
115

Scheduling identical jobs on uniform parallel machines

M.I. Dessouky
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign
1206 West Green Street, Urbana, 1161801, U.S.A.

B.J. Lageweg
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

J.K. Lenstra
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Centre for Mathematics and Computer Science

P.O. Box 4070, 1009 AB Amsterdam, The Netherlands

S.L. van de Velde
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We address the problem of scheduling n identical jobs on m uniform parallel
machines to optimize scheduling criteria that are nondecreasing in the job
completion times. It is well known that this can be formulated as a linear
assignment problem, and subsequently solved in O(n 3) time. We give a more
concise formulation for minsum criteria, and show that general minmax criteria
can be minimized in O(n 2) time. We present faster algorithms, requiring only
O(n + mlog m) time for minimizing makespan and total completion time,
O(nlogn) time for minimizing total weighted completion time, maximum late
ness, total tardiness and the weighted number of tardy jobs, and O(nlog2 n)
time for maximum weighted tardiness. In the case of release dates, we propose
an O(nlogn) algorithm for minimizing makespan, and an O(mn 2m + 1) time
dynamic programming algorithm for minimizing total completion time.

Key Words & Phrases: parallel machine scheduling, uniform machines, identi
cal jobs, matching, dynamic programming.

1. INTRODUCTION

The case of identical jobs within a batch is common in manufacturing systems,
where the products (corresponding to jobs) have identical designs or processing
requirements. While all units of the product require equal processing times on
the same machine, individual products may be subject to different constraints.
For example, jobs may be required to meet unequal due dates requested by

116 Statistica Neerlandica 44 (1990), nr.3

customers, or they may be restricted by unequal release dates as a result of
being released at different times from preceding operations.
The scheduling problem arising from such a situation can be described as fol
lows. A set of independent jobs J1 (j= l, ... ,n) have to be scheduled on a set of
parallel machines M; (i = 1, ... ,m). Each job 11 (j=1, ... ,n) has one unit of unin
terrupted processing requirement and has a cost function fj, where Jj(t)
denotes the cost incurred if it is completed at time t. In addition, each job J1
may have a release date r1, a due date d1, and a weight w1. Each machine
M; (i = l, ... ,m) can process at most one job at a time, and does so at a speed
s;, giving rise to a processing time of lls;. In such a situation the machines are
called uniform.
A schedule is an assignment of each job to exactly one machine and a
specification of the completion time c1 of each job J1. The objective is to
minimize the scheduling cost, measured either by f max =max1s;;;,1.;;;.nfj(Cj) or by
"2.Jj = "2.J = 1Jj(C1)·
In the classification scheme of deterministic machine scheduling problems used
by GRAHAM, LAWLER, LENSTRA, and RINNOOY KAN (1979), these problems are
denoted by Q kvl = 1 lf max and Q lo1=1 l~fj, respectively. In this notation, the
first field specifies the machine environment; Q denotes the situation with uni
form parallel machines, and 1 refers to the special case of a single machine.
The second field contains the job characteristics; p1=1 indicates that we have
unit processing requirements, and we may also include a parameter r1 to indi
cate that each job has its own release date. The third field defines the objective
function; this may depend on given due dates and weights of the jobs.
For the case of equal release dates, LAWLER, LENSTRA, and RINNOOY KAN
(1982) point out that both problems can be formulated in O(mn 2) time as
linear assignment problems and solved accordingly in O(n 3) time. In this
paper, we derive a property that allows a more compact formulation, requiring
only 0 (n 2) time and space. As an immediate consequence, Q IP1=1 lf max is
solvable in O(n 2) time. We give more efficient algorithms for minimizing max
imum completion time (makespan), total weighted completion time, maximum
lateness, total tardiness, maximum weighted tardiness, and the weighted
number of tardy jobs.
In addition, we consider two problems with release dates. We give an
0 (n log n) time algorithm for minimizing makespan and an O (mn 2m + 1) time
dynamic programming algorithm for minimizing total completion time, which
is polynomial for any fixed number of machines.

2. FUNDAMENTALS

Problem 1: Minimize maximum completion time C max

Given n independent identical jobs and m uniform parallel machines, find a
schedule which minimizes the maximum job completion time,
Cmax =maX1.;;1.;;nCJ.
If the decision variable x; denotes the number of jobs that is to be assigned to
machine M;, for i = 1, .. .,m, then the problem is to minimize

Statistica Neertandica 44 (1990). nr.3

subject to

Cmax

x;ls;:s;;;;Cmax'
m

~X;=n,
i=I

X;EZ+,

i=1, ... ,m,

i=l, ... ,m.

