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In this paper we study the monotonicity of performance measures in a processor sharing queue with two types of customers. 
The access control law is such that when a new customer arrives he is admitted only if the number of customers of the same 
type that is already present in the queue does not exceed a predefined threshold. We show that performance measures such as 
throughput, mean queue length and mean sojourn time are monotonic functions of the threshold for one type if the threshold 
for the other type is held constant. Monotonicity of throughput and mean queue length is proven by comparing policies for 
discrete time Markov processes. Monotonicity of the mean sojourn time is proven directly with the closed form formula for 
this measure using the existence of a product-form equilibrium distribution for the queuing system. 

Keywords. Monotonicity, processor sharing. 

l. Introduction 

During the last few years a number of papers has been published about monotonicity of performance 
measures in queuing systems. These results are used, for example, to provide structural properties of the 
queuing systems or bounds on performance measures of analytically untractable queuing systems. The 
monotonicity results as reported in this paper stem from a study of an optimal control problem for a 
processor sharing queue. Monotonicity of performance measures here provides necessary and sufficient 
conditions for the existence of optimal control laws. Furthermore it also suggests an efficient algorithm for 
finding the optimal control law (cf. [23]). 

The techniques that have been used for establishing monotonicity results can roughly be divided into 
four classes. The first approach is based upon preservation of monotonicity of one-step transition 
operators (cf. [21]). In analogy with [11, Remark 5.1] one easily finds a counterexample of this preservation 
under processor sharing disciplines, so this method does not apply. 

In the second class of papers monotonicity results are proven for queuing systems that have product-form 
equilibrium distributions. The closed form formulas of the performance measures that can be derived from 
these distributions are subsequently used to prove the desired results. In general the proofs are very 
technical and lack any probabilistic interpretation. Example of papers are [12,15,17,20,22,25]. 

In the third class of papers monotonicity results are established by stochastic coupling and sample path 
arguments. In these papers inequalities for the throughput of two related queueing systems are proven by 
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comparing realizations of the arrival or departure processes in these 'two queuing sy~tem~. T~e inequalities 
are therefore proven for stochastic variables (i.e. the number of departed customers m a time mterval). The 
drawback of this method is that it relies on the assumption that if the same realization of the arrival 
process is fed into both queuing systems, the order in which customers are served is the same for both 
systems. This means that overtaking of customers is not allowed, thus prohibiting the use of this technique 
in queuing networks with a general routing mechanism or last-come-first-served or processor sharing 
disciplines. The advantage of the method, when compared to the second technique, is that its use is not 
restricted to product-form queuing systems, thus allowing blocking for example. Examples of this 
approach can be found in [l-3,10,18,19]. 

In the fourth category of papers the performance measures are considered as time average rewards for 
Markov processes. Monotonicity of the measures is then established by proving inequalities for expected 
rewards over a finite horizon in the discrete time version of these processes. The inequalities thus concern 
real numbers, viz. expectations of random variables, as opposed to inequalities for random variables as in 
the second category. Examples are [4,7-9,11,24]. 

So far, however, no monotonicity results have been reported for systems with processor sharing 
disciplines. When comparing sample paths for such systems, there are two essential difficulties. Firstly, 
changing the admission policy for a processor sharing queue may lead to a change in the order in which 
customers are served. Secondly there is an interaction between the service capacities which are allocated to 
the different customer types. To this end, the fourth approach will be applied and shown to be successful 
under natural conditions. The monotonicity results are proven by establishing bounds on the differences of 
the finite horizon expected rewards. The results are new in the sense that the bounds depend explicitly on 
the customer's type (cf. Lemma 4.3), and therefore the method itself is of interest. 

This paper is organized as follows. In Section 2 the queuing system and its performance measures are 
introduced. The service discipline is defined as a generalization of the standard processor sharing 
discipline. The queuing process, which is a continuous time Markov process, is transformed into an 
equivalent discrete time process in Section 3. For this discrete time process monotonicity of the throughput 
and mean queue length is proven in Sections 4 and 5, respectively. Monotonicity of the mean sojourn time 
is shown in Section 6. 

