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REALIZATION OF AUTOREGRESSIVE EQUATIONS IN 
PENCIL AND DESCRIPTOR FORM* 

M. KUJJPERt AND J. M. SCHUMACHER:j: 

Abstract. A linear system described by autoregressive equations with a given input/ output structure 
cannot be transformed to standard state-space form if the implied input/ output relation is non proper. 
Instead, a realization in descriptor form must be used. In this paper, it is shown how to obtain minimal 
descriptor realizations from autoregressive equations without separating finite and infinite frequencies, and 
without going through a reduction process. External equivalence is used, so that even situations in which 
there is no transfer matrix can be considered. The approach is based on the so-called pencil representation 
of linear systems, and it is shown that there is a natural realization of autoregressive equations in pencil 
form. Jn this way, the link between the realization theories of Willems and Fuhrmann can also be clarified. 

Key words. linear systems, autoregressive equations, descriptor form, pencil representation, realization, 
external equivalence 
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1. Introduction and preliminaries. In this paper, we study methods for obtaining 
state representations for linear systems given by higher-order equations in external 
variables, with special attention to the so-called "nonproper" situation. Suppose that 
relations between input variables u and output variables y are specified by equations 
of the form 

(1.1) 

where R 1 ( u) and R2( u) are polynomial matrices, u denotes differentiation or shift 
(depending on whether we work in continuous time or in discrete time), and y and u 
are functions of time. Here, as well as below, the time argument is suppressed to 
alleviate the notation. The argument u will sometimes be replaced by A ors; A denotes 
a formal parameter, whereas s is used as a complex parameter and serves as default. 
Following the terminology of Willems [ 19], we will refer to ( 1.1) as a set of autoregressive 
equations. Inputs and outputs are jointly referred to as external variables, and ( 1.1) 
may be rewritten as 

( 1.2) R(u)w = 0 

where R(s) = [R1(s) R2(s)] is sometimes called an AR matrix, and w = [y T u T]T is 
the vector of external variables. Of course, it is also possible to take ( 1.2) as a starting 
point, without distinction between "inputs" and "outputs" in the external variables. 
The behavior defined by (1.2) is the set of all time functions w that satisfy (1.2). A 
behavior may also be specified by other means, for instance, by representations that 
involve auxiliary (internal) variables, such as the state representations to be defined 
below. Two representations will be said to be externally equivalent [18] if their induced 
behaviors are the same. In this paper, we will be looking for minimal representations 
under external equivalence. In comparison with the notion of transfer equivalence, 
which has been used more commonly in realization theory, external equivalence is 
both stronger and more general-more general, because transfer equivalence can be 
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defined only for systems with a given input/ output structure that is such that a transfer 
matrix exists, and stronger, because when both notions are applicable, external 
equivalence implies transfer equivalence but not the other way around. To avoid 
confusion, let us note that the notion of "external equivalence" as understood in [2] 
is different from the notion used here; for example, the systems y = u and y = u are 
equivalent in the sense of [2] but not in the sense of this paper. 

The standard realization theory presupposes that the matrix R 1(s) is square and 
nonsingular, and that R~ 1 (s)Ri(s) is proper rational. Under these assumptions, it is 
well known that an equivalent representation can be found in the usual state-space form 

(1.3) crx =Ax+ Bu, y = Cx+ Du. 

A powerful and elegant method to obtain such a state-space realization was devised 
by Fuhrmann [5] who stated his result under transfer equivalence, and a similar 
procedure under external equivalence was given by Willems [ 19]. However, the standard 
assumptions mentioned above are not always satisfied. Examples of situations in which 
this occurs can be found, for instance, in circuit models [13], econometric models [11], 
and system inversion [7]. An often used modification of (1.3), that enables us to also 
cover these so-called nonproper situations, is the descriptor form [10] 

(1.4) o-Ex=Ax+Bu, y= Cx+Du 

where the matrix E is not necessarily invertible. Algorithms to go from (1.1) to (1.4), 
which follow the line of [5], have been presented in [22] and [ 4]. Both papers work 
under transfer equivalence and so there is still the assumption that the matrix R 1 (s) 
is invertible. The realization procedure is then based on a decomposition of the transfer 
matrix R~ 1 (s)Rz(s) into a strictly proper and a polynomial part. For the strictly proper 
part, a representation in standard state-space form is obtained by the usual means, 
and the polynomial part is realized in special descriptor form by using a modification 
of Fuhrmann's procedure; finally, the two realizations are put together again to create 
a representation in descriptor form. 

One of the important uses of realization theory is the translation of properties of 
and statements about linear systems from polynomial terms to state-space terms and 
vice versa, as is extensively shown in [6]. The realization procedure for nonproper 
systems by cutting and pasting, as just described, is somewhat indirect, and is therefore 
less suitable for such translation purposes. In this paper, we will show how to obtain 
a realization in descriptor form without separation of finite and infinite frequencies. 
The realization will be obtained under external equivalence, and will be minimal in 
the appropriate sense. As an application, we will establish the relationships between 
basic indices associated with the representation (1.1) and with the representation (1.4). 
The realization procedure will be motivated along the lines of[l9], and our discussion 
will also clarify the relationship between the realization algorithm in [19] and the one 
in [5]. 

The development below will be based on what we call the pencil representation of 
a linear system. This is a representation of the form 

(1.5) uGz= Fz, w =Hz 

where w is a vector of external variables containing both inputs and outputs, and er 
again denotes either differentiation or shift. A similar representation has been used 
before in [l], and pencil techniques in general are popular tools in numerical system 
theory (see, for instance, [16]). It may also be noted that the form (1.5) has been used 
for systems with partial differential equations in which control is exerted through the 
boundary conditions ("boundary control systems"; cf. [14]). 
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Formally, a pencil representation is given by a six-tuple (Z, X, W; F, G, H) in 
which W is the space of external variables, Z is the space of internal variables, X is 
the equation space, F and G are linear mappings from Z to X, and H is a linear 
mapping from Z to W We shall consider only pencil representations that are finite­
dimensional in the sense that both dim Z and dim X are finite. Also, dim W will 
always be finite. Two pencil representations (Z, X, W; F, G, H) and (Z, X, W; F, G, 
H) will be called isomorphic if there exist isomorphisms S: Z-? Z and T: X-? X such 
that G = ros-1, F = TFS- 1, and f:J = Hs- 1• The behavior given by a pencil representa­
tion is the set of all w for which there exists a z such that (1.5) holds. (One has to 
select suitable function classes here; this will be discussed later.) A pencil representation 
is said to be minimal (under external equivalence) if both dim Z and dim X are 
minimal in the class of equivalent representations. Let us quickly review what can be 
inferred about minimality of pencil representations from the existing literature. 

PROPOSITION 1.1. A pencil representation (Z, X, W; F, G, H) is minimal under 
external equivalence if and only if the following conditions hold: 

(i) G is swjective; 
(ii) [GT HTr is injective; 

(iii) the matrix [sGT - FT HTr has full column rank for alls E IC. 
Moreover, a minimal representation is unique up to isomorphism. 

Proof. If G is not surjective in a representation of the form ( 1.5), then "Step One" 
of the realization algorithm in [15] may be used to find an equivalent representation 
with a smaller equation space X. So in every minimal representation the mapping G 
must be surjective. By a suitable choice of bases in X and Z, a matrix representation 
of G may then be given as G =[I O]; with respect to these bases, write F =[A B], 
and H = [ C' D']. Writing z correspondingly as a vector with components g and 17, 
the representation ( 1.5) takes the form 

( 1.6) w= C'g+D'ri· 

The variable 17 is known as the "driving variable" ([19]). It is known ([ 18, Thm. 4.5], 
[19, § 5], [15, Cor. 4.2]) that such a system is minimal if and only if V*(A, B, C', 
D') = {O} and D' is injective. The condition on V* and the injectivity of D' together 
imply that the associated system pencil 

(1.7) ( sl-A B) 
C' D' 

has full column rank for all s (see [8, p. 544]), so that (iii) holds. Because D' is 
injective, the matrix 

is injective, also; this implies (ii). Conversely, if the conditions (i)-(iii) hold, then it 
follows from (ii) and (iii) that the system pencil has full column rank for all s, so that 
V* in the equivalent state space form must be zero. The injectivity of D' in the 
equivalent state space form is immediate from (ii), by reversing the argument used 
above. 

