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ABSTRACT 

A term rewriting system is called complete if it is both confluent and strongly nor
malizing. Barendregt and Klop showed that the disjoint union of complete tenn 
rewriting systems does not need to be complete. In other words, completeness is 
not a modular property of term rewriting systems. Toyama, Klop and Barendregt 
showed that completeness is a modular property of left-linear TRS's. In this paper 
we show that it is sufficient to impose the constructor discipline for obtaining the 
modularity of completeness. This result is a simple consequence of a quite power
ful divide and conquer technique for establishing completeness of such constructor 
systems. Our approach is not limited to systems which are composed of disjoint 
parts. The importance of our method is that we may decompose a given constructor 
system into parts which possibly share function symbols and rewrite rules in order 
to infer completeness. We obtain a similar technique for semi-completeness, i.e. 
the combination of confluence and weak normalization. 

Introduction 

A property of tenn rewriting systems is modular if it is preserved under disjoint union. 
Starting with Toyama [19], several authors studied modular aspects of term rewriting sys
tems. Toyama [19] showed that confluence is a modular property. In [20] Toyama refuted the 
modularity of strong normalization by means of the following term rewriting systems: 

9\.1 = { F(O, l,x)-7F(x, x, x)} 

{
g(x, y) -7 x 

!R...2 = g(x, y) -7 y. 

Both systems are terminating, but their union admits the following cyclic reduction: 

t This paper is an abbreviated version of CWI report CS-R9059. 
:!: Partially supported by ESPRIT Basic Research Action 3020, INTEGRATION. 
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F(g(O, l),g(O, 1),g(O, 1))-7F(0,g(O, 1),g(O, I)) 

-7 F (0, l, g (0, 1)) 

-7 F (g (0, 1), g (0, 1), g (0, 1)). 

His counterexample inspired Rusinowitch [18] to the fonnulation of sufficient conditions for 
the strong normalization of the disjoint union of strongly normalizing term rewriting systems 
!i{.1 and !i{.2 in terms of the distribution of collapsing and duplicating rules among !1{,1 and 
~· Rusinowitch's results were extended by Middeldorp [11]. Barendregt and Klop gave an 
example showing that completeness (i.e. the combination of confluence and strong normaliza
tion) is not a modular property, see Toyama [20]. Independently, Drosten [3] gave the fol
lowing simpler counterexample: 

F(O, 1, x) -7 F(x,x,x) 
F(x, y, z) -7 2 

!1{,1 = 0 -7 2 

1 -7 2 

-{ g(x, y, y) -7 x 
!1{,z- g(y,y,x) -7 x. 

Both systems are easily shown to be complete. However, because both g (0, 1, 1) ""* 0 and 
g(O, 1, 1) """"* 1, the term F(g(O, l, 1), g(O, 1, 1), g(O, l, 1)) has a cyclic reduction akin to the 
one in the previous counterexample. Toyama, Klop and Barendregt [22) showed that the res
triction to left-linear term rewriting systems is sufficient for obtaining the modularity of com
pleteness. Middeldorp [10] showed that the property of having unique normal forms is modu
lar for general tenn rewriting systems. An interesting alternative approach to modularity is 
explored in Kurihara and Kaji [7]. Middeldorp [12, 13, 14) extended the above results to con
ditional term rewriting systems. Kurihara and Ohuchi [8] showed that strong normalization is 
a modular property of tenn rewriting systems whose strong normalization can be shown by a 
simplification ordering. They extended this result in [9] to term rewriting systems which share 
constructors. Constructors are function symbols which do not occur at the leftmost position in 
left-hand sides of rewrite rules. Dershowitz [1], Geser [4] and Toyama [21] give further 
results on combinations of term rewriting systems with common function symbols. A 
comprehensive survey of combinations of (conditional) tenn rewriting systems can be found 
in Middeldorp [15]. 