2. Introduction of the queuing system and its performance measures 

Consider the queuing system in Fig. 1, where two types of customers arrive according to two 
independent Poisson processes with arrival rates ;\1 and ;\2 , respectively. If m customers are present of 
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Fig. 1. The model of the processor sharing queue. 

type 1 and n customers of type 2, then the population vector of the queue is (m, n), m, n EN. Admission 
of new customers is described by a control law U: N 2 -+ [O, 1]2, where U;(m, n) denotes the probability 
that a new customer of type i is admitted if the population vector at the moment of arrival is (m, n). 
Non-admitted customers are assumed to be lost. For the remainder of this paper we will restrict attention 
to control laws U that use only partial state information, i.e. U1(m, n) = U1(m), U2 (m, n) = U2(n). 
Furthermore the control law is restricted to be of the critical level or threshold type, i.e. U1 ( m, n) and 
U2 (m, n) are of the form 

(2.1) 

U2 (m, n) = l(n<N)' (2.2) 

for some M, NE NU { oo }. The control law U as defined in (2.1) and (2.2) will be referred to as UM,N. 
The parameters of the control law, M and N, are referred to as the critical levels or thresholds for type 1 
and type 2, respectively. These admission policies make the arrival rates for admitted customers state-de­
pendent, i.e. if the population vector of the queue is (m, n), then the arrival rates of type 1 and 2 are 
A1(m, n)=A1l(m<M) and A2(m, n)=A 2l(n<N)' respectively. 

The service requirements for customers of type i are assumed to be exponentially distributed with 
service rate J.I.;, i = 1, 2. The server is working according to the processor sharing discipline in the sense 
that at any time each customer of one type receives the same amount of service as any other customer of 
that type. The speed at which service demands of customers of both types are handled is modeled by two 
capacity allocation functions 1[>1, 1[>2 : N 2 -+ [O, l]. For each m, n EN, lf>;(m, n) denotes the speed at which 
all customers of type i together are served, so P.;4';(m, n) is the actual service rate for type i if the 
population vector is (m, n). The actual service rate for one customer of type 1 and type 2 is then 
µ11f>1(m, n)/m and µ 24>2 (m, n)/n, respectively. 

Let X: fJ x IR+-+ N2 denote the queuing process, for some appropriately chosen sample space D. 
Performance measures for this queuing system are defined as expected time-average rewards for suitably 
chosen reward functions. Let r : N 2 -+ R + be a reward function: when the population vector is ( m, n ), a 
reward r( m, n) is accrued per unit time. The corresponding performance measure is defined as the 
expected time-average reward if the reward function is r: 

lim EM,N{+ [r(XJ as}. 
1-+00 0 

where the superscript M, N on the expectation operator denotes its dependence on the thresholds of the 
control law. Most standard performance measures can be expressed in this manner, e.g. the throughput of 
type i by choosing r(m, n) = JL;<P;(m, n), and the total mean queue length by choosing r(m, n) = m + n. 

3. Transformation to discrete time 

In this section the queuing system, as introduced in the previous section, will be transformed into a 
discrete time setting. This formulation will be useful in later sections since it makes times between 
transitions of the queuing process constant, at the cost of introducing so-called dummy transitions. The 
transformation proceeds as follows (cf. [14,16]). 
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Assume that the sum of all transitions rates, i.e. ;\.1 + ;\. 2 + µ1 + µ 2 , is finite. Furthermore assume that 
this sum is equal to one. This is no restriction, since it can be established by appropriately scaling the time 
axis. Introduce N: fJ x Ill+~ N a Poisson process with stochastic intensity one, and the stopping times 
tn: Q ~ IR as 

tn=inf{tl.Nr~n}, nEN. 

Let Y: fJ x N ~ N 2 be defined as Yn == X1 , then Y is a discrete time Markov process with transition 
probabilities (depending on the control law) given by: 

pM.N((m', n'); (m, n))=P{Yk+ 1 =(m', n')IYk=(m, n)} 

A1l(m <M)• 

A)(n <N)• 

if (m', n'} = (m + 1, n), 

if (m', n') = (m, n + 1), 

µ 1</>1 (m, n), if(m', n')=(m-1, n), 

µ 2</>2 (m, n), if (m', n') = (m, n -1), 

1- ;\.ll(m<Ml - ;\.2l(n <N)- µ1</>i(m, n) - J.1.2'P2(m, n ), 

if (m', n') = (rn, n). 

