
INFORMATION AND COMPlJTATI0!'-1 84, 129--162 (1990)

Proving Total Correctness of

Recursive Procedures*

PIERRE AMERICA

Philips Research Lahomtories, P.O. Box 80000,

5600 JA Eindh011en, The Nerhcr/ands

AND

FRANK DE BOER

Cen1rc fi1r i\1a1hema1ics and Compuler Science,

P.O. Box 4079, 1009 AB Ams!erdam, The Netherlands

We show that some well-known rules in a Hoare-style proof system for total

correctness of recursive procedures can interact in such a way that they yield

incorrect results. The problem is connected to the quantification scope of certain

variables in the proof rules. By defining some restrictions on the applicability of the

rules a system is obtained that is sound and complete. However, the completeness

proof differs substantially from the original one. This technique is also applied to

dynamic logic, where we show that the original proof rules for recursive procedures

can be replaced by simpler and more natural ones, and that it is not ncessary to

extend the programming language in order to arrive at a sound and complete proof
system. 1 1990 Academic Pre~~. lni.:

I. INTRODUCTION

A vast field of research in theoretical computer science is the formalisa­
tion of program correctness. This research has resulted in a variety of
programming logics, of which we mention: Hoare logic (Hoare, 1969),
dynamic logic (Hare!, 1979), and temporal logic (Pnueli and Manna, 1982).
In Hoare logic, one of the formalisms that we shall use, a program is seen
as state transformer: A state assigns a value to each program variable and
a program transforms an initial state (before the execution) into the corre-

•Most of this work has been carried out in the context of ESPRIT project 415: "Parallel

Architectures and Languages for Advanced Information Processing: A VLSI-directed

Approach."

129
0890-5401/90 $100

Cnpynght 1 194() hy Academic Pre-.:... lm.:.
All righh of rerrti<lw.:1ion in any furm reserved

130 AMERICA AND DE BOER

sponding final state (after the execution). One specifies the input/output
behaviour of programs by means of triples

{p}S{q},

where p and q are formulas of first-order predicate logic and S denotes a
program. The formula p is called the precondition of S: it specifies a set of
initial states. The corresponding set of final states is denoted by the formula
q, which is called the postcondition of S.

There are two common ways to interpret these Hoare triples. One inter­
pretation of { p} S { q} is

If the execution of Sis a state satisfying p terminates, it does so in
a state satisfying q.

This gives rise to what is called partial correctness. On the other hand, total
correctness uses the interpretation:

Every execution of S starting in a state satisfying p terminates in
a state satisfying q.

Note that the total correctness interpretation additionally guarantees the
termination of S when started in a state satisfying the precondition p.

The first subject of this paper is a Hoare-style logic to reason about the
total correctness of programs. We shall be concerned with a proof system,
i.e., a set of axioms and rules by which one can derive correctness formulas.
(In this paper we shall use the term "correctness formula" to refer to either
a first-order formula or a Hoare triple as described above). For such a
proof system two concepts are especially important: A proof system is
called sound if every correctness formula that can be derived from it is
indeed valid, i.e., if it really describes the behaviour of the corresponding
program. (Of course, this should be measured against some formally
defined semantics of the programming language.) On the other hand, a
proof system is called complete if it can derive any valid correctness
formula.

The programming language we consider will contain recursive,
parameterless procedures. The basic statements of this language are
assignments and procedure calls. Complex statements are constructed from
these basic ones by sequential composition, conditional, and the while
construct.

In Sokolowski (1977) a rule for proving the total correctness of recursive
procedures is presented Apt (1981) however, proved that this rule does not
enable one to derive all valid correctness formulas. In addition one needs
s?me rules which formalise the reasoning about certain invariance proper­
ties of procedure calls, properties stating that the initial value of a variable
that is not used in the procedure equals its final value (the value after the

CORRECTNESS OF RECURSIVE PROCEDURES 131

execution of the particular procedure). The resulting proof system, presen­

ted in (Apt, 1981), however, turns out to be unsound, that is, one can derive

from it correctness formulas which are not valid. The unsoundness of the

system is due to the interaction of the recursion rule, the rule which enables

one to reason about procedure calls, on the one hand, and those rules

which formalise the invariance properties of these calls on the other hand.

It turns out that the problem is due to the fact that the two sets of rules

need different interpretations with respect to the scope of the implicit

quantification applied to free variables.

We will formulate some restrictions on the applicability of those rules

which can interact in an incorrect way and prove that the resulting system

is sound. Furthermore we will prove that even with these restrictions the

resulting proof system is still complete. The proof of the completeness

theorem differs from the one given in (Apt, 1981) because in the proof

given there, our restrictions are not satisfied. As the proof in (Apt, 1981)

of the completeness theorem for total correctness follows the same pattern

as the one for the proof system for the partial correctness for the same

programming language, we may conclude that reasoning about total

correctness differs from partial correctness in a substantial way which has

not been recognised till now.

After that we show that the techniques mentioned above can also be

applied fruitfully to dynamic logic (Hare!, 1979) another formalism to

reason about the correctness of programs. In this logic the quantification

scope can be mentioned explicitly. With our techniques, it is possible to

give simpler and more natural rules for recursive procedure than the ones

given in (Hare!, 1979). In particular, in our system it is not necessary to

artificially extend the programming language.

Our paper is organised as follows: In the following section we present

the programming language and define its semantics. In the third section we

give the proof system as presented in (Apt, 1981), and analyse its unsound­

ness. Then, in Section 4, we formulate some appropriate restrictions on the

applicability of those rules which may interact in an incorrect way and

prove that these restrictions give rise to a sound proof system. The com­

pleteness of this new system is proved in Section 5. In Section 6 we apply

our technique to dynamic logic and Section 7 presents some conclusions.

2. THE PROGRAMMING LANGUAGE

In this section we present the programming language which is the subject

of our study. We shall give a formal definition of its semantics. We con­

clude this section by formally defining the total correctness interpretation

of correctness formulas.

132 AMERICA AND DE BOER

2.1. Syntax

We fix a set L of function and predicate symbols (and containing the
equality symbol), a set Var of variables, typical elements of which are
denoted by x, y, :::, ... , and a set Proc of procedure identifiers with typical
element P. A term of L is a construct built up from variables and the func­
tion symbols of L. Terms are denoted by t, A boolean expression of L is
a construct built up from the terms, predicate symbols of L, and the usual
logical connectives like v , A , -->, and 1. Boolean expressions are
denoted by b,

First-order predicate logic formulas of L are denoted by p, q, By
FV(p) we denote the set of variables occurring free in the formula p. By
p(x 1 , •• .,x,,) we mean a formula p such that [x 1, •.• ,x,,}c:;FV(p). A
sequence of variables x 1 , ••• , x 11 will sometimes be written as .\'. Equally we
shall sometimes denote a sequence t 1, ••• , t,, of terms by{. Now p[t/."1:] will
denote the result of the simultaneous substitution of t, for the free
occurrences of x 1, assuming that the x 1 are distinct. When it is clear from
the context which variables are substituted for, we sometimes abbreviate
p[fj.\'] to p(t} We shall denote syntactic equality by the symbol "'= ".

We define the class of statements by means of the grammar:

S : : = P I x : = t I S 1 ; S 2 I if h then S 1 else S 2 fi I while h do S od

By Var(S) we denote the set of variables occurring explicitly in S.
Programs are of the form:

<P1 <--SI, .•. , pll <-- Sii i S),

where all the P, are distinct, and only the procedure identifiers P 1 , ••• , P,,
occur in S 1 , ••• , S,, and S. The first part of a program consists of declara­
tions, associating with each procedure identifier P1 a statement S 1, which is
called the hody of the procedure P,. The second part of a program is called
its initial statement. Execution of the program means execution of its initial
statement in the context established by the declarations. Note that
occurrences of P1 in Si, 1 ~ i,j ~ n, give rise to the phenomenon of
(mutual) recursion.

Just for the sake of convenience we shall restrict ourselves in this paper
to programs of the form < P <-- S0 IS). Furthermore we shall drop the
declaration P <-- S0 and just write S, assuming the declaration P <-- S 0 to be
fixed. It is a straightforward, but tedious task to generalise the results of
this paper to programs with more than one procedure.

2.2. Semantics

An interpretation I of L consists of a set ID, which is called I's domain
of values, and a mapping which associates an operation on In with each

CORRECTNESS OF RECURSIVE PROCEDURES 133

function symbol of L and a relation on I 0 with each predicate symbol of
L. Throughout this paper we shall mostly assume a fixed interpretation /.
We denote the elements of In by d,

We define the set I:(!) of states (over /) by

I:(J) = Var ~In.

