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A smoothing technique for the "preconditioning" of the right-hand side of semidiscrete partial differential 
equations is analyzed. For a parabolic and a hyperbolic model problem, optimal smoothing matrices are 
constructed which result in a substantial amplification of the maximal stable integration step of arbitrary 
explicit time integrators when applied to the smoothed problem. This smoothing procedure is illustrated by 
integrating both linear and nonlinear parabolic and hyperbolic problems. The results show that the stability 
behaviour is comparable with that of the Crank-Nicolson method; furthermore, if the problem belongs to the 
problem class in which the time derivative of the solution is a smooth function of the space variables, then the 
accuracy is also comparable with that of the Crank-Nicolson method. 

Keywords: Numerical analysis, initial boundary value problems in partial differential equations, method of lines, 
explicit integration methods, smoothing, stability. 

1. Introduction 

In a number of papers (cf. e.g. [2,10]), it has been observed that many initial-boundary value 
problems for partial differential equations of the form, 

au ai(t, x) =D(t, x, u(t, x)), (1.1) 

possess the property that the right-hand side D(t, x, u) is a smooth function of the space 
variable x if the exact solution of the initial value problem is substituted, even when the exact 
solution has large space derivatives. Here, D may be a (nonlinear) differential operator of 
parabolic or hyperbolic type. 

The situation described above arises in cases where the solution of the initial-boundary value 
problem tends to a steady state solution: 

u(t,x)~r(x)+s(t,x) asr~oo, (1.2) 
where r(x) is a rapidly varying function of x and s(t, x) is a smooth function of (t, x). 

Evidently, 
as 

D(t, x, r(x) +s(t, x)) ~ ai(t, x), 

so that the right-hand side becomes a smooth function of x as t ~ oo (see the examples m 
Section 4). 
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For such problems it was proposed in, e.g. [2,10], to smooth the right-hand side of tht 
equation (1.1) with respect to x, before applying a numerical integration method. In this pape1 
we will also concentrate on smoothing the right-hand side function, but it should be remarkec 
that smoothing techniques (in an engineering environment frequently termed 'filtering') are usec 
in a much wider scope. For example, a frequently used application concerns smoothing of th< 
solution of the (initial)-boundary value problem. In fact, the famous Richtmyer scheme is ar 
example of such an approach ( cf. [9]). 

Another possibility is to smooth the residue vector which is left upon substitution of th< 
current numerical approximation into the difference scheme replacing the partial differentia 
equation. This application of smoothing is often encountered when elliptic boundary valm 
problems have to be solved ( cf. e.g. [7]), but has also been used successfully in time-marchinf 
towards a steady state solution ( cf. [3,5,6]). 

A common aim of all these applications of smoothing techniques is the reduction of th1: 
high-frequency modes in the discrete Fourier expansion of the relevant grid functions. A 

comprehensive treatment of this subject can be found in [8, especially Section 5.4]). 
As said before, we will focus on right-hand side smoothing. The effect of such an applicatior 

becomes apparent when the space variable x and the differential operator D in (1.1) an 
discretized: the resulting system of ordinary differential equations is better conditioned in the 
sense that the spectral radius of the Jacobian matrix of this system reduces considerably i11 
magnitude by the smoothing process. It is well known that the usually large spectral radius oJ 
semidiscrete partial differential equations makes explicit integration methods unattractive fo1 
solving these systems, because of the rather restrictive stability condition. However, if smoothin2 
reduces the spectral radius sufficiently in magnitude, then explicit time integration methodE 
become of interest. 

The price we have to pay for the "preconditioning" of the system of semidiscrete equations, iE 
a possible drop in accuracy of the space discretization. To make this more clear, we consider the 
quasi-linear equation 

OU 
Bt(t, x)=A(u(t, x))Lu(t, x)+g(t, x), (1.3) 

where L is a linear differential operator with respect to x, and A and g are given functions; let 
Ati and Lti represent discretizations of A and L with Ll characterizing the accuracy of the 
discretization, and let Sti denote a (linear) smoothing operator. For example, in one space 
variable x, we may think of 

o 
L=­ox' 
Stiu(t, x) = HEti + Ei1 1)u(t, x), 

where Eti is the forward shift operator defined by Etiu( t, x) == u(t, x + Ll ). Instead of solving 
(1.3), we try to solve the smoothed, sernidiscrete equation 

OU 
ar(t, x) = StiAti(u(t, x))Ltiu(t, x) + Stig(t, x). (1.4) 

Let v(t, x) and w(t, x) denote the solutions of the initial-boundary value problem for equations 
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(1.3) and (1.4), respectively. Then, it is easily verified that the difference v - w satisfies the 
equation 

a at ( v- w) = S.1AL1( w )LL1( v- w) + SL1[A( v)L-AL1( w)L.1] v 

+ [I - S.1 j [A ( v) Lv + g] . (1.5) 

This "error equation" shows the effect of the space discretization and of the smoothing operator 
on the accuracy by which w approximates v. The second term in the right-hand side of (1.5) 
represents the (smoothed) space discretization error, whereas the last term represents the 
smoothing error. Evidently, the smoothing error vanishes if S.1 =I (no smoothing), it is small if 
A( v)Lv + g is a smooth function of x, and it hardly affects the accuracy of w if A( v)Lv + g is 
much smoother in x than v. 