(3.1) 

From (3.1) we see that by transforming the continuous time process into a discrete time one, we introduce 
dummy transitions, i.e. transitions that do not change the state. 

If we choose the one step reward for process Y equal to r(m, n ), then the expected time-average 
rewards for both Y and X are equal, i.e. 

4. Monotonicity of the throughput function 

In this section we show that the throughput of customers is monotonic in the thresholds: the throughput 
of one type increases if the threshold for that type is increased, and it decreases if the threshold for the 
other type is increased. 

Let the reward function be r(m, n) = µ 1</>1(m, n), hence the performance measure under consideration 
is the throughput of type 1 customers. Let T{·N and T1M+l,N denote the throughput of type 1 if the 
control laws UM,N and uM+I,N are used, respectively. Throughout the remaining sections of this paper we 
assume the following. 

Assumption 4.1. </> 1(m, n) is non-decreasing in m and non-increasing in n. </>2 (rn, n) is non-increasing in 
m and non-decreasing in n. 

These assumptions are satisfied for example by the normal processor sharing service discipline, i.e. 
</>1(m, n)=l(m+n>O)m/(m+n). 

The main result of this section is the following theorem. It states the intuitively obvious monotonicity 
for the throughput function. 

Theorem 4.2. If Assumption 4.1 holds and if 

</>1 ( m + 1, n ) + </>2 ( m + 1, n ) ~ cp1 ( m , n ) + </>2 ( m , n ) , 

</>1 ( m, n + 1) + <f>2 ( m, n + 1) ~ </>1 ( m, n) + </>2 ( m , n ) , 

then T1M,N ~ r1M+l,N, M, NE N. 

(4.la) 

(4.lb) 
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Before proceeding with the proof of Theorem 4.2 we need the following definitions. Let V~.N(m, n) for 

m, n E ~ denote the total expected reward over k steps when starting in state (m, n), for the policy UM,N: 

V}/,N(m, n) = EM,N [ :t>(Y;) I Y0 = (m, n) l k-;;;. 0, (4.2) 

where v~.N(m, n) = 0, m, n EN. 

Since for finite M and N the state (0, 0) is positive recurrent, the Markov chain Y is irreducible. 

According to the theory of Markov reward processes we thus have 

M,N _ lim 1 k ( ) T1 - -k VM,N m, n 
k-+ 00 

and the limit is independent of the initial state (m, n). It is therefore sufficient to prove that for some 
m, n EN and for all k EN, 

V}/,N(m, n) ~ V}4+1,N(m, n). 

For the proof of Theorem 4.2 we first state the following lemma. 

umma 4.3. If Assumption 4.1 holds and the conditions (4.1) are satisfied, then for all k, m, n, M, NE N, 

0,;;; v.tt,N(m + 1, n)- V}/,N(m, n),;;; 1, (4.3a) 

O,;;;V}/N(m, n)-V~N(m,n+l),;;;~. (4.3b) 
' ' P.2 

Proof. The proof is by induction in k. Since Mand N are constant throughout the proof, we shall drop 

the subscript M, N from v;;.,N· 
By definition V 0 (m, n) = 0, so (4.3) is immediate fork= 0. Let k > 0. Assume that (4.3) is satisfied for 

k. From (4.2) we get the following recursion for yk+l: 

Vk+ 1(m + 1, n) - yk+ 1(m, n) 

= { r(m + 1, n) 

+.\1l(m+l<MFk(m+2, n) 

+A2l(n<NFk(m+l, n+l) 

+µ, 14>1(m+ 1, n)Vk(m, n) 

+µ, 24>2 (m+l, n)Vk(m+l, n-1) 

+ [ 1 - A 11 ( m + 1 < Ml - A 21 ( n < N l - µ,14>1 ( m + 1, n ) - µ, 2c/>2 ( m + 1, n ) ] V k ( m + 1, n ) } 

- {r(m, n) 

+.\1l(m<MFk(m+l, n) 

+.\ 2l(n< N)Vk(m, n + 1) 

+µ, 1<J>1(m, n)Vk(m -1, n) 

+µ, 24>2 (m, n)Vk(m, n -1) 

+ [l - A1l(m<M)- A2l(n<N) - µ,14>1(m, n) - P.24>2(m, n)] Vk(m, n)}. 