The starting point of the present paper is the refutation of the modularity of complete
ness. We show that instead of requiring left-linearity it is also possible to impose the so-called 
constructor discipline for obtaining the modularity of completeness. In a constructor system 
(a tenn rewriting system which obeys the constructor discipline) all function symbols occur
ring at non-leftmost positions in left-hand sides of rewrite rules are constructors. Many term 
rewriting systems that occur in practice follow this discipline, see e.g. O'Donnell [17]. Actu
ally we prove a much stronger result. We show that a constructor system is complete if it can 
be decomposed into complete constructor systems. The important observation is that our 
notion of decomposition does not imply disjointness. Consider for example the consnuctor 
system 
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O+x ~x 

S(x)+y ~ S(x+y) 

Oxx ~ 0 
!!{.= S(x)xy ~ xxy+y 

f (0) ~ 0 
f (S (x)) ~ f (x)+S(x). 

We can decompose !I( into 

O+x ~x O+x ~ x 

S(x)+y ~ S(x+y) S(x)+y ~ S(x+y) 
!l{.1 = Oxx 0 

and !l{.z = f (0) ~ 0 ~ 

S (x) xy ~ xxy+y f (S (x)) ~ f (x)+S(x). 

Both systems are easily shown to be complete and our decomposition result yields the com
pleteness of !!{.. Neither the result of Kurihara and Ohuchi [9] (because !l{.1 and !l{.2 share the 
non-constructor symbol +) nor the result of Dershowitz [1] (because !l{.1 and !l{.2 are not 
right-linear) applies. 

In the next section we give a concise introduction to term rewriting. Extensive surveys 
are Dershowitz and Jouannaud [2] and Klop [6]. In Section 2 we introduce the concept of 
marked reduction which plays a crucial role in the proof of our main results. Section 3 con
tains our main results. We define a notion of decomposability and we show that completeness 
is a decomposable property of constructor systems. To appreciate the non-triviality of our 
result, it may be contrasted with the fact that neither confluence nor strong normalization is 
decomposable. We further show that semi-completeness (i.e the combination of confluence 
and weak normalization) is a decomposable property of constructor systems. 

1. Preliminaries 

Let '11 be a countably infinite set of variables. A term rewriting system (TR.S for short) is 
a pair (!f, !!{.). The set J' consists of junction symbols; associated to every F e J' is a natural 
number denoting its arity. Function symbols of arity 0 are called constants. The set 'l(J', 'II) 
of terms built from !f and 'II is the smallest set such that '11 c 'l(!f, '11) and if Fe !f has arity 
n and t 1, ... , tn e 'I (!f, '11) then F (t 1, ... , tn) e 'I (!f, '11 ). Identity of terms is denoted by ==. 
The root symbol of a term t is defined as follows: root (t) = F if t = F (t 1, ... , tn) and root (t) = t 
if t e o/. The set!!?... consists of pairs (/, r) with /, re 'I(!f, '11) subject to the following two 
constraints: 
(1) the left-hand side l is not a variable, 
(2) the variables which occur in the right-hand side r also occur in /. 
Pairs (/, r) are called rewrite rules and will henceforth be written as l ~ r. A rewrite rule 
l ~ r is left-linear if I does not contain multiple occurrences of the same variable. A left
linear TR.S only contains left-linear rewrite rules. 

A substitution er is a mapping from 'II to 'I'(!f, 'II) such that its domain 
{x e '11 I cr (x) ~ x} is finite. Substitutions are extended to morphisms from 'I (J', 'II ) to 
'I (!f, '11 ), i.e. O' (F (t i. ... , tn)) = F ( cr (t 1 ), .. ., cr (tn)) for every n-ary function symbol F and 
terms t 1, .. ., tn. We call cr(t) an instance oft. We write t 0 instead of a(t). An instance of a 
left-hand side of a rewrite rule is a redex (reducible expression). Let o be a special constant 
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symool. A context C [, ... , ] is a term in 'I(J"u { o }, '11). If C [, ... , ] is a context with n 
occurrences of o and t 1, .•• , tn are terms then C [ t 1, •.. , tn] is the result of replacing from left 
to right the occurrences of o by t 1, ••. , tn. A context containing precisely one occurrence of 
o is denoted by C [ ]. A term sis a subterm of a term t if there exists a context C [] such that 
t = C [ s ]. If C [ ] 'f. o then s is a proper subterm of t. We write s !;;;;; t to indicate that s is a 
subterm of t. 