Now consider two minimal representations (Z, X, W; F, G, H) and (Z, X, W· 
F, G, H) of the same system. As above, both representations can be rewritten i~ 
driving-variable ~orip.; !he ~esulting state-space representations will be denoted by (A, 
B, C', D') and (A, B, C', D'), respectively. Because these are minimal representations 
of the same behavior, it follows from Theorem 7.1 in [18] that there exist invertible 
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mappings Q and R and a mapping F such that A= Q(A + BF)Q-1, B = QBR, C' = 
( C' + D' F) Q-1 and fy =DR. So we can write the following equations: 

(1.8) [I OJ= Q[I OJ (Fo;~ 1 ~) 
(1.9) [A BJ= Q[A 

( Q-1 
BJ FQ-1 ~) 

(1.10) [C' D'J = [C' ( Q-1 
D'J FQ-1 ~). 

This shows that the two given representations are isomorphic. 
Remark 1.2. It is not hard to see that if (i) of the above proposition holds and 

the matrix [sGT - FT HTf has full column rank (as a rational matrix), then condition 
(ii) holds if and only if [sGT - FT HTf has no zeros at infinity. So, items (ii) and 
(iii) of the proposition may be replaced by the following two conditions: 

(ii)' the matrix [sGT - FT HTr has full column rank; 
(iii)' the matrix [sGT - FT HTr has no zeros in the extended complex plane. 

2. Pencil representations from a given behavior: discrete time. In this section, we 
will discuss the pencil representation for systems that are given directly through their 
(discrete-time) behavior. Here our treatment is close to the development in [19J; 
however, we emphasize the pencil representation rather than the driving-variable 
representation, and we derive some results that do not depend on the assumption that 
the behavior is closed in the topology of pointwise convergence. 

Following the definition in [19J, a linear, time-invariant, discrete-time behavior is 
a shift-invariant subspace of the space W2 + of all functions from ?L+ to a vector space 
W = !Rq. The following mappings are defined on wz+: the shift 

(2.1) 

the forward shift 

(2.2) 

and the evaluation mapping at time 0 

(2.3) x:(Wo,Wi.···)~Wo. 

Now, let f1tJ be a given behavior. Following [19], we introduce the subspaces 

(2.4) fit1°= {we f1tJ I (o-*lw E f1tJ V'k E;O} 

and 

(2.5) fit1 1 ={wefit1°1xw=O} 

of 00. Intuitively, fltJ 0 contains the trajectories that start from the zero state; so the 
quotient space 00 / f1tJ 0 should be (isomorphic to) the state space. The quotient space 
00 ° / f1tJ 1 describes the freedom that arises at each point in time because of the freedom 
we have in choosing a value of the input variable (or rather, a value of the "driving 
variable"). So, 00°/f1tJ 1 is the candidate for the space of driving variables. The following 
facts are trivially verified: 

(2.6) 

(2.7) 

o-fitJI C: fltJO 

fit1 1 c: ker X· 
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Because of (2.6), we can properly define a mapping M1: '2ld I '2ld 1 ~00I00° by 

(2.8) M1 : w mod 00 1~uw mod 00°. 

Because of (2.7), there is also a mapping M 2 :@ I '2ld 1 ~ W defined by 

(2.9) M2: w mod '2ld 1~xw. 

Furthermore, we introduce the projection mapping M0 : @/@ 1 ~ '2ld I ~0, defined simply 
by 
(2.10) M 0 : w mod 00 1~w mod 00°. 

If elements of @/@ 1 are seen as "state+ driving variable," then Mo deletes the driving 
variable. The mappings M 0 , M 1 , and M 2 could also have been introduced by requiring 
that Fig. 1 below commutes, where 7To denotes projection modulo 00° and 7T 1 projection 
modulo 00 1• 

91 
a 

91 

/!~· -"! ~ 
w 

E M2 
gj/gjl 

M1 Jo' 
91;910 E Mo 91/!Jll 

FIG. I 

The discrete-time behavior described by a pencil representation such as ( 1.5) will 
be denoted by '2ldp(Z, X, W; F, G, H). More explicitly, 

(2.11) '2ldp(Z, X, W; F, G, H) = { w: Z+ ~WI 3z: Z+ ~ Z s.t. uGz = Fz and Hz= w }. 

We can now formulate the following proposition. 
PROPOSITION 2.1. For any linear, time-invariant, discrete-time behavior @, we have 

(2.12) @ c 00p('2ld/@1, '2ld/@ 0, W; Mi. M0 , M2). 

Proof Take w e 00. Define z: Z+ ~ 00 / '2ld 1 by 

(2.13) Zk = 7T 10"kW. 

From the definitions we easily verify that uM0z = M 1z and that M 2z = w. This proves 
that we @p(@/001, 00/@0 , W; Ml> M0 , M2). 

The closure of a behavior 00 (in the topology of pointwise convergence) will be 
denoted by ooc•. A sequence w belongs to @c• if and only if for every k ~ 0 there exists 
a we @ such that wi = wi for all O ~j ~ k. 

PROPOSITION 2.2. For any linear, time-invariant, discrete-time behavior 00, we have 

(2.14) @c1::::>OOP(@/001, 00/ 00°, W; Ml> M0 , M2). 

Proof Take weOOP(~/001, 00/00°, W; Mi. M0 , M2), and let z:Z+--;.~/t?A 1 be 
such that <TMoz = M1z and M2z = w. To show that w E ooc•, we will prove by induction 
that for every k there exists a wk e 00 such that W; = w~ for 0 ~ i ~ k. First, let wk E 00 
be such that 

(2.15) 

Next, define wk by 

(2.16) 

For 0 ~ i ~ k, we have 

(2.17) 

-wk = (wg, w~ .... , w~, w~, w~, · · · ). 
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It remains to prove that tt:,k E 9lJ for all k. Fork = 0, this is trivial since w0 = w0 E 97J. Since 

(2.18) 
= (cr*)k( wk+1 _ cr~V), 

the proof will follow by induction if we can show that wk+I - CTWk E 97J 0 for all k. But 
this follows from 

(2.19) 

COROLLARY 2.3 [19]. If(f/J=9i3c1, then (f}Jp((JJ/97J 1, 9i3/97J 0 , W; M 1 , M 0 , M 2)=973. 

The above corollary states that every closed, linear, time-invariant behavior admits 
a pencil representation. Moreover, as shown in [19, Thm. 9], the spaces 9JJ/@ 1 and 
97J/97J0 that appear in the representation 9JJP(f!/J/97J1, PA/PA 0 , W; M 1, M 0 , M 2) are 
finite-dimensional. For completeness, we will offer a proof of this fact which we think 
is more straightforward than the two proofs that were already given for essentially the 
same fact in [19]. Some notation will be needed. Let [w]k denote the k-truncation of 
an element w of wz .. ; if 

(2.20) 

then 

(2.21) 

For subspaces 9lJ of wz+, write 

(2.22) 

Define a sequence of subspaces of W by 

(2.23) Wf(PA) = { w E WI (O, 0, · · ·, 0, w) E 97Jd. 

We shall let 9JJ be a fixed linear time-invariant behavior, and write W2 rather than 
Wf(973). It is immediate from cr973 c (fJJ that W2+ 1 c W2 for all k. Because W is 
finite-dimensional, the sequence of subspaces wg::) w~::) . .. must reach a limit after 
a finite number of steps; the limit subspace will be denoted by W°. We now prove the 
following lemma. 

LEMMA 2.4. Suppose that 9JJ is closed. Let k0 be such that W20 = W 0 , and let 
<I>: 973-;. 973k0 denote the mapping Wt-?[ w h 0 • Under these conditions, we have 

(2.24) ker <I> c: 973°. 

