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We address the problem of scheduling n identical jobs on m uniform parallel 
machines to optimize scheduling criteria that are nondecreasing in the job 
completion times. It is well known that this can be formulated as a linear 
assignment problem, and subsequently solved in O(n 3 ) time. We give a more 
concise formulation for minsum criteria, and show that general minmax criteria 
can be minimized in O(n 2 ) time. We present faster algorithms, requiring only 
O(n + mlog m) time for minimizing makespan and total completion time, 
O(nlogn) time for minimizing total weighted completion time, maximum late
ness, total tardiness and the weighted number of tardy jobs, and O(nlog2 n) 
time for maximum weighted tardiness. In the case of release dates, we propose 
an O(nlogn) algorithm for minimizing makespan, and an O(mn 2m + 1) time 
dynamic programming algorithm for minimizing total completion time. 
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1. INTRODUCTION 

The case of identical jobs within a batch is common in manufacturing systems, 
where the products (corresponding to jobs) have identical designs or processing 
requirements. While all units of the product require equal processing times on 
the same machine, individual products may be subject to different constraints. 
For example, jobs may be required to meet unequal due dates requested by 
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customers, or they may be restricted by unequal release dates as a result of 
being released at different times from preceding operations. 
The scheduling problem arising from such a situation can be described as fol
lows. A set of independent jobs J1 (j= l, ... ,n) have to be scheduled on a set of 
parallel machines M; (i = 1, ... ,m). Each job 11 (j=1, ... ,n) has one unit of unin
terrupted processing requirement and has a cost function fj, where Jj(t) 
denotes the cost incurred if it is completed at time t. In addition, each job J1 
may have a release date r1, a due date d1, and a weight w1. Each machine 
M; (i = l, ... ,m) can process at most one job at a time, and does so at a speed 
s;, giving rise to a processing time of lls;. In such a situation the machines are 
called uniform. 
A schedule is an assignment of each job to exactly one machine and a 
specification of the completion time c1 of each job J1. The objective is to 
minimize the scheduling cost, measured either by f max =max1s;;;,1.;;;.nfj(Cj) or by 
"2.Jj = "2.J = 1Jj( C1)· 
In the classification scheme of deterministic machine scheduling problems used 
by GRAHAM, LAWLER, LENSTRA, and RINNOOY KAN (1979), these problems are 
denoted by Q kvl = 1 lf max and Q lo1=1 l~fj, respectively. In this notation, the 
first field specifies the machine environment; Q denotes the situation with uni
form parallel machines, and 1 refers to the special case of a single machine. 
The second field contains the job characteristics; p1=1 indicates that we have 
unit processing requirements, and we may also include a parameter r1 to indi
cate that each job has its own release date. The third field defines the objective 
function; this may depend on given due dates and weights of the jobs. 
For the case of equal release dates, LAWLER, LENSTRA, and RINNOOY KAN 
(1982) point out that both problems can be formulated in O(mn 2) time as 
linear assignment problems and solved accordingly in O(n 3) time. In this 
paper, we derive a property that allows a more compact formulation, requiring 
only 0 (n 2) time and space. As an immediate consequence, Q IP1=1 lf max is 
solvable in O(n 2) time. We give more efficient algorithms for minimizing max
imum completion time (makespan), total weighted completion time, maximum 
lateness, total tardiness, maximum weighted tardiness, and the weighted 
number of tardy jobs. 
In addition, we consider two problems with release dates. We give an 
0 (n log n) time algorithm for minimizing makespan and an O (mn 2m + 1) time 
dynamic programming algorithm for minimizing total completion time, which 
is polynomial for any fixed number of machines. 

2. FUNDAMENTALS 

Problem 1: Minimize maximum completion time C max 

Given n independent identical jobs and m uniform parallel machines, find a 
schedule which minimizes the maximum job completion time, 
Cmax =maX1.;;1.;;nCJ. 
If the decision variable x; denotes the number of jobs that is to be assigned to 
machine M;, for i = 1, .. .,m, then the problem is to minimize 
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Given a feasible solution to this problem, the value of C max can be reduced 
only if for each M; with the largest completion time, that is, with X; Is;= C max 
in (1), there is another machine Mh for which (xh+ l)/sh<Cmax· Accordingly, 
a sufficient condition for the optimality of a schedule is that for any two 
machines Mh and M; with xhls1i<x;ls;, we have (xh + 1)/sh;;.x;ls;. 
The following procedure, which requires 0 (n log m) time, takes advantage of 
this sufficient condition. It keeps a priority queue of the m current machine 
completion times. (A priority queue is a data structure for an ordered set of 
elements; the time to insert or delete one element is proportional to the loga
rithm of the number of elements. See AHO, HoPCROFT, and ULLMAN (1982).) 
Each successive job is matched with the earliest completion time in the queue, 
and this time is replaced in the queue by the new completion time of the 
machine in question. The matching and updating of the queue is repeated until 
all n jobs have been scheduled. Since the queue can be initialized in 
O(mlogm) time and updated in O(logm) time, the entire procedure runs in 
O(nlogm) time. Note that this procedure returns the job completion times in 
nondecreasing order. In the remainder of this paper we refer to these comple
tion times as t 1,. • .,tn, with t 1 .;;;;;, •• .;;;;;111 • 