The rewrite relation ---7:tt is defined as follows: s ---7!1t t if there exists a rewrite rule l ---7 r 
in !l(... a substitution a and a context C [ ] such that s = C [ 1°] and t = C [ r0 ]. The transitive
reflexive closure of "'""7:tt is denoted by -»:rt; ifs -*!It t we say that s reduces to t. We write 
s f--:tt t if t ~:tt s; likewise for s *-:tt t. The transitive closure of ---7!1t is denoted by ---7~ and 
tt:tt denotes the symmetric closure of ~:tt (so tt:tt = ---7!1t u ~!It). The transitive-reflexive 
closure of tt:tt is called conversion and denoted by =!It· Ifs =!It t then sand tare convertible. 
Two terms t 1, t 2 are joinable, notation t 1 j,!lt t 2 , if there exists a term t 3 such that 
t 1 -*!It t3 *-!It t 2 • Such a term t3 is called a common reduct of t 1 and t 2 . We often omit the 
subscript at. 

A term s is a normal form if there is no term t with s ---7 t. A TRS is weakly normalizing 
if every tenn reduces to a nonnal form. A 'IRS is strongly normalizing if there are no infinite 
reduction sequences t 1 ---7 t 2 ---7 t 3 ~ ..•. In other words, every reduction sequence eventu
ally ends in a normal form. A 'IRS is confluent or has the Church-Rosser property if for all 
terms s, tl> t 2 with t 1 *- s-» t 2 we have t 1 j, t 2 • A well-known equivalent formulation of 
confluence is that every pair of convertible tenns is joinable (t 1 = t 2 => t 1 j, t 2). A TRS is 
locally confluent if for all terms s, t 1 , t2 with t 1 ~ s ---7 t 2 we have t 1 j, t 2• A complete TRS 
is confluent and strongly normalizing. A semi-complete TRS is confluent and weakly normal
izing. These properties of 'IRS's specialize to terms in the obvious way. If a term t has a 
unique normal form then we denote this normal form by t .J,. 

The following.well-known result is due to Newman (16]. 

NEWMAN'S LEMMA. Every strongly normalizing and locally confluent TRS is confluent. D 

Let 11 ~ r 1 and / 2 ~ r 2 be renamed versions of rewrite rules of a TRS !!{.such that they 
have no variables in common. Suppose 11 = C [ t] with t e 'II such that t and 12 are unifiable, 
i.e. t 0 = l~ for a most general unifier a. The term lf = C [ l 2]a is subject to the reduction 
steps If ~ rY and If ~ C[r2 ]a. The pair of reducts ( C [ r 2 ]0 , rf) is a critical pair of~ If 
11 ~ r 1 and 12 ~ r 2 are renamed versions of the same rewrite rule, we do not consider the 
case C [ ] = o. A critical pair ( s, t) of a TRS !!{. is convergent if s -L:tt t. The following 
lemma ofHuet [5] expresses the significance of critical pairs. 

CRITICAL PAIR LEMMA. A 1RS at is locally confluent if and only if all its critical pairs are 
convergent. 0 

A constructor system (CS for short) is a 'IRS (J', at) with the property that !F can be 
partitioned into disjoint sets i:D and C such that every left-hand side F (t 1 , ••• , tn) of a rewrite 
rule of .1( satisfies F e 'IJ and t 1, ... , tn e 'I ( C, 'll ). Function symbols in i:D are called defined 
symbols and those in C constructors. To emphasize the partition of 1' into '1J and C we write 
(i:!J, c, at) instead of er. at) and 'T(!F. '11) is denoted by 'I('IJ, c. '11 ). 