Consider the two expressions between braces for Vk(m + 1, n) and Vk(m, n), respectively. The second 

term of Vk(m, n) can be rewritten as 

A1[l(m+l<Ml+l(m+l=M)]Vk(m+l, n), 



10 P.R. De Waal. N.M. Van Dijk /Monotonicity in a processor sharing queue 

the fourth term of vk ( m + 1, n) as 

µ. 1 [cf>1(m, n)+(cf>1(m+l, n)-cf>1(m, n))]Vk(m, n), 

the fifth term of Vk(m, n) as 

µ. 2 [<t>2 (m+1, n)+(<t>2 (m, n)-<t>2(m+l, n))]Vi(m, n-1), 

the last term of Vk(rn + 1, n) as 

[1-A.11(m<M)-A. 2l(n<N)-µ 1<j>1(m+l, n)-µ 2<1>2 (rn, n)]Vk(m+l, n) 

+A.1l(m+I=MFk(m + 1, n) 

+µ. 2 [<t>2 (m, n)-<t>2 (rn+l, n)]Vk(m+l, n), 

and the last term of Vk(rn, n) as 

[1-A.11(m<Ml-A.21(n<Nl-µ.1<j> 1(rn+l, n)-µ.i<f>2 (rn, n)]Vk(m, n) 

µ. 1 [ </> 1 ( m + 1, n) - <1>1 ( m, n)] Vk ( rn, n). 

By combining the corresponding terms from Vk(rn + 1, n) and Vk(m, n) we get 

vk+l(m + 1, n)- vk+l(m, n) 

=r(m+l, n)-r(m, n) 

+A.11cm+l<Ml[Vk(m+2, n)-Vk(m+l, n)] 

+A. 2l(n<Nl[Vk(m + 1, n + 1)- Vk(m, n + 1)] 

+µ. 1<f> 1(rn, n)[vk(m, n)-Vk(m-1, n)] 

+µ. 2cf>2(m+l, n)[Vk(m+l, n-1)-Vk(m, n-1)] 

+ [ l -A.1l(m<M) -A.2l(n < N) - µ1<f>1(m + 1, n) - µ2cf>2(m, n)] 

x [vk(m + 1, n) - Vk(rn, n)] 

+ µ. 2 [ cf>2 ( m, n) - ct>2 ( m + 1, n) ][ Vk ( m + 1, n) - Vk ( m, n)] 

+ µ 2 [cf>2 (m, n)-<t>2 (m + 1, n)] [vk(rn, n)- Vk(m, n -1)] 

(4.4) 

0 

0 

Observe that apart from the terms marked o all other terms consist of a difference as in ( 4.3a) 
multiplied by a constant between 0 and 1, with all multiplication constants summing up to a number 
smaller than or equal to one. Note also that by Assumption 4.1 and ( 4.3b) the second term marked o is 
negative. We will now bring the marked terms in a similar form, distinguishing between two cases. 

Case cp1(m + 1, n) = cj>1(m, n). If cp1(m + 1, n) = cf>1(m, n) then by Assumption 4.1 and condition 
(4.la) also cf>2 (m + 1, n) =cf>2(m, n) and by definition r(m + 1, n) = r(m, n). Both terms marked o thus 
vanish, and all the remaining terms are of the form ( 4.3a) multiplied by a non-negative constant. 
Furthermore all multiplication constants sum op to 1 -A.1l(m+l=M)' which is smaller than or equal to one, 
thus completing the proof. 

Case <P1(m+l, n)><f>1(m, n). Assume that <f> 1(m+l, n)>c/>1(m, n). Theo marked terms in (4.4) 
equal 

r(m + 1, n)- r(m, n) + µ 2 [ <t>2 (m, n) -<j>2 (m + 1, n)][Vk(m, n) - Vk(m, n -1)] 

= µ 1 [ <1>1 ( m + 1, n) - c/>1 ( m, n)] 

x{1+µ.z[<i>2(m,n)-<1>2(m+l,n)] [vk(m n)-Vk(m n-1)]} 
µ 1 [ 4>1 ( m + 1, n) - cf>1 ( m, n)] ' ' · 
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With (4.la) and the induction assumption (4.3b) we have 

so 

0 ~ l + µ-i[ c/>2(m, n)- c/>2(m + 1, n)] [vk(m, n) - Vk(m, n -1)] ~ 1. 
µi( c/>1 ( m + 1, n ) - c/>1 ( m, n)] 