Typical elements of I:(I) are denoted by er,
By I:(/).L we denote the set I:(/) extended with some new element ..L

(pronounced "bottom"). We assume the following partial ordering on
I:(l) .L: For er 1, er 2 EI:(/) .L we put

This ordering turns E(I) .L into a complete partial order. The least upper
bound of a sequence (a 11) 11 of elements of I:(/).L such that a 11 ~a11+ 1 will be
denoted by LJ,, (Jn·

Given a EE(/) and a term t, a(t) will denote the result of evaluating t in
the state a (so a(t)Elnl· For a sequence i of terms, a(t) denotes the
sequence of values cr(ti), .. ., cr(t 11).

Given a first-order formula pin L and a state er EE(/), the truth of p in
a with respect to the interpretation /, denoted by a f= / p, is defined as
usual. We shall write f= / p if a f= / p for every er EI:(/).

Let a EI:(/), a a sequence of elements of I 0 , and x a sequence (of the
same length) of distinct variables, then we define cr{d/x} E.l:(I) such that

{ - } {di
(J dj.~ (y) = (

a y)

if y::x,.

otherwise.

To construct a semantics of the programming language as defined in the
previous section it is convenient to extend the language by the following
statements: skip, execution of which consists of doing nothing, and n,
execution of which never terminates.

DEFINITION 2.1. We define for an arbitrary program S the semantic
function

transforming any initial state to the corresponding final state, as follows
(we assume the declaration P +-- S0):

M 1(S)(..L) = ..L for arbitrary S. Assume from here on that <J #- ..L.

• M 1 (x := t)(a) =a{ a(t)/x}

• M1 (skip)(cr)=o-

134 AMERICA AND DE BOER

MAil)(<T) = ..L
M 1 (P)(<T) = LJk M 1 (S)ik 1)(<T), where S ~1° 1 = Q, S &k + 1 l =So [S6k 1 / P]

and where S[S'/P] denotes the result of replacing every occurrence of Pin
S by S'.

M 1(S 1 ; S2)(a) = M1(S2) (M1(S1)(a))

M 1(if b then S 1 else 5 2 fi)(a)=M1(Si)(a) if <Tp1b; =M1(S2)(0')
otherwise

M 1 (while b do S od)(<T)=LJkM1 (S 1k})(<T) where

S :o l =if b then Q else skip fi

S l k + 1 : = if b then S; S : k} else skip fi.

This definition is inductive on the complexity of statements, measured as
follows: We define C(S) to be a triple of natural numbers, and we order
these triples lexicographically. The first component of C(S), denoted by
Ci(S), is 1 if P occurs in Sand is, 0 otherwise. The second component of
C(S), denoted by C 2(5), gives the maximal nesting level of while
statements occurring in S, and the third component of C(S) give the length
of S. Now for the semantic definition of a procedure call we have a
decrease in the first component, since C1{P)= 1, while C 1(S6k 1)=0. For
the semantic definitions of the sequential composition and the conditional
we have a decrease in the third component, while the first two components
do not increase. Finally, for the while statement we have a decrease in the
second component, while the first one does not increase.

The well-dcfinedness of this semantics follows from the following
propositions:

PROPOSITION 2.2. For any natural number k EN, f(1r any a EI:(/), and
for any statement S we have

where we assume S :q to be defined with respect to some fL'(ed boolean
expression b.

Proof Induction on k. I

PROPOSITION 2.3. For arbitrary statements S, S1 , and S 2 such that
1\I1(Si)(a) I;; M1(S2)(a) for every <TE I:(!), we have

for every a E L(I).

CORRECTNESS OF RECURSIVE PROCEDURES

Proof Induction on the complexity of S. I

PROPOSOTION 2.4. For all k EN and.for all (J E £(/), we have

M,(Sbk 1)(a) i;; M1 (S~k+ 1 ')(a).

Proof Induction on k, using Proposition 2.3. I

135

We conclude this subsection with some propositions that will be used in
the proofs of the soundness and the completeness theorem.

PROPOSITION 2.5. For an arbitrary interpretation I, a state a E £(/), a
sequence i of terms, and a sequence -~ of distinct variables, we have

iff (J { a(l)j.~} I= Ip.

Proof Induction on the complexity of p. I

PROPOSITION 2.6. Let I he an arbitrary interpretation, p a .formula, and
let a, a' E .E(I) such that CJ agrees with 0" 1 on the variables occurring .free in
p. Then

Proof Induction on the complexity of the formula p. I

PROPOSITION 2.7. Let I he an interpretation, Sa program, Y a sequence
<~(variables such that ji n Var(S, S0) = 0, and d a sequence of data in In·
Let a E £(/),put a'= M 1 (S)(CJ), and suppose CJ'#- ..L. Then

0" 1 { djy} = M 1(S)(CJ{ d/ji }).

Informally speaking, this means that a program S only depends on and
accesses the variables that occur explicitly in S or in So.

Proof Induction on the complexity of S. I·

LEMMA 2.8. For any statement S and any state CJ EI:(/) we have

M 1 (S)(CJ) = LJ M,(S[S6k) /P])(CJ).
k

Proof Induction on the complexity of S. The following property of the
ordering on .E(I)J_ is heavily used: If (J = uk(Jk> where the (Jk form a non­
decreasing sequence, then there exists a k 0 such that CJ= O"k for all

k ~ko. I

136 AMERICA AND DE BOER

PROPOSITION 2.9. For any state (J EI(!), we have

Prool Applying Lemma 2.8 to S 0 we get

M,(S0)(cr) = lJ M1(So [S(1k> /PJ)((J)
k

= LJ MI (s 6k + i)) ((J)
k

= LJ MI (s bk))((}")
k

2.3. Total Correctness

Correctness formulas are triples of the form { p} S{ q }, where p and q are

first-order formulas of L. We shall interpret such correctness formulas with

respect to so-called arithmetical interpretations (Hare!, 1979), as defined in

DEFINITION 2.10. Let L + be the set of symbols of L extended with some

one-place predicate "nat" and with the usual function and relation symbols

for describing the arithmetic of the natural numbers (like addition, multi­

plication and comparison). An interpretation I of L + is called arithmetical

if the following conditions are satisfied:

In contains the standard model of Pea no arithmetic, that is, (a

copy of) the set N of natural numbers.

The predicate nat is interpreted in such a way that for arbitrary

·EI(!),

(J F= 1 nat(x) iff cr(x)EN.

The arithmetical function and relation symbols in L + are given the

standard interpretation, i.e., they are mapped to the standard operations on

the natural numbers in In.

There exists a formula of L + defining some coding of the finite

sequences of In· More precisely: There exists an injective mapping f from

the set of finite sequences of elements of ID to ID itself, and a formula

if>(x, y, n) which represents this mapping in the following sense: For

arbitrary er E .E(I) we have er F= / if>(x, y, n) iff, for some sequence di, ... , dk in

D1J(<di, ... , dk)) = a(x), I,;:; cr(n),;:; k, and (J(y) = d,, 111 >.

CORRECTNESS OF RECURSIVE PROCEDURES 137

Arithmetical interpretations are important for the following reasons:
First, the basic pattern in reasoning about termination involves a well­
foundedness argument, that is, with the body of a procedure or while
statement we associate a formula p(x), where the variable x ranges over
some set on which some well-founded ordering is defined, termination of
the particular procedure, or while statement is then proved by showing
that p(x) holds initially, and that p(x) holds after every execution of the
corresponding body for some smaller value of x. It is always possible to
take the set of natural numbers with the standard ordering for this
purpose, and by requiring that this set is contained in the interpretation /,
we can carry out the above termination argument in a formal way.

The second reason is that, to prove completeness, the interpretations we
consider must have sufficient expressive power to represent the notion of an
execution in our assertions. In order to do this, we must be able to reason
about natural numbers and about sequences of data elements.

In any case, it is shown in (Apt, 1981) that even for a language without
recursive procedures (but with while statements) there exists no adequate
proof system for total correctness that is sound for arbitrary (nonarithmeti­
cal) interpretations.

Now we define the truth, or validity of a correctness formula {p} S{q}
with respect to some arbitrary interpretation /:

DEFINITION 2.11. Let I be an arbitrary interpretation. For <r EI:(/) we
write <r f= / { p} S { q} iff <r f= / p implies that there exists a <r' # .l such that
<r'=M1(S)(<r) and <r' f= 1 q. We write f= 1 {p} S{q} iff for all <rE.E(/) we
have <r F1 {p} S{q}.