Since the behaviour of a Turing machine can be simulated by a CS (see Klop [6] for 
details), CS's have universal computing power. The restriction on the left-hand sides of 
rewrite rules of CS's enables a considerable simplification of many concepts and proofs. For 
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instance, if (s, t) is a critical pair of a CS ('lJ, C, !/()then there exist different rewrite rules 
11 -H1, / 2 -H2 E !!((with variables suitably renamed) and a most general unifier cr of 11 and 
l 2 such that s = rY and t = r~. 

2. Marked Reduction 

In this section we introduce a new rewrite relation which plays an essential role in the 
proofs of our decomposition results. Due to lack of space no proofs are presented in this sec
tion. They can be found in the full version of the paper. Throughout this section we will be 
dealing with an arbitrary CS ( 'lJ, C, !/(). 

DEFINmON 2.1. 
(1) The set 'lJ* = (F* I FE'])} consists of marked defined symbols. Terms in 

'T(t.f/v ']),C. 'V') are called marked terms. An unmarked term belongs to 
'T(']), c, o/). 

(2) If t is a marked term then e (t) E 'T ( ']), C, o/ ) denotes the term obtained from t by eras
ing all marks and t"' denotes the term obtained from t by marking every unmarked 
defined symbol in t. 

(3). Two marked terms sand tare similar, notations"" t, if e (s) = e (t). Ifs and tare similar 
then their intersection is the unique term s At such that s /\ t "" s "" t and a defined symbol 
occurrence in s /\ t is marked if and only if the corresponding symbols in s and t are 
marked. 

(4) The set!/(* ofmarkedrewriterulesisdefinedas {I* -7r* I /-7rE!/(}. 

ExAMPLE 2.2. Consider the CS ('])1, C i. !/(1) with ']) 1 = {F, G }, C 1 = {S, O}, 

{
F(S(x),y) -7 G(x) 

!/(1 = G(x) -7 S(O) 

and the reduction sequence 

t = F (S (G (0)), G (0)) -7 F (S (G (0)), S (0)) -7 G (G (0)) -7 S (0). 

If we mark some defined symbols in t then we can easily mimic this sequence by a reduction 
sequence in !/(1 v !l(i, for instance 

F* (S (G*(O)), G (0)) -7!!t1 F*(S (G* (0)), S (0)) -7!lt; G*(G* (0)) -7!lt; S (0). 

This correspondence does not hold for non-left-linear CS's. Consider the CS (1J 2 , C2 , !1(2 ) 

with '])2 = {F}, C2 = {S }, !1(2 = {F(x, x)-7 S (x)} and the reduction step 

F (F (0, S (0)), F (0, S (0))) -7 S (F (0, S (0))). 

The marked term F* (F* (0, S (0)), F (0, S (0))) cannot be reduced in !1(2 u ~. 

By modifying the rewrite relation associated to !!( u !/(* we are able to mimic every 
unmarked reduction sequence, irrespective of the marking attached to the starting term. 

DEFINmON 2.3. We writes -7m t if there exists a context C [ ], a rewrite rule 

C1[xi. ... ,xn]-7 C2[Y1. ····Ym] 

in !!( u !/(* (with all variables displayed) and terms s i. ... , Sn, t i. ... , tm such that the 
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following three conditions are satisfied: 
(1) s = C[C1[s1, ... ,Sn]] and t = C[C2[t1, ... , tm]], 
(2) si ""sj whenever xi =xj for 15 i <j Sn, 
(3) ti = /\ {sj I Xj =yd for i= l, ... , m. 
We call C 1 [ s l • ... , sn] a marked redex and the relation -7m is called marked reduction. 

p* 

m 

s 

FIGURE l. 

s /\t 

F(x, X)-7G(x)E2{. 