Proof Since PA 0 is by definition the largest u*-invariant subspace of 973, it suffices 
to show that ker <I> is u*-invariant. Take w E ker <I>; we want to show that also cr*w E 

ker <I>, which will follow if we can prove that a* w E 97J. For this, it is sufficient to show 
that 

(2.25) [cr*w]jE973j Vj?;,0, 

by the closedness of 97J. For 0 ;;2j;:;:;: k0 + 1, [ u*w ]j = 0 and so the condition (2.25) is 
certainly satisfied. To proceed by induction, suppose that [a*w]; E 9JJ; for some i 6 
k0 +1. Let wE9JJ be such that [w];=[u*w]1. We then have [w-aw]i_ 1 =0, and 
therefore, 

(2.26) 

From (2.26) and the fact that [cr*w- w]1=0, it follows that 

(2.27) 
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Since [ wl+1 obviously belongs to 213;+), we may conclude that [ u*w];+1 E 213;+1. which 

is what we wanted to prove. 
Remark 2.5. From the lemma, we easily derive that W 0 , the limit of the sequence 

in (2.23 ), is equal to x213°. 
PROPOSITION 2.6. If a linear, time-invariant behavior 213 is closed, then fY3 / @ 0 is 

finite-dimensional. 
Proof. By the lemma, we have 

(2.28) dim IYJ/@ 0 ~dim @/ker cp =dim im cp ~dim w"o+I = q(ko+ 1). 

It is not hard to show directly that the pencil representation obtained above is, in fact, 

minimal. 
LEMMA 2.7. If (Z, X, W; F, G, H) is a pencil representation of the linear, 

time-invariant behavior 213, then 

(2.29) dim X ~dim 213 / 213° 

and 

(2.30) dim Z ~dim fYJ/ fYJ 1. 

Proo.f Introduce the behavior of the auxiliary variables 

(2.31) X = {z: "l+t--7Z I crGz = Fz }. 

By definition of a pencil representation, we have 

(2.32) HX=OO. 

In analogy with @ 0, we also introduce 

(2.33) 

Obviously, we have 

(2.34) 

It is easily verified that, in fact, 

{2.35) X0 = {z EX/ Gz0 = O}, 

which sh_ows that X 0 is the kernel of the mapping which assigns the element Gz0 of 

X to a given z E X. As a consequence, we get 

(2.36) dim (X / .X0 ) ~dim X. 

Because of (2.34), we can unambiguously define a mapping -qr: :fl/ _x0 , f1J / @ 0 by 

(2.37) 

Moreover, (2.32) shows that this map is surjective. Therefore 
' 

(2.38) dim @/@0 ~ dim ':/,/':/,O~ dim X. 
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For the proof of the second inequality, we introduce 

(2.39) ~1 = { z E ~o I z0 = 0} = { z E ~I Zo = 0} 

and proceed analogously, noting that H~1 c 9ll 1 and that dim (~/~ 1 )~dimZ. 
We summarize the main results in the following theorem. 
THEOREM 2.8. Let@ be a closed, linear, time-invariant, discrete-time behavior. Then 

a finite-dimensional minimal pencil representation of 9ll is given by ( 9ll / 21J 1, @/ @ 0 , W; 
Mi. M 0 , M 2), where 9ll 0 and 21d 1 are defined by (2.4) and (2.5), respectively, and the 
mappings M0 , M 1 , and M 2 are defined by requiring that Fig. 1 commutes. 

A behavior 97J will rarely be given "as such," and consequently the construction 
of a pencil representation as given above is mainly of theoretical value. Two important 
ways of prescribing a behavior are the following: 

• by data: 21J is determined as the smallest closed, linear, shift-invariant subspace 
of wz+ that contains a given (finite) set of trajectories. This leads to realization 
procedures involving generalizations of the Hankel matrix: see [20] and, for 
the case of approximate modeling, [21]. 

• by equations: 21J is determined as the set of all trajectories that satisfy a certain 
set of differential or difference equations. For the purpose of describing a closed, 
linear, time-invariant behavior, such equations may always be rewritten in the 
form R(O"')w = 0, where R(s) is a polynomial matrix [18, Prop. 3.3]. 

We shall be concerned with the second option in this paper. In the next section, we 
shall consider systems given by a set of equations R ( cr) w = 0, and we shall construct 
a pencil representation by expressing the spaces 97J / 973°, etc. in terms of the polynomial 
matrix R(s). 

3. Pencil representations from autoregressive equations: discrete time. Let a 
behavior be given by 

(3.1) R(O"')w=O 

where R(s) is a polynomial matrix of size k x q, and O"' denotes the shift. We shall 
continue to work in discrete time in order to employ the results of the previous section 
to give a representation in pencil form for the behavior described by (3.1). Similar 
results can be obtained for systems in continuous time, but these require a different 
proof technique and will be handled in the next section. 

It will be convenient to use an alternative notation for time series, one that is 
more adapted to the description in terms of a polynomial matrix. Via the correspondence 

(3.2) 

we can identify W2 + with the set of formal power series (with vanishing constant term) 
in the parameter A -i. This set, to be denoted by i1 W, is a subset of the set AW of 
formal Laurent series around infinity in A, of which a typical element is 

The natural projection of AW onto i1 W, effected by "deleting the polynomial part," 
will be denoted by 1T _. Elements of n W will be written as w(A) or sometimes also 
simply as w. 
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The action of the shift u on wz+ corresponds on 0 W to multiplication by A 
followed by projection: 

(3.3) aw ~ 1T _(Aw(A) ). 

Consequently, the behavior $ given by (3.1) is represented in 0 W by the set XR that 
is defined by 

(3.4) XR ={wE.0. WI 1T_(R(A)w(A)) =0}. 

The right shift u* is represented in 0 W by multiplication by A -i. Therefore, @ 0 

corresponds to the subspace NR defined by 

(3.5) NR = { w E 0 WI ?T_(A-kR(A)w(A)) = 0 Vk ~ O} = {w E .0. WI R(A)w(A) = O}. 

Finally, @ 1 is equal to u*@ 0, which corresponds to A-1NR. 
The quotient space $ / @ 0, which plays a role in the pencil representation of the 

previous section as the space in which the dynamic equation "takes place," is repre­
sented as XR / NR. We can consider mutiplication by R(A) as a mapping from XR to 
IRk[A], the set of polynomials with coefficients in !Rk. The space NR is then precisely 
the kernel of this mapping, which suggests replacing the quotient space XR / NR by 
the isomorphic space 

(3.6) XR = {p(A) E IRk[A] I 3w(A) E 0 W s.t. R(A)w(A) = p(A )}. 

The isomorphism is given, of course, by the mapping MR defined as follows: 

(3.7) MR: w(A) mod NR~R(A)w(A) 

With some of the notation used in Fig. I unchanged, we now introduce the mappings 
F, G, and H by requiring that Fig. 2 below commutes. We then obtain the following 
theorem. 

THEOREM 3.1. The behavior given by (3.1) is equal to @p(XR I A -INR, xR. W; F, 
G, H); and this pencil representation is minimal. 

Proof Apart from changes of notation, all we did was replace the representation 
derived in the previous section by an isomorphic one. The result is therefore immediate 
from Theorem 2.8. 

Bases for the vector spaces XR and XR /A -i NR may be found by taking R(s) to 
row reduced form, and then concrete matrix representations for the mappings F, G, 
and H can be obtained. This is worked out in § 8. 

FIG. 2 
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4. Pencil representations from autoregressive equations: continuous time. In the 
discrete-time context, many system properties are conveniently expressed in terms of 
the behavior itself, and we have used this fact extensively in the previous sections to 
prove properties of representations; for instance, equivalence between AR and pencil 
representations could be proved by reducing both to their associated behaviors. For 
systems in continuous time, however, the representation of a behavior in terms of itself 
is much less manageable, and we are forced to work with representations in terms of 
equations. The formal definition of a continuous-time behavior requires the 
specification of a function class to which the trajectories should belong. We will denote 
by g; the function class to which the (components of the) trajectories of the external 
variables belong; the class from which the components of the trajectories of internal 
(auxiliary) variables are taken will be denoted by l}]J. We will assume that iJlJ is a linear 
function space that is closed under differentiation and that contains g;; differential 
equations will always be considered in the sense of IJJJ. All properties used below will 
be valid when g; = l}]J = C 00(1R) (see for instance [15]), but other choices are also 
possible-however, we shall not go into the axiomatics here. Confer also the discussion 
in [3, Chaps. 4, 5]. The development below may also be applied to systems in discrete 
time, although the approach of the preceding two sections would seem to be preferable 
for its intuitive appeal. 