117

(P)

(1)

(2)

(3)

Given a feasible solution to this problem, the value of C max can be reduced
only if for each M; with the largest completion time, that is, with X; Is;= C max
in (1), there is another machine Mh for which (xh+ l)/sh<Cmax· Accordingly,
a sufficient condition for the optimality of a schedule is that for any two
machines Mh and M; with xhls1i<x;ls;, we have (xh + 1)/sh;;.x;ls;.
The following procedure, which requires 0 (n log m) time, takes advantage of
this sufficient condition. It keeps a priority queue of the m current machine
completion times. (A priority queue is a data structure for an ordered set of
elements; the time to insert or delete one element is proportional to the loga
rithm of the number of elements. See AHO, HoPCROFT, and ULLMAN (1982).)
Each successive job is matched with the earliest completion time in the queue,
and this time is replaced in the queue by the new completion time of the
machine in question. The matching and updating of the queue is repeated until
all n jobs have been scheduled. Since the queue can be initialized in
O(mlogm) time and updated in O(logm) time, the entire procedure runs in
O(nlogm) time. Note that this procedure returns the job completion times in
nondecreasing order. In the remainder of this paper we refer to these comple
tion times as t 1,. • .,tn, with t 1 .;;;;;, •• .;;;;;111 •

It is possible to reduce the effort to solve QIP1=11Cmax to O(n +mlogm) time.
The first step is to solve the linear programming relaxation of P through a pro
cedure suggested by PALEKAR (1989), and then assigning the resulting frac
tional jobs appropriately. Ignoring the integrality requirement of
x; (i= I,. . .,m) in (3), an optimal allocation must satisfy

(4)

Substituting the values of X; from (4) in (2), we get Cmax=nlL71=1s;, and
hence x;=ns;l"2.71= 1s;. Let lx;J be the largest integer no greater than x;, and let
nx=L71= 1 lx;J. Since the makespan given in (4) is a lower bound on the
optimal makespan and the jobs are identical, we know that in each optimal
schedule machine M; (i = l,. . .,m) will accommodate at least lx;J jobs. If X; is
integral for each i =I ,. . .,m, then nx = n and we have found an optimal alloca
tion. Otherwise, there are n - nx unallocated jobs, with J .;;;;;n - nx :s;;;;m - 1;
these are scheduled in O(mlogm) time by making use of a priority queue in
the same fashion as described above. Since scheduling the nx jobs takes 0 (n)
time, the procedure requires O(n +mlogm) time. It does not sort the job com
pletion times, however.
Analysis of the O(nlogm) time procedure for Qlf1= llCmax reveals that at no

118 Statistica Neertandica 44 (1990), nr.3

point a job will be assigned to a machine in such a manner that its completion
time can be reduced by a shift to another machine. The times t 1, ..• ,t11 are the
earliest possible completion times. Hence. we have the following.

MINIMALITY PROPERTY. No schedule exists with completion times t 1 '~ ... ~t11 1

such that t1/<tk for a~)' k = L ... ,n.

This property has significant implications. We can solve any problem with an
objective function that is non-decreasing in the job completion times by
matching the jobs J1 (j= l, ... ,n) with the completion times tk (k = l, ... ,n). We
now first show how to solve the general problems Q IP.i = 112,fj and
Q\pi=llfmax; we will assume that each cost function evaluation requires unit
time. Thereafter. in Section 3, we discuss objective functions that allow faster
algorithms.

Problem 2: Minimize 22.fj
The general problem Q \p1 = I\ 2: jj can be formulated and solved as a linear
assignment problem, if the j/'s (j = I, ... ,n) are non-decreasing in the job com
pletion times. The generic form is as follows. Let c1k = j/(tk) denote the cost of
matching job J1 with completion time tk. Introduce assignment variables
x1k (j=l, ... ,n, k=l, ... ,11) such that x1k=I if job 11 is matched with time tko

and x1k = 0 otherwise. The problem is then to minimize

k= l, ... ,n,

j= I, ... ,n,

j = 1, ... ,11, k = l, ... ,n.

