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ASYMPTOTIC BEHAVIOUR FOR WALL POLYNOMIALS AND THE 
ADDITION FORMULA FOR UTILE q-LEGENDRE POLYNOMIALS* 

WALTER VAN ASSCHEt AND TOM H. KOORNWINDER:f 

Abstract. Wall polynomials W,.(x; b, q) are considered and their asymptotic behaviour is described 
when q = c' 1" and n tends to infinity. The results are then used to derive the addition and product formulas 
for the Legendre polynomials from the recently obtained addition and product formulas for little q-Legendre 
polynomials. 
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1. Introduction. The Wall polynomials Wn(x; b, q) are defined by the recurrence 
formula 

(1.1) 
Wn+ 1(x; b, q) = {x -[b+ q-(1 + q)bq"]q"} Wn(x; b, q) 

-b(l-q")(l-bq"- 1)q2"W,._ 1(x; b, q), n = 0, 1, 2, · · · 

with initial values W_ 1 =0 and W0 = 1. Clearly W,.(x; b, q) is a monic polynomial of 
degree n in the variable x. Some properties of Wall polynomials are given in Chihara's 
book [ 4, p. 198]. These polynomials are closely related to the continued fraction 

x (1-b)qx (1-q)bqx (1-bq)q 2 x 
1+-

1+ 1 + l + 1 + 

which was studied by H. S. Wall [ 16]. The Wall polynomials were also studied by 
Chihara [5] because they have a Brenke-type generating function, i.e., 

oo z" 
L W"(x; b, q) A(z)B(zx), 

n=O (b; q)n( q; q)n 

where 

A(z)= I (-ltq"(n+J)/ 2 ~=(zq; q)00 , 

n=O (q; q,,, 

oo z" 
B(z)= I . 

n=O (b; q)n(q; q)n 

We have used the notation 

( b; q) n = (1- b) (1 - bq} · · • (1- bq n · 1), 

(b; q)00 = lim (b; q)n; 
n~oo 
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the latter limit exists whenever I qi< l. From this generating function we easily find 

(1.2) 

W,,(x; b, q) = (-l)"(b; q)nqn(n+IJ/2 I ( q; q),, qk(k-1)/2 (-q-"x)k 
k=O ( q; q)n-d q; q)k (b; qh 

where the q-hypergeometric (or basic hypergeometric [6]) function is defined by 

( 
00 (a1; qh · · · (a,+1; q)k zk 

r+i<P, a,, .. ·,a,+i;bi, .. ·,b,;q,z)= I (b. ) ···(b· ) -(.-·-) · 
k=O [,qk ,,qk q,qk 

If 0 < q < 1 and 0 < b < l then the Wall polynomials are orthogonal with respect to a 
positive measure supported on the geometric sequence { q": n = 1, 2, 3, · · ·}and we have 

o:: k+i . k+l bk 
L W11 (q ;b,q)Wm(q ;b,q)( ) 0, 

k=O q;qk 
n"" m. 

The orthonormal polynomials are given by 

( 1.3) 
q-n(n+l)/2 

w,,(x; b, q) = J 11 W11 (x; b, q), 
b (q; q)n(b; q)n 

and they satisfy 

(1.4) 

and the three-term recurrence relation ( 1.1) becomes 

with w_, = 0, w0 = 1, and 

( 1.6) 
an= an(b, q) = q 11 Jb(1- q")(l- bq"- 1), 

b,, =bi! ( b, q) = q" [ b + q - (1 + q) bq" ], 

Sometimes it is convenient to use the notation 

n, msO 

n = 1, 2, 3, · · ·, 

n =0, 1,2, · · ·. 

(1.7) 
bk 

( b ~ j'( k+l 
; q)oo k";:O q ) ( q; q)k L f(z) dµ,(z; b, q), f E C[O, l] 

so thatµ,(·; b, q) is the orthogonality measure for the Wall polynomials W11 (x; b, q). 