F, GE']) 

Notice that -7m coincides with -71(u1(' whenever 2{.is left-linear. 

EXAMPLE 2.4. Consider the CS ('lJ, C, 2{.) with 'lJ = {F, G}, C = {S, O}, 

-{F(x, x) -7 S(x) 
!l?..,- G(x) --+ 0 

and the reduction sequence F (G (F (0, S (0))), G (F (0, S (0)))) -7 S (G (F (0, S (0)))) -7 S (0). 
We have F*(G* (F* (0, S (0))), G* (F (0, S (0)))) -7m S (G'*(F (0, S (0)))) -7m S (0). 

The next proposition relates marked reduction to ordinary reduction. In part (2) it is 
essential that we restrict ourselves to CS's. 

PROPOSmON 2.5. 
(1) Ifs -7m t then e(s) -7 e(t). 
(2) Ifs -7 t and e (s') = s then there exists a term t' such that s' -7m t' and e (t') = t. 
D 

DEFINITION 2.6. If t = C[ t 1 , ... , tn] such that all defined symbols in C [, ... , ] are marked 
and every ti (i = 1, ... , n) is unmarked then we call t a capped term. Furthermore, if 
root(ti) E ']) for i = l, ... , n then we write t = C*[ t 1 .... , tn]*. 

capped term A l all defined symbols are marked 

0 all defined symbols are unmarked 

FIGURE 2. 
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DEFINmON 2.7. Lets= C*[si. ... , sn]* be a capped term. . 

(1) Supposes -7m t by contraction of the marked redex Li. We wri~e s -7:n t if Li occurs in 

one of s 1, .•• , sn and we write s -7::Z t otherwise. The relation -7 :n is called inner marked 

reduction and -7~ is called outer marked reduction. . 

(2) We calls inside normalized if it is a normal form with respect to --t~. 

DEFINITION 2.8. Let t = C*[ t 1, ... , tn]* be a capped term. If t 1, ... , tn are semi-complete then 

we define 'JI(!)= C[ti.J,, ... , tnJ,]. Notice that 'Jf(t) is inside normalized. 

semi-complete 
tA ** 

* * 

{ 
FIGURE 3. 

LEMMA 2.9. Lets be a capped tenn such that'Jf(s) is defined. 

(I) Ifs --t~ t then 'I' (t) is defined and 'Jf (s) -7~ +'I' (t). 
(2) Ifs --t~ t then 'lf(t) is defined and'Jf(s) = 'Jf(t). 
(3) Ifs is a normal form then 'Jf(s) = s. 
D 

s ~ t s 

j (1) j (2) 
' v v 

'I' (s )- ---- ------>~+'I' (t) 'I' (s) -

FIGURE4. 

'I' (t) 

} nonnal form 

i t 
m 

' ' v v 

'I' (t) 

In the remainder of this section we give some further properties of marked reduction 
which are needed in the next section. 

LEMMA 2.10. Let s be a capped term and suppose s -»m t. For every subterm u oft with 

root (u) E tJJ we can find tenns s' r;;;. sand t' r;;;. t such that root (s') E ']), s' -77 t' and u r;;;. t'. D 

DEFINTI10N 2.11. Let t be a marked term. 

(1) The set {FE 'D I F* occurs in t} is denoted by tJJ* (t). 

(2) A subset tJJ' of tJJ is unreachable from t if tJJ' n tJJ* (t') = 0 whenever t -??m t'. 

DEFINTI10N 2.12. Let tJJ' be a subset of tJJ. 