We begin by noting some facts concerning the elimination of auxiliary variables. 
To interpret the statements in the lemma below, it is useful to remember that with any 
behavior fYJ admitting an AR representation we can associate a subspace of the rational 
vector space W(A) of rational W-valued functions in the formal parameter A. Indeed, 
if R(s) is an AR matrix for the given behavior, then R(A) can be viewed as a mapping 
between rational vector spaces, and its kernel is easily seen to be independent of the 
choice of the representation. So ker R(A) is uniquely determined by the behavior. In 
the interpretation of the previous section, ker R (A) is just the linear span (over IR (A)) 
of the elements of fYJ. In particular, dim ker R(A) is the number of inputs in any 
standard state space description of :?73. 

(4.1) 

(4.2) 

LEMMA 4.1. Consider a behavior 00 given by the equations 

P(u)t=O 

w=Q(u){ 

where P(s) and Q(s) are polynomial matrices, and g contains auxiliary variables. Denote 
by q the number of rows of Q(s), by n the number of rows of P(s), and by r the rank of 
[PT(s) QT (s )t. It is always possible to.find polynomial matrices V(s) and R(s) such that 

(i) V(s) has size (n + q- r) x n, R(s) has size (n + q-r) x q; 
(ii) V(s) and R(s) are left coprime, i.e., the matrix [V(s) R(s)] has full row rank 

for alls EC; 
(iii) V(s)P(s)+ R(s)Q(s) =0. 

If V(s) and R (s) satisfy these properties, then an AR description of the behavior defined 
by (4.1)-(4.2) is 

(4.3) R(u)w = 0, 

and the following relation holds, where all matrices are interpreted as matrices over the 
field of rational functions: 

(4.4) ker R(A) = Q(A)[ker P(A)]. 
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In particular, we have 

( 4.5) ( P(A)) 
dimkerR(A)=rank Q(A) -rankP(A). 

Proof For instance by reduction to Hermite form [8, p. 375] we can find a 
unimodular matrix U(s) of size (n + q) x (n + q) such that 

(4.6) Vds))(P(s)) = ( T(s)) 
V22 (s) Q(s) 0 

where T(s) has full row rank. Clearly then, the number of rows of T(s) must be equal 
to r, and so the dimensions of U21 (s) and V22(s) are (n + q- r) x n and (n + q- r) x q, 
respectively. It is easily verified also that conditions (ii) and (iii) above are satisfied 
by taking V(s) = V21 (s) and R(s) = U22(s). 

Suppose now that V(s) and R(s) satisfy conditions (i)-(iii). We can then find 
polynomial matrices V1(s) and Vi(s) such that the matrix 

Vi(s)) 
R(s) 

is unimodular. If we write T(s) = V1(s)P(s)+ V2(s)Q(s), then we obviously have 

(4.7) Uz(s))(P(s)) = (T(s)). 
R(s) Q(s) 0 

Moreover, T( s) must be of full row rank, since its number of rows is equal to the rank 
of [PT(s) QT(s)r. This implies that R(s) is an AR matrix for the behavior given by 
(4.1)-(4.2) (see [15, Cor. 2.3]). The formula (4.4) is obtained by interpreting (4.7) as 
a rational matrix equation and using straightforward linear algebra, and ( 4.5) is an 
immediate consequence. This completes the proof of the lemma. 

In the discrete-time context, we used quotients of sequence spaces to construct 
the vector spaces that are needed in a pencil representation. It should be noted that 
the end result would have been the same if we would have replaced the sequence 
spaces by corresponding spaces of rational vector functions; in particular, the space 
W(A) of rational functions with values in W may be substituted for AW, and 
A -i W[[A -i]] (the space of strictly proper rational W-valued functions) for n W For 
continuous-time systems, the use of sequence spaces is less natural, and we shall use 
the rational setting. This will also facilitate comparison with the results of Fuhrmann 
(see, e.g., [ 6]). The symbol 1T _ will be used now for the natural projection of X (A) 
(where X is any vector space) onto A -i X[[A -in For an element w(A) of A -i W[[A -i ]], 
the value of sw(s) at infinity will be denoted by w_ 1 in accordance with the notation 
of [ 6], rather than by w0 as would be suggested by (3.2). 

The next theorem is the main result of this section. Essentially, it shows how to 
solve the equations that we obtain by requiring that Fig. 2 commutes. 

THEOREM 4.2. Let a system be given in AR form (1.2), with R(s) E !Rkxq(s) of full 
row rank. Consider the following spaces of rational vector functions in a formal parameter 
A: 

(4.8) 

(4.9) 

( 4.10) 

XR = { w(A) E A- 1 W[[A - 1]] I 7T _R(A )w(,\) = O}, 

XR = {p(A) E IRk[A] I 3w(A) E ,\ -i W[[A -i]] s.t. p(A) = R(A) w(A )}, 

NR ={w(A) EA -i W[[A - 1]] I R(A )w(A) = O}. 
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The following mappings ( G and F from XR / A- 1 NR to XR, H from XR /A -i NR to W) 
are well defined: 

( 4.11) 

( 4.12) 

(4.13) 

G: w(A) mod A- 1 NR>---?R(A)w(A), 

F: w(A) mod A -i NR>---? R (A) 1f _(Aw(A) ), 

H: w(A) mod A 1 NR>---?W_ 1 • 

With these definitions, (XR /A -i NR, XR, W; F, G, H) is a minimal pencil representation 
of the behavior given by (1.2). 

Proof It is easily verified that the mappings F, G, and H are indeed well-defined. 

Because A -i NR is contained in NR, it is obvious from the definition (4.11) that G is 

surjective. If, for some w(A) E XR, both w_ 1 = 0 and R(A )w(A) = 0, then Aw(A) belongs 

to NR so w(A) belongs to A -l NR. This shows that the mapping [GT HTt is injective. 

Furthermore, suppose that s EC and w(A) EX R are such that we have 

(4.14) 

( 4.15) 

sR(A)w(A)-R(A)1r_(Aw(A))=O 

W-1 =0. 

Because of (4.15), 1T_(A w(A)) is equal to Aw( A), and (4.14) may be rewritten as 

(4.16) (s-A)R(A)w(A) =0. 

Of course, this implies that R(A)w(A) =O. Because we also have (4.15), it follows that 

w(A) EA -l NR. By the definitions, this shows that [sGT - FT HTt is injective for all 

s EC. By the criterion given in Proposition 1.1, we have now shown that the pencil 
representation given by F, G, and H is minimal. 

We still must show that this pencil representation describes the same behavior as 

the given AR representation. For this purpose, we use the preceding lemma. Let n 
denote the dimension of XR and write r for the dimension of XR /A -i NR; then r is 

also the rank of [sGT - FT HTt, since we have shown that this matrix has full column 

rank. Because G is surjective and ker G = NR /A -i NR, we can write 

( 4.17) r - n = dim ker G = dim N R /A -- l N R = dim ker R (A) = q - k 

since R(s) was assumed to be of full row rank. So, we have k = n + q- r, and R(s) 

has the size required in Lemma 4.1. It remains to find a polynomial matrix V(s) of 

size k x n such that conditions (ii) and (iii) of that lemma are satisfied. 

We claim that such a polynomial mapping is given by the "evaluation map" which 

replaces the formal parameter A by the complex numbers: 

( 4.18) V(s): XR E p(A )>---?p(s) E c". 

This map is polynomial because XR consists of polynomial vectors; this is evident 
when we write a matrix representation of V(s). To verify that condition (ii) holds, we 

compute, for w(A) EX R: 

( 4.19) 

V(s )(sG - F) w(A) = V(s )[sR(A )w(A) - R(A )(Aw(A) - w_ 1)] 

= sR(s)w(s)- R(s)(sw(s)-w_ 1) 

= R(s)w_ 1 = R(s)Hw(A ). 