Thus, we expect that the introduction of smoothing operators into the right-hand side of the 
partial differential equation (1.1) will not severely decrease the accuracy provided that the exact 
solution of (1.1) varies much more rapidly with x than its time derivative does. 

In [10] a few smoothing operators were tested and shown to have the expected effect. In this 
paper, we analyze smoothing operators more systematically, and we derive a family of optimal 
operators of second order for a parabolic and a hyperbolic model problem. In addition, a family 
of fourth-order smoothing operators is constructed; these operators are not optimal, but still 
result in a considerable reduction of the spectral radius of the Jacobian matrix. 

The various smoothing operators are tested by integrating a few initial value problems of 
parabolic and hyperbolic type, both linear and nonlinear. The results obtained clearly show that 
the two-stage explicit Runge-Kutta time integrators used in our experiments, when combined 
with a suitable smoothing operator, exhibit a stability behaviour which is comparable with that 
of the (implicit) Crank-Nicolson method, while the accuracy is hardly lower. In this connection, 
we remark that a smoothed Runge-Kutta step is "cheaper" than a Crank-Nicolson step, 
particularly in the case of nonlinear problems. 

Finally, we remark that this paper aims at a problem class for which a symmetrical 
discretization of the right-hand side function is allowed with respect to an accurate simulation of 
the solution. As a consequence, the smoothing operators derived in this paper have been 
optimized on the basis of such symmetrically discretized right-hand side functions. It is likely 
that in the nonsymmetrical case the smoothing operators of this paper are not optimal anymore; 
however, they still have the property of damping the high frequencies. The derivation of optimal 
operators for the nonsymmetrical case is the subject of further investigations. 

2. Smoothing operators 

By restricting the semidiscrete (partial) differential equation (1.4) to a grid Q.1 in the x-space, 
we are led to a system of ordinary differential equations (method of lines). This system will be 
denoted by 

d~~t) = Sf(t, y(t)), t ~ t0 , (2.1) 

where the matrix S corresponds to the smoothing operator St.1 introduced m (1.4). More 
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generally, by smoothing the right-hand side of (1.1) and by discretizing x and D, we will always 
obtain a system of the form (2.1). 

2.1. Relaxing the stability condition by smoothing 

If the system (2.1) is integrated by an explicit time integrator we are faced with a stability 
condition on the time step M of the form 

At~ p(~J), J := ~; (t, y(t)), (2.2) 

where p(SJ) denotes the spectral radius of the matrix SJ, and ~ is a constant (the so-called 
stability boundary) completely determined by the time integrator. 

Since the stability boundary of explicit methods is relatively small and p( J) usually extremely 
large, the condition (2.2) may be extremely restrictive if no smoothing is applied (i.e. S =I). This 
may force the method to take steps flt that are much smaller than accuracy would require. By an 
appropriate choice of the smoothing matrix S we can reduce the magnitude of p(SJ) consider­
ably. 

In general, it is too ambitious to derive optimal smoothing matrices for an arbitrary Jacobian 
matrix J. Therefore, we shall consider the optimization problem for two model problems which 
characterize, respectively, a parabolic and a hyperbolic equation. First, however, we consider the 
order of accuracy of the smoothing operator, that is, we require 

S=l+O(L1P) 

as the spatial grid Q.t. is refined. 

2.2 The order of accuracy of smoothing operators 

Let the vector v have components v<n and define the shift operator E by 

£vu>:= vu+ 1>. 

(2.3) 

(2.4) 

Let Qk(z) be a polynomial of degree k in z with Qk(l) = 1. Then we may consider smoothing 
matrices S of the form 

(2.5) 

We shall call this matrix a smoothing matrix or smoothing operator of degree k. 
This operator should be sufficiently close to the identity operator I. In order to define the 

order of the smoothing operator (2.5) we apply S to the test vector v= (vUl) := (w(jAx)), where 
w( x) is a sufficiently differentiable function of x. We find 

Sv= O:[Qk(E) + Qk(E- 1)] w(j Ax)) 

= (i[Qk(et.xd/dx) + Qk(e-Axd/dx)j w(J Ax)) 

= ([ Qk(l) + HQ~(l) + Q~'(l)) A2x d~2 + O(A4x)]w(J Ax))· 
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Definition 2.1. The smoothing operator (2.5) is said to be of order p if for all vectors 
w = (w(j ~x)) with w E CP we have 

Sw = w + 0( ~Px) as Ll.x __, 0. 

The following theorem is easily proved: 

Theorem 2.2. The smoothing operator (2.5) is at least of order p = 2; it is of order p = 4 if Qk ( z) 
satisfies Q~(l) + Q~'(l) = 0. 

Example 2.3. A two-parameter family of second-order smoothing operators is generated by the 
polynomial 

Q2(z) = 1- qi - q2 + q1z+ q2z2. 

The order can be raised to four if we choose q1 = -4q2 . We observe that fourth-order smoothing 
operators always require k ~ 2. 

Example 2.4. Let S be defined by 

Sv:= ( i16 (E + 2 + E- 1)(£ 2 + 2 + E- 2 )11(}}). 

It is easily verified that this operator can be represented in the form (2.5) with 

Q3 (z) =-} + iz + -}z 2 + iz 3 • 

Since Q3(1) = 1, this smoothing operator is second-order accurate. 