(1) A set of pairs <I>= { ( s 1, x 1), .. ., ( sn, Xn)} is a '])'-replacement if x i. .. ., Xn are mutually 

distinct variables and s 1 , ... , sn are mutually distinct unmarked terms such that 

root (si) E tJJ' for i = l, ... , n. Let t = C [ t 1, .. ., tm] such that all maximal subterms of t 
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with root symbol in '1J' are displayed. We say that <I> is applicable to t if x 1, .•. , Xn do not 
occur in t and {t1 •... , tmJ k {si. .. ., snJ· In this case we may write t :C[si1 , •• ., si,.] 
with 1 ~ i 1, ... , im ~ n and we define <I> (t) = C [ X1 1 , ••• , x;,.]. 

(2) Let cj> = { (s1, x1), ... , (sn, Xn)} be a ']]'-replacement. Suppose t = C [x; 1, ••• , x1..] such 
that all occurrences of the variables x 1, ... , Xn in t are displayed. The term C [ s11 , •• ., s;.,] 
is denoted by cp-1(t). 

PROPOSIDON 2.13. Let '])' be a subset of']). For every term t there exists a ']]'-replacement 
cj> which is applicable to t. D 

PROPOSmON 2.14. Let<j> be aD'-replacementfor some 1J' k 'lJ. 
(1) Ifs -*m t then cp-1(s)-*m q,-1(t). 
(2) If cj> is applicable to t then cp-1 ( cp (t)) = t. 
(3) Ifcp is applicable to a capped term t then e (cj> (t)) =<I> (e (t)). 
D 

LEMMA 2.15. Lets be a capped term. Suppose'])' k 1J is unreachable from sand cj> is a 'lJ'
replacement applicable to s. 
(1) Ifs -t~ t then cj> is applicable tot and cj> (s) -t~ <j> (t). 
(2) Ifs has an infinite -t</n-reduction then <j> (s) has an infinite -t</n-reduction. 
D 

FIGURE 5. 

3. Combinations of Constructor Systems 

0 
--~m 

F, GE'})' 

In this section we show that both completeness and semi-completeness exhibit the 
important compositional behaviour expressed in the next definition. 

DEFINITION 3.1. 
(1) Let ('lJ,C,!J() be a CS and suppose tJJ'k1J. The set {l-tre!l{.I root(l)e'lJ'} is 
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denoted by !.lt I 'IJ'. 
(2) Two CS's ('IJi. Ci. !.lt1) and (!Vz, Cz, !.lt2) are composable if !V1 r.. C2 = 'D2 r.. C1=0 

and !.l{.1 I '1J 2 = !.l{.2 I '1J 1. The second requirement is equivalent to the condition that 
both CS's contain all rewrite rules which 'define' a defined symbol whenever that sym
bol is shared. The union of pairwise composable CS's CS1, ... , CSn is denoted by 
CS1 + ... + CSn and we say that CS1, ... , CSn is a decomposition of CS1 + ... + CSn. 

(3) A property P of CS's is decomposable if for all pairwise composable CS's CSi. ... , CSn 
with the property P we have that CS1 + ... +CS,, has the property P. 

The counterexample of Toyama against the modularity of strong normalization shows 
that strong normalization is not a decomposable property of CS' s. The following example of 
Huet [5] shows that also confluence is not decomposable. 

ExAMPLE 3.2. Consider the CS ('IJ, C, !.l{.) with '1J = {F, CJ, C = {S, A, BJ and 

{
F(x, x) ~ A 

!l{.= F(x, S(x)) ~ B 

C ~ S(C). 

Let 'D1 = {F}, C1 = C, 'D2 ={CJ and C2 = {S}. The confluent CS's ('D1, C1, !.lt1), 
('IJ2, C2, !.l{.2) constitute a decomposition of (!V, C, !l{.), but ('D, C, !!{.)is not confluent since 
the term F (C, C) can be reduced to the different normal forms A and B. 

PROPOSmON 3.3. let P be a property of CS' s. The following statements are equivalent: 
(1) P is decomposable; 
(2) for all composable CS' s CS1 and CSz with the property P we have that CS1 + CS:z has 

the property P. 

