in the following sense: 
For arbitrary (J E 1:(1), 

and 

Let us now outline the structure of the completeness proof. To do that we 
first describe the global structure of the proof given in (Apt, 1981 ). There 
it is shown that for any valid correctness formula { p} S { q}, 

{Po(n)}P{x=Z} f-J{p}S{q} 

by induction on the complexity of S. For all statements S other than a pro­
cedure call P, this can be done using the well-known techniques {see Apt, 
1981 or de Bakker, 1980). To establish the case S= P, however, the first 
step is to derive {3np0(n)} P{i=i}. Here the elimination rule is applied. 
From this latter correctness assertion arbitrary valid correctness formulas 
about the procedure P can be derived by an application of the invariance, 
substitution, and consequence rules. Having proved the derivability of any 
valid correctness assertion { p} S { q} from { p0 (n)} P{ .\' = i} it is shown by 
an application of the recursion rule that the latter assertion is derivable, 
thus establishing completeness. 
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Now note that this proof is not valid to establish the completeness of our 
new proof system T, because it uses both the elimination rule and the 
recursion with respect to the same variable 11, which is not allowed, 
whether or not the variable n is a counter variable. Therefore we proceed 
in a different way. Instead of applying the elimination rule to derive 
{::Jn p 0( 11) } P { .Y: = .:} , we use the recursion rule. Therefore we have to prove 

(I) 

A straightforward induction on the complexity of S0 obviously does not 
work. To be able to carry out some inductive argument we prove the 
generalised version, 

{ p 0 (n)} P{ .Y: =:} f- / {Pre( S, q, n)} S { q}, 

for arbitrary S and q. This is done in Lemma 5.5. Then, substituting S0 for 
S and .Y: =: for q, and applying the consequence rule, it is possible to prove 
( 1 ), so that the recursion rule can be applied. 

The rest of this section provides the details. 

LEMMA 5.4. For any first-order formula q,for any variable n, and j(>r any 

sequences v and i\· of distinct variables such that u n 1\· = f n Var(S0 ) = 
It' n Var(S0) = v n Count= 1i" n Count= 0, we have 

f= / Pre(P, q, n)[f/1\']-+ Pre(P, q[ii/i\·], n). 

Pruuj: From the definition of Pre( P, q, n) it follows that 

1. For every k EN we have f= 1 { Pre(P, q, n) /\ 11 = k J prkl(q }. 

2. f= 1 {p) prkl{q} implies p 1 p/\n=k-+Pre(P,q,n). 

From I it follows by the soundness of the substitution rule that for every 

kEN, 

f= 1 {(Pre(P,q,n) /\ n=k)[i'/i\·]} pCkl{q[f/11·]}. 

Note that (Pre(P,q,11)/\n=k)[V/i1·J=Pre(P,q,n)[ii/1\·]/\11=k. So we 

have by 2 for arbitrary k EN, 

f= / Pre(P, q, n)[v/1\·] /\ 11 = k-+ Pre(P, q[f/1\·], n). 

Therefore, we conclude 

f= / Pre(P, q, n)[V/1"\·]-+ Pre(P, q[f/1"1·], 11). I 
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LEMMA 5.5. For any program S and any first-order formula q, 

{p0 (n)} P{.X=Z} f--- 1 {Pre(S, q, n)} S{q}. 

Proof The proof proceeds by induction on the length of S. We 
distinguish several cases: 

• S = x := t. Within the proof system we can reason as follows: 
I. { q[t/x]} x := t{ q }, by the assignment axiom. 
2. { Pre(x := t, q, n)} x := t{ q} by the consequence rule. 

In order to justify step 2 above, we prove 

f= 1 Pre(x := t, q, n) _, q[t/x]. 

Let er f= 1 Pre(x := t, q, n ), then for CJ'= M 1 ( S [k 1 )(er), where k = er(n ), we 
have CJ' f= 1 q. But S [kl = S, so er'= er { er(t )/x }, and therefore, by Proposi­
tion 2.5, we get er F= 1 q[t/x]. 