Recently Koornwinder [8] obtained the addition formula for little q-Legendre 
polynomials by using the fact that the matrix elements of the irreducible unitary 
representations of the quantum group Sµ.U(2) (see, e.g., Woronowicz [17], [18]) can 
be expressed in terms of little q-Jacobi polynomials (Masuda et al. [9], Vaksman and 
Soibelman [13], Koornwinder [7]). The little q-Jacobi polynomials are defined in terms 
of q-hypergeometric functions by 

p,,(x; a, b I q) = 2 </J 1( q-", abq"+'; aq; q, qx). 

If a= q" and b = q 13 then these little q-Jacobi polynomials approach the Jacobi 
polynomials P~"·131 (1-2x)/ P~"·13 l(l) as q tends to l [1], [3]. If a= b = 1 then we have 
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the little q-Legendre polynomials. Notice that for b = 0 we essentially have the Wall 
polynomials: 

( 1.8) 

(
x b ) n q-n(n+l)/2 

Pn -;-,Olq =(-1) (b· ) Wn(x;b,q) 
q q 'q n 

{
b"( ) }1/2 n q; q n 

=(-1) (b;q)n Wn(x;b,q). 

The addition formula for little q-Legendre polynomials is 

Pm(qz; I, Ilq)py(qz; qX,Olq) 

=Pm( qx+y; 1, 1 I q)pm( qY; 1, 1 I q)py( qz; qX, OI q) 

m ( ) ( ) k(y-m+k) 
+ L q; q x+y+k q; q m+kq 2 Pm-k( qx+y; q\ qk I q) 

k=I (q; q)x+y(q; q)m-k(q; qh 
(1.9) 

'Pm-k(qY; q\ qklq)py+k(qz; qx,Olq) 

m ( ) ( ) k(x+y-m+I) 
+ L q; q y q; q m+kq 2 Pm-k( qx+y-k; q\ qk I q) 

k=I (q; q)y-k(q; q)m-k(q; qh 

( .v-k k k I ) < z. x 0 I ) · Pm-k q ; q , q q P.v-k q , q , q 

with x, y, z = 0, 1, 2, · · ·. Rahman [11] has given an analytic proof of this addition 
formula while Rahman and Verma [12] have given similar formulas for the continuous 
q-ultraspherical polynomials. The right-hand side of the above formula can be con
sidered as an expansion of the left-hand side in terms of Wall polynomials. For qi 1 
we should get the familiar addition formula for Legendre polynomials (see, e.g., [2, 
pp. 29-38]), but this limit involves some interesting asymptotic formulas for the Wall 
polynomials Wn(x; b, c11") with 0 < c < 1 and n tending to infinity. This was the main 
reason for investigating such asymptotic formulas for Wall polynomials. 

In § 2 we establish some weak asymptotics for Wall polynomials. In § 3 we show 
how the addition formula for Legendre polynomials can be obtained from the addition 
formula for little q- Legendre polynomials by letting q ~ 1, and in § 4 we obtain the 
familiar product formulas for Legendre polynomials from the product formulas for 
little q-Legendre polynomials. 

2. Weak asymptotics for Wall polynomials. For little q-Jacobi polynomials 
Pn (x; a, b I q) we can put a= q" and b = q13 and let qi 1 to find Jacobi polynomials on 
[O, 1]. However, if either a or b is zero, which is exactly what happens for Wall 
polynomials, then the limit as qjl is (l+(x/(a-1))". Therefore another approach is 
needed to handle the behaviour of Wall polynomials as q j 1. It turns out that we can 
find some relevant results if we consider the polynomials Wn(x; b, c11 ") for n ~ oo. We 
will prove a more general result for orthonormal polynomials { Pk(x; n): k:; 0, 1, 2, · · · ; 
n EN}, where k is the degree of the polynomial and n an extra (discrete) parameter. 
The recurrence formula for these polynomials is given by 

(2.1) xpk(x; n):;ak+t,nPk+1(x; n)+bk,nPk(x; n)+a1<,nPk-i(x; n), 

where ak,n > 0, bk,n E IR, Po(x; n) = 1, and P- 1 (x; n):; 0. Orthogonal polynomials with 
regularly varying recurrence coefficients [15] are of this type. 
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THEOREM 1. Assume that [r, s] is a.finite interval that, for all n, contains the support 
of the orthogonality measure for {pdx; n)}. Assume moreover that 