PROOF. Straightforward. 0 

LEMMA 3.4. Local confluence is decomposable. 

PROOF. Let ('Di. C1, !.lt1) and ('1J2, C2. !.l{.2) be locally confluent and decomposable CS's. 
We have to show that their union (!V, C. !l{.) is locally confluent. According to the Critical 
Pair Lemma it sufficient to show that every critical pair of (!V, C, !!{.)is convergent. If (s, t) 
is a critical pair of ('D, C, !!{.)then there exist rewrite rules 1 1 ~ri.12 ~r2 e!.l{.and a substi
tution <J such that l? = /~, s = r? and t = r~. Choose k e { l, 2 J such that 
root(l 1)=root(l2)E'1Jk. We have Z1~r 1 ,/2~r2E!.ltk and because ('IJbCb!JU) is 
locally confluent ( s, t) is !.ltk-convergent and hence also !.l{.-convergent. D 

THEoREM 3.5. Completeness is decomposable. 

PROOF. Let ('IJ1, C1, !l{.1) and ('1J2, C2, !l{.2) be complete and composable CS's. From 
Lemma 3.4 we obtain the local confluence of their union ('IJ, C, !!{.).According to Newman's 
Lemma it suffices to show the strong normalization of ('IJ, C, !l{.). This will be established by 
induction on the structure of terms t e 'f ('IJ, C, 'f) ). If t is a variable or a constructor constant 
then t is a normal form. If t is a defined constant then t belongs to some 'IJ k and because 
('IJ k> C"' !l{.k) is strongly normalizing t cannot have an infinite reduction. For the induction 
step, let t = F (t 1, ... , tn) such that t 1, ... , tn are strongly normalizing (and hence complete). If 
F is a constructor then t clearly is strongly normalizing. So assume that F e '1J. If t is not 

r 
I 

t 
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strongly normalizing then there exists an infinite reduction sequence 

t=S1-7S2-7S3-7.... (1) 

Let t' = F* (t 1, ... , tn). According to Proposition 2.5 we can find tenns si with e (si) = si such 
that 

t' = sJ. -7m s2 -7m s3 --7m .... (2) 

Using Lemma 2.10 and the assumption that t 1, •.. , tn are strongly normalizing, it is not 
difficult to show that sequence (2) contains infinitely many -?~-steps. According to Lemma 
2.9 we can transfonn sequence (2) into the marked reduction sequence 

wCt') = w<s]) """*~ 'l'Cs2) -*~ wCs3) --*~ ... (3) 

which contains infinitely many steps. Choose k E {I, 2} such that F E ']) k and let 
'])' = ']) - 'Dk· It is easy to show that '])'is unreachable from 'V (t'). From Proposition 2.13 we 
obtain a 'D'-replacement <j> which is applicable to \jf(t'). By Lemma 2.15(2) the term <J>(W(t')) 
has an infinite -?~-reduction sequence 

(4) 

If we erase all markers in this sequence we obtain an infinite reduction sequence starting from 
the term e ( <j> ('!' (t'))). This contradicts the strong normalization of the CS ('Dk> C h 2?..k). 0 

COROLLARY 3.6. Completeness is a modular property ofCS's. D 

COROLLARY 3.7. The union of complete CS's which do not share defined symbols is com
plete. D 

We now consider a more challenging situation in which Theorem 3.5 can be applied. 