• S = P. Let i~ be a sequence (of the same length as z) of fresh 
variables, not occurring in Pre(P, q, n) or S0 , such that u n Count= 0, and 
take q1 = q[u/z]. Now we can reason within the proof system as follows: 

I. {p0(n)} P{.X' = z}, the assumption. 
2. {p0 (n) A q 1[Z/x]} P{.X'=z A q 1 [Z/.'(]}, by the invariance rule. 
3. { p 0 ( n) A q 1 [Zj.X'] } P { q 1 } , by the consequence rule (note that 

f=1.x=z /\ q1CZ/xJ-.q1). 
4. {3z(p0 (n) A q1[Z/X'])} P{q 1 }, by the elimination rule. 
5. {Pre(P, q1 , n)} P{q 1 ), by the consequence rule. This will be 

justified below. 
6. {Pre( P, q, n) [ u/z] } P { q 1 } , again by the consequence rule, now 

making use of Lemma 5.4. 
7. {Pre(P, q, n)} P{q), by the substitution rule. 

In order to justify step 5, we still have to show that 

Let (f F= 1 Pre( P, q, n ). Then for a'= M 1 (P[kl )(er), where k = er(n ), we have 
er' F 1q1 · 

Let cf=CJ'{X'). Then, since znVar(S0 )=0, we get er'{d/z}= 
M 1(PLkl)(er{d/Z}). Furthermore er'{d/z} f= 1 .X'=z, so 

er{ d/Z} f= / Po(n ). (2) 

Now by Proposition 2.5 we have 

( 3) 
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Note that u'(y) ~er{ d/z }{ d/5: }(y) for ally E FV(q i). So from a' f= 1 q1 and 

from (3) we can infer by Proposition 2.6 that 

(4) 

From (2) and ( 4) we conclude 

S =- S 1; S2 • Again we reason within the proof system: 

1. {Po(n)} P{.\'=z), the assumption. 

2. {Pre( S2 , q, n)) S 2 { q }, from l by the induction hypothesis. 

3. {Pre(5\, Pre(S2,q,n),n)) Si{Pre(S2 ,q,n)), from l by the 

induction hypothesis. 

4. {Pre(S 1,Pre(S2 ,q,n),n)}S1;S2 {q}, by the sequential com­

position rule from 2 and 3. 

5. {Pre(S1;S2 ,q,11)}S1;S2 iq}, by the consequence rule. It is 

easy to see that 

S=- if h then S 1 else S 2 fi. We reason within the proof system: 

I. {Po(n)} P{.\'=:}, the assumption. 

2. {Pre( S 1, q, 11)} S 1 { q }, from I by the induction hypothesis. 

3. {Pre( S, q, n) I\ h) S 1 { q}, by the consequence rule, using 

F 1 Pre(S, q, 11) I\ h-> Pre(S 1, q, n). 

(Note that srkl=if h then S\kl else S~kl fi.) 

4. {Pre( S 2 , q, n)} S 2 { q}, from I by the induction hypothesis. 

5. { Pre(S, q, n) I\ 1 h} S 2 [ q ), by the consequence rule, using 

f= / Pre(S, q, n) I\ 1 h-> Pre(S2, if, n ). 

6. {Pre( S, q, n)} S { q), by the conditional rule from 3 and 5. 

S=- while h do S 1 od. We may assume that there exists a formula 

tf;(m, n ), where m $Count, such that a f= 1 tj;(m, n) iff there exists a 

a'=M,((Sjn)fkl)(a)#J_ such that er' f=,q and M,((Si':)Jkl)(a)=J_ for 

all/'<!, where I= a(m) and k = a(n). Here Si': is defined with respect to 

the boolean expression h (see Definition 2.1 ). The existence of such a for­

mula tf;(rn, n) can be proved by the same techniques as used to prove 

Lemma 5.2. 
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Now we reason as follows within the proof system: 

1. { p 0(n)} P{ .\' =.:}, the assumption. 
1 [Pre(S 1,tf;(111,11),11)}S 1{tf;(m,11)}, from I by the induction 

hypothesis. 
3. [t/J(m+l,n)}S1{tf;(m,n)}, by the consequence rule; we shall 

justify this below. 
4. {3mtf;(m,n)}S{tf;(O,n)}, by the iteration rule. Note that 