Finally, we must show that V(s) and R(s) are left coprime. For this purpose, it suffices 

to produce polynomial mappings Q1(s) and Q2(s) such that 

(4.20) 
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By assumption, R(s) has full row rank, so it has a rational right inverse, say T(s). We 
split T(s) into a polynomial and a strictly proper part, denoted, respectively, by T+(s) 

and L(s). Obviously, we have 

(4.21) R(s)L(s) =I -R(s)T+(s), 

where the right-hand side is polynomial. It follows that the columns of R(A) L(A) 
belong to XR. Consequently, there exists a constant matrix 01 such that 

(4.22) R(s)L(s)= V(s)Q1. 

Writing T+(s) as Qi(s), we get 

(4.23) V(s)Q1 + R(s)Q1(s) = R(s)L(s)+ R(s)T+(s) = R(s) T(s) =I. 

5. Realization with a causal input/output structure. In the realization procedure 
of the previous section, we could replace the quotient space XR I NR by the space of 
polynomials XR, because we had a natural isomorphism available between these two 
spaces, given essentially by multiplication by R(A). The other space that we used, 
XR /A -l NR, is isomorphic to the direct sum XR E8 W 0 , where W 0 is the subspace of 

W defined by 

(5.1) 

(In other words, we have W 0 = HNR, in full analogy with the discrete-time case-see 

Remark 2.5.) Indeed, the following holds: 

(5.2) 

Unfortunately, the first isomorphism in the formula above must be established by 
selecting a complement to NR /A -l NR in X R /A -i NR, and so we do not have a natural 

isomorphism available. This is also reflected in the nonuniqueness of "driving-variable" 
representations as described in [18, Thro. 7.1]. It should be noted that the space W 0 

itself is canonically given (i.e., it is an invariant under external equivalence), and this 
space will play an important role below. 

Now, suppose that we add more structure by dividing the external variables into 
inputs and outputs. Such a division is given by a decomposition of the external variable 
space W as the direct sum of two subspaces Y and U, corresponding to a splitting of 
the defining AR matrix R(s) as 

(5.3) R(s) = [R 1(s) Ri(s)]. 

The projection onto U along Y will be denoted by 1Tu, the complementary projection 
by 1Ty. We shall first consider the "causal" situation as described in the following 
lemma, which is a formalization of remarks in [18, § 6]. General input/ output structures 
will be discussed in the next section. 

LEMMA 5.1. With the notations introduced above, the following statements are 
equivalent: 

(5.4) 

(i) R1(s) is invertible as a rational matrix, and R~ 1 (s)R2(s) is proper rational; 
(ii) the projection 1Tu, taken as a mapping from W 0 to U, is an isomorphism; 

(iii) there exists a mapping D: u~ Y such that 

where the vector notation is adapted to the decomposition of W as Y EB U; 
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(iv) Y is a complement of W 0 in W. 
Proof The equivalence between statements (ii), (iii), and (iv) is a matter of 

straightforward linear algebra. To prove that (i) implies (iii), define 

(5.5) D = [-R; 1(s)RAs)]s=cc· 

Take w E W 0, and let w(A) E NR be such that w_ 1 = w. From R(A) w(A) = 0, we have 

(5.6) 7Tyw(A) + R; 1(A )R2(A )7ruW(A) = 0, 

and this implies 

(5.7) 

Conversely, suppose that w E W is of the form 

(5.8) 

Define w(A) by 

(5.9) 

then w(A)E NR and w_ 1 = w, so that wE W 0 • 

Now, assume that (ii)-( iv) hold. Let N(A) be a basis matrix for the rational vector 
space ker R(A ); we may assume that N(A) is proper rational, and that its leading 
coefficient matrix N 0 = [N(s)L~oo has full column rank. (To see this, note that by 
reducing R(A) to row reduced form one actually writes R(A)=[S(A) O]B(A) where 
S(A) is a nonsingular polynomial matrix, and B(A) is bicausal. One may then take 
N(A) = s- 1(A )[O 1r.) Under these conditions, N 0 is a basis matrix for w0 and it 
follows that dim U =dim W 0 = q - k where k is the number of rows of R(A ). So, 
dim Y = k and it is seen that the matrix R 1 (A) is square. To prove that R 1 (A) is 
invertible, suppose that R 1(A )y(A) = 0 for some y(A) E Y(A) not equal to zero. It is 
no restriction of the generality to assume that y (A) is strictly proper with a nonzero 
leading term y_ 1 ; but then the vector [y"'._ 1 or belongs to Yn W 0 and so should be 
zero according to (iv). Finally, note that by definition we have 

(5.10) 

Moreover, the rational matrix 7TuN(A) is proper with an invertible leading coefficient 
matrix, as is seen from (ii), and this implies that 

(5.11) 

is proper rational. This completes the proof of the lemma. 
In the remainder of this section, we assume that R 1(s) in (5.3) is invertible, and 

that R; 1(s)R2 (s) is proper rational. To construct the parameters in a standard state­
space representation of the behavior given by R(s), define a mapping <I> from 
XR/A- 1NR to XREB U by 

(5.12) <I>: w(A) mod A -i NR~(R(A )w(A )) 
7TuW-1 

(it is easily seen that this is well-defined). To prove that <I> is injective, let w(A) E XR 
be such that R(A)w(A)=O and 7TuW_ 1 ==0. For such a w(A), we get w(A)ENR so 
W_ 1 E W 0 • The condition 7TuW_ 1 = 0 implies W_1 E Y, SO that w_ 1 E Y n W 0 = {0}, which 
proves that w(A) EA -i NR. This shows that <I> is injective; the fact that <I> is actually 
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an isomorphism then follows easily by a dimension argument. Using the obvious facts 
[I O]<I> = G and [O J]<I> = 1TuH, we can now write down the diagram below which we 
use to define the mappings A, B, C, and D that will appear in an input/ state/ output 
representation of the given behavior. 

We can give more explicit expressions for the four mappings defined by requiring 
that Fig. 3 commutes. Note that R} 1(s)p(s) is strictly proper if p(A) E XR; indeed, 
suppose that p(s) = R 1(s)1TyW(s)+ R2(s)1Tuw(s) for w(A) E XR, then 

(5.13) R11(s)p(s) = 1TyW(s) + R}1(s)R2(s)7Tu(s)w(s) 

and this is obviously strictly proper. With this information, it is easily seen that the 
inverse of the isomorphism <I> may be given as follows: 

(5.14) <I>--1: XR EB U 3 (p~ )}--~( R11(A)p(A)-:_--11:11(A)R2(A )u) mod A -1 NR. 

The mapping [A B] can now be computed as MRM1<1>-- 1• Explicitly, this gives: 

(5.15) 

[A B](p~)) = [R1(A) R1(A)]7r .... A (R11(A)p(A)-:~11:11(A)R2(A)u) 

= R 1(A )7r _AR} 1(A )(p(A)- R 2(A )u) + R 2(A )1T .... u 

= 7TR 1Ap(A)- 7TR1Ri(A)u, 

where the notation 1TR, is used, following [6], for the projection on XR given by 

(5.16) 7TR1 : p(A )~R1 (A )7T .... R1 1(A )p(A ). 

In particular, we find 

(5.17) 

and 

(5.18) 

The expression for B may also be written in a different way if we introduce a constant 
matrix Doo by 

(5.19) 

namely, 

(5.20) 

/!wl ~i~ 
w .. H xR1A.-1NR ;i. xR1NR.. xR1A.-1NR 

[:~Jl ~i ~d / 1~ 
y $ u [ii 1] XR $ u [A B] ;;.. XR ... [J O] XR 61 u 

FIG. 3 
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Quite similarly, we obtain explicit expressions for the mappings C and D from 
the formula [ C D] = 7TvH<P- 1• We find 

(5.21) 

and 

(5.22) 

So, in this way we recover Fuhrmann's realization of a transfer matrix -R~ 1 (s)R2(s) 
in left matrix fractional representation. Notice that actually we proved more: it is 
known from Fuhrmann's work that the realization is minimal under transfer equivalence 
if and only if the fractional representation is coprime, whereas we have shown here 
that the realization is always minimal under external equivalence. The condition for 
minimality under transfer equivalence can be derived from this. 

It is also possible to set up diagrams to define single mappings from the quadruple 
(A, B, C, D).For instance, by transforming Fig. 3 we obtain Fig. 4, which can be used 
to define the mapping A. This clearly displays A as a version of the shift. 