3. Construction of optimal smoothing operators 

In order to investigate the operator S defined by (2.5) we will use the test vectors 

e=(eUl), eUl:=exp(iwj.::l.x), 

where w E IR and Lix is the space discretization parameter. 

Definition 3.1. Let C(z) be the polynomial 
r 

1=0 

Then we associate to C the polynomial C defined by 
r 

C(z) := L c11f(z), 1/(z) :=cos(! arccos z). 
1=0 

Theorem 3.2. The smoothing operator S satisfies the eigenvalue equation 

Se=Qk(t)e, s:=cos(wLl.x). 

(3.1) 
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Proof. On substitution of e into (2.5) we obtain 

Se= HQk(eiwAx) + Qk(e-iwAx)] e 

k 

= i L q,(eilwAx + e-ilwAx)e 
1=0 

k k. 

= L q1 cos(/w ~x)e = L q1J'i(r)e. D 
1=0 l=O 

Thus, the test vector e is an eigenvector of S with eigenvalue Qk(.0. The behaviour of the 
polynomial Q k ( z) on the interval [ -1, 1] determines the properties of the smoothing operator S 
(notice that -1~~~1). For instance, if Qk(z) is small in magnitude for z-+ -1, then S will 
damp the high frequencies in the Fourier expansion of the vector v= (w(j ~x)). 

In the actual derivation of the smoothing operator S from a given polynomial Qk(z) the 
following corollary of Theorem 3.2 is often convenient. 

Corollary 3.3. Let Qk(z) be a polynomial expression in terms of the functions T0 (z), T1(z ), ... , T.c(z ): 

Qk(z) =.9"(1Q(z), ... , T,.(z)). (3.2a) 

Then the generated smoothing operator is given by 

Sv = ( .9"( H £ 0 + £ 0 ), .. ., HE"+ E-")) vUl). (3.2b) 

Proof. From Theorem 3.2 it follows that the smoothing operator S generated by (3.2a), has the 
eigenvalues 

Qk(r) =S"'(Toa), ... , T,.(r)), t = cos(w ax). 

On the other hand, because T}(n is an eigenvalue ofj(Ei + E-i), it follows from (3.2b) that the 
operator S has the same eigenvalues. Sine S and S are both polynominal operators in E and 
E- 1 with identical eigenvalues, they are necessarily identical. D 

Example 3.4. Suppose that 

Q6(z) = 2T2 (z)T1(z)- T/(z). 

Then S is defined by 

Sv= ([HE 2 + E- 2 )(£ + E- 1 ) - :\(E 3 + E- 3 ) 2] vUl ). 

The following result is similarly proved by means of Theorem 3.2: 

Corollary 3.5. Let the polynomials QUl(z) generate smoothing operators s<J), and let a and b be 
scalars. Then the polynomial 

Q(z) := aQ<1l( z) + bQ<2>( z )Q<3> ( z) 
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generates the smoothing operator 

S •= as<1> + bs<2>s<3>. 

The next theorem expresses the order conditions in terms of the polynomial Qk(z). 
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Theorem 3.6. (a) The smoothing operator generated by Qk(z) is of second order if Qk(l) = 1, and of 
fourth order if, in addition, Q~(l) = 0. 

(b) If Qk(l) = 1 and Q~(l) * 0, then the polynomial 

P2k(z) == 1- a+ aQk(z)[2- Qk(z)] 

generates a fourth-order smoothing operator for all values of ex. 

Proof. (a) Since 1/(1) = 1 and 1/'(1) = ! 2 we have 
k k 

Qk(1) = L qi= '.E q11f(1) = Qk(1) 
l=O l=O 

and 
k k 

Q~(1) + Q~'(1) = L q, [1+1(1-1)] = L q,12 

1=0 l=O 

k 

= L q,1/'(1) = Q~(1). 
1=0 

From these relations and Theorem 2.2, assertion (a) of the theorem easily follows. 
(b) The polynomial P2k(z) is easily shown to satisfy, for all o:, the conditions for fourth-order 

accuracy stated in (a). D 

Once the polynomial Qk has been specified, the smoothing operator S is easily found, either 
by using Definition 3.1 (to obtain Qk) and formula (2.5) (to obtain S), or by using the above 
Corollaries 3.3 and 3.5. 

In order to construct an effective operator S, in the sense that p(SJ) is substantially smaller 
than p(J), we need some additional information on the spectrum of J. We shall distinguish 
Jacobian matrices with negative eigenvalues arising in parabolic equations and imaginary 
eigenvalues arising in hyperbolic equations. 

3.1. Smoothing of parabolic problems 

If symmetric space discretizations are used in parabolic problems, then J is usually of the 
form, 

(3.3a) 

where K is a polynomial. In the same manner as we associated to Qk the polynomial Qk (cf. 
Theorem 3.2), we can associate to K the polynomial K, to obtain the eigenvalue equation 

Je=K(r)e, e := (eiJw Ax), f :=COS( W A_x ). (3.3b) 
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Example 3.7. Consider the parabolic model problem 

ur=uxx+g(x, t). 

The standard three-point discretization leads to a system of differential equations of which the 
jth equation reads: 

(j) 

~ = - 1-(E- 2 + E- 1)y<j) + g<n(t)· 
dt t::.2x ' 

it is easily seen that the matrix J can be characterized by the polynomial 

K(z)= - A;x(l-z). 

The polynomial K(z) turns out to be identical with K(z). 