Vk+l(m + 1, n) - Vk+I(m, n) 

=A.1l(m+I<M)[Vk(m + 2, n)- Vk(m + 1, n)] 

+ A2l(n < N) [ Vk(m + 1, n + 1) - Vk(m, n + l)] 

+ µ1c/>1(m, n)[Vk(m, n) - Vk(m -1, n)] 

+ µ2cp2(m + 1, n)[Vk(m + l, n -1) - Vk(m, n -1)] 

+ µ1 [ c/>1 ( m + 1, n) - c/>1 ( m, n) ][TERM ( 4.5)] 

+ µ 2 [ c/>2 (m, n) - cp2(m + 1, n)][ Vk(m + l, n) - Vk(m, n)] 

+ [ l - A1l(m<M) -A.2l(n <N) - µ1c/>1(m + 1, n) - /12c/>2(m, n)] 

x [vk(m + l, n)- vk(m, n)], 

11 

(4.5) 

where 0 ~TERM (4.5) ~ l, thus completing the induction step. The proof of (4.3b) proceeds m an 
analogous way. D 

With Lemma 4.3 we can proceed the proof of Theorem 4.2. 

Proof (of Theorem 4.2). Recall that we had to prove V~.N(m, n) ~ V~+l,N(m, n) for some m, n E f'\I and 
for all k EN. In fact we will prove that this holds for all m, n E f'\I. Again the proof is by induction in k. 

k = 0. Trivial. 
k > 0. Observe that 

V~!i,N(m, n) - V~~J(m, n) 

L pM+l,N((m', n'); (m, n))V~+l,N(m', n') 
(m',n') 

-pM,N((m', n'); (m, n))V~.N(m', n') 

f::, pM,N((m', n'); (m, n))[V~+i. N(m', n')- V~.N(m', n')] 
(m , n ) 

+ L [pM+l,N((m', n'); (m, n))-PM·N((m', n'); (m, n))]V~+l,N(m', n'). 
(m 1 ,n 1 ) 

(4.6) 

Since the first term on the right hand side of ( 4.6) is positive due to the induction assumption, the 
positivity of the second term remains to be proven. Examination of this term shows that it is equal to 
i\ 1 [V~+l,N(M + 1, n) - V~+l,N(M, n)]. With the result of Lemma 4.3 this completes the proof. D 

Observe that by equation (4.6) proving the original inequality for two policies is reduced to proving an 
inequality for one policy. This is due to the fact that the control law for customers of type 2 is the same for 
both UM,N and UM+I,N_ 

By choosing the appropriate bounds as in Lemma 4.3 the method should in principle be extendible to 
more than two customer types. We have, however, not addressed this problem yet. 

The introduction of the capacity allocation functions allows more elaborate service disciplines than the 
usual Processor Sharing mechanism, including those which do not lead to product-form equilibrium 
probabilities. 



12 P.R. De WaaJ, N.M. Van Dijk /Monotonicity in a processor sharing queue 

Example 4.4 (Monotonic Generalized Processor Sharing). If we choose the capacity allocation function as in 
the Generalized Processor Sharing model (cf. [6,13], i.e. 

m n 
</>1(m, n) = f(m + n) m + n l(m+n>O)• </>2(m, n) =f(m + n) m + n l(m+n>O)• 

for some non-decreasing function f:~ ->IR+, we have .P1(m, n)+<t>2(m, n) equal tof(m+n)l(m+n>O)• 
so Assumption 4.1 and the conditions (4.1) are satisfied. Moreover, observe that for this choice the 
equilibrium probability distribution has a product-form (cf. [5,6,13]) and the throughput depends on the 
service time distribution only through its mean value. This leads to the following corollary. 

Corollary 4.5. If the service discipline is Monotonic Generalized Processor Sharing, then the throughput of 
type 1 customer is non-decreasing in the threshold of type 1 for general service time distributions. 

The following example shows that Theorem 4.2 holds also for non-standard service disciplines. 