F / tf;(O, n)---+ 1 band F / tf;(m + 1, n)---+ b. The truth of the first 
implication follows from the observation that for arbitrary k EN 
we have (S ;0 1 )fkl =if b then Q else skip fi. The truth of the 
second one can be justified as follows: Let CJ f= / tf;(m + I, 11) /\ 
-ib. From CJp 1 -ib we derive CJ=M 1((Sj 01 )fkl)(CJ), where 
CJ(n) = k. But by a f= / tf;(m + I, n) we have M / ((Si i:) [k 1 )(a)= ..L 
for arbitrary I< a(m) + I. Contradiction. 

5. { Pre( S, q, 11)} S { q}, by the conseq ucnce rule, making use of 
f=,Pre(S,q,11)->3mt/J(m,11) and p 1 t/!(0,n)->lJ. The truth of 
the first implication follows from the observation that for 
arbitrary k EN if CJ'= M / ( S [k 1 )(a) then there exists a I EN such 
that CJ'=M 1((Si':)Ckl)(a) and M 1 ((Sj''ljlkl)(CJ)= l. for every 
I'<!. The truth of the second implication follows from the 
definition s 1°: =if b then n else skip fi. 

We still have to justify step 3. To do so we prove 

F 1 tf;(m +I, n)--+ Pre(S 1 , tf;(m, n), n). 

Let CJ f= 1 tf;(m+l,n). Then for a 1 =M,((Si'+ 1 l)lkl)(a) we have a' f= 1 q, 
where f=CJ(m) and k=CJ(n), while M1((S(l)fkl)(CJ)=..L for {'<1+1. 

Among other things, this implies that CJ f= 1 h. 
Now if we take CJ"=M,(S\k 1)(a), it follows that CJ 1 =M,((Si':)fkl)(CJ 11

), 

and that M,((Si'l)fkl)(CJ")=..L for !'<!. Furthermore note that 
f=CJ(m)=CJ"(m) and k=CJ(n)=CJ"(n). So we have CJ" f=,tf;(m,n). There­
fore, 

CJ F 1 Pre(S 1 , tf;(m, /1 ), n ). 

This concludes the proof of Lemma 5.5. I 

THEOREM 5.6. The proof'system T is complete, that is, fin· anv arithmeU­
ca/ interpretation I and any correctness formula { p} S{ q }. we h~ve 

F=1 {p} S{q} implies I- 1 {p} S{ q }. 

Proof The proof proceeds by induction on the length of S. We present 
only the case S = P. The other ones are treated exactly the same as in the 
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proof of the completeness theorem for the sublanguage consisting of all 
those programs in which there occur no procedure calls. for which we can 
safely refer to (A pt, 1981 ), for example. 

So let us assume f= / {p} P{ q ). We have to show that I- / { p: P\ q ). We 
know from Lemma 5.5 that 

{p (n)}Pl;::_;;;\ I ·1Pr•'(S ;:_;;; 11) 1·S 1 \°"-;;; 1 
l () (·~--1 I/ l ¥ 11'·'--, l 0·1· -_,. 

From pfk+ 11 =P[S6k+ 11 /PJ=S~k+ 11 ==:S0 [s:; 1 /P]=S[1kl together with 
Definition 5.3 and Lemma 5.2 we derive 

F / Po(n + 1) __. Pre(S0 , .\' = .:, n ). 

This enables us to apply the consequence rule to derive 

{Pu(n)} P{.\'=2} l- 1 {Po(n+ I)} Su{.\'=:}. 

Furthermore f= / 1 p 0 (0) because proi = n. So applying the recursion rule 
yields 

f- 1 {3np 0 (n)} P{.\'=.:}. 

Now let q 1 = q [ii/:], where u is a sequence of fresh, distinct variables of the 
same length as .:, such that u n Count= 0. We apply the invariance rule, 
yielding 

l- 1 {3np 0(n) /\ l/1[.:/.\']} P{.\=.: /\ l/1[.:/.\]}. 

Note that f= 1 5:' =.: /\ q 1[:/.\']__.q 1 , so applying the consequence rule gives 

us 

f- 1{3np11(n) /\ l/1[.:/.\]} P{qi}. 