Although we have defined f= / for any arbitrary interpretation /, we shall
be interested in it only if I is arithmetical.

3. THE PROOF SYSTEM G0

In this section we give the proof system G0 as presented in (Apt, 1981).
We give two examples of derivations in this proof syst~m, ~f which one
leads to a valid correctness formula and the other to an mvahd one.

DEFINITION 3.1. The proof system G 0 consists of the following axioms

and rules:

Assignment: {p[t/x]} x := t{p}

{p} S 1 {r} {r} S2{q}
Sequential composition: { p} S 1 ; s 2 { q}

138

Conditional:

Iteration:

Recursion:

Invariance:

Elimination:

Substitution:

Consequence:

AMERICA AND DE BOER

{pAb}Si{q} {pA 1b}S2 {q}

{ p } if b then S 1 else S 2 fi { q }

{p(m+l)}S{p(m)} p(m+l)--+b p(0)--+1b

{ 3mp(m)} while b do Sod { p(O)}

provided m ~ Var(S) u Var(S0).

1p(O) {p(n)} P{q} f- {p(n+ !)} S0 {q}

{3np(n)} P{q}

provided n ~ FV(q) u Var(S0).

{p} P{q}
{p /\ r} P{q /\ r}

provided FV(r) n Var(S0) = 0.

{p}P{q}
{3zp} P{q}

provided z ~ FV(q) u Var(S0).

{p}P{q}

{p[y/z]} P{q[y/z]}

provided y, z~Var(S0).

p--+p1 {pi}S{qi} q1--+q

{p}S{q}

The variables n and m occurring in the rules for recursion and iteration
are supposed to range over the set of natural numbers, that is, p(n), for
example, is an abbreviation of p(n) /\ nat(n).

The premise { p(n)} P{ q} f- { p(n + l)} S0 { q} of the recursion rule states
that it is possible to derive {p(n+ 1)} S0 {q} if one takes {p(n)} P{q} as
an assumption. The intuition behind the recursion rule is that the value of
the variable n in a state satisfying p(n) gives an upper bound to the number
of nested calls necessary to complete the computation of the procedure P
starting from this state.

The notion of derivability is defined relative to some interpretation:

DEFINITION 3.2. Let I be an arithmetical interpretation. We write
f- 1 { p} S { q} to denote that the correctness formula { p} S { q} is derivable

from the axioms and rules of the proof system, making use of the (first­
order) theory of the interpretation I in the iteration, recursion, and conse­
quences rules. (In other words, every assertion p such that f= / p can be
used as an axiom.)

CORRECTNESS OF RECURSIVE PROCEDURES 139

Let us give an example of a derivation which illustrate the use of the
recursion, elimination, invariance, and the substitution rules. Consider the
well-known recursive procedure which calculates the factorial of the
number stored in the variable x:

P+-ifx=O

theny := 1

else x := x - 1; P, x := x + 1; y := y x x

fi

We shall prove that this procedure indeed calculates the factorial of x,
and moreover that the value of x after the execution equals the initial value
of x. For the latter purpose, we use the variable z, which does not occur
in the program, as a "freeze variable." Since we know that the program
does not change the value of z (see Proposition 2.7), we can use z to
remember the value of x in the initial state. Therefore, we want to derive
the correctness assertion

{x=z~O} P{x== /\ y=x!}.

We will do so by first proving that

{ x =.: = n - 1 ~ 0} P{ x = = /\ y = x!} f-- /
{ x = z = (n + 1)- 1 ~ 0} S0 { x = = /\ y = x! },

where S0 is the body of the procedure P, as defined above. We take an
arbitrary arithmetical interpretation I, of which we shall only use the valid
formulas that deal with natural numbers. Let S = x := x- 1; P; x := x + 1;
y := y x x and reason as follows (within the proof system):

1. { x =.: = n - 1 ~ 0} P{ x =.: /\ y = x! }, our assumption.

2. {x=u=n-l~O}P{x=u/\y=x!}, from 1 by the substitution
rule.

3. { x = u = n - l ~ 0 /\ u = z - 1 } P { x = u /\ y = x ! " u = z - 1 } , from
2 by the invariance rule.

4. {x=u=z-1 =n-1 ;:::O} P{x=.:-1 /\ y=x!}, from 3 by the
consequence rule.

5. {3u(x= u=::-1 =n-1 ;:::O)} P{x=z-1 "y=x!}, from 4 by
the elimination rule.

6. { x = z - 1 = n - 1 ~ 0) } P { x + 1 = z /\ y x (x + l) = (x + 1) ! } , from
5 by the consequence rule.

140 AMERICA AND DE BOER

7. {x-l=z-l=n-l>O}S{x=:Ay=x!}, by applying three
times the assignment axiom and the rule for sequential composition,
using 6.

8. {x =.? = (n + 1) - 1 > 0 A 1 x = 0} S{ x =.? A y = x! }, from 7 by
the consequence rule.

9. {x=.?=(n+l)-1>0Ax=O}y:=l{x=:Ay=x!}, by the
assignment axiom and the rule of consequence.

10. {x=:= (n+ 1)-1 >0} S0 {x=z A y=x!}. by applying the rule
for the conditional to 8 and 9.

In addition we have f= 1 1 (x = z = 0 - I > 0). so applying the recursion
rule yields

{3n(x=z=n-1 ~0)} P{x=z Ay=x!}.

Now f= 1x =: ~ 0---+ 3n(x =: = n - 1~0), so applying the consequence rule
gives us the desired result.

Note how we have used the rules for substitution, invariance, and
elimination to change the context in which the procedure P is called. More
precisely, we have renamed the freeze variable z, in order to call the proce­
dure P for a different value of x.

The above derivation might give the impression that all works well.
However, we shall now give an example of a derivation the conclusion of
which is invalid (with respect to any interpretation), thus establishing the
unsoundness of the system G0 . Consider the following declaration:

P .-- P; P.

(The simplest example would be P +- P, but the above example is clearer
because it has P ;;!= S0 .) It is obvious that every computation of P diverges,
so the correctness formula
{true} P{ true}, stating that every computation of P terminates, is invalid.
Nevertheless, the following derivation establishes the derivability of
{ true } P {true } :

1. {n>O} P{true}, assumption.

2. { 3n(n > 0)} P{ true}, by the elimination rule.

3. {true} P{ true}, by the consequence rule.

4. {3n(n>O)}P;P{true}, by applying the sequential composition
rule to 2 and 3.

5. {n+ I >0} P; P{true}, by the consequence rule.

6. { 3n(n > 0)} P {true}, by applying the recursion rule to l -5 (Note
that f= 1 1(0>0).)

7. {true} P{true}, by the consequence rule.

CORRECTNESS OF RECURSIVE PROCEDURES 141

Note that in the first and last application of the consequence rule we made
explicit use of the fact that the variable n ranges over the natural numbers,
and that > denotes the usual notion of "greater than."

To understand what went wrong in this derivation we shall investigate
where exactly a formal justification breaks down. Establishing soundness
consists of proving that, for every arithmetical interpretation I and for
every correctness formula {p} S{q}, if f- 1 {p} S{q} then f=,{p} S{q}.

Usually one proves the soundness of a proof system by first showing that
the axioms are valid and then that the validity of the premisses of an
arbitrary rule implies the validity of its conclusion. But with respect to the
present proof system one runs into the difficulty that the recursion rule is
really a metarule. To overcome this problem we follow the strategy
presented in (Apt, 1981) of transforming the proof system into an ordinary
one, and reducing the problem of proving the soundness of the original
system to proving the soundness of its transformed version.

We shall call the transformed system K. This system manipulates correct­
ness phrases of the form cP 'P, where cP and 'Pare (possibly empty) sets
of correctness formulas.

DEFINITION 3.3. The proof system K is defined as follows:

For each axiom <P of G0 , add the axiom cP-+ <P to K.

For each rule

of G0 , except for the recursion rule, add the rule

to K.

cP-+<P1.···•<P11
cf>-+<Pn+I

Finally add the following rules and axioms to K:

cP -, p(O) cP, {p(n)} P{q}-+ {p(n+ l)} S0 {q}
<P-+ {:lnp(n)} P{q}

provided that n does not occur free in <P, S 0 , or q,

(cf>-+ </>1 · · · cJ>-+ <Pn)/(cJ>-+ <P1, ... , <P11)

cP <P, for every <PE cfJ.