Example 3.8. If the equation above is discretized by the standard fourth-order five-point 
discretization we obtain the polynomial 

K(z)= --1-(z2 -16z+15) 
6 A2x 

and 

K(z) = - - 1-(z2 - 8z + 7) = - - 1-(z - l)(z - 7). 
3 A2x 3 tlx 

Let us return to our problem of minimizing p(SJ) occurring in the stability condition (2.2). It 
follows from Theorem 3.2 and (3.3) that 

p(SJ) = max IQk(t)K(t) I· (3.4) 
-1.;;~.;;1 

Thus, the right-hand side has to be minimized taking into account the order condition in 
Theorem 3.6. Moreover, the polynomial Qk should be nonnegative on [ -1, 1] (otherwise SJ 
would have positive eigenvalues). 

In general, it is too ambitious to solve this minimax problem for arbitrary eigenvalue functions 
.Ken. Therefore, we shall write, instead, 

(3.5) 

and solve the minimax problem for the polynomial (1 - nQk(n, which is independent of the 
parabolic equation under consideration. This approach is justified by the observation that the 
resulting polynomial Qk does generate optimal second-order smoothing operators in the case of 
the parabolic model problem of Example 3.7. In non-model problems (where K(n contains the 
factor r - 1), the resulting polynomial Qk is not optimal, but it gives rise to the same reduction 
factor of the spectral radius as in the model problem. 

On the basis of (3.5) the stability condition (2.2) becomes 

r-1 
M~µ/3 min A()' (3.6a) 

-1.;;~.;;1 2K t 
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where we introduced the amplification factor 

µ:= ( max H1 -OQk(n]- 1
. 

-1..;K..;1 

Notice that µ = 1 (Q0=1) if no smoothing operators are applied. 

3.1.1. Second-order smoothing operators 
The following lemma is basic in our subsequent discussion: 

Lemma 3.9. Of all polynomials Pm(z) of degree m in z satisfying the conditions 

P~(l) = -1, 

and 

Pm ( z) ;;?:. 0 on [ - 1, 1], 

the polynomial Pm(z) := [1 - Tm(z)]/m 2 has the smallest maximum norm on [ -1, 1]. 
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(3.6b) 

Proof. The assertion of the lemma follows immediately from the various properties of the 
Chebyshev polynomial Tm(z). D 

With the help of this lemma the following theorem is easily proved. 

Theorem 3.10. Let the smoothing operator S be generated by the polynomial 

,.. ( ) 1 - Tk+ 1 ( z) 
Qk z = (k+l)2(1-z). (3.7) 

Then, S is second-order accurate, and minimizes, for given k, the spectral radius p(SJ) of the 
model problem in Example 3.7. 

Proof. It follows from Example 3.7 and from (3.4) that 

( S' T ) 2 1 - Tk + 1 u) 
p J =- max 

!J..2x -1..;K..;1 (k + 1)2 

and from Lemma 3.9 that p(SJ) is as small as possible, while Qk(z) is nonnegative with 
Qk(l) = 1. D 

Example 3.11. The first few polynomials Qk corresponding to the optimal polynomials Qk 
specified in Theorem 3.10 are given by 

Q1(z) =Hl +z), 

Q2 (z) = H3 + 4z + 2z2 ), 

Q3(z) = H2 + 3z + 2z 2 + z3 ). 

Notice that Q3(z) is identical with the polynomial Q3(z) derived in Example 2.4. 
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Theorem 3.12. Let J satisfy the conditions (3.3) and let S be generated by (3.7). Then the 

amplification factorµ is given by (k + 1)2 so that 

2 r-1 
At~/3(k+l) min. "( )' (3.6') 

-1~r~1 2K r 
where K(n is assumed to be negative. 

Proof. The proof is immediate from (3.7) and (3.6). D 

We recall that for k = 0 the stability condition (3.6') corresponds to the "unsrnoothed" 
method because Q0 (z)=l. This indicates that the gain factor obtained by the smoothing 
technique is as large as (k + 1)2 independent of the particular problem under consideration. 

Example 3.13. Consider the model problem in Example 3.7. For this three-point discretization we 
have 

• r -1 ] A2 
illln " = 4il x. 

-1~r~1 2K(n 

Substitution into (3.6') yields the stability condition 

!l.t ~ i/3(k + 1)2 ~.2x. 

We recall that, by virtue of Theorem 3.10, there exists no smoothing operator of degree k 
which leads to a larger maximum stable step !::.t. 

Example 3.14. Consider the discretization defined in Example 3.8. For this five-point discretiza­
tion we have 

. r - 1 . 3 /:,.2x 3 A2 
illln " = ffiln ( ) = T6 u X, 

-1~r~1 2K{r) -1 ~r~1 2 7 - t 
so that, by Theorem 3.12, the stability condition becomes 

!l.t ~ 136 /3(k + 1)2 !l.2x. 

The following lemma is of interest in the actual implementation of smoothing operators. 

Lemma 3.15. If m = 2q with q > 0, then 
q-1 

Tm ( z) = 1 - m ( 1 - z) n ( 1 + T21 ( z)). 
l=O 

Proof. It follows from the identity T21 = 2T/ - 1 that 

1 - Tm= 1 - T2q = 2(1 - T2~-1) = 2(1 + T1q-1 )(1 - T2q-I) 

= · · · = 2q(l + T1"-1)(1 + T2H) · · · (1 + T1 )(1 - T1 ). 