It is possible to reduce the effort to solve QIP1=11Cmax to O(n +mlogm) time. 
The first step is to solve the linear programming relaxation of P through a pro
cedure suggested by PALEKAR (1989), and then assigning the resulting frac
tional jobs appropriately. Ignoring the integrality requirement of 
x; (i= I,. . .,m) in (3), an optimal allocation must satisfy 

(4) 

Substituting the values of X; from (4) in (2), we get Cmax=nlL71=1s;, and 
hence x;=ns;l"2.71= 1s;. Let lx;J be the largest integer no greater than x;, and let 
nx=L71= 1 lx;J. Since the makespan given in (4) is a lower bound on the 
optimal makespan and the jobs are identical, we know that in each optimal 
schedule machine M; (i = l,. . .,m) will accommodate at least lx;J jobs. If X; is 
integral for each i =I ,. . .,m, then nx = n and we have found an optimal alloca
tion. Otherwise, there are n - nx unallocated jobs, with J .;;;;;n - nx :s;;;;m - 1; 
these are scheduled in O(mlogm) time by making use of a priority queue in 
the same fashion as described above. Since scheduling the nx jobs takes 0 (n) 
time, the procedure requires O(n +mlogm) time. It does not sort the job com
pletion times, however. 
Analysis of the O(nlogm) time procedure for Qlf1= llCmax reveals that at no 
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point a job will be assigned to a machine in such a manner that its completion 
time can be reduced by a shift to another machine. The times t 1, ..• ,t11 are the 
earliest possible completion times. Hence. we have the following. 

MINIMALITY PROPERTY. No schedule exists with completion times t 1 '~ ... ~t11 1 

such that t1/<tk for a~)' k = L ... ,n. 

This property has significant implications. We can solve any problem with an 
objective function that is non-decreasing in the job completion times by 
matching the jobs J1 (j= l, ... ,n) with the completion times tk (k = l, ... ,n). We 
now first show how to solve the general problems Q IP.i = 112,fj and 
Q\pi=llfmax; we will assume that each cost function evaluation requires unit 
time. Thereafter. in Section 3, we discuss objective functions that allow faster 
algorithms. 

Problem 2: Minimize 22.fj 
The general problem Q \p1 = I\ 2: jj can be formulated and solved as a linear 
assignment problem, if the j/'s (j = I, ... ,n) are non-decreasing in the job com
pletion times. The generic form is as follows. Let c1k = j/(tk) denote the cost of 
matching job J1 with completion time tk. Introduce assignment variables 
x1k (j=l, ... ,n, k=l, ... ,11) such that x1k=I if job 11 is matched with time tko 

and x1k = 0 otherwise. The problem is then to minimize 

k= l, ... ,n, 

j= I, ... ,n, 

j = 1, ... ,11, k = l, ... ,n. 

This linear assignment problem is formulated in 0 (11 2) time and solved in 
0 (n 3 ) time. 

Problem 3: Minimize maximum cost fmax 
The Minimality Property justifies the application of Lawler's algorithm for 
l\lfmax (LAWLER, 1973) to Q\p1 =llfmax· Starting with the largest unmatched 
job completion time tk (k =n, ... , 1), we determine a job l1i from among the set 
of unscheduled jobs V for which 

fh(tk) = min/, E v j/(tk ), 

and match Jh with completion time tk· This algorithm runs in O(n 2 ) time. 

3. MORE EFFICIENT ALGORITHMS 

There are some objective functions for which the matching can be found faster 
than by the methods given in the previous section. 

Problem 4: Minimize total completion time 22C1 or any other problem with 
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identical fj 's 
Since the completion times t 1, ••• ,tn are minimum and the jobs have identical 
cost functions, we can arbitrarily match the jobs with the completion times. 
Therefore, Problem 4 can be solved in O(n +mlogm) time, the time required 
to find the set of minimum completion times. 

Problem 5: Minimize total weighted completion time ~w1 C; 
Q [p1=1 l~w1C1 is solved by arranging the jobs in order of non-increasing 
weights and matching them accordingly with non-decreasing job completion 
times. The correctness of the algorithm is easily established by the same argu
ment that validates Smith's shortest weighted processing time rule (SMITH, 
1956) for 1 ll~w1 C/ interchanging two adjacent jobs that are not scheduled in 
compliance with the indicated order reduces the cost of the schedule. 