Now note that .: n Count= 0 and .: n FV(q 1 ) = 0. Therefore application 
of the elimination rule yields 

f- 1 {3:(:Jnp0(11) A q1[.:/.x])} P{l/1 }. 

We shall show below that 

F1P1__.3.:(:Jnpo(n) /\ l/1[.:/.\]), (5) 

where p 1 = p [ il/2]. Applying the consequence rule thus yi~lds 
f- / { p 1 } p { q 1 } • Finally we apply the substitution rule, yielding the demed 

result: 

l- 1 {p}P{q). 
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We still have to prove (5). From the soundness of the substitution rule it 
follows that 

f=, {p} P{q} implies f=,{p1}P{q1} 

(this also follows easily from Propositions 2.5 and 2.7 ). 
Now let a f= 1 p 1 , then it follows that a' f= 1 q 1 for a'=M,(P)(a). Since 

a'= LJk M,(S~k 1 )(a) = LJkM,(P[kl)(a) # J_ (see Definition 2.1) there must 
be a kEN such that a'=M,(Prkl)(a). Let, furthermore, d=a'(i:). Then, 
from the definition of p 0(n), it follows that 

a{d/:}{k/n} FtPo(n). 

Therefore, 

(6) 

From a' f= 1 q 1 (since :nFV(q 1)=0, q 1 =q 1[:/.q[.x/:]), we deduce by 
Proposition 2.5, 

Now since FV(q 1[:j.x])nVar(S0 )=0, we get by Proposition 2.7 that 
a{d,l:}(y)=a'{J/:}(y) for all yE(FV(q 1 [:;.q). So Proposition 2.6 gives 
us 

(7) 

Now from ( 6) and ( 7) we conclude 

a f= 1 3:(3np0 (n) /\ q 1 [:/\'] ). 

This concludes the proof of (5) and also of Theorem 5.6. I 

6. APPLICATION TO DYNAMIC LOGIC 

In this section we discuss the relevance of our analysis to dynamic logic 
(Hare!, 1979 ). Whereas in Hoare logic programs and logical form uias are 
strictly separated, in dynamic logic programs can occur inside logical for­
mulas. There they play the role of modalities; i.e., they talk about the truth 
of a formula in other states than the current one. Formally we have the 
following definition of the assertion language of dynamic logic. 
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DEFINITION 6.1. The set of dynamic logic assertions, with typical 
element p, is given by the grammar: 

p ::=q, 

p I /\ P2 I ... 

Vxp 

<S)pl [S]p, 

where q is an atomic assertion 

where Sis a statement. 

An atomic assertion consists of a predicate symbol of our first-order 

language L (see Section 2.1) applied to a number of terms. We take the 

same syntax for statements as defined in Section 2.1. 

DEFINITION 6.2. Let I be an interpretation. For an assertion p and a 

state <J E .E(/) we define the truth of p in <F. denoted by <J F 1 p, as follows: 

If q is an atomic first-order assertion, <J F 1 q is defined as usual (cf. 

Section 2.2 ). 

er F 1P1 A P2 iff er F, p 1 and <J F / p 2 and analogously for the other 
propositional connectives. 

er F / Vxp iff for every dE In we have er{d/x} F 1 p. 

<J F / <S)p iff there exists a er'# 1- such that <J' = M,(S)(<T) and 

er' F / p. 

<Ff=,[S]p iff for all <F'-:fJ_ such that er'=Af,(S)(<T) we have 

er' F If. 

So the partial correctness interpretation of the Hoare triple { p: S: q) 
can be rendered in dynamic logic by the assertion p---> [S] q, and its total 

correctness interpretation corresponds to the assertion p --+ < S) q. Now in 

(Hare!, 1979) a proof system based on dynamic logic is presented which is 

sound and complete (for arithmetical interpretations). In this proof system 

the problem we analyzed with respect to the Hoare-style proof system is 

solved in a different way. The main idea consists of extending the program­

ming language by interpreting first-order assertions as programs in the 

following manner: 

DEFINITION 6.3. Let p be a first-order assertion with free variables -~ 

and f Then we extend the syntax of statements (see Section 2.1) by adding 

the clause S ::= p > Now if I is an interpretation, we define the meaning of 

the program p: as 
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Note that we thus have introduced nondeterminism in our programming 
language: A single statement can be executed in several ways, possibly lead­
ing to different results. l t is straightforward to modify the meaning function 
M 1 as given in Definition 2. l in order to cope with nondeterminism. 