This proves the lemma. D 

By means of this lemma and Corollary 3.3 the following theorem is immediate: 
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Theorem 3.16. Let k = 2q - 1 with q > 0, then the smoothing operator based on (3.7) can be 
factorized according to 

Sv = 2;q (TI [ E 21 + 2 + E- 2'] vUl). (3.8) 
l=O 

The operator (3.8) is identical to the smoothing operator proposed by Wubs [10]. In this 
factorized form it allows a rather efficient implementation on a computer. 

3.1.2. Fourth-order smoothing operators 
Suppose that we can solve the following minimax problem: 

Problem 3.17. Of all polynomials Pm(z) of degree m in z satisfying the conditions 

P~(l) = -1, P~'(l)=O 

and 

Pm ( z) ~ 0 on [ - 1, 1], 

find the polynomial with the smallest maximum norm on [ -1, 1]. 

If such a minimax polynomial is found, then by defining 

~ ( ) _ Pk+ 1(z) 
Qk z - l-z ' k=m-l, 

we obtain a polynomial satisfying the fourth-order conditions Qk(l) = 1, Q~(l) = 0, being 
nonnegative on [ -1, l], and maximizing the amplification factor in the stability condition (3.6). 

Sofar, we did not succeed in deriving closed expressions for the optimal polynomials Pk+ 1(z) 
and the corresponding maximal amplification factor µ. The derivation of these polynomials will 
be subject of future investigations. 

An alternative is offered by Theorem 3.6(b). By starting with the one-parameter family of 
fourth-order polynomials 

Q ( z) = 1 - ex + aQ * ( z) ( 2 - Q * ( z)), (3.9) 

where Q*(z) generates a second-order smoothing operator S*, there is only one parameter to be 
optimized such that (1 - z)Q(z) has a minimal maximum norm on [ -1, l]. In Table 1 the 

Table 1 
µ-values for (3.9) with Q*(z) defined by (3.7) 

Degree k of S 

2 
4 
6 
8 

a 

1 
1 
1 
1 

µ. 

2.6 
4.7 
8.3 

12.7 

µ/(k + 1)2 

0.29 
0.19 
0.17 
0.16 
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resulting amplification factors µ are listed for the case where Q*(z) is given by (3.7). It seems 
that µ/(k + 1) 2, k denoting the degree of Q, converges to a constant value (recall that this value 
is 1 in the second-order case). 

We observe that the spectral radius p(SJ) can be reduced further for a> 1. However, then 
Q(z) is not nonnegative on [ -1, 1] anymore which leads to unstable discretizations. 

Finally, we remark that the operator S generated by Q( z ), i.e. 

S = (1 - a)I + aS*(21 - S* ), (3.10) 

is to a high degree factorizable if S * is factorizable. 

3.2. Smoothing of a hyperbolic model problem 

Symmetric space discretizations of hyperbolic problems often lead to Jacobian matrices 
defined by 

(3.lla) 

where K is a polynomial. 

Definition 3.18. Let C(z) be defined as in Definition 3.1. Then C is defined by 
r 

C(z) == L c1Ui-1(z), 
/=l 

where Vi is the Chebyshev polynomial of the second kind. 

By means of this definition we can write the eigenvalue equation for the Jacobian matrix 1 in 
the form 

le= ±i/1-t2 K(t}e, e==(eijwAx), t:=cos(wAx), 

where the sign is determined by the sign of sin( w Ax). 
In order to prove this, let 

Then 

r 

K(z) := L c1z1. 
l=O 

r 

le= -!-[K(eiwAx)-K(e-iwAx)]e =-!- L c,(eilwAx - e-ilwAx)e 
l=O 

r r 

= i L c1 sin( wl Ax)e = i L c1 sin( w Ax )lJi_ 1 (cos( w.L\x ))e 
I= l I= l 

r 

= ±i/1 - t 2 L C1flt-1(t}e. 
1=1 

(3.llb) 
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Example 3.19. Consider the hyperbolic model problem 

u1 =ux+g(x, t) 

and its three-point discretization 

dy(j) 1 . . 
dt = 2.1x [E-E-1] y<1) + gUl(t). 

The Jacobian of this system is characterized by 

1 
K(z) = Axz, 

so that 

- 1 
K(z) = !:u. 
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Example 3.20. If the above equation is discretized by the fourth-order five-point discretization we 
obtain 

z 
K ( z) = 6.1 x ( 8 - z) , 

- ) 1 K(z = 3~x(4-z). 

For hyperbolic problems we are faced with the problem of minimizing 

p(SJ) = max /1- r2 jQk(t)K(t) j, 
-1.;;r.;;1 

(3.12) 

taking into account the order conditions for Qk stated in Theorem 3.6. Notice that, in contrast to 
the minimax problem for parabolic problems, the polynomial Qk is not required to be 
nonnegative on [ -1, 1]. Consequently, the polynomials derived for parabolic problems are not 
optimal in the present case. 

Instead of minimizing the right-hand side of (3.12) we shall write 

p(SJ) ~ max Ji- r2 jQk(t) I· max I K(r) ,, (3.13) 
-1.;;r.;;1 -1.;;r.;;1 

and we solve the minimax problem for /1- r2 QkCn independently of K. (cf. the discussion 
given for (3.5)). Similarly to (3.6), we derive from (3.13) the stability condition 

1 [ A ]-1 At~ µ.{3 min -en , µ := max /1- r1 1 Qk en I . 
-1.;;r.;;1 !K I -1.;;r.;;1 

(3.14) 

Again, µ is chosen such that µ = 1 if no smoothing is applied. 