Let f- f cP If/ denote the derivability of the correctness phrase <P-+ 'Pin
K making use of the additional axioms cfJ' p, for any first-order formula

142 AMERICA AND DE BOER

p such that f= / p. f- 7° ljJ will now denote the derivability of the correctness
formula ljJ in G0 making use of the first-order theory of I as additional
axioms. We shall write <P f- 7° i/J to denote that i/J can be derived in the
proof system G0 using as axioms the elements of <P (in addition to the first­
order theory of I).

LEMMA 3.4. For any arithmetical interpretation I and any correctness
phrases of the form <P-+ i/J, where i/J is a (single) correctness formula, we have

implies f- f <J> --> i/J.

Proof A simple induction of the length of a derivation for <J> f- 7° i/J. I
It follows that for any arithmetical interpretation I and any correctness

formula <ft,

implies f- f 0 --> i/J.

Thus, given a definition of validity for correctness phrases which agrees on
correctness formulas with Definition 2.11, the soundness of K implies the
soundness of G0 .

We next look at two ways to interpret the correctness phrases. In either
way, however, the system K will turn out to be unsound.

First consider the following way to interpret correctness phrases: For an
arbitrary interpretation I we define

iff F= / <J> implies F= / 'JI,

where F= / <P iff F= / </; for all <PE <J>.

This definition, however, will make the recursion rule unsound: Consider
the declaration P +-- P; P and take p(n) = n > 0, q =true. Take some
arbitrary arithmetical interpretation I, then f= 1 1(0>0) and

f=, {p(n)} P{q}-+ {p(n+ I l} S0 {q},

because it is not the case that f= 1 {p(n)} P{q}: For any state (JEE(/) such
that (J(n)>O we have <r f= 1 p(n), but nevertheless M 1(P)((J)= _L Therefore
the premises of the recursion rule are valid. However, it is not the case that
f= 1 {3np(n)} P{q} (note that a f= 1 3np(n) for every (JEL(/)).

The unsoundness of the recursion rule with respect to this interpretation
is due to the fact that the variable n is universally quantified at both sides
of the implication sign independently, so that it does not retain its value
over the implication.

CORRECTNESS OF RECURSIVE PROCEDURES 143

This suggests that one should define the validity of a correctness phrase
as

iff a I= / cf> implies <r I= / 'P for all <r EI:(/),

where we define a I= / cf> iff a I= / r/; for all r/J E <fJ.
This second way to interpret correctness phrases will, however, make the

elimination rule unsound: Take the same declaration for P as above; then
for any arithmetical interpretation I we obviously have

F= / { n > 0 } P { true} ~ { n > 0 } P { true } ,

but it is not the case that

I=, {n>O} P{true} ~ {3n(n>0)} P{true}.

To see this take a a E E(I) with <r(n) = 0. Then <r I= / { n > 0} P{ true},
because a !;t=,n>O, but a fit=, {3n(n>0)} P{true} because a f= 1 3n(n>0)
and P does not terminate.

This analysis suggests the following solution: Introduce a set Count of
variables ranging over natural numbers. Interpret such variables as
described in the second case above, i.e., they are interpreted as being
universally quantified, the scope of the quantification being the correctness
phrase in which they occur. The other variables are interpreted as being
universally quantified at both sides of the implication sign independently.
We shall not allow variables of this set Count to occur in programs, to be
quantified over by the elimination rule, nor to be substituted for in the
substitution rule. On the other hand, only variables of the set Count are to
be used in the recursion rule to establish termination of the particular
procedure. This solution we shall work out in the following section.

4. THE PROOF SYSTEM T

The new proof system is defined by adding some restrictions on the
applicability of some rules of the system G0 , as described in the previous
section.

Let Count be a set of variables ranging over the natural numbers.
Variables of this set will be called counter variables. We do not allow
counter variables to occur in programs.

DEFINITION 4.1. The proof system T consists of the same axioms and
rules as the proof system G0 , but for the following restrictions:

ITERATION RULE. The variable m occurring in the rule, used to establish
termination of the iteration construct, may not he a counter variable.

144 AMERICA AND DE BOER

RECURSION RULE. The variable n used to establich termination of the
procedure P must be a counter variable.

ELIMINATION RULE. The quantified variable - may not he a counter
iiariahle.

SUBSTITUTION RULE. Let y and z he the iiariables such that y is sub­
stitutedfor z in the conclusion of the rule. Then we require that y, z ~Count.

Note that the derivation given in the previous section to establish the
unsoundness of the system G0 is not a correct derivation in the system K,
because the variable n must be an element of Count for the recursion rule
to be applicable, but then application of the elimination rule is not allowed.

4.1. Soundness

In this subsection we prove the soundness of the system T. Let K' be the
proof system which manipulates correctness phrases as described in
Section 3, but now generated from T instead of G0 . To be able to reduce
the problem of proving the soundness of T to that of K' we first have to
define the notion of validity for correctness phrases.

DEFINITION 4.2. Let <P be a set of correctness formulas such that no
counter variable occurs free in r/J, for any r/J E </J, and let I be an arithmetical
interpretation. We define

I= I <P iff I= I r/J for all r/J E </J.

DEFINITION 4.3. For any natural number k EN, let k be a constant
term in the first-order language denoting k, that is, a(k) = k for any state
a. Let n 1, •• ., n1 be all the counter variables occurring free in the correctness
phrase <P-+ '!'. If k 1 , •• ., k, EN, then by [k 1 , •• ., kifn 1 , •• ., n1], abbreviated to
[l<./ii], we denote the simultaneous substitution of k; for n;. More precisely,
with ({ p} S { q})[l<./n] we denote { p [l<.jn]} S { q[k/n] }, and with <P [l</n]
we denote { r/J[l</n] I <PE <P }. Now for any arithmetical interpretation I we
define

iff for all !(in N I=, </J[l<./n] implies I=, 'l'[k/n].

Note that the notation I= / is used to denote both the truth of a correctness
formula and that of a correctness phrase. The following proposition,
however, states that this interpretation of correctness phrases agrees on
correctness formulas with the interpretation as given in Definition 2.11:

CORRECTNESS OF RECURSIVE PROCEDURES 145

PROPOSITION 4.4. For any arithmetical interpretation I and for any

correctness formula [p} S { q} we have

f=I[p}S{q] iff for all k in N f= / { p [k./il]} S { q[l{/ii] } ,

where 11 consists of all the counter variables occurring free in { p] S { q}.

Proof: (=:>) Let a f= 1 p[K./11]. then by Proposition 2.5 we have a 1 f= / p,

where a 1 =a{k/i1}. Now if a'1 =M1(S)(a,), then a'1 f= 1 q, because

f=i{p}S{q}. On the other hand, if we put a'=M1 (S)(a), then by
Proposition 2.7 we get

a',= M 1(S)(a,) = M 1 (S)(a{K/ii}) = rr'{/{/Fi}

(note that rl n Var(S) = 0). Applying Proposition 2.5 again, we get

a' f= / q[l{/11].
(<=) Let a f= 1 p and let furthermore a(n;) = k; for i = !, ... ,I. Then by

Proposition 2.5 we have a f= / p[k/il], because a(k;) = a(n;), so that
a{a(k)/ii}=a. So for a'=M 1 (S)(u) we get a' f= 1 q[l{/ii]. Because
n;~Var(S) we have a'(n,)=a(n;)=k; (this is implicit in Proposition 2.7).

Therefore we can apply Proposition 2.5 again to get rJ' f= 1 q. I

We prove the soundness of the recursion and the elimination rule in

separate lemmas:

LEMMAS 4.5 (Soundness of' recursion rule). Let I he an arithmetical inter­

pretation and <Pa set of' correctnessf(mnulas. Suppose that f= / <P - 1p(O)
and

f= 1 cP, [p(n)J P{q}- \p(n+ I)) S0 {q}.

Thcn

f= 1 <P- {3np(n)} P{q},

proPided n ~ FV(cP, q).

Proof: Let n 1 , ••• , n1 be all the counter variables occurring free in

</J - { 3n p(n)} P{ q }. Let k,, ... , k 1 EN such that f= / <P[l{/ii]. It is not
difficult to see that af= 1 (3np(n))[k/ii] iff there is a mEN so that

a f= / p(m)[k/ii] (note that this only holds in arithmetical interpretations).