Example 4.6 (Priority Processor Sharing). 
Take 

<l>2(m, n) = l(m=O)· 

Here we have .P1(m, n) + .p2 (m, n) = 1, so conditions (4.3) are satisfied. In this example all processor 
capacity is awarded to type 1 customers, when they are present. This queue does not have a product-form 
equilibrium distribution. 

We conclude this section with a theorem similar to Theorem 4.2 referring to the monotonicity of the 
throughput of one type of customers if the threshold of the other customer type is increased. 

Theorem 4.7. If the conditions of (4.1) are satisfied, then Tt·N > T2M+I,N_ 

Proof. Take r(m, n) = µ 2.p2 (m, n). The proof now proceeds analogously to that of Theorem 4.2. 0 

5. Monotonicity of the mean queue length 

In this section monotonicity of the mean queue length is shown with respect to both thresholds. If either 
of the thresholds is increased, then the mean queue length of both types (and the total mean queue length 
of course) increases. The result can be stated for a rather general class of reward functions. 

Theorem 5.1. Let V/:t.N(m, n) be the expected total reward over k steps, when starting in state (m, n) and 
using policy UM,N_ If the reward function r(m, n) is non-decreasing in both its arguments m and n and 
Assumption 4.1 holds, then V/:i N(m, n) ~ V/:i+ 1 N(m, n) for all m, n EN. , , 

Proof. As in the proof of Theorem 4.2 it is plain from (4.6) that it suffices to proves that 

O~Vf:t.N(m+l,n)-V/:i,N(m,n), m,n,M,NE~. 0 

Lemma 5.2. If r(m, n) is non-decreasing in both arguments, then 

0 ~ vf:t,N(m + 1, n) - V/:i,N(m, n), 

0~V/:t,N(m,n+1) - V/:i,N(m, n), 

for all m, n E ~. 

(5.la) 

(5.lb) 
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Proof. Again the proof is by induction in k and the subscript M, N is dropped from Vf:t.N· The case k = 0 
is trivial. Fork> 0 write vk+I(m + 1, n)- vk+l(m, n) as 

vk+l(m + 1, n) - vk+l(m, n) 

=r(m+l, n)-r(m, n) 

+A11cm+I<M>[Vk(m+2, n)-Vk(m+l, n)] 

+.A 2lcn<N>[Vk(m+l, n+l)-Vk(m, n+l)] 

+ µ1c/>1(m, n)[Vk(m, n)- Vk(m -1, n)] 

+ µ 2c/>2{m + 1, n)[ Vk(m + 1, n -1) - Vk(m, n -1)] 

+[l-A1l(m<Ml-A 2lcn<N)-µ 1c/>1(m+l, n)-µ 2c/>2 (m, n)] 

x[vk(m+l, n)-Vk(m, n)] 

+µ 2 [4>2 (m, n)-cp2 (m+l, n)][vk(m+l, n)-Vk(m, n-1)]. (5.2) 

Since cJ>2(m, n) is non-increasing in m due to Assumption 4.1 and Vk(m + 1, n) - Vk(m, n -1) = 

V\m + 1, n)- Vk(m, n) + Vk(m, n)- Vk(m, n -1) ~ 0, all terms in (5.2) are non-negative, thus com­
pleting the induction step. The proof of (5.lb) is analogous. D 

Note that if the reward function r is positive and non-decreasing in both arguments, then r; also has 
these properties for all i E 1\1. The monotonicity of r thus makes the higher moments also monotonic in 
the thresholds. 

Example 5.3. If we take r(m, n) = m or r(m, n) = m + n, we see that both the mean queue length of type 
1 and the total mean queue length are non-decreasing if the threshold of type 1 is increased. Due to the 
symmetry of Theorem 5.1 this also holds if the threshold of type 2 is increased. 

6. Monotonicity of the mean sojourn time 

With Little's result we can combine Theorems 4.2 and 5.1 to show that the mean sojourn time of type 2 
customers increases if the threshold for type 1 customers increases. Unfortunately this technique cannot be 
used for the monotonicity of the type 1 customers' mean sojourn time. In this section we show that this 
performance measure is also non-decreasing if either of the thresholds is increased. We have been able to 
prove this only for standard Processor Sharing, however. The capacity allocation functions c/>1 and <1>2 thus 
are chosen as 