This linear assignment problem is formulated in 0 (11 2) time and solved in
0 (n 3) time.

Problem 3: Minimize maximum cost fmax
The Minimality Property justifies the application of Lawler's algorithm for
l\lfmax (LAWLER, 1973) to Q\p1 =llfmax· Starting with the largest unmatched
job completion time tk (k =n, ... , 1), we determine a job l1i from among the set
of unscheduled jobs V for which

fh(tk) = min/, E v j/(tk),

and match Jh with completion time tk· This algorithm runs in O(n 2) time.

3. MORE EFFICIENT ALGORITHMS

There are some objective functions for which the matching can be found faster
than by the methods given in the previous section.

Problem 4: Minimize total completion time 22C1 or any other problem with

Statistica Neerlandica 44 (1990), nr.3 119

identical fj 's
Since the completion times t 1, ••• ,tn are minimum and the jobs have identical
cost functions, we can arbitrarily match the jobs with the completion times.
Therefore, Problem 4 can be solved in O(n +mlogm) time, the time required
to find the set of minimum completion times.

Problem 5: Minimize total weighted completion time ~w1 C;
Q [p1=1 l~w1C1 is solved by arranging the jobs in order of non-increasing
weights and matching them accordingly with non-decreasing job completion
times. The correctness of the algorithm is easily established by the same argu
ment that validates Smith's shortest weighted processing time rule (SMITH,
1956) for 1 ll~w1 C/ interchanging two adjacent jobs that are not scheduled in
compliance with the indicated order reduces the cost of the schedule.

Problem 6: Minimize maximum lateness Lmax
Maximum lateness is defined as Lmax=max1.;;;1.;;; 11 (C1-d1). The Q[p1=IILmax
problem is solved by sorting the jobs in order of non-decreasing due dates, and
matching them accordingly with non-decreasing completion times. This pro
cedure is an extension of Jackson's earliest due date rule (JACKSON, 1955) for
minimizing maximum lateness on a single machine, and runs in O(nlogn)
time. The algorithm is again justified by an interchange argument.

Problem 7: Minimize the weighted number of tardy jobs ~w1 U1
Define u1 as the incidence of tardiness of job 11, that is, U1 = 1 if C1 - d1 >0
and U1=0 otherwise. We seek a schedule that minimizes the weighted number
of tardy jobs, ~J=1w1U1·
If all w/s are equal, then the problem is solved in O(nlogn) time through an
obvious extension of Moore and Hodgson's algorithm for lll~U1 (MOORE,
1968). LAWLER (1989) proposes the following algorithm for the case of general
weights. Starting with the largest unmatched completion time tk (k =n, ... , 1),
determine the set of unscheduled jobs V that would be in time if matched with
tk· If V=f= 0, determine a job l1z E V for which w1z = max.1," vw1, and match it
with completion time tk. Ultimately, we find a set of tardy jobs, and they are
matched arbitrarily with the unmatched completion times. The algorithm is
justified by an interchange argument and can be implemented to run in
0 (n log n) time.

Problem 8: Minimize total tardiness ~T1
The tardiness of job J1 is defined as T1=max{C1-d1,0}. It is easy to establish
through an interchange argument that Qjp1= ll~T1 is solved as follows:
renumber the jobs in order of non-decreasing due dates, and match them
accordingly with the completion times t i. ... ,t,,.
It is noteworthy that this problem can be viewed as a Gilmore-Gomory match
ing problem. When we define a1=d1, /h=tb g(y)=l, and h(y)=O, we can
write the cost c1k of matching job 11 with completion time tk as

120 Statistica Neer/andica 44 (1990), nr.3

If the jobs and completion times have been indexed in order of non-decreasing
values of a.1 and /3b respectively, a minimum-weight matching Ji with ti for
j= l, ... ,n (LAWLER, 1976).
Note that among other problems, QIPi=ll~./;· with fi=ICi-dil can be formu
lated and solved as a Gilmore-Gomory matching problem. This is true only
subject to the condition that the jobs must be completed at times ti. ... ,ln, as
these cost functions are not monotone. More generally, the same matching
optimizes the minsum criteria with jj=Tlj and jj=ICi-dir for any p>O
(DESSOUKY, 1989).