(2.2) Jim a,,,,, = A> 0, 
n-+ex:, 

iim b,, 11 =BE IR! 
n-+.-:\.~ , 

and that 

(2.3) lim (aL - aL- 1 ,,) = 0, 
tl-+OC• • ' 

lim (bkn-bk-I 11 ) =O, 
n-·X\ ' . 

uniformly in k, then 

(2.4) I. Pnr1(x; n) (x- B) 
1m p --

,,_") p,,(x; n) 2A ' 

uniformly on compact sets of C\[r, s], where p(x) = x+Jx1 - l (the square root here is 
defined to be the one for which lp(x)i > 1 for x E IC\[ -1, l]). 

Proof Let K be a compact set in IC\[ r, s]; then the distance between K and [ r, s] 
is strictly positive. Denote this distance by a> 0. A decomposition into partial fractions 
gives 

pk-l(x;n)_ ~ ~ 
) - ak n L.. ' pdx;n ·J~ix-xj,k 

where {xJ,k: 1 ;;:ij ;;:i k} are the zeros of pk(x; n) and { d;,k: 1 ;;;ij ;;:i k} are positive numbers 
adding up to 1. Since all the zeros of p,(x;n) are in [r,s] we have lx-x;,kl>B for 
x E K and therefore 

(2.5) I Pk-1(x; n) I< ak,n 
Pk(x, n) o 

holds uniformly for x E K. Consider the Turan determinant 

By using the recurrence relation (2.1) we find 

bkn-bk-ln ) ( ) Dk(x; n) = Dk_ 1(x; n)+ · · Pk(x; n Pk-1 x; n 
ak,n 

(2.6) 

(see [14, Thro. 4.10, p. 117]). If we define 

then by (2.6) 

I l<I x)i1Pk·1(x;n)l+lbk,n-bk-1,nl1Pk-1(x;n)I 
Rk,,,(x) = Rk-1,n( ( . ) a p (x· n) Pkrl x, n k,n k+I , 

+ laL- a~ -1,nl I Pk-2(x; n) J. 
ak,nak-1,n Pk+1(x; n) 

so that by (2.5) we have for x EK 
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By the conditions imposed there exists a constant C such that ak,n < C for every n 
and k (cf. [4, Chap. IV, Example 2.12]). Therefore, by (2.3), 

(c) 2 

\Rk.n(x)\~ S \Rk-1,n(x)i+An, XEK, 

where An -'> 0 as n-'> OJ. Iteration gives 

I I (C/8)2"-1 I )i I )2" 
Rn,n(x) ~A" (C/ 8) 2 _ 1 + Ro,n(x (C 8 , XE K. 

If 8 > C then obviously Rn,n (x )-'> 0 as n-'> ro (use \Ro,,,I = IPo(x; n )/ P1 (x; n )i < a1,nl 8), 
which by (2.2), (2.3), and (2.5) leads to 

(2.7) I. I Pn(x; n) Pn-i(X; n) I O 
lffi = , 
n~oo p,,+ 1(x; n) p,,(x; n) 

uniformly for x EK (provided 8 > C). By (2.5) the sequence of analytic functions 

p,, (x; n )/ Pn+ 1 (x; n) is uniformly bounded on compact sets of IC\[ r, s] and thus there 

exists a subsequence converging to some function L(x), uniformly on K. Use the 
recurrence formula (2.1) and the properties (2.2), (2.3), and (2.7) to find that this limit 

satisfies 

A 
x= L(x) +B+AL(x), 

and since lp,,(x; n)/Pn+ 1(x; n)i< C/8<1 for xEK by (2.5) we have 

L!x) =pe2~B). 
This gives the result for 8 > C. This can be extended to hold for 8 > 0 by using the 

Stieltjes-Vitali theorem (cf. [4, p. 121]) and the uniform bound (2.5). 0 
Remark. The asymptotic behaviour actually holds uniformly on compact sets of 