EXAMPLE. Let p = y = x + I. Furthermore, let I be an interpretation 
such that I 0 is the set of integers together with the standard interpretation 
of the arithmetical operations. We then have 

M 1(p;)(<J)= {<J':3n(<J'=<J{n/x} /\ <J{n/y} f= 1 y=x+ I} 

= Mi(.--c= x + l )(<J). 

In general we have that M 1(p;.)=M 1 (S) formalises that p(x,_ii) 
describes the graph of Sas explained in the previous section, assuming that 
Sis a program with Var(S, S0 ) = ·'°· 

We now give a proof system based on dynamic logic for our program­
ming language along the lines of (Hare!, 1979 ). In order to focus on recur­
sion we omit the iterative command. Furthermore, since our main concern 
is with total correctness we only give the axioms and rules dealing with the 
( · ) operator. The axioms and rules which formalise the reasoning about 
the [ ·] operator are similar (see Hare!, 1979 ). 

DEFINITION 6.4. The proof system H consists of the following axioms: 

Assignment: < x: = t ) p +-+ p [ t /x] 

where p is a first-order assertion. 

Sequential composition: 

Conditional: (if h then S 1 else S 1 fi) p +-+ (h --+ ( S 1 ) p /\ 1 h--+ < S 1 ) p) 

Assertion: (p))q+-+ 3i(p[i/YJ /\ q[:/X:]) 

In variance: ( p --+ ( P) q) --+ ( p /\ r --+ ( P) q /\ r) 
where Var(r) n Var(S0 ) = 0-

\i-Elimination \i.\p--+ p 

Further, we have the following rules: 

Modus ponens: 

Diamond: 

p--+ q, q 

q 

p--+ q 

(S) p--+ (S) q 
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p-+ q 

vxp-+ vxq 

'</-Introduction: 
p 

vxp 

Recursion: 
p(n + l )-+ <S0 [p(n) ~/P]) .x= f 1p(O) 

3np(n)-+ <P).':=.\' 

where Var(S0 ) = .x and n ~ Var(S0 ) u .\- u _)'. 
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Given an interpretation I we denote by f- / provability in the proof system 

that can be obtained by adding to the above axioms and rules all the first­

order assertions that are valid with respect to l 

Especially the recursion rule needs some explanation. The key to under­

standing this rule is the following theorem: 

THEOREM 6.5. Let I he some interpretation and let S he a statement such 

that Var( S, S 0 ) <;;;: .x and .': n _l' = 0- Then we have the fiJ/lowing equimlence: 

F I p -+ < s > .': = J~ 

Prooj: See (Hare!, 1979 ). I 

(8) 

The above equivalence states that the assertion p-+ <S> .': = f holds if 

and only if the graph of the statement p ~ is contained in that of S. So to 

prove the assertion :Jnp(n)-+ <P> .':= jJ amounts to showing that 

M,C:Jnp(n) ~)<;;;: M 1 (P), or, equivalently, that for all k we have 

M,(p(k) n s M,(P). We prove this by induction. First observe that the 

premise 1 p(O) implies M 1(p(0) :i = 0. Now we have to show that 

from the induction hypothesis M 1(p(k) :.) s M 1(P) we can conclude 

M 1 (p(k + l) :) s M,(P). But from this induction hypothesis it follows 

that M 1 (S 11 [p(k) :IP])SM1(S0 [P/P])=M 1 (P) (cf. Proposition 2.3). So 

it suffices to show that M,(p(k+I):)s:M1 (S0 [p(k);/P]). Using the 

equivalence ( 8) we see that this follows from the other premise 

p(k +I)-+ <So [p(k) ~/P) .': = f 
We have the following theorems about this proof system: 