3.2.1. Second-order smoothing operators 
The following lemma plays the role that Lemma 3.9 played for parabolic problems. 

Lemma 3.21. Of all functions of the form Ji - z 2 P7(z) where Pm(z) is a polynomial of degree m in 
z satisfying the condition Pm(l) = 1, the function V1 - z 2 Um(z)/(m + 1) has the smallest maxi­
mum norm on [ -1, 1]. 
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Proof. Since Um(l) = m + 1 the condition Pm(l) = 1 is satisfied. Furthermore, we deduce from 
the identity 

that the function VI - z2 Um( z) satisfies the equal ripple property from which it can be 
concluded that this function is optimal. D 

By virtue of this lemma the following theorem is obvious. 

Theorem 3.22. Let the smoothing operator S be generated by the polynomial 

~ Uk ( z) 
Qk(z)= k+l. (3.15) 

Then Sis second-order accurate, and minimizes, for given k, the spectral radius p(SJ) of the model 
problem in Example 3.19. 

Example 3.23. The first few polynomials Qk(z) generated by (3.15) are given by 

Q1(z) = z, 

Q2 (z) = 1(1+2z2 ), 

Q3(z)=Hz3+z). 

Theorem 3.24. Let J satisfy the conditions (3.11) and let S be generated by (3.15). Then the 
amplification factor is given by k + 1 leading to the stability condition 

!:::.t~f3(k+l) min -~) . -1._r,.11KKI (3.14') 

Proof. Substitution of (3.15) into (3.14) leads to (3.14'). o 

Example 3.25. Consider the discretization of Example 3.20. Applying Theorem 3.24 we find that 
this five-point discretization is stable if 

!:::.t ~ }/3(k + 1) .'.ix. 

As in the parabolic case the operator S generated by (3.15) can be factorized for special values 
of k. The counterpart of Lemma 3.15 is given by 

Lemma 3.26. If m = 2q with q > 0, then 

q-1 

Um_ 1 ( z) = m CT T21 ( z). 
1=0 
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Proof. Using the identity U21 _ 1 = 2Ui_ 1 ~, (cf. [1, p. 782]) we deduce that 

proving the assertion of the lemma. o 

The analogue of Theorem 3.16 is given by 

Theorem 3.27. Let k = 2q - 1 with q > 0, 
factorized according to 

then the smoothing operator based on (3.15) can be 

( 
q-1 ) 

Sv = ~ TI [E 21 + E 2 - 1
] vUl . 

2 l=O 

3.2.2. Fourth-order smoothing operators 
For hyperbolic problems we have the following analogue of Problem 3.17. 

(3.16) 

Problem 3.28. Of all functions of the form h - z 2 Pm(z), where Pm(z) is a polynomial of degree 
m in z satisfying the conditions Pm(l) = 1 and P,,:(1) = 0, find the function with the smallest 
maximum norm on [-1, l]. 

If this problem is solved form= k, we set Qk(z) = Pk(z) to obtain the generating polynomial 
for a fourth-order smoothing operator with optimal amplification factor µ as defined in (3.14). 

As in the parabolic case we did not yet find closed expressions for the optimal polynomials 
and we applied, instead, (3.9) with Q*(z) given by (3.15). The analogue of Table 1 is presented 
by Table 2. Notice that here a is not restricted by a sign condition on Q(z). The resulting 
smoothing operators are given by (3.10) with S * corresponding to Q *. 

4. Numerical experiments 

In [10] a few first experiments are reported for hyperbolic problems using smoothing 
techniques in combination with conventional time integrators. Here, we present further experi­
ments, both for parabolic and hyperbolic problems All examples are chosen such that conven­
tional explicit time integrators (without smoothing) require unrealistically small time steps. 

Table 2 
µ-values for (3.9) with Q*(z) defined by (3.15) 

Degree k of S 

2 
4 
6 
8 

a 

0.67901 
0.83512 
0.84250 
0.95280 

µ 

1.38 
2.06 
1.96 
2.56 

µ./(k + l) 

0.46 
0.41 
0.28 
0.28 
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The examples are, respectively, 

U1 = u_u + g1 ( t, x), 

ur=u2uxx+g2(t, x), 

u1 =ux+g3(t, x), 

U1 = H u2 ) x + g4 ( t, x), 

where the forcing functions g1(t, x) are chosen in such a way that 

u(t, x) = Hsin(x + t) + sin(wx)], w E ~ 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

presents the exact solution. The initial condition is taken from the exact solution, and periodic 
boundary conditions are imposed at x = 0 and x = 2'1T. In all examples the integration interval is 
given by [O, T], where T is specified in the tables of results. 

The semidiscrete equations are obtained by using, respectively, the three-point discretizations 
of the Examples 3.7 and 3.19, and the five-point discretizations of the Examples 3.8 and 3.20. 
The spatial grid is given by the points x1 = j 6.x, j = 1,2, ... , 2'1T/6.x, where 6.x is chosen such 
that the forcing function and the initial function can be adequately represented. 