Problem 6: Minimize maximum lateness Lmax 
Maximum lateness is defined as Lmax=max1.;;;1.;;; 11 (C1-d1). The Q[p1=IILmax 
problem is solved by sorting the jobs in order of non-decreasing due dates, and 
matching them accordingly with non-decreasing completion times. This pro
cedure is an extension of Jackson's earliest due date rule (JACKSON, 1955) for 
minimizing maximum lateness on a single machine, and runs in O(nlogn) 
time. The algorithm is again justified by an interchange argument. 

Problem 7: Minimize the weighted number of tardy jobs ~w1 U1 
Define u1 as the incidence of tardiness of job 11, that is, U1 = 1 if C1 - d1 >0 
and U1=0 otherwise. We seek a schedule that minimizes the weighted number 
of tardy jobs, ~J=1w1U1· 
If all w/s are equal, then the problem is solved in O(nlogn) time through an 
obvious extension of Moore and Hodgson's algorithm for lll~U1 (MOORE, 
1968). LAWLER ( 1989) proposes the following algorithm for the case of general 
weights. Starting with the largest unmatched completion time tk (k =n, ... , 1), 
determine the set of unscheduled jobs V that would be in time if matched with 
tk· If V=f= 0, determine a job l1z E V for which w1z = max.1," vw1, and match it 
with completion time tk. Ultimately, we find a set of tardy jobs, and they are 
matched arbitrarily with the unmatched completion times. The algorithm is 
justified by an interchange argument and can be implemented to run in 
0 (n log n) time. 

Problem 8: Minimize total tardiness ~T1 
The tardiness of job J1 is defined as T1=max{C1-d1,0}. It is easy to establish 
through an interchange argument that Qjp1= ll~T1 is solved as follows: 
renumber the jobs in order of non-decreasing due dates, and match them 
accordingly with the completion times t i. ... ,t,,. 
It is noteworthy that this problem can be viewed as a Gilmore-Gomory match
ing problem. When we define a1=d1, /h=tb g(y)=l, and h(y)=O, we can 
write the cost c1k of matching job 11 with completion time tk as 
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If the jobs and completion times have been indexed in order of non-decreasing 
values of a.1 and /3b respectively, a minimum-weight matching Ji with ti for 
j= l, ... ,n (LAWLER, 1976). 
Note that among other problems, QIPi=ll~./;· with fi=ICi-dil can be formu
lated and solved as a Gilmore-Gomory matching problem. This is true only 
subject to the condition that the jobs must be completed at times ti. ... ,ln, as 
these cost functions are not monotone. More generally, the same matching 
optimizes the minsum criteria with jj=Tlj and jj=ICi-dir for any p>O 
(DESSOUKY, 1989). 

Problem 9: Minimize maximum weighted tardiness maxwi Ti 
Recentll,, HoCHBAUM and SHAMIR ( 1989) have presented an intricate 
O(nlog n) time algorithm for IllmaxwiTi, which can readily be transferred to 
QIPi = llmaxwiTi. We propose a simpler algorithm, which is slightly less 
efficient in case the weights are large. 
Without loss of generality we may assume that min;s; =I and that all 
w/max{O,tk-di} are integral. The problem of deciding whether there exists a 
matching with maxw1T1,;;;,,K for a given KEl\J0 can be answered in O(nlogn) 
time as follows. An upper bound K on the maximum weighted tardiness 
induces a deadline d1 + K lw1 for each J1. Hence, the decision problem has an 
affirmative answer only if each job can be scheduled to meet its deadline. This 
is verified in O(nlogn) time by solving the corresponding Q[p1 =11Lmax prob
lem. 
Since o,;;;,,maxw1T1,;;;,,wmaxtn for any matching, where Wmax =maxjwj, and 
111 ,;;;,,n Im + 1, the optimal maximum weighted tardiness can be determined by 
binary search over the interval [O,wmax(nlm +l)]. Hence, the algorithm runs in 
O(nlogn(logwmax + log(n/m))) time. 

4. RELEASE DATES 

Suppose now that each job J1 U=l, ... ,n) becomes available at a given release 
date r1-;;;e:.O. This makes it impossible to specify a set of earliest completion 
times in advance and to invoke some procedure that matches jobs with com
pletion times. Nonetheless, we give an O(nlogn) time procedure for minimiz
ing makes pan, and an O (mn 2m + 1) time dynamic programming algorithm for 
minimizing makespan, and an 0 (mn 2m + 1) time dynamic programming algo
rithm for minimizing total completion time. 