XR a XR 

!~ 
0 

1~ 
XRINR XRINR 

!M• lM• 
XR 

A 
XR 

FIG. 4 

6. Realization with a general input/output structure. In the case where we have 
given a not necessarily causal input/ output description, our aim is to obtain a rep­
resentation in descriptor form. To arrive at this representation, it turns out to be 
advantageous to use the pencil form as an intermediate step; the descriptor form can 
be derived from the pencil form in a straightforward way, as will now be shown. 

Let a pencil representation (Z, X, W; F, G, H) be given, along with a decomposi­
tion W = YEB U and associated projections 'Try and 'TT'u- Decompose the internal 
variable space Z as Z0 EB Z1 EB Z 2 where Z1 = ker G n ker 7TuH, and Z1 EE> Z2 = ker G. 
Accordingly, write 

(6.1) 

(6.2) 

G=[G0 0 O], F = [F0 F1 F2], 

7TuH = [Huo 0 Hu2]. 

The matrix Hu 2 has full column rank, and by renumbering the u-variables if necessary, 
we can write 

(6.3) 
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where H 22 is invertible (or empty, if ker G c ker 7TuH). The system equations take the 
form (in obvious notation): 

(6.4) 

(6.5) 

crG0z0 = F0 z0 + F1 z1 + F2z2 , 

y = H 00z0 + H 01 z1 + H 02z2 , 

(6.6) u1 = H 10z0+ H12Z2, 

(6.7) u2 = H2oz0+ H22Z2. 

We can now solve for z2 and obtain a description in descriptor form 

(6.8) 

(6.9) 

uEz = Az + Bu, 

y= Cz+Du 

where the parameters are defined as follows: 

E=(Go 0) A=( Fo-F2H22~~20 
(6.10) 0 0 ' H10- H12H22 H20 

C = [Hoo-Ho2H2{ H20 Ho1], 

Fi) B = ( 0 F2H221 ) 
0 ' -I H 12H221 ' 

D=[O Ho2H2iJ. 

Remark 6.1. The essence of the above construction is that as many z-variables as 
possible are replaced by u-variables. If this is not considered important, then, of course 
a simpler construction is possible: just write 

(6.11) 

(6.12) y= 7TyHz. 

This simple solution will in general produce a nonminimal descriptor representation 
even if one starts with a minimal pencil representation. The more elaborate construction 
above behaves nicely with respect to minimality properties, as shown below and as 
further detailed in [9]. 

The following lemma, which will be needed below, also sheds some light on the 
role of the urvariables. Recall that, in the construction above, these variables serve 
to parametrize the subspace 7TuH[ker G] of W. 

LEMMA 6.2. Consider a pencil representation ( 1.5) and an equivalent AR representa­
tion (1.2); assume that G is surjective and that [GT HT]T is injective. Let the subspace 
W 0 of W be defined by (5.1). We then have 

(6.13) w 0 = H[ker G]. 

Proof. It follows from Lemma 4.1 that a rational vector w(A.) belongs to ker R(A.) 
if and only if there exists a rational vector z(A.) such that 

(6.14) ( 0 ) (AG-F) 
w(A) = H z(A). 

Now assume that w(A) is strictly proper; because [GT HTr is injective, it then follows 
that z(A.) is also strictly proper, and that its leading coefficient z_1 satisfies Gz_1=0. 
Moreover, we have w_ 1 = Hz_ 1 • If follows that W 0 c H[ker G]. Now, it has already 
been shown in the proof of Lemma 5.1 that dim w0 =dim ker R(A ). Moreover, using 
(4.5) and the assumptions, we obtain 

(6.15) dim ker R(A.) =rank( AG;; F)-rank(A.G-F) =dim ker (AG- F) = dimkerG 

so that dim ker G =dim W 0• Since dim ker G =dim H[ker G] because [GT HTr is 
injective, this leads to the desired conclusion. 
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Note that for minimal pencil representations, this characterization of W 0 in pencil 
terms can also be derived from the realization in § 4. 

7. Indices and minimality. In this section, we will discuss the minimality of descrip­
tor representations. While for standard state space systems there is only one index that 
plays a role to determine the minimality (viz., the dimension of the state space), there 
are three such indices for descriptor systems: the rank of E, the column defect of E 
(dim ker E =the number of columns minus the rank), and the row defect of E 
( codim im E =the number of rows minus the rank). A minimal descriptor representa­
tion is, by definition, one in which each of these three indices is minimal within the 
set of descriptor representations for a given behavior. Note that, with this definition, 
even the existence of a minimal representation is not trivial. Our strategy will be to 
establish first lower bounds for each of the three indices separately, and to show next 
that these minima can be achieved simultaneously. The fact that this is possible also 
shows that, by minimizing the three indices above, one automatically minimizes the 
number of descriptor variables (=the number of columns of E =rank+ column defect) 
and the number of equations (=the number of rows of E =rank+ row defect). 

PROPOSITION 7 .1. Let an input/ output behavior be given by autoregressive equations 

(7.1) 

Write n for the sum of the minimal row indices of R(s) (stated in other terms, n is the 
maximal degree of the full-size minors of R (s) ). Suppose that a descriptor representation 
of the behavior determined by (7.1) is given by 

(7.2) 

(7.3) 

a-Eg=Ag+Bu, 

y= Cg+Du. 

Under these conditions, the rank of E is at least equal to n. 
Proof By a suitable choice of coordinates and introduction of new variables, the 

descriptor equations (7.2)-(7.3) may be written as follows: 

(7.4) 

(7.5) 

(7.6) (~) = ( ~ ~)( ~). 
The algorithm of [15) may be used to reduce this to state-space (driving-variable) 
form; the dimension of the state space will be at most equal to the length of the vector 
~1 , which in turn is equal to the rank of E. On the other hand, it is well known (see 
[19, Thm. 6]) that the dimension of the state space must be at least equal to the sum 
of the minimal row indices of R(s). The stated result follows. 

The following two lemmas show that both observability at infinity and reachability 
at infinity (see for instance [12)) are necessary conditions for minimality of descriptor 
representations under external equivalence. This is unlike the situation for the finite 
modes, where minimality under external equivalence requires observability but not 
controllability [18, Cor. 4.7]. 

LEMMA 7.2. A necessary conditionfor (7.2)-(7.3) to be a minimal descriptor rep­
resentation is that the matrix [ET CTr is injective. 
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Proof. Suppose that the condition of the lemma is not satisfied, so that ker E and 
ker C have a nontrivial intersection. By a suitable choice of coordinates, we may then 
write 

(7.7) E = [E1 O], C = [C1 O] 

where the number of the columns in the zero matrices is equal to dim (ker En ker C). 
The equations (7.2)-(7.3) will then appear in the form 

(7.8) 

(7.9) 

aE1g1 = A11 g1 + A12g2+ Bu, 

y= C1g1+Du. 

Denote the "equation space" (the space into which E maps) by Xe. Let X~ and 
T: Xe ~ X~ be such that T is surjective and satisfies ker T = im A 12 • The equations 
(7.8)-(7.9) are equivalent to 

(7.10) 

(7.11) 

aTE1 g1 = TA 11 g1 + TBu, 

y= C1g1 +Du. 

We want to show that this system precedes the original system in the partial ordering 
determined by the three indices (rank, column defect, row defect) introduced above. 
That is, we want to show that the following inequalities hold, with strict inequality in 
at least one case: 

(7.12) 

(7 .13) 

(7.14) 

As to (7.12), we have 

rank TE 1 ~rank E, 

dim ker TE 1 ~ dim ker E, 

codim im TE 1 ~ codim im E. 

dim im TE 1 =dim im E 1 - dim(ker T n im E 1 ) 

(7.15) 
~dim im E1 =dim im E 

with equality if and only if 

(7.16) im A12 n im E1 = {O}. 