The time integrators used (in combination with smoothing operators specified in the tables of 
results) are given by the explicit Runge-Kutta methods (for the notation used see [4]): 

RKP: 0 
I 
8 
I 
2 

RKH: 0 
I 
2 
I 
2 

0 
I 
8 

0 

0 

0 
I 
2 

0 

0 

I 
2 

0 1 

I 
2 

0 1 

Both methods are second-order accurate: RKP is used for the parabolic problems (4.1) and (4.2) 
with stability boundary /3 = 6.26 in the stability condition (3.6); RKH is used for the hyperbolic 
problems (4.3) and (4.4) with stability boundary /3 = 2 in the stability condition (3.14). These 
conditionally stable methods were respectively applied with the parabolic smoothers generated 
by (3.7) and Table 1, and with the hyperbolic smoothers generated by (3.15) and Table 2. 

As reference method we apply the implicit Crank-Nicolson method which can be represented 
by the array: 

CN: 0 0 0 
1 I 

2 
1 
2 

1 1 
2 2 

This method is also second-order accurate, but it is unconditionally stable both for parabolic and 
hyperbolic problems (i.e. /3 = oo ), and, therefore, it requires no smoothing in order to stabilize 
the integration process. 
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The integration steps /J.t are chosen as large as allowed by the stability condition of the 
smoothed RKP or RKH methods. 

In the tables of results we list the degree k of the smoothing operator used, the total number 
of steps N := T / b..t, and the number of correct significant digits obtained in t N = T, i.e., the 
value of 

Problem ( 4.1) 
This problem is given by ( 4.1) with solution ( 4.5) and with w = 16. The solution is therefore 

rapidly oscillating, while its time derivative is slowly varying with x; hence, the problem belongs 
to the problem class for which the smoothing technique described in the preceding sections 
should be effective. In order to represent the initial condition and the forcing function 
adequately on the spatial grid we choose b..x = 'TT /192. 

The results obtained are listed in the Tables 4.l(a) and 4.l(b) (see Section 4.1). They show that 
the smoothed RKP method performs stably for all integration steps. Compared with the maximal 
step allowed by the "unsmoothed" RKP method (i.e. k = 0), the gain factors for second- and 
fourth-order smoothing are at least 64 and 32, respectively. The accuracy is hardly reduced by 
the smoothing procedure, except for the case where fourth-order space discretization is combined 
with second-order smoothing (here, an increase of the degree of the smoothing operator by 1 
decreases the number of correct digits by about 0.25 if k is small and by about 0.15 if k becomes 
larger). In all other cases, the accuracy is comparable with that of the CN method. 

Problem (4.2) 
This problem is a nonlinear modification of problem (4.1), again with w = 16. The results 

listed in the Tables 4.2(a) and 4.2(b) show a similar behaviour as for the linear problem (4.1), 
provided that the degree of the smoothing operator is not too large ( k ~ 5 for second-order 
smoothing and k ~ 10 for fourth-order smoothing). The respective amplification factors of the 
maximal stable integration step are at least 35 and 18. 

Problem (4.3) 
The results for this linear hyperbolic problem (4.3) with w = 16 (see the Tables 4.3(a) and 

4.3(b)) again show that the smoothed RKH method performs stably for all integration steps, 
while the accuracy is not or only mariginally less than the accuracy obtained by the CN method. 
The amplification factors of the maximal stable integration steps are at least 8 and 4 for 
second-order and fourth-order smoothing, respectively. Notice that, in contrast to the results 
obtained for the parabolic problems (4.1) and (4.2), the numerical error is not only determined 
by space discretization and smoothing errors, but also contains a time discretization error. 

Problem ( 4.4) 
When we integrated the nonlinear problem (4.4), with w = 16, rather low accuracies were 

obtained on a spatial grid with ~x = 'TT/192, and instabilities developed in the case of fourth-order 
smoothers. Due to this low accuracy, the numerical solution did not satisfy the requirement that 
jts time derivative is a smooth function of x. In order to overcome this unwanted behaviour we 
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should decrease !lx, or equivalently, in order to stay within our budget available for these 
numerical experiments, we may decrease w. Choosing w = 8 we obtained the results listed in the 
Tables 4.4(a) and 4.4(b). We now have stability for all integration steps and accuracies which are 
even higher than. those produced by the CN method. 

4.1. Tables of results 

Table 4.l(a) 
sd-values for problem (4.1) with w =16, T=l.0, llX = 'TT/192, and with second-order smoother based on (3.7) 

k Three-point coupling Five-point coupling 

N RKP CN N RKP CN 

0 2400 2.54 2.54 3200 4.59 4.59 

1 600 2.54 2.54 800 4.34 4.58 

2 270 2.53 2.54 355 4.10 4.58 

3 150 2.53 2.54 200 3.90 4.58 

4 96 2.52 2.54 130 3.73 4.56 

5 68 2.51 2.54 90 3.58 4.54 

6 49 3.26 2.54 66 3.46 4.50 

7 38 2.49 2.54 50 3.35 4.44 

Table 4.l(b) 
sd-values for problem (4.1) with w = 16, T = 1.0, tlX = 'TT/192, and with fourth-order smoother based on { (3.9), a= 1} 

k Three-point coupling Five-point coupling 

N RK.P CN N RKP CN 
0 2400 2.54 2.54 3200 4.59 4.59 
2 925 2.54 2.54 1250 4.59 4.59 
4 540 2.54 2.54 710 4.59 4.59 
6 300 2.54 2.54 400 4.58 4.58 
8 192 2.54 2.54 260 4.58 4.58 