Problem 9: Minimize maximum weighted tardiness maxwi Ti
Recentll,, HoCHBAUM and SHAMIR (1989) have presented an intricate
O(nlog n) time algorithm for IllmaxwiTi, which can readily be transferred to
QIPi = llmaxwiTi. We propose a simpler algorithm, which is slightly less
efficient in case the weights are large.
Without loss of generality we may assume that min;s; =I and that all
w/max{O,tk-di} are integral. The problem of deciding whether there exists a
matching with maxw1T1,;;;,,K for a given KEl\J0 can be answered in O(nlogn)
time as follows. An upper bound K on the maximum weighted tardiness
induces a deadline d1 + K lw1 for each J1. Hence, the decision problem has an
affirmative answer only if each job can be scheduled to meet its deadline. This
is verified in O(nlogn) time by solving the corresponding Q[p1 =11Lmax prob
lem.
Since o,;;;,,maxw1T1,;;;,,wmaxtn for any matching, where Wmax =maxjwj, and
111 ,;;;,,n Im + 1, the optimal maximum weighted tardiness can be determined by
binary search over the interval [O,wmax(nlm +l)]. Hence, the algorithm runs in
O(nlogn(logwmax + log(n/m))) time.

4. RELEASE DATES

Suppose now that each job J1 U=l, ... ,n) becomes available at a given release
date r1-;;;e:.O. This makes it impossible to specify a set of earliest completion
times in advance and to invoke some procedure that matches jobs with com
pletion times. Nonetheless, we give an O(nlogn) time procedure for minimiz
ing makes pan, and an O (mn 2m + 1) time dynamic programming algorithm for
minimizing makespan, and an 0 (mn 2m + 1) time dynamic programming algo
rithm for minimizing total completion time.

Problem 10: Minimize makespan C max subject to release dates
For minimizing makespan, LAGEWEG, LAWLER, LENSTRA, and RINNOOY KAN
(1982) observe that Qlr1,p1=IICmax is solvable in polynomial time due to the

Statistica Neerlandica 44 (1990), nr.3 121

symmetry between this problem and QIP1 = llLmax· A more explicit description
of this idea is a follows.
Imagine a tentative deadline d at which all jobs have to be finished. We ca_!:1
identify a set of latest start times for the jobs in order to meet this deadline d.
Since ti. ... ,tn obtained in the .forward _£Omputation for Q1P1= 11c max are the
earliest job completion times, d - tn, ... ,d- t 1 must be the latest start times of
the jobs in the Q lr1,p1=1 IC max problem. The procedure is as follows: match
the jobs in order of non-decreasiEg release dates with nondecreasing latest
start times. If we initially choose d=t11 , which is an evident lower bound on
the optimal mak~pan, then the entire schedule needs to be delayed by
!:::..=max 1,,.1,,. 11 (r1-d+t11 _ 1+ 1i in order not to violate any of the job release
dates. The resulting schedule is optimal, and the maximum job completion
time is C max = t,, + !:::... The procedure is easily validated through an interchange
argument. The running time is 0 (nlogn).

Problem 11: Minimizing total completion time "'2..C1 subject to release dates
We propose a dynamic programming algorithm that requires O(mn 2m+I) time,
which is polynomial for any fixed number of machines. Without loss of gen
erality we may assume that all release dates r1 and processing times Pi= 1 I si
are integral. We may also assume, without loss of optimality, that each
machine processes its jobs in order of non-decreasing release dates. We now
renumber the jobs in order of non-decreasing release dates. The algorithm
below will assign the jobs successively to the machines in order of increasing
indices.
Moreover, each job may be assumed to start as early as possible on the
machine it is assigned to. This implies that job 11 on machine M; will start
either on r1 or on r,,+kp; with h<j and k;;;a.1. For the completion time of J1
on M; we therefore have to consider only a limited number of possible values.
These values are contained in the set
Q;={rh+kp;lh=l, ... ,n, k=l, ... ,n+l-h}; note that this set contains O(n 2)

points in time, for each machine. If machine Mi is available up to time q, the
latest admissible completion time of any job on Mi is
l;(q)=max{O,{tEQ;jt~q}}. If M; is idle at time q, the latest admissible com
pletion time prior to q is l;(q - I). If some job Ji is completed on M; at time
q E Q;, then it contributes q to the total completion time; furthermore, its
predecessor must be finished by l;(q -p;).
We can now set up the recursion. Let F1(qi, ... ,qm) denote the optimal total
completion time for J i, .. .,J1 subject to the condition that M; is available up to
time qi, for i= l,. .. ,m, j= l, ... ,n. If J1 is scheduled on M;, then either Mi is
idle at time q;, or J1 finishes at time q;. Therefore,