From this it follows that

f= / { (3n p(n))[k/ii]} P{q[k/ii]}

F= / { p(m)[k/ii]} P{ q[l{/fi] }.

iff for all m E N

146 AMERICA AND DE BOER

We now prove that for all m EN,

f= / {p(m)[k/ii]} P{q[k/ii]}

by induction on m:

m = 0. By the hypothesis f= / <P--+ 1 p(O), we have O' F=, 1 p(O) [l</ii]
for every a E .E(J), so

FI {p(O)[k/ii]} P{q[l{/fi] }.

m>O. We know that n~FV(<P) so that n~{n 1 , ... ,n1} and
f=:,<P[li:/ii][m-1/n]. Therefore, from f= 1 <P, {p(n)}P{q}-.{p(n+1)}
S0 { q} it follows that

f= / { p(n)[li./ii] [m -1/n]} P{ q[li./ii] [m - 1/n]}

implies

f= 1 {p(n+ l)[l</ii][m-1/n]} S0 {q[l{/fi][m-1/n]}.

Now p(n)[l</ii][m-1/n] = p(m-1)[1{/fi], and p(n + 1)[li./ii][m-1/n] =
p(m -1+1)[l{/fi]. Furthermore p(m -1+1)[l</ii] is obviously semanti­
cally equivalent with p(m)[l</ii]. Finally, because n ~ FV(q) we have that
q[l</ii] [m-1/n] = q[l<jii]. So we get

f= / {p(m-1)[l</ii]} P{q[l</ii]} implies f=: / {p(m)[l{/fi]} S0 {q[l</ii] }.

Here the antecedent is just the induction hypothesis and the consequent is
equivalent to

f=J{p(m)[k/ii]} P{q[l</ii]}

by Proposition 2.9. I

LEMMA 4.6. (Soundness of elimination rule). Let, for some arithmetical
interpretation I and some set of correctness formulas <P,

f=,<P--t {p} P{q}.

Then

F=, <P --t { 3zp} P { q},

where:::~ Count u Var(S0) u FV(q).

Proof Let n 1, ... , n1 be all the counter variables occuring in the correct­
ness phrase <P-. {3zp} P{q}. Let k 1 , ... ,k1EN be such that f=:, <P[l</ii]. Let

CORRECTNESS OF RECURSIVE PROCEDURES 147

er f=i(3:::p)[k./ii], so that for some dEID we have cr{d/,::} f==,p[k/11].

Then we know p 1 {p[k/r!]} P{q[k/ii]}, so for cr'=M1 (P)(o-{d/:::}l we

get o-' F= / q[k/ii]. Now :: ef= Var(S0) implies o-' { o-(::)/.::} = M,(P)(o-) by
Proposition 2.7. Finally, ::ef=FV(q) implies o-'{o-(:::)/.:) f=,q[k/11]. We con­
clude:

f==,{::Jzp[k/ii]}P{q[k./11]). I

LEMMA 4.7. For every arithmetical interpretation I we have

implies f= / cfJ --> 'f'.

Prot!l The soundness of all the individual axioms and rules of K' can

be shown along the lines of Lemmas 4.5 and 4.6. The soundness of the

whole proof system then follows by induction on the length of a derivation
of f- ~· rI> __, 'f'. I

THEOREM 4.8. The proof system T is sound, that is.for aery arithmetical

interpretation I we have

f-J{p}S{q} implies f= / {p} S{ q }.

Proof This is now an easy consequence of (a slightly modified version
of) Lemma 3.4. Lemma 4.7, and Proposition 4.4.

5. COMPLETENESS

In this section we prove the completeness of the system T, that is, we

show that for any arithmetical interpretation I and any correctness formula

{p} S{q},

f=,{p}S{q} implies f- / {p} S{ q }.

We assume the arithmetical interpretation I to be fixed throughout this

section. To get started we need the following definitions and lemma:

DEFINITION 5.1. For any program S and any natural number k, we

define

srkl=S[S~tl/P].

(Remember that S0 denotes the body of the procedure P and for S~t 1recall

Definition 2.1.)

148 AMERICA AND DE BOER

LEMMA 5.2. For any program S, any first-order formula q, and any
variable n E Count there exists a first-order formula Pre(S, q, n), such that
for any (J E 1:(1) we have a f= / Pre(S, q, n) iff there exists a

·(J, = M,(Slkl)(a) # J_ such that a' f= / q, where k = a(n).

Proof The proof of this lemma is quite hard work. It consists of show­
ing that the computation of S rkl can be coded in the first-order language.
Here the fact that sequences of elements of ID can be coded into single
elements is essential. We shall not carry out the proof of this lemma here,
but refer the reader to (Tucker and Zucker, 1988) and to the Appendix of
(de Bakker, 1980), where similar proofs are carried out in full detail. I

DEFINITION 5.3. Take some variable n E Count. We define

p0(n) = Pre(P, .\' = ::, n),

where .\' = Var(S0), :: n Count= 0, and :: n Var(S0) = 0. (Here .\' = i
abbreviates the formula x 1 =z 1 /\ • • • /\ x,,, = z,,,).

To appreciate the meaning of this definition, note that the formula
3np0(n) describes the "graph" of the function M 1 (P) in the following sense:
For arbitrary (J E 1:(1),

and

Let us now outline the structure of the completeness proof. To do that we
first describe the global structure of the proof given in (Apt, 1981). There
it is shown that for any valid correctness formula { p} S { q},

{Po(n)}P{x=Z} f-J{p}S{q}

by induction on the complexity of S. For all statements S other than a pro­
cedure call P, this can be done using the well-known techniques {see Apt,
1981 or de Bakker, 1980). To establish the case S= P, however, the first
step is to derive {3np0(n)} P{i=i}. Here the elimination rule is applied.
From this latter correctness assertion arbitrary valid correctness formulas
about the procedure P can be derived by an application of the invariance,
substitution, and consequence rules. Having proved the derivability of any
valid correctness assertion { p} S { q} from { p0 (n)} P{ .\' = i} it is shown by
an application of the recursion rule that the latter assertion is derivable,
thus establishing completeness.

CORRECTNESS OF RECURSIVE PROCEDURES 149

Now note that this proof is not valid to establish the completeness of our
new proof system T, because it uses both the elimination rule and the
recursion with respect to the same variable 11, which is not allowed,
whether or not the variable n is a counter variable. Therefore we proceed
in a different way. Instead of applying the elimination rule to derive
{::Jn p 0(11) } P { .Y: = .:} , we use the recursion rule. Therefore we have to prove

(I)

A straightforward induction on the complexity of S0 obviously does not
work. To be able to carry out some inductive argument we prove the
generalised version,

{ p 0 (n)} P{ .Y: =:} f- / {Pre(S, q, n)} S { q},

for arbitrary S and q. This is done in Lemma 5.5. Then, substituting S0 for
S and .Y: =: for q, and applying the consequence rule, it is possible to prove
(1), so that the recursion rule can be applied.

The rest of this section provides the details.

LEMMA 5.4. For any first-order formula q,for any variable n, and j(>r any

sequences v and i\· of distinct variables such that u n 1\· = f n Var(S0) =
It' n Var(S0) = v n Count= 1i" n Count= 0, we have

f= / Pre(P, q, n)[f/1\']-+ Pre(P, q[ii/i\·], n).

Pruuj: From the definition of Pre(P, q, n) it follows that

1. For every k EN we have f= 1 { Pre(P, q, n) /\ 11 = k J prkl(q }.

2. f= 1 {p) prkl{q} implies p 1 p/\n=k-+Pre(P,q,n).

From I it follows by the soundness of the substitution rule that for every

kEN,

f= 1 {(Pre(P,q,n) /\ n=k)[i'/i\·]} pCkl{q[f/11·]}.

Note that (Pre(P,q,11)/\n=k)[V/i1·J=Pre(P,q,n)[ii/1\·]/\11=k. So we

have by 2 for arbitrary k EN,

f= / Pre(P, q, n)[v/1\·] /\ 11 = k-+ Pre(P, q[f/1\·], n).

Therefore, we conclude

f= / Pre(P, q, n)[V/1"\·]-+ Pre(P, q[f/1"1·], 11). I

150 AMERICA AND DE BOER

LEMMA 5.5. For any program S and any first-order formula q,

{p0 (n)} P{.X=Z} f--- 1 {Pre(S, q, n)} S{q}.

Proof The proof proceeds by induction on the length of S. We
distinguish several cases:

• S = x := t. Within the proof system we can reason as follows:
I. { q[t/x]} x := t{ q }, by the assignment axiom.
2. { Pre(x := t, q, n)} x := t{ q} by the consequence rule.

In order to justify step 2 above, we prove

f= 1 Pre(x := t, q, n) _, q[t/x].