10 136 2.54 2.54 180 4.58 4.57 
12 98 2.54 2.54 132 4.57 4.56 
14 76 2.54 2.54 100 4.55 4.55 

Table 4.2(a) 
sd-values for problem (4.2) with w =16, T=l.0, ~x = 'TT/192, and with second-order smoother based on (3.7) 

k Three-point coupling Five-point coupling 

N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 
1 600 0.58 0.62 800 2.62 3.35 
2 270 0.74 0.62 355 2.23 3.34 
3 150 1.07 0.62 200 2.03 3.32 
4 96 1.26 0.62 130 1.86 3.28 
5 68 1.40 0.62 90 1.68 3.22 
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Table 4.2(b) 
sd-values for problem (4.2) with w = 16, T = 1.0, Ax= 'IT/192, and with fourth-order smoother based on { (3.9), a= 1} 

k Three-point coupling Five-point coupling 

N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 
2 925 0.52 0.62 1250 3.13 3.35 
4 540 0.59 0.62 710 3.01 3.35 
6 300 0.83 0.62 400 3.18 3.34 
8 192 1.09 0.62 260 3.40 3.33 

10 136 1.13 0.62 180 3.35 3.31 

Table 4.3(a) 
sd-values for problem (4.3) with w = 16, T = 10, tlx = 'IT/192, and with second-order smoother based on (3.15) 

k Three-point coupling Five-point coupling 

N RKH CN N RKH CN 
0 310 2.19 1.96 472 3.57 3.54 
1 155 2.08 1.97 236 2.83 3.05 
2 104 1.94 1.81 160 2.46 2.75 

I 
3 78 1.79 1.77 120 2.20 2.52 
4 62 1.66 1.82 95 2.00 2.33 

r 
5 52 1.54 1.58 80 1.84 2.19 
6 43 1.42 1.49 67 1.70 2.03 
7 39 1.33 1.47 58 1.58 1.91 

I Table 4.3(b) 
sd-values for problem (4.3) with w =16, T=lO, Ax= 'IT/192, and with fourth-order smoother based on {(3.9), Table 2} 

k Three-point coupling Five-point coupling 
l N RKH CN N RK.H CN 

0 310 2.19 1.96 472 3.57 3.54 
2 220 2.16 2.16 350 3.39 3.45 
4 145 2.10 2.41 240 3.10 3.06 
6 150 2.11 2.10 260 3.16 3.13 
8 115 2.04 2.28 180 2.86 2.88 

10 110 2.03 2.02 185 2.88 2.91 
12 85 1.93 1.83 135 2.62 2.64 
14 85 1.93 1.83 145 2.68 2.68 

Table 4.4(a) 
sd-values for problem (4.4) with w = 8, T= 4, Ax= 'IT/192, and with second-order smoother based on (3.15) 

k Three-point coupling Five-point coupling 

N RKH CN N RKH CN 

0 110 1.36 1.37 145 3.12 2.86 
1 50 1.63 1.44 75 2.55 2.19 
2 33 1.83 1.66 45 2.19 1.71 

r 3 22 1.67 1.27 30 1.81 1.32 
4 17 1.73 1.06 25 1.82 1.20 
5 14 1.42 0.84 20 1.52 1.03 
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' ~ 
Table 4.4(b) ' . 
sd-values for problem (4.4) with w = 8, T= 4, t::.x = '11/192, and with fourth-order smoother based on {(3.9), Table 2. 

5. Concluding remarks 

In this paper we analyzed a smoothing technique for preconditioning a special class of 
semidiscrete partial differential equations. It turned out that, in order to obtain optimal 
smoothing matrices, one should distinguish between parabolic and hyperbolic equations. The 
resulting smoothing matrices are quite different. For instance, application of a smoothing matrix, 
which is optimal for the hyperbolic model problem, would lead to instabilities when applied to a 
parabolic problem. However, if the smoothing operator is appropriately chosen, a substantial 
amplification of the maximal stable step size is obtained, irrespective of the (explicit) time 
integrators used, while the additional computational effort is rather limited. The price to be paid 
for the less restrictive stability condition is (i) a decrease of the accuracy for large degree 
smoothing matrices, and (ii) the requirement that the right-hand side function should be provided in 
grid points beyond the boundary. 

The reduced accuracy for large k has two sources: firstly, the smoothing technique analyzed in 
this paper presupposes that the right-hand side function is a smooth function of the spatial 
variables and rapidly looses accuracy if not; secondly, the error constant of the smoothing 
operator increases with k2• On the other hand, the numerical experiments of the preceding 
section show that smoothing matrices of degree as high as 14 still do not reduce the accuracy 
very much if the problem belongs to the class of problems we are aiming at. 

In Section 4, the need of providing right-hand side values outside the domain was solved by 
imposing periodic boundary conditions. In the case of other types of boundary conditions, a 
plausible approach is to generate these values by extrapolation. We repeated the series of 
experiments of Section 4 by employing rational extrapolation and we found a comparable 
stability behaviour and accuracy behaviour as well (polynomial extrapolation leads, of course, to 
severe instabilities). Alternatively, one may employ the Jacobian matrix of the right-hand side to 
achieve a correct amount of smoothing in the near boundary points. Both approaches will be 
subject of further investigations. 
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