THEOREM 6.6 (Soundness). Let I he an arithmetical interpretation. For 

an arbitrary c~)·namic logic assertion p we have 

f- ,p 

Proof See (Hare!, 1979 ). I 

implies 
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THEOREM 6.7. (Completeness). Let I be an arithmetical interpretation. 
For an arbitrary dynamic logic assertion p we have 

implies 

Proof See (Hare!, 1979 ). I 
Note that this proof system does not have rules corresponding to the 

substitution rule and the elimination rule of our Hoare-style proof system. 
These rules are in fact in a way incorporated by the Assertion Rule. 
However, the resulting proof system is quite complicated. We will show 
that there also exists a sound and complete proof system based on dynamic 
logic which more closely corresponds to the Hoare-style proof systems, and 
that we do not need to extend our programming language by interpreting 
assertions as programs. We will make use of the fact that we can express 
the special role of the counter variables in the Hoare-style proof system 
directly in dynamic logic. We first introduce the following new version of 
recursion. 

DEFINITION 6.8. We have the following rule dealing with total correct­
ness of recursion: 

Recursion: 
Vz(p(n)~ <P> q)~Vz(p(n+ 1)~ <S0 ) q) 1p(O) 

3np(n) ~ <P) q 

where Var(S0 ,p(n), q)\{n} £z and n~z. 

Note that universally quantifying all the variables except the variable n 
corresponds to different interpretation of the counter variables. Further­
more, we have the following versions of the elimination and the substitu­
tion rule: 

Elimination: 

Substitution: 

Vz(p ~ <P) q) ~ (3zp ~ <P) q), 

where we require that z ~ Var(Sci. q). 

Vz(p ~ <P) q) ~ Vy(p[y/z] ~ <P) q[y/z]), 

where we require that z, y it; Var(S0 ) and y ~ Var(p, q ). 

This new system can be proved to be sound by a straightforward induc­
tion on the length of the derivation. The soundness of the Recursion Rule 
is established in a similar way as the corresponding rule of the system 
manipulating correctness phrases as defined in Definition 3.3. 

Completeness follows from the following theorem, see (Hare], 1979 ). 
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THEOREM 6.9. Let I he an arithmetical interpretation and let p and q he 
first-order assertions. We have 

implies ~ ,p--+ (S)q 

The proof of this implication follows the proof method for the complete­
ness of the corresponding Hoare-style proof system for total correctness, 
the Hoare-style proof system for partial correctness, and the system 
presented in the previous section. We illustrate this by the proof of the 
lemma corresponding to Lemma 5.5. Let Pre(S, q, n) and p0(n) be defined 
as in the previous section. 

LEMMA 6.10. Let I he an arithmetical interpretation. For every statement 
Sand.first-order assertion q we have 

~I Vji(po(n) - (P) .\' = z)-+ \l_i'(Pre(S, q, n)-+ (S) q), 

where Var(p0 (n), q, S)u.xvz\{n} £j, n~;', and .X'=Var(S0 ). 

Proof The proof proceeds by induction on the complexity of S. Here 
we only deal with the case of S= P; let q1 = q[u/z], where u are some new 
variables: 

1. (Po(n)-+ (P).x=z)-+ (Po(n) /\ q1[i/.x]-+ (P).x=z /\ q1[z/.X']), 
by Invariance. 

2. (Po(n) - (P).X' = z)-+ (Po(n) /\qi [Z/i]--+ (P)qiJ, from F ,.x= 
z /\ q 1 [:/.'°] -+ q 1, using Diamond and some propositional reasoning. 

3. Vz(p0(n)-+ (P).x = z)--+ Vz(p0(n) /\ q1[z/.x]--+ (P)q1l. by 
Universal. 

4. Vz(p 0 (n) -+ (P)x = z) --+ (3f(p0(n) /\ q1[z/.X']) --+ (P)qi), by 
Elimination and some propositional reasoning. 

5. V.Z(p0 (n) -+ (P) .\' = z) -+ (Pre(P, q1, n) --+ (P) q1 ), because 
f= 1 Pre(P,q 1,n)-+3z(p0(n)Aq 1[z/.X']) (see the previous section) and 
using some propositional reasoning. 