Let er f= 1 Pre(x := t, q, n), then for CJ'= M 1 (S [k 1)(er), where k = er(n), we
have CJ' f= 1 q. But S [kl = S, so er'= er { er(t)/x }, and therefore, by Proposi­
tion 2.5, we get er F= 1 q[t/x].

• S = P. Let i~ be a sequence (of the same length as z) of fresh
variables, not occurring in Pre(P, q, n) or S0 , such that u n Count= 0, and
take q1 = q[u/z]. Now we can reason within the proof system as follows:

I. {p0(n)} P{.X' = z}, the assumption.
2. {p0 (n) A q 1[Z/x]} P{.X'=z A q 1 [Z/.'(]}, by the invariance rule.
3. { p 0 (n) A q 1 [Zj.X'] } P { q 1 } , by the consequence rule (note that

f=1.x=z /\ q1CZ/xJ-.q1).
4. {3z(p0 (n) A q1[Z/X'])} P{q 1 }, by the elimination rule.
5. {Pre(P, q1 , n)} P{q 1), by the consequence rule. This will be

justified below.
6. {Pre(P, q, n) [u/z] } P { q 1 } , again by the consequence rule, now

making use of Lemma 5.4.
7. {Pre(P, q, n)} P{q), by the substitution rule.

In order to justify step 5, we still have to show that

Let (f F= 1 Pre(P, q, n). Then for a'= M 1 (P[kl)(er), where k = er(n), we have
er' F 1q1 ·

Let cf=CJ'{X'). Then, since znVar(S0)=0, we get er'{d/z}=
M 1(PLkl)(er{d/Z}). Furthermore er'{d/z} f= 1 .X'=z, so

er{ d/Z} f= / Po(n). (2)

Now by Proposition 2.5 we have

(3)

CORRECTNESS OF RECURSIVE PROCEDURES 151

Note that u'(y) ~er{ d/z }{ d/5: }(y) for ally E FV(q i). So from a' f= 1 q1 and

from (3) we can infer by Proposition 2.6 that

(4)

From (2) and (4) we conclude

S =- S 1; S2 • Again we reason within the proof system:

1. {Po(n)} P{.\'=z), the assumption.

2. {Pre(S2 , q, n)) S 2 { q }, from l by the induction hypothesis.

3. {Pre(5\, Pre(S2,q,n),n)) Si{Pre(S2 ,q,n)), from l by the

induction hypothesis.

4. {Pre(S 1,Pre(S2 ,q,n),n)}S1;S2 {q}, by the sequential com­

position rule from 2 and 3.

5. {Pre(S1;S2 ,q,11)}S1;S2 iq}, by the consequence rule. It is

easy to see that

S=- if h then S 1 else S 2 fi. We reason within the proof system:

I. {Po(n)} P{.\'=:}, the assumption.

2. {Pre(S 1, q, 11)} S 1 { q }, from I by the induction hypothesis.

3. {Pre(S, q, n) I\ h) S 1 { q}, by the consequence rule, using

F 1 Pre(S, q, 11) I\ h-> Pre(S 1, q, n).

(Note that srkl=if h then S\kl else S~kl fi.)

4. {Pre(S 2 , q, n)} S 2 { q}, from I by the induction hypothesis.

5. { Pre(S, q, n) I\ 1 h} S 2 [q), by the consequence rule, using

f= / Pre(S, q, n) I\ 1 h-> Pre(S2, if, n).

6. {Pre(S, q, n)} S { q), by the conditional rule from 3 and 5.

S=- while h do S 1 od. We may assume that there exists a formula

tf;(m, n), where m $Count, such that a f= 1 tj;(m, n) iff there exists a

a'=M,((Sjn)fkl)(a)#J_ such that er' f=,q and M,((Si':)Jkl)(a)=J_ for

all/'<!, where I= a(m) and k = a(n). Here Si': is defined with respect to

the boolean expression h (see Definition 2.1). The existence of such a for­

mula tf;(rn, n) can be proved by the same techniques as used to prove

Lemma 5.2.

152 AMERICA AND DE BOER

Now we reason as follows within the proof system:

1. { p 0(n)} P{ .\' =.:}, the assumption.
1 [Pre(S 1,tf;(111,11),11)}S 1{tf;(m,11)}, from I by the induction

hypothesis.
3. [t/J(m+l,n)}S1{tf;(m,n)}, by the consequence rule; we shall

justify this below.
4. {3mtf;(m,n)}S{tf;(O,n)}, by the iteration rule. Note that

F / tf;(O, n)---+ 1 band F / tf;(m + 1, n)---+ b. The truth of the first
implication follows from the observation that for arbitrary k EN
we have (S ;0 1)fkl =if b then Q else skip fi. The truth of the
second one can be justified as follows: Let CJ f= / tf;(m + I, 11) /\
-ib. From CJp 1 -ib we derive CJ=M 1((Sj 01)fkl)(CJ), where
CJ(n) = k. But by a f= / tf;(m + I, n) we have M / ((Si i:) [k 1)(a)= ..L
for arbitrary I< a(m) + I. Contradiction.

5. { Pre(S, q, 11)} S { q}, by the conseq ucnce rule, making use of
f=,Pre(S,q,11)->3mt/J(m,11) and p 1 t/!(0,n)->lJ. The truth of
the first implication follows from the observation that for
arbitrary k EN if CJ'= M / (S [k 1)(a) then there exists a I EN such
that CJ'=M 1((Si':)Ckl)(a) and M 1 ((Sj''ljlkl)(CJ)= l. for every
I'<!. The truth of the second implication follows from the
definition s 1°: =if b then n else skip fi.

We still have to justify step 3. To do so we prove

F 1 tf;(m +I, n)--+ Pre(S 1 , tf;(m, n), n).

Let CJ f= 1 tf;(m+l,n). Then for a 1 =M,((Si'+ 1 l)lkl)(a) we have a' f= 1 q,
where f=CJ(m) and k=CJ(n), while M1((S(l)fkl)(CJ)=..L for {'<1+1.

Among other things, this implies that CJ f= 1 h.
Now if we take CJ"=M,(S\k 1)(a), it follows that CJ 1 =M,((Si':)fkl)(CJ 11

),

and that M,((Si'l)fkl)(CJ")=..L for !'<!. Furthermore note that
f=CJ(m)=CJ"(m) and k=CJ(n)=CJ"(n). So we have CJ" f=,tf;(m,n). There­
fore,

CJ F 1 Pre(S 1 , tf;(m, /1), n).

This concludes the proof of Lemma 5.5. I

THEOREM 5.6. The proof'system T is complete, that is, fin· anv arithmeU­
ca/ interpretation I and any correctness formula { p} S{ q }. we h~ve

F=1 {p} S{q} implies I- 1 {p} S{ q }.

Proof The proof proceeds by induction on the length of S. We present
only the case S = P. The other ones are treated exactly the same as in the

CORRECTNESS OF RECURSIVE PROCFDURFS 153

proof of the completeness theorem for the sublanguage consisting of all
those programs in which there occur no procedure calls. for which we can
safely refer to (A pt, 1981), for example.

So let us assume f= / {p} P{ q). We have to show that I- / { p: P\ q). We
know from Lemma 5.5 that

{p (n)}Pl;::_;;;\ I ·1Pr•'(S ;:_;;; 11) 1·S 1 \°"-;;; 1
l () (·~--1 I/ l ¥ 11'·'--, l 0·1· -_,.

From pfk+ 11 =P[S6k+ 11 /PJ=S~k+ 11 ==:S0 [s:; 1 /P]=S[1kl together with
Definition 5.3 and Lemma 5.2 we derive

F / Po(n + 1) __. Pre(S0 , .\' = .:, n).

This enables us to apply the consequence rule to derive

{Pu(n)} P{.\'=2} l- 1 {Po(n+ I)} Su{.\'=:}.

Furthermore f= / 1 p 0 (0) because proi = n. So applying the recursion rule
yields

f- 1 {3np 0 (n)} P{.\'=.:}.

Now let q 1 = q [ii/:], where u is a sequence of fresh, distinct variables of the
same length as .:, such that u n Count= 0. We apply the invariance rule,
yielding

l- 1 {3np 0(n) /\ l/1[.:/.\']} P{.\=.: /\ l/1[.:/.\]}.

Note that f= 1 5:' =.: /\ q 1[:/.\']__.q 1 , so applying the consequence rule gives

us

f- 1{3np11(n) /\ l/1[.:/.\]} P{qi}.

Now note that .: n Count= 0 and .: n FV(q 1) = 0. Therefore application
of the elimination rule yields

f- 1 {3:(:Jnp0(11) A q1[.:/.x])} P{l/1 }.