IC\O, where 0 is the closure of the set of zeros of p,, (x; n) as n runs through the 

integers. Clearly, 0 is a subset of [r, s] since the zeros of Pn(x; n) are all inside the 

interval [ r, s]. The condition that the joint supports of the orthogonality measures 

should be contained in the finite interval [ r, s] can also be relaxed. Only the zeros of 

pk(x; n)(k;;;n+l, n =0, 1, 2, ···)must lie in [r, s]. 
COROLLARY 1. Suppose 0 < b < 1 and 0<c<1. Then 

(2_8) Jim W,,+k(x;b,c 1 ~") {b(l-c)(l-bc)c2}k/2pk( x-[b+I-2bc]c) 
rHc'" W,,(x;b,c 11 ) 2cv'b(l-c)(l-bc) 

uniformly on compact sets of IC\[O, 1]. 
Proof. The proof follows immediately from 

lim W,,+k(x; b, c11
") -{b(l-c)(l- bc)c2} 112p ( x-[b + l -2bc]c ) 

n~a.0 W,,+k_ 1(x; b, c11 n) 2cv'b(l-c)(l-bc) ' 

which in turn can be proved by using Theorem 1 with recurrence coefficients ak,, = 

ak(b, c11 ") and bk,n = bk(b, c11 ") given by (1.6). D , 

COROLLARY 2. Suppose 0 < b < 1 and 0 < c < l. Then 

(2.9) limPn+k(z;b,Olc 11 n) (-l)k{b(l-c)}k/Zpk( z-[b+l-2bc]c) 
n~co Pn(z;b,O\c 11 n) 1-bc 2cv'b(l-c)(l-bc) 



WALL POLYNOMIALS 307 

uniformly for z on compact subsets of IC\[O, 1], where Pn(x; a, b I q) are the little q-Jacobi 
polynomials. 

Proof. This follows immediately from (1.8) and Corollary 1. 0 
It is important in the asymptotic formula (2.4) that the variable x stays away from 

the zeros of Pn(x; n). On the set 0, the closure of the zeros of Pn(x; n), the orthogonal 
polynomials will oscillate. The following theorem gives a result about the weak 
convergence of measures involving the polynomials pdx; n) on [r, s] in terms of their 
orthogonality measures. 

THEOREM 2. Assume that [ r, s] is a finite interval that, for all n, contains the support 
of the orthogonality measure µ," for the orthonormal polynomials {Pk (x; n): k = 
0, 1, 2, ···}.Assume, moreover, that for all kel. 

(2.10) Jim an+k,n = A, 
n~oo 

Jim bn+k,n = B; 
n~oo 

then for every continuous function f on [ r, s] 

. f" 1 f B+2A f(z)Tk((z-B)/(2A)) 
hm f(z)pn(z; n)Pn+k(z; n)dµ,n(z) =- J 2 2 dz, 
n~oo r 7T 8 _ 2 A 4A -(z - B) 

where Tn (x) are the Chebyshev polynomials of the first kind. 
Proof We follow the ideas of Nevai and Dehesa [10, Lemma 3]. Let m be a 

positive integer and apply the recurrence formula (2.1) repeatedly to get 

where 

Hence 

-l~k1;a:1 

i=I.2,···,m 

{
aj,n 

ll·k = b. J, J,n 

aj+l,n 

if k= j-1, 

if k=j, 

if k = j+ 1. 

f zmpn(z; n)pn+k(z; n)dµ,n(z) = 

i=l,2,-··.m 
k1+···+k111=k 

Because of this equation and by (2.10) it follows that the limit as n ~ oo of 
f: zmpn(z; n)Pn+k(z; n)dµ,n(z) is the same as the limit of 

--2 - zmUn ~ Un+k -- J4A2 -(z-B) 2 dz 1 f B+
2

A ( B) (z-B) 
2A 7T B-2A 2A 2A 

since the Chebyshev polynomials of the second kind Un((z - B)/2A) are the ort~ogo~al 
polynomials with constant recurrence coefficients an= A and b. =B. Use the 1dent1ty 

1 Tdx)- T2n+k+2(x) 
Un(x)Un+k(x)=2 l-x2 

to find 

-\-f B+2A zmun(z-B) Un+k(z-B)J4A2-(z-B)2dz 
2A 7r B-2A 2A 2A 

1 f B+lA zmTk((z-B)/2A) 1 f B+2A zmT2n+k+2((z-B)/2A) d 
.:::__;:==::;=::====~ dz - - z. 