Problem 10: Minimize makespan C max subject to release dates 
For minimizing makespan, LAGEWEG, LAWLER, LENSTRA, and RINNOOY KAN 
(1982) observe that Qlr1,p1=IICmax is solvable in polynomial time due to the 
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symmetry between this problem and QIP1 = llLmax· A more explicit description 
of this idea is a follows. 
Imagine a tentative deadline d at which all jobs have to be finished. We ca_!:1 
identify a set of latest start times for the jobs in order to meet this deadline d. 
Since ti. ... ,tn obtained in the .forward _£Omputation for Q1P1= 11c max are the 
earliest job completion times, d - tn, ... ,d- t 1 must be the latest start times of 
the jobs in the Q lr1,p1=1 IC max problem. The procedure is as follows: match 
the jobs in order of non-decreasiEg release dates with nondecreasing latest 
start times. If we initially choose d=t11 , which is an evident lower bound on 
the optimal mak~pan, then the entire schedule needs to be delayed by 
!:::..=max 1,,.1,,. 11 (r1-d+t11 _ 1+ 1i in order not to violate any of the job release 
dates. The resulting schedule is optimal, and the maximum job completion 
time is C max = t,, + !:::... The procedure is easily validated through an interchange 
argument. The running time is 0 (nlogn ). 

Problem 11: Minimizing total completion time "'2..C1 subject to release dates 
We propose a dynamic programming algorithm that requires O(mn 2m+I) time, 
which is polynomial for any fixed number of machines. Without loss of gen
erality we may assume that all release dates r1 and processing times Pi= 1 I si 
are integral. We may also assume, without loss of optimality, that each 
machine processes its jobs in order of non-decreasing release dates. We now 
renumber the jobs in order of non-decreasing release dates. The algorithm 
below will assign the jobs successively to the machines in order of increasing 
indices. 
Moreover, each job may be assumed to start as early as possible on the 
machine it is assigned to. This implies that job 11 on machine M; will start 
either on r1 or on r,,+kp; with h<j and k;;;a.1. For the completion time of J1 
on M; we therefore have to consider only a limited number of possible values. 
These values are contained in the set 
Q;={rh+kp;lh=l, ... ,n, k=l, ... ,n+l-h}; note that this set contains O(n 2 ) 

points in time, for each machine. If machine Mi is available up to time q, the 
latest admissible completion time of any job on Mi is 
l;(q)=max{O,{tEQ;jt~q}}. If M; is idle at time q, the latest admissible com
pletion time prior to q is l;(q - I). If some job Ji is completed on M; at time 
q E Q;, then it contributes q to the total completion time; furthermore, its 
predecessor must be finished by l;(q -p; ). 
We can now set up the recursion. Let F1(qi, ... ,qm) denote the optimal total 
completion time for J i, .. .,J1 subject to the condition that M; is available up to 
time qi, for i= l,. .. ,m, j= l, ... ,n. If J1 is scheduled on M;, then either Mi is 
idle at time q;, or J1 finishes at time q;. Therefore, 

FJ<q 1, .. .,qm) = 
. {q; + F1-1(q1 .... ,q; -1.l;(q;-p;),q; + l , ... ,q,,,) l 

1..;;;..;;~~~;;.,1 +p, Fi(q 1 ... .,q; -1,l;(qi - l),qi -1),q; + l, ... ,qm), with l;(q; -1 );;;a.r1 + p; j 
for all qiEQiU{O} and for j=l, ... ,n. We initialize F 0 (q 1, ... ,q"')=O for all 
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qi eQi U {O}, and undefined values are taken to be infinity. The optimal total 
completion time is given by 

Fn(q'{'aX, ... ,q':,a'), 

where q;nax = max{ q e Qi}, and the corresponding schedule can be identified by 
backtracing. 
The complexity of the algorithm is determined as follows. During the recur-
sion, we need the values !;(qi-pi) and l;(qi-1), for qieQ;, i= 1, ... ,m. We com-
pute these values in a preprocessing phase. For each i (i = 1, ... ,m), the ele-
ments of the set Qi are sorted in non-decreasing order, which takes O(n 2logn) 
time. By running through the sorted set, we then compute and store the values 
li(qi-pi) for all q;eQi in 0(n 2) time altogether; at the same time, we also 
determine li(qi -1), which is nothing but the predecessor of q; in the sorted set. 
Hence, the preprocessing phase requires O(mn 2logn) time overall. After this 
preprocessing phase, each value li(q; -p;) and /i(qi -1) can be found in con
stant time, and the computation of FJ<q i. ... ,qm) for a given job index j and a 
given vector (qi. ... ,qm) requires only O(m) time. Since each 1Qd=O(n 2), we 
have to consider O(n 2m) vectors (qi. .... qm) for each j, with j= l, ... ,n. Hence, 
the entire procedure runs in O(mn 2m +I) time for m~2. 
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