We shall show below that

F1P1__.3.:(:Jnpo(n) /\ l/1[.:/.\]), (5)

where p 1 = p [il/2]. Applying the consequence rule thus yi~lds
f- / { p 1 } p { q 1 } • Finally we apply the substitution rule, yielding the demed

result:

l- 1 {p}P{q).

154 AMERICA AND DE BOER

We still have to prove (5). From the soundness of the substitution rule it
follows that

f=, {p} P{q} implies f=,{p1}P{q1}

(this also follows easily from Propositions 2.5 and 2.7).
Now let a f= 1 p 1 , then it follows that a' f= 1 q 1 for a'=M,(P)(a). Since

a'= LJk M,(S~k 1)(a) = LJkM,(P[kl)(a) # J_ (see Definition 2.1) there must
be a kEN such that a'=M,(Prkl)(a). Let, furthermore, d=a'(i:). Then,
from the definition of p 0(n), it follows that

a{d/:}{k/n} FtPo(n).

Therefore,

(6)

From a' f= 1 q 1 (since :nFV(q 1)=0, q 1 =q 1[:/.q[.x/:]), we deduce by
Proposition 2.5,

Now since FV(q 1[:j.x])nVar(S0)=0, we get by Proposition 2.7 that
a{d,l:}(y)=a'{J/:}(y) for all yE(FV(q 1 [:;.q). So Proposition 2.6 gives
us

(7)

Now from (6) and (7) we conclude

a f= 1 3:(3np0 (n) /\ q 1 [:/\']).

This concludes the proof of (5) and also of Theorem 5.6. I

6. APPLICATION TO DYNAMIC LOGIC

In this section we discuss the relevance of our analysis to dynamic logic
(Hare!, 1979). Whereas in Hoare logic programs and logical form uias are
strictly separated, in dynamic logic programs can occur inside logical for­
mulas. There they play the role of modalities; i.e., they talk about the truth
of a formula in other states than the current one. Formally we have the
following definition of the assertion language of dynamic logic.

CORRECTNESS OF RECURSIVE PROC!'.DcRES 155

DEFINITION 6.1. The set of dynamic logic assertions, with typical
element p, is given by the grammar:

p ::=q,

p I /\ P2 I ...

Vxp

<S)pl [S]p,

where q is an atomic assertion

where Sis a statement.

An atomic assertion consists of a predicate symbol of our first-order

language L (see Section 2.1) applied to a number of terms. We take the

same syntax for statements as defined in Section 2.1.

DEFINITION 6.2. Let I be an interpretation. For an assertion p and a

state <J E .E(/) we define the truth of p in <F. denoted by <J F 1 p, as follows:

If q is an atomic first-order assertion, <J F 1 q is defined as usual (cf.

Section 2.2).

er F 1P1 A P2 iff er F, p 1 and <J F / p 2 and analogously for the other
propositional connectives.

er F / Vxp iff for every dE In we have er{d/x} F 1 p.

<J F / <S)p iff there exists a er'# 1- such that <J' = M,(S)(<T) and

er' F / p.

<Ff=,[S]p iff for all <F'-:fJ_ such that er'=Af,(S)(<T) we have

er' F If.

So the partial correctness interpretation of the Hoare triple { p: S: q)
can be rendered in dynamic logic by the assertion p---> [S] q, and its total

correctness interpretation corresponds to the assertion p --+ < S) q. Now in

(Hare!, 1979) a proof system based on dynamic logic is presented which is

sound and complete (for arithmetical interpretations). In this proof system

the problem we analyzed with respect to the Hoare-style proof system is

solved in a different way. The main idea consists of extending the program­

ming language by interpreting first-order assertions as programs in the

following manner:

DEFINITION 6.3. Let p be a first-order assertion with free variables -~

and f Then we extend the syntax of statements (see Section 2.1) by adding

the clause S ::= p > Now if I is an interpretation, we define the meaning of

the program p: as

156 AMERICA AND DE BOER

Note that we thus have introduced nondeterminism in our programming
language: A single statement can be executed in several ways, possibly lead­
ing to different results. l t is straightforward to modify the meaning function
M 1 as given in Definition 2. l in order to cope with nondeterminism.

EXAMPLE. Let p = y = x + I. Furthermore, let I be an interpretation
such that I 0 is the set of integers together with the standard interpretation
of the arithmetical operations. We then have

M 1(p;)(<J)= {<J':3n(<J'=<J{n/x} /\ <J{n/y} f= 1 y=x+ I}

= Mi(.--c= x + l)(<J).

In general we have that M 1(p;.)=M 1 (S) formalises that p(x,_ii)
describes the graph of Sas explained in the previous section, assuming that
Sis a program with Var(S, S0) = ·'°·

We now give a proof system based on dynamic logic for our program­
ming language along the lines of (Hare!, 1979). In order to focus on recur­
sion we omit the iterative command. Furthermore, since our main concern
is with total correctness we only give the axioms and rules dealing with the
(·) operator. The axioms and rules which formalise the reasoning about
the [·] operator are similar (see Hare!, 1979).

DEFINITION 6.4. The proof system H consists of the following axioms:

Assignment: < x: = t) p +-+ p [t /x]

where p is a first-order assertion.

Sequential composition:

Conditional: (if h then S 1 else S 1 fi) p +-+ (h --+ (S 1) p /\ 1 h--+ < S 1) p)

Assertion: (p))q+-+ 3i(p[i/YJ /\ q[:/X:])

In variance: (p --+ (P) q) --+ (p /\ r --+ (P) q /\ r)
where Var(r) n Var(S0) = 0-

\i-Elimination \i.\p--+ p

Further, we have the following rules:

Modus ponens:

Diamond:

p--+ q, q

q

p--+ q

(S) p--+ (S) q

Universal:

CORRECTNESS OF RECURSIVE PROCEDURES

p-+ q

vxp-+ vxq

'</-Introduction:
p

vxp

Recursion:
p(n + l)-+ <S0 [p(n) ~/P]) .x= f 1p(O)

3np(n)-+ <P).':=.\'

where Var(S0) = .x and n ~ Var(S0) u .\- u _)'.

157

Given an interpretation I we denote by f- / provability in the proof system

that can be obtained by adding to the above axioms and rules all the first­

order assertions that are valid with respect to l

Especially the recursion rule needs some explanation. The key to under­

standing this rule is the following theorem:

THEOREM 6.5. Let I he some interpretation and let S he a statement such

that Var(S, S 0) <;;;: .x and .': n _l' = 0- Then we have the fiJ/lowing equimlence:

F I p -+ < s > .': = J~

Prooj: See (Hare!, 1979). I

(8)

The above equivalence states that the assertion p-+ <S> .': = f holds if

and only if the graph of the statement p ~ is contained in that of S. So to

prove the assertion :Jnp(n)-+ <P> .':= jJ amounts to showing that

M,C:Jnp(n) ~)<;;;: M 1 (P), or, equivalently, that for all k we have

M,(p(k) n s M,(P). We prove this by induction. First observe that the

premise 1 p(O) implies M 1(p(0) :i = 0. Now we have to show that

from the induction hypothesis M 1(p(k) :.) s M 1(P) we can conclude

M 1 (p(k + l) :) s M,(P). But from this induction hypothesis it follows

that M 1 (S 11 [p(k) :IP])SM1(S0 [P/P])=M 1 (P) (cf. Proposition 2.3). So

it suffices to show that M,(p(k+I):)s:M1 (S0 [p(k);/P]). Using the

equivalence (8) we see that this follows from the other premise

p(k +I)-+ <So [p(k) ~/P) .': = f
We have the following theorems about this proof system:

THEOREM 6.6 (Soundness). Let I he an arithmetical interpretation. For

an arbitrary c~)·namic logic assertion p we have

f- ,p

Proof See (Hare!, 1979). I

implies

158 AMERICA AND DE BOER

THEOREM 6.7. (Completeness). Let I be an arithmetical interpretation.
For an arbitrary dynamic logic assertion p we have

implies

Proof See (Hare!, 1979). I
Note that this proof system does not have rules corresponding to the

substitution rule and the elimination rule of our Hoare-style proof system.
These rules are in fact in a way incorporated by the Assertion Rule.
However, the resulting proof system is quite complicated. We will show
that there also exists a sound and complete proof system based on dynamic
logic which more closely corresponds to the Hoare-style proof systems, and
that we do not need to extend our programming language by interpreting
assertions as programs. We will make use of the fact that we can express
the special role of the counter variables in the Hoare-style proof system
directly in dynamic logic. We first introduce the following new version of
recursion.