The proof of the theorem relies on the product-form of the equilibrium distribution and the closed form 
formula of the mean sojourn time that can be derived from this distribution. It is well known (cf. [5,13]) 
that the equilibrium probability of the population vector (m, n) under the policy UM,N is equal to 

wM,N(m, n) = C[M, N]w(m, n), 0 :i;;. m ..,_ M, 0 ..,_ n ..,_ N, (6.1) 

where 

(6.2) 

{6.3) 
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Here P; :=A.;/µ; denotes the workload of type i, i = 1, 2. By Little's formula the mean sojourn time of type 
1 customers is equal to 

where 

sM.N = A(M) 
I B(M) 

M N 

A(M) = L L m'TT(m, n), 
m=On=O 

M N 

B(M) = L L ~+ J.L 1'1T(m, n). m n 
m=O n=O 

( 6.4) 

( 6.5) 

(6.6) 

The variable N is suppressed in the notation of A and B, since N is held constant throughout this section. 

Theorem 6.1. If p2 > 0, then 

Again we need a preliminary lemma for the proof of the theorem. 

Lemma 6.2. If A, B: N ~ IR +• increasing, A(O) = B(O) = 0 and 

D.A(M + 1) D.A(M) 
D.B(M+ 1) > D.B(M)' M~ l, 

where D.A(M) := A(M) -A(M - 1) and D.B(M) analogously, then 

A(M + 1) A(M) 
B(M+ 1) > B(M)' 

Proof (by induction). 

M~ 1. 

( M = 1). First note that for positive a, b, c, d, 

a+c a c a c a+c 
b+d>b=d>b=d> b+d· 

Equation (6.9) reads for M = 1 

A(2) A(l) 
-->--
B(2) B(l). 

{6.7) 

(6.8) 

(6.9) 

(6.10) 

Note that since A(O) = B(O) = 0, by definition A(l) = D.A(l), B(l) = D.B(l). Since A(2) = A(l) + D.A(2) 
and B(2) = B(l) + D.B(2), this holds if and only if 

A(l) + D.A(2) A(l) D.A(2) A(l) 
B(l) + D.B(2) > B{l) """ D.B(2) > B(l). 

The latter inequality is true by A(l) = D.A(l) and B(l) = D.B(l). 
(M > 0). Assume that we have 

A(m + 1) A(m) 
B(m+l) > B(m)' m=l, .. .,M-l. 
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For m = M -1 this yields 

A(M) > A(M-1) = A(M-1) + 6.A(M) A(M-1) 
B(M) B(M-1) B(M-1) + 6.B(M) > B(M-1) 

6.A(M) A(M -1) + 6.A(M) = > ~---~......,--+--+-
6.B( M) B(M-1) + 6.B(M) 

6.A(M) A(M) 
= 6.B(M) > B(M)' 

where the second equivalence is an application of (6.10). With the condition (6.8) this implies 

6.A(M + 1) A(M) A(M) + 6.A(M + 1) A(M) 
6.B(M + 1) > B(M) = B(M) + 6.B(M + 1) > B(M) 

A(M + 1) A{M) 
= B(M + 1) > B(M). D 

Proof (of Theorem 6.1). According to Lemma 6.2 it suffices to prove that 

6.A(M + 1) AA{M) 
6.B(M + 1) > AB{M). 

This is equivalent to 

N N 

L ( M +; + n )Pi L ( M: n )Pi 
n=O n=O 

N > -N.,..,.....;.;~-----
" 1 (M+l+n) n " 1 (M+n) n. 
J....M+l+n n· P2 J....M+n n P2 

n=O n=O 

If we define wn = (M + n)!pVn!, then (6.11) reads 

(t (M +n + l)w. )L~o M~n w.) > (t w. )' 

N M+n+l 2 ~ (M+i+l M+j+l) ~ 2 " = L M+n Wn + J....L M+ · + M+i W;W1> J..., Wn +2.J....LW;W1. 
n=O i<j J n=O i<j 
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(6.11) 

(6.12) 

(6.13) 

The first terms on both sides of (6.13) can be compared immediately and yield the desired inequality. The 
second terms also satisfy this inequality since 

(M + i + l)(M + i) + (M + j + l){M + j) ~ 2(M + i)(M + j) 

= (M + i)(i -j + 1) + (M + j)(j- i + 1) > 0 

= (i- j)2 + 2M + i + j > 0. 
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