We next consider (7.13): 

dim ker TE 1 =dim ker E1 +dim (im E1 n im A12) 

(7.17) 
~dim ker E1 +dim (ker En ker C) =dim ker E 

where we used the fact that the number of columns of A 12 is equal to dim (ker En 
ker C). Here, equality holds if and only if A12 has full column rank and 

(7.18) 

Finally, we verify (7.14): 

(7 .19) codim im TE1 = codim T [im £ 1] ~ codim im £ 1 = codim im E 

with equality if and only if ker Tc im Bi. that is, if and only if (7 .18) holds. (Here 
we use the following easily verified fact from linear algebra: if A is a surjective mapping 
from a space X to a space Y, and X 0 is a subspace of X, then codim AX0 ~ codim X 0 ; 

equality holds if and only if ker Ac X0 .) 
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Now, assume that equality would hold in all three cases. The matrix A 12 should 
then have full column rank, so that the rank of A should equal the number of columns 
of A12 , which in its turn is equal to dim (ker C n ker E).On the other hand, it follows 
from (7.16) and (7.18) that A 12 = 0, so that it would follow that dim (ker C n ker E) = 0, 
which contradicts our assumption that the subspaces ker C and ker E intersect non­
trivially. This completes the proof. 

LEMMA 7.3. A necessary condition for (7.2)-(7.3) to be a minimal descriptor rep­
resentation is that the matrix [E B] is surjective. 

Proof. The proof is quite similar to the proof of the previous lemma, and we will 
not work out all details. Suppose that [E B] is not surjective; then, by a suitable choice 
of coordinates, we can write 

(7.20) 

where [E1 B 1] is surjective, and the number of zero rows is equal to codim [E B]. 
With this choice of coordinates, the equations (7.2)-(7.3) can be written as follows: 

(7.21) aE1g=A1g+B 1u, 

(7.22) 

(7.23) 

O=A2~", 

y= Cg+Du. 

Let S be an injective mapping such that im S = ker A2 • The above equations are 
equivalent to: 

(7.24) 

(7.25) 

aE1Sf = A 1Sg+ B1u, 

y= csl+Du. 

To prove the lemma, we need to show that the following three inequalities hold, with 
strict inequality in at least one case: 

(7.26) 

(7.27) 

(7.28) 

codim im E 1 S ~ co dim im E, 

dim ker E 1 S ~ dim ker E, 

rank E1 S~rank E. 

This proof can be conducted as above (or the statement can be derived from the one 
in the previous lemma by duality). 

PROPOSITION 7.4. Let (7.2)-(7.3) be a descriptor representation for the behavior 
described by (7.1), and define W 0 as in (5.1). Under these conditions, the following 
inequalities hold: 

(7.29) 

(7.30) 

dim ker E ~dim ( Yn W 0 ), 

codim im E ~ codim ( Y + W 0). 

Proof It follows from the lemmas we just proved that we may suppose that the 
matrix [ET cTr is injective and that the matrix [E B] is surjective. Note that the 
descriptor equations (7.2)-(7.3) may also be written in the following form: 

(7.31) [aE-A -BJ(~) =0, 

(7.32) (~) =(~ ~)(!)· 
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Take w E W 0 ; then there exists a proper rational W-valued function w(A) satisfying 

w0 = w and R(A )w(A) = 0. By Lemma 4.1 above, there must exist rational vector 

functions g( A) and 77 (A) such that 

(7 .33) 

(7 .34) 

[AE-A -B](g(A))=o 
7J (A) 

w(A) = (c D)(g(A)). 
0 I 77(A) 

These equations may also be written as follows: 

(7.35) (AE-A) (0 B) 
C g(A) = I -D w(A). 

Since the right-hand side in this equation is proper rational and because [ET cTr is 

injective, g(A) must also be proper rational. Moreover, the constant term in the power 

series development of g(A) must satisfy Ego= 0. Now, suppose that w E y n w 0 • Then, 

again from (7.35), it follows that w = Cg0 ; so w E C[ker E]. Therefore, 

(7.36) dim ( y n W 0 ) ~dim c [ker E] =dim ker E. 

For the proof of the second part, we note that it suffices to show that 

(7 .37) {u E VI Bu E im E}c 1TuW 0 • 

Indeed, we easily verify that codim ?Tu W 0 (with ?Tu W 0 considered as a subspace of 

U) is equal to codim ( Y + W 0 ), and we can apply the following rule which holds 

generally for mappings A between vector spaces X and Y: codim A- 1 Y0 ~ codim Y0 

( Y0 a subspace of Y). To show (7.37), let u E Ube such that Bu E im E. The desired 

conclusion will follow if we can exhibit proper rational functions g(A) and u(A) such 

that u0 = u and 

(7.38) (AE - A)g(A) = Bu(A ). 

If we define y(A) = Cg(A) +Du (A), then y(A) is proper rational and 

(7 .39) ( AE -A) g(A) = (0 B )(y(A)) 
C I -D u(A) 

so that 

(7.40) 

Writing u(A) = u0 + 7J (A), we see that it will be sufficient to find a strictly proper solution 
[g(A)T 77(A)Tr of the equation 

(7.41) ( g(A)) [AE-A -B] =Bu. 
7J (A) 

Equivalently, we are looking for a proper solution of the same equation with Bu 
replaced by ABu. It follows from Theorem 6.3.12 in [8] that such a solution does indeed 

exist. 
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Remark 7.5. Actually, it is not difficult to display an explicit strictly proper solution 

to (7.41), if we rewrite this equation by a change of variables as 

(7.42) 
-B11 

I 
-B12)(~:~~~)= (Xo). 
-Bn 77 1(A) 0 

7J2(A) 

(The identity matrix in the (2, 3) position is allowed by the assumption that [E B] is 

surjective.) A strictly proper solution is 

(
g1(A)) ( (Al-A 11 -B11 A 21 )-

1x0 ) 

gi(A) 0 

771(A) = A 21 (Al-A 11-B11 A2 1)- 1Xo' 

112(A) 0 

(7.43) 

as can be verified immediately. 
THEOREM 7.6. Let an input/ output behavior be given by autoregressive equations 

(7.1). Denote the sum of the minimal indices of R(s) by n, and define W 0 by (5.1). There 

exists an externally equivalent descriptor representation (7 .2 )-(7.3) satisfying the following 

requirements: 

(7.44) 

(7.45) 

(7.46) 

rank E = n, 

dim ker E =dim ( Yn W 0 ), 

codim im E = codim ( Y + w0 ). 

Moreover, a descriptor representation of the behavior given by (7.1) is minimal if and 

only if the above three equalities hold. 
Proof In view of the previous results in this section, it only remains to show that 

a descriptor representation satisfying (7.44)-(7.46) exists. We claim that the representa­

tion obtained in the previous section satisfies all requirements, supposing that this 
representation is formed from a minimal pencil representation (see Proposition 1.1). 
Using the notation of§ 6, we have indeed: 

(7.47) 

(7.48) 

(7.49) 

rank E =dim Z 0 =dim im G =dim XR = n 

Y n W 0 = ker 1Tu n H[ker G] 

={wE WJ3zEZ: Gz =0, w =Hz, 1TuW =0} 

= H[ker G n ker 1TuH] = HZ1 

dim ker E =dim Z1 =dim (ker 1TuH n ker G) =dim ( y n W 0 ) 

(because ker G n ker H = {O}, so that the restriction of H to Z 1 is injective), and 

(7 .50) codim im E =dim U1 = codim 7Tu W 0 = codim ( Y + W 0 ). 

Remark 7.7. By unimodular operations, we can take the given polynomial matrix 

R(s) to row proper form (see [8, p. 386]); so, we may assume that R(s) is row proper 

to start with. This means that we can write 

(7 .51) R(s) = A(s)B(s), 

where B(s) is right bicausal, and 

(7 .52) Li(s) = diag (s"1, • • • , s"" ). 

It is not difficult to verify that the subspace W 0 is characterized in these terms as 

(7.53) W0 =ker B(oo). 
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Note that B(oo) is nothing but the "leading row coefficient matrix" of R(s). The 
partitioning of R(s) as [R1(s) Ri(s)] induces a similar partitioning of B(oo): 

(7.54) B(oo) =[B1(00) B2(00)]. 

Using standard manipulations, we find the following expressions for dim ( Y n W0) 

and codim ( Y + W0): 

(7.55) dim(Yn W0)=dimkerB1(00) 

(7.56) codim ( Y + W 0) = codim im B,(oo). 