FJ<q 1, .. .,qm) =
. {q; + F1-1(q1 ,q; -1.l;(q;-p;),q; + l , ... ,q,,,) l

1..;;;..;;~~~;;.,1 +p, Fi(q 1,q; -1,l;(qi - l),qi -1),q; + l, ... ,qm), with l;(q; -1);;;a.r1 + p; j
for all qiEQiU{O} and for j=l, ... ,n. We initialize F 0 (q 1, ... ,q"')=O for all

122 Statistica Neerlandica 44 (1990), nr.3

qi eQi U {O}, and undefined values are taken to be infinity. The optimal total
completion time is given by

Fn(q'{'aX, ... ,q':,a'),

where q;nax = max{ q e Qi}, and the corresponding schedule can be identified by
backtracing.
The complexity of the algorithm is determined as follows. During the recur-
sion, we need the values !;(qi-pi) and l;(qi-1), for qieQ;, i= 1, ... ,m. We com-
pute these values in a preprocessing phase. For each i (i = 1, ... ,m), the ele-
ments of the set Qi are sorted in non-decreasing order, which takes O(n 2logn)
time. By running through the sorted set, we then compute and store the values
li(qi-pi) for all q;eQi in 0(n 2) time altogether; at the same time, we also
determine li(qi -1), which is nothing but the predecessor of q; in the sorted set.
Hence, the preprocessing phase requires O(mn 2logn) time overall. After this
preprocessing phase, each value li(q; -p;) and /i(qi -1) can be found in con
stant time, and the computation of FJ<q i. ... ,qm) for a given job index j and a
given vector (qi. ... ,qm) requires only O(m) time. Since each 1Qd=O(n 2), we
have to consider O(n 2m) vectors (qi. qm) for each j, with j= l, ... ,n. Hence,
the entire procedure runs in O(mn 2m +I) time for m~2.

REFERENCES

AHO, A.V. J.E. HOPCROFT, and J.D. ULMAN (1982), Data Structures and Algo
rithms, Addison-Wesley, Reading, Massachusetts.

DESSOUKY, M.I. (1989), Bipartite weighted matching to minimize the distance
norm, Report ORL 89-003, Operations Research Laboratory, University of
Illinois at Urbana-Champaign.

GRAHAM, R.L. E.L. LAWLER, J.K. LENSTRA, and A.H.G. RINNOOY KAN
(1979), Optimization and approximation in deterministic sequencing and
scheduling: a survey, Annals of Discrete Mathematics 5, 287-326.

HOCHBAUM, D.S. and R. SHAMIR (1989), An 0(nlog2n) algorithm for the
maximum weighted tardiness problem, Information Processing Letters 31,
215-219.

JACKSON, J.R. (1955), Scheduling a production line to minimize maximum tar
diness, Research Report nr. 43, Management Science Research Project,
UCLA.

LAGEWEG, B.J. E.L. LAWLER, J.K. LENSTRA, and A.H.G. RINNOOY KAN
(1982), Computer aided complexity classification of deterministic scheduling
problems, Report BW 138, Centre for Mathematics and Computer Science,
Amsterdam.

LAWLER, E.L. (1973), Optimal sequencing of a single machine subject to pre
cedence constraints, Management Science 19, 544-546.

LAWLER, E.L. (1976), Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart, and Winston, New York.

LAWLER, E.L. (1989), Private communication.
LAWLER, E.L. J.K. LENSTRA, and A.H.G. RINNOOY KAN (1982), Recent

Statistica Neerlandica 44 (1990), nr.3 123

developments in deterministic sequencing and scheduling, in: Deterministic
and Stochastic Scheduling, M.A.H. Dempster, J.K. Lenstra, and A.H.G.
Rinnooy Kan (eds) Reidel, Dordrecht, 35-73.

MOORE, J.M. (1968), An n job, one machine sequencing algorithm for minim
izing the number of late jobs, Management Science 15, 102-109.

PALEKAR, U.S. (1989), Private communication.
SMITH, W .E. (1956), Various optimizers for single-stage production. Naval

Research Logistics Quarterly 3, 59-66.

Received May 1989, revised March 1990.