DEFINITION 6.8. We have the following rule dealing with total correct­
ness of recursion:

Recursion:
Vz(p(n)~ <P> q)~Vz(p(n+ 1)~ <S0) q) 1p(O)

3np(n) ~ <P) q

where Var(S0 ,p(n), q)\{n} £z and n~z.

Note that universally quantifying all the variables except the variable n
corresponds to different interpretation of the counter variables. Further­
more, we have the following versions of the elimination and the substitu­
tion rule:

Elimination:

Substitution:

Vz(p ~ <P) q) ~ (3zp ~ <P) q),

where we require that z ~ Var(Sci. q).

Vz(p ~ <P) q) ~ Vy(p[y/z] ~ <P) q[y/z]),

where we require that z, y it; Var(S0) and y ~ Var(p, q).

This new system can be proved to be sound by a straightforward induc­
tion on the length of the derivation. The soundness of the Recursion Rule
is established in a similar way as the corresponding rule of the system
manipulating correctness phrases as defined in Definition 3.3.

Completeness follows from the following theorem, see (Hare], 1979).

CORRECTNESS OF RECURSIVE PROCEDURES 159

THEOREM 6.9. Let I he an arithmetical interpretation and let p and q he
first-order assertions. We have

implies ~ ,p--+ (S)q

The proof of this implication follows the proof method for the complete­
ness of the corresponding Hoare-style proof system for total correctness,
the Hoare-style proof system for partial correctness, and the system
presented in the previous section. We illustrate this by the proof of the
lemma corresponding to Lemma 5.5. Let Pre(S, q, n) and p0(n) be defined
as in the previous section.

LEMMA 6.10. Let I he an arithmetical interpretation. For every statement
Sand.first-order assertion q we have

~I Vji(po(n) - (P) .\' = z)-+ \l_i'(Pre(S, q, n)-+ (S) q),

where Var(p0 (n), q, S)u.xvz\{n} £j, n~;', and .X'=Var(S0).

Proof The proof proceeds by induction on the complexity of S. Here
we only deal with the case of S= P; let q1 = q[u/z], where u are some new
variables:

1. (Po(n)-+ (P).x=z)-+ (Po(n) /\ q1[i/.x]-+ (P).x=z /\ q1[z/.X']),
by Invariance.

2. (Po(n) - (P).X' = z)-+ (Po(n) /\qi [Z/i]--+ (P)qiJ, from F ,.x=
z /\ q 1 [:/.'°] -+ q 1, using Diamond and some propositional reasoning.

3. Vz(p0(n)-+ (P).x = z)--+ Vz(p0(n) /\ q1[z/.x]--+ (P)q1l. by
Universal.

4. Vz(p 0 (n) -+ (P)x = z) --+ (3f(p0(n) /\ q1[z/.X']) --+ (P)qi), by
Elimination and some propositional reasoning.

5. V.Z(p0 (n) -+ (P) .\' = z) -+ (Pre(P, q1, n) --+ (P) q1), because
f= 1 Pre(P,q 1,n)-+3z(p0(n)Aq 1[z/.X']) (see the previous section) and
using some propositional reasoning.

6. Vz(p 0(n)-+ (P)x = z)--+ (Pre(P, q, n)[u/.7]--+ (P)q1), since
f= / Pre(P, q, n)[u/:]-+ Pre(P, q1, n) (see Lemma 5.4) and using some
propositional reasoning.

7. Vz(p0 (n) -+ (P) x = z) --+ Vu(Pre(P, q, n)[u/z] --+ (P) q1), by
Universal, If-Elimination (note that unVar(po(n)-+ (P).X'=z)=0). and
using some propositional reasoning.

8. Vz(p0(n)-+ (P).X' = z)-+ Vz(Pre(P, q, n)-+ (P)q), by Substitution

and some propositional reasoning.

160 AMERICA AND DE BOER

9. V_)'(p0(n)--> (P)S: = :) --> V_\'(Pre(P. q, n)--> (P)q), by Univer­

sal. I
From this lemma we derive in the same way as in the previous section

that

V_l'(p0 (11)--> (P).\ = :)--> V_np 0(11+1)-+ (So).\=:).

Applying the Recursion Rule then gives us the derivability of

3n Po--> (P).\ = :.

Next we apply the rule \i-lntroduction, which gives us the derivability of

V:(311p0 -+ (P).\ = :).

We have

f- /v:(3np 0 -+ (P).\: = :) --> V:(p-+ (S) q)

for anv valid assertion p--> (S) q. The proof of this claim proceeds in a
simila; way as the one of Lemma 6.10. So we have the derivability of

V:(p--> (S)q).

Using the \/-Elimination axiom and the Modus ponens rule then concludes
the completeness proof.

7. CONCLUSION

We have studied in this paper a well-known Hoare-style proof system for
the total correctness of recursive procedures. We showed that the proof
system as presented in the literature is unsound due to the incorrect inter­
action of the recursion rule and the rules which formalise reasoning about
invariance properties. Our solution to this problem consisted in defining
some appropriate restrictions on the applicability of those rules which can
interact in an incorrect way. We proved the system to be sound along the
lines of (Apt, 1981) using a transformation of the system into a Gentzenlike
calculus, thus turning it into a system in which the Recursion Rule is no
longer a metarule. However, the interpretation of the result of this transfor­
mation differs from the one used in (Apt, 1981) to prove the soundness of
the system for partial correctness. Special care had to be taken concerning
the interpretation of the variables used to establish termination of proce­
dures.

CORRECTNESS OF RECURSIVE PROCFDl:RES 161

Furthermore we proved that even with these restrictions the proof
system is still corn plete. The completeness proof differs quite substantially
from the one given by op. cit. because there the restrictions on the
applicability of some rules are not satisfied.

f n Sokolowski (1977) a different formulation of the Recursion Rule is
presented based on predicate transfimners. in order to solve the problem of
how to interpret the notion of derivability in the premise of the recursion
rule. ln the conclusion of this new version the existential quantification of
the variable used to establish termination is replaced by an inflnite disjunc­
tion. As a consequence, our counterexample to the soundness of the system
does not apply to this new version of the Recursion Rule. However, the
proof system based on predicate transformers transcends the framework of
Hoare-style proof systems in allowing infinite disjunctions. Furthermore,
the system presented in (Sokolowski, 1977) is incomplete because it does
not include a reasoning mechanism about invariance properties. A similar
proof as given in (Apt, 1981) that the Recursion Rule for the partial
correctness of recursive procedures docs not suffice shows the same result
for the Recursion Rule for total correctness.

We also applied our analysis to dynamic logic. We constructed a proof
system based on dynamic logic which more closely corresponds to the
Hoare-style proof system than the one presented in (Hare!, 1979). In op.

cit. the problems we encountered are solved in a way which complicates the
proof system considerably. In particular, it extends the programming
language with assertions considered as statements. We showed how our
technique to arrive at a sound and complete system based on Hoare logic
can be formulated in the formalism of dynamic logic. The resulting proof
rules arc simpler and the programming language need not be extended.

Runvrn January 28, 1988: Fil'AL MA~USCRIPT RH"EIVHJ March 9. 1989

REFERENCES

APT, K. R .. (1981). Ten years of Hoare logic: A survey-Part L A CM Trans. Progranuning

Lang. Sysrems 3, No. 4 i 1981). 431 483.
Ill RAK Km, J. W. (1980). "'Mathematical Theory of Program Correctness." Prentice Hall,

Englewood Cliffs, NJ. 1980.
HARJL, D. i 1979), "First-Order Dynamic Logic." Lecture Notes in Computer Science,

Vol. 68, Springcr-Ycrlag. New York.Berlin. 1979.
HoAKE, C. A. R. (1969). An axiomatic basis for computer programming. Comm. ACM 12,

No. 10 I !%9), 567 580, 583.

162 AMERICA AND DE BOER

PNCELI, A., AND MANNA, Z. (1982), Verification of concurrent programs: The temporal
framework, in 'The Correctness Problem in Computer Science" (R. S. Boyer and J. S.
Moore, Eds.), pp. 215-273, Academic Press, New York/London, 1982.

SOKOLOWSKI, S. (1977), Total correctness of procedures, in "Proceedings 6th Symp. Mathe­
matical Foundations of Computer Science," Springer-Verlag, New York/Berlin, 1977.

TUCKER, V., AND Zt:CKER, J. I. (1988), Program correctness over abstract data types, with
error-state semantics, in "CWI Monographs," Vol. 6, North-Holland, Amsterdam, 1988.