6. Vz(p 0(n)-+ (P)x = z)--+ (Pre(P, q, n)[u/.7]--+ (P)q1), since 
f= / Pre(P, q, n)[u/:]-+ Pre(P, q1, n) (see Lemma 5.4) and using some 
propositional reasoning. 

7. Vz(p0 (n) -+ (P) x = z) --+ Vu(Pre(P, q, n)[u/z] --+ (P) q1 ), by 
Universal, If-Elimination (note that unVar(po(n)-+ (P).X'=z)=0). and 
using some propositional reasoning. 

8. Vz(p0(n)-+ (P).X' = z)-+ Vz(Pre(P, q, n)-+ (P)q), by Substitution 

and some propositional reasoning. 
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9. V_)'(p0(n)--> (P)S: = :) --> V_\'(Pre(P. q, n)--> (P)q), by Univer­

sal. I 
From this lemma we derive in the same way as in the previous section 

that 

V_l'(p0 (11)--> (P).\ = :)--> V_np 0(11+1)-+ (So).\=:). 

Applying the Recursion Rule then gives us the derivability of 

3n Po--> ( P ).\ = :. 

Next we apply the rule \i-lntroduction, which gives us the derivability of 

V:(311p0 -+ (P).\ = :). 

We have 

f- /v:(3np 0 -+ ( P ).\: = :) --> V:(p-+ ( S) q) 

for anv valid assertion p--> ( S) q. The proof of this claim proceeds in a 
simila; way as the one of Lemma 6.10. So we have the derivability of 

V:(p--> (S)q). 

Using the \/-Elimination axiom and the Modus ponens rule then concludes 
the completeness proof. 

7. CONCLUSION 

We have studied in this paper a well-known Hoare-style proof system for 
the total correctness of recursive procedures. We showed that the proof 
system as presented in the literature is unsound due to the incorrect inter­
action of the recursion rule and the rules which formalise reasoning about 
invariance properties. Our solution to this problem consisted in defining 
some appropriate restrictions on the applicability of those rules which can 
interact in an incorrect way. We proved the system to be sound along the 
lines of (Apt, 1981 ) using a transformation of the system into a Gentzenlike 
calculus, thus turning it into a system in which the Recursion Rule is no 
longer a metarule. However, the interpretation of the result of this transfor­
mation differs from the one used in (Apt, 1981) to prove the soundness of 
the system for partial correctness. Special care had to be taken concerning 
the interpretation of the variables used to establish termination of proce­
dures. 
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Furthermore we proved that even with these restrictions the proof 
system is still corn plete. The completeness proof differs quite substantially 
from the one given by op. cit. because there the restrictions on the 
applicability of some rules are not satisfied. 

f n Sokolowski ( 1977) a different formulation of the Recursion Rule is 
presented based on predicate transfimners. in order to solve the problem of 
how to interpret the notion of derivability in the premise of the recursion 
rule. ln the conclusion of this new version the existential quantification of 
the variable used to establish termination is replaced by an inflnite disjunc­
tion. As a consequence, our counterexample to the soundness of the system 
does not apply to this new version of the Recursion Rule. However, the 
proof system based on predicate transformers transcends the framework of 
Hoare-style proof systems in allowing infinite disjunctions. Furthermore, 
the system presented in (Sokolowski, 1977) is incomplete because it does 
not include a reasoning mechanism about invariance properties. A similar 
proof as given in (Apt, 1981) that the Recursion Rule for the partial 
correctness of recursive procedures docs not suffice shows the same result 
for the Recursion Rule for total correctness. 

We also applied our analysis to dynamic logic. We constructed a proof 
system based on dynamic logic which more closely corresponds to the 
Hoare-style proof system than the one presented in (Hare!, 1979 ). In op. 

cit. the problems we encountered are solved in a way which complicates the 
proof system considerably. In particular, it extends the programming 
language with assertions considered as statements. We showed how our 
technique to arrive at a sound and complete system based on Hoare logic 
can be formulated in the formalism of dynamic logic. The resulting proof 
rules arc simpler and the programming language need not be extended. 

Runvrn January 28, 1988: Fil'AL MA~USCRIPT RH"EIVHJ March 9. 1989 
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