EXAMPLE 3.8. Consider the CS ('D, C, !!()with 'D = {+, x, fib,<,"}, C = {O, S, true, false} 
and rewrite rules 

ri O+x -7 x rs x<O -7 false 
r1 S(x)+y -7 S(x+y) r9 O<S(x) -7 true 
r3 Oxx -7 0 r10 S(x) <S(y) -7 x<y 
r4 S(x)xy -7 xxy+y ru true "false -7 false 

rs fib(O) -7 S(O) r12 false A true -7 false 
r6 fib (S (0)) -7 S(O) r13 X t\X -7 x 
r1 fib (S (S (x))) -7 fib (S (x)) +fib (x) 

Consider the decomposition ('lJi, Ci, 2?..i)f=l defined as follows: 

']) i C; 2?._; 

I +x OS rir2 r3r4 
2 +fib OS rir2rsr6r1 
3 < 0 S true false r 8 r 9 r 10 

4 /\ true false r11 ri2 ri3 

Routine arguments show that every ('Di, Ci, 2?._;) is complete. Theorem 3.5 yields the com
pleteness of ( 'D, C, 1(). 
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The proof of the decomposability of semi-completeness is comparable to the proof of 
Theorem 3.5. First we show the decomposability of weak normalization. 

LEMMA 3.9. Weak normalization is decomposable. 

PROOF. Suppose (V 1, C1, 9(1) and (V2. C2. 1<.2) are weakly normalizing and composable 
CS's and let (V, C. 9() = (V1, C1. 9{,i)+(V2. C2. 1<.2). We will show by induction on the 
structure oft that every tenn t E 'T(V, C, '1l) has a normal form. The case t E Vu Cu '1l is 
easy. Suppose t = F (t 1, ..• , tn) and t i. ... , tn are weakly normalizing. Let Si be a normal form 
of ti for i = 1, ... , n and define t' = F (si. ... , sn). If FE C then t' is a normal form of t. If 
F E v then there exists a k e { 1, 2} such that F E tJJ k· Let tJJ' = tJJ - '1J k· From Proposition 
2.13 we obtain a V'-replacement <!> which is applicable to t'. Since ('lh, eh 9{,k) is weakly 
normalizing, the term $(t') has a normal form, say t". Using Proposition 2.14 we obtain 
t -7? t' = ip-1(<j> (t')) -7> <j>-1(t"). It is easy to show that <j>-1 (t") is a normal form. D 

THEOREM 3.10. Semi-completeness is decomposable. 

PROOF. Let (V 1, C1, 9(1) and (V2, C2. 1(2) be semi-complete and composable CS's. From 
Lemma 3.9 we obtain the weak nonnalization of their union (1J, C, 1{,). Hence it is sufficient 
to show that every term t E 'T(1J, C, 'f/) has at most one normal form. We use induction on 
the structure oft. The case t e Vu Cu '1l is easy. Suppose t = F (t 1, ... , tn) such that every ti 
is semi-complete. If FE C then F (t iJ,, ... , tnJ..) is the unique normal form of t. Suppose 
FE '.D and let t' = F* (t 1, ... , tn)· Define tJJ k , tJJ' and lj> as in the proof of Theorem 3.5. First 
we show that if t has a normal form n then<!> (e('!'(t'))) -7? <j> (n). With help of Proposition 2.5 
and Lemma 2.9 we obtain a normal form n' such that '!'(t') -7)~ n' and e(n') = n. Repeated 
application of Lemma 2.15(1) yields <!>('!'(t')) ~~ <j>(n'). Erasing all markers in this 
sequences gives us e(<J>('Jf(t')))-7> e(lj>(n')) and from Proposition 2.14(3) we obtain 
e(cp(\jf(t')))= <j>(e('Jf(t'))) and e(<j>(n'))=cj>(e(n'))::cp(n). Now suppose that t has normal 
forms n 1 and n2. From the above discussion we learn that cj>(n 1 ) ~<j>(e('!'(t'))) ~ <j>(n 2). 
Notice that cj>(n 1) and <j>(n 2) are normal fonns. We obtain lj>(n 1)::<j>(n 2 ) from the semi
completeness of ('Dk, Ck, 9{,k). Hence n 1 = <j>-1(<j>(n 1)) = $-1(4>(n 2)) = n 2 by Proposition 
2.14(2). D 

COROLLARY 3.11. The union of semi-complete CS' s which do not share defined symbols is 
semi-complete. D 
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