So, we have easy criteria for minimality of descriptor representations of a behavior 
given by a row proper AR matrix: the rank of E should be equal to the sum of the 
row indices, and the row and column defects of E should be equal to the corresponding 
indices of B1 ( oo ). It also follows that E in a minimal descriptor representation will be 
square if and only if B1 (oo) is square; this happens if and only if R 1(s) is square, that 
is if the number of y-variables is equal to the number of independent equations in an 
AR representation. 

8. Computation. In this section, we will show how to obtain concrete matrix 
representations in pencil form and in descriptor form, starting from autoregressive 
equations determined by a kxq polynomial matrix R(s) of full row rank. For this 
purpose, we shall construct specific bases for the spaces that appear in the abstract 
realization of§ 4. In the procedure below, the transformation from pencil to descriptor 
form is not a straightforward implementation of the abstract procedure given in § 6; 
one reason for this is that, in the abstract version, the crucial subspace W 0 appears 
as the image of a certain mapping, whereas in the computation below it appears as a 
kernel. This leads to a different (dual) method of selecting the u2-variables. 

The first step is to take the given polynomial matrix R(s) to row proper form [8, 
p. 386]. To alleviate the notation, the resulting equivalent AR matrix will still be 
denoted by R(s). So we have 

(8.1) R(s) = A(s)B(s) 

where B(s) is right bicausal, and 

(8.2) A(s) = diag (s'\ · · · , s"• ). 

Now, let B(s) be any matrix such that B(s) = [BT(s) BT(s)]T is bicausal. It will be 
discussed later how to make a suitable choice for B(s). We can write R(s) = 
[A(s) O]B(s), and it is seen from this that a basis for XR /A_, NR is given by the 
equivalence classes modulo ,\ -t NR of the columns of the following matrix of size 
qx(n+q-k): 

(8.3) 

,\ -1 

A basis matrix for XR is given by the following matrix of size k x n: 

(8.4) [':-'..-A I + ]· 
0 ,.\ 1(,-t ••• ,.\ 1 
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With respect to these bases, we now compute the matrix forms of F, G, and H. 
It is easily seen that G will take the form [I O]. Because B(A) is bicausal, the matrix 
of H will have the form 

l ... 0 

(8.5) 
1 ... 0 

l 

Here, we see that we will need the inverse of B(oo). Finally, if we let G(A) denote the 
matrix whose columns are the images under G in IRk [A] of the basis elements for 
XR /A -i NR displayed above, then we can compute a similar matrix for F by the formula 

(8.6) F(A) = AG(A )- R(A )H, 

which follows from the definitions of F, G, and H. This is easily transformed into a 
matrix expression for F because of the simple basis we chose for XR. 

Example 8.1. Let R(s) be given by 

(8.7) ( ' ' s- s-+ 1 
R(s) = 

1 s + 2 ~). 
The leading row coefficient matrix of this is 

(8.8) B(oo)=G ~ ~), 
which has full row rank, so R ( s) is already row proper. The row degrees are 2 and 1, 

so a polynomial basis matrix for XR is given by 

(8.9) (A 1 0). 
0 0 1 

We get G =[I OJ E !R3 >< 4 . We now have to choose B to complete B(oo) to an invertible 

matrix; we can take B = [O 0 l], which gives 

(1 1 0) 
(8.1 O) .8(00)= o 1 o 

0 0 1 

so that 

Bcrol-' ~ (i -1 

~} ( 8.11) 1 

0 

Therefore, 

H~G 
-1 

~)(i 
0 0 

D~(: 
0 -1 

D (8.12) 0 I 0 1 

0 0 0 0 0 
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Finally, 

e2 ~)-( ~2 A2 + 1 ~l(: A 0 
F(A) = O 

0 A A+2 

=(_~ A -1 -~)-0 -1 

(8.13) 

The matrix of F is, therefore, 

(8.14) F=( ~ 
-1 

1 0 

0 -1 
0 -1 

~)-
-3 

This concludes the example. 

0 

0 

0 

-1 

~) l 

0 

Now, suppose that a division of the external variables into inputs and outputs 

has been given, and that we want to obtain a representation in descriptor form. We 
start from the autoregressive equations, which appear in partitioned form: 

(8.15) 

Taking R(s) to row proper form as before, we get a corresponding partitioning of the 

right bicausal matrix B(s ): 

(8.16) [R1(s) R 2(s)] = ~(s)[B 1 (s) B2(s)]. 

By renumbering the inputs if necessary, we may assume that 

(8.17) B2(oo)=[B1(00) B~(oo)) 

where B1(oo) has full column rank, and the columns of B~(co) depend linearly on 

those of[B1(oo) Bi(oo)J. Let B~(oo) have m2 columns; note that m2 ~q-k. It is easily 

verified that a matrix B which completes B(oo) to an invertible matrix may be found 

whose last m2 rows are in the form [O I]. By the construction, a basis matrix for 

ker [B1(oo) B~(oo)) must be of the form [N or. Taking these facts together, we 
conclude that B(oor 1 is of the form ' 

(8.18) 8coor 1 = * o * (* * *) 
0 0 I 

where the partitioning is (p + m 1 + m2) x (k + (q - k- m2) + m2 ) ( p is the number of 

y-variables, m1 is the number of columns of B1(co)). We therefore obtain equations 

of the following form: 

(8.19) az0 =A0 z0 +B1z1 +B2 z2 

(8.20) 

(8.21) 

(8.22) 

This can obviously be rewritten as 

(8.23) 

(8.24) 

Uz = Zz. 
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We now have a representation in descriptor form; as can be verified by checking the 
dimensions (using Remark 7.7), it is in fact a minimal representation. The fact that a 
zero block appears in the bottom right corner of the "A-matrix" means that the system 
"has no nondynamic variables" ([17]). It will be shown in [9] that the absence of 
nondynamic variables is a necessary condition for minimality of descriptor representa­
tions under external equivalence. 

Example 8.2. Take 

(8.25) R(s)=(s+l 0 s2 2 ) 
s+2 2s 1 s -1 

and let the first two external variables be outputs, and the other two inputs. The leading 
row coefficient matrix 

( 0 0 1 0) 
1 2 0 1 

has full row rank, so that the given matrix R(s) is already row reduced; also, m2 = 1 
and the inputs need not be renumbered. We see that the sum of the row indices of 
R(s) is 3 and that the row and the column defects of B1(oo) (formed by the first two 
columns of the matrix above) are both equal to 1; so, a descriptor representation (E, 
A, B, C, D) will be minimal if and only if the matrix E has size 4 x 4 and rank 3. 

We can take 

(8.26) B=(1 o o o) 
0 0 0 1 

which leads to 

8(00)-' ~(! 
0 1 

~l) I I 

(8.27) 2 -2 

0 0 0 . 

0 0 1 

Consequently, we get 

H~(! 
0 0 1 

~l} 0 I I 

(8.28) 2 -2 

0 0 0 
0 0 0 

The matrix of F is computed from 

e2 
A 0 0 

0)-e+l 
0 A2 

A ~1) F(A) = O 
0 A 0 0 A+2 2A 1 

x(f 
0 0 1 

~l) 0 l I 

(8.29) 2 -2 

0 0 0 

0 0 0 

=(_~ A 0 -A-1 -~)· 0 0 2 



1188 

This gives 

(8.30) 
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F=( ~ 
-1 

1 

0 

0 

0 

0 

0 

-1 

-1 

2 

Of course, G = [13 O]. Reorganizing the pencil equations as described above, we obtain 

( 8.31) 

(8.32) y = (~ 0 

0 

0 
I 
2 

9. Conclusions. In this paper, we have shown a procedure which leads from a 
representation in autoregressive form (and in particular, from a left polynomial factori­
zation) to a minimal descriptor representation. This procedure does not require the 
separation of finite and infinite frequencies. In fact, the transfer matrix is never 
computed, and the heaviest computational load in the algorithm consists of the inversion 
of a single constant matrix. The basic tool that we used is the pencil representation, 
which appears as a natural form that can be derived from autoregressive equations by 
a very simple formula. This formula also provides the link between the realization 
theory of Willems and that of Fuhrmann. The direct connection between autoregressive 
representations and descriptor representations which has now been established enables 
us to study more closely the relations between the two representations. 
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