= 7r 8 _ 2A J4A2 -(z-B)2 7r s-2A J4A2 -(z-B)2 
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If 2n + k + 2 > m then the second term on the right-hand side vanishes because of 
orthogonality, and thus we have the result when f(x) = xm. The general result follows 

from the Hahn-Banach theorem: let the operators Lk,n(k, n = 0, 1, 2, · · · ), defined on 

the Banach space C[ r, s] of continuous functions equipped with the supremum norm, 

be given by 

Lk,nf = f f(z)pn(z; n)Pri+k(z; n) dµn(z). 

These are uniformly bounded operators because, by Schwarz's inequality and the 

orthonormality, 

I r f(z)pn(z; n)Pn+k(z; n) dµn(z) J

2 

~ r IJ(z)Jp~(z; n) dµ,,(z) r IJ(z)IP~+k(z; n) dµ,,(z) 

~11111~. 
Now use Weierstrass's result that the polynomials form a dense subspace of 

C[r, s]. D 
COROLLARY 3. Suppose 0 < b < 1 and 0 < c < 1. Then for every continuous function 

fon[0,1] 

!~~' L f(z)wn(z; b, c11 ")w,,+k(z; b, c11 n)dµ(z; b, c11 ") 

=l_f B+lA f(z)Tk((z-B)/(2A) dz 

J 2 ? ' 
1T s-2A 4A -(z - B)-

where A=c)b(l-c)(l-bc), B=(b+l-2bc)c, and Tn(x) are the Chebyshev poly

nomials of the first kind. 
Proof The proof follows because the Wall polynomials w,,(x; b, c11 ") satisfy the 

conditions of Theorem 2, with recurrence coefficients ak,n = ak(b, c 11 ") and bk(b, c11 ") 

given by (1.6). D 

3. The addition formula. The little q-Legendre polynomials Pn(z; 1, 1 Jq) and the 
Wall polynomials p,, (z; a, 0 J q) are analytic functions of z and the addition formula 

( 1.9) holds for every z E { q": n = 0, 1, 2, · · ·} (which is a set with an accumulation 
point). Therefore it follows that 

Pm(z; 1, 1 J q)py(z; qx, OJ q) 

=Pm( qx+y; 1, I I q)pm( qY; 1, l lq)py(z; qx, Olq) 

m ( • ) ( • ) k(y-m+k) + '\' q, q x+y+k q, q rn+kq ( x+y, k kl ) 
L... ( ) ( ) ( )' Pm-k q , q , q q 

k=1 q; q x+y q; q m-k q; q k 

"Pm-k(qY; qk, qklq)Py+k(z; qx,Olq) 
(3.1) 

m ( . ) ( ) k(x+v-m+l) + '\' q, q y q; q m+kq · ( x+v-k k k I ) 
L... ( ) ( ) ( )2 Pm-k q · ; q , q q 

k=1 q; q y-k q; q m-k q; q k 

· Pm-d qy-k; q\ qk I q)py-k(z; qx, OI q) 

holds for every z EC and x, y = 0, 1, 2, · · · . It is well known that 

(3.2) litm Pn(z; q", q13 I q) = R~"·13 \1-2z), 
q I 
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h R("·13 )( ) J b. · · 
w ere n x are aco 1 polynomials with the normalization Rt",fJ '( 1) = l i e 

R~":13.l(x)_ = P~"· 13 l(x)/ p~a,fJ)(~). Fix b, c in (O, l) such that log b/log c ~ f3/y with f3·,; 
positive integers, substitute m (3.1) q=b 1/(n/3)=c'l<nyi x=n.8 v=ny and let n~oo 

through the integers. Then by (2.9), (3.1), and (3.2) ' '· ' 

R(~,o)(l-2z) = R~·0l(l-2bc)R~;.o)(l-2b) 

m (m+k)I 
+" . (1-bc·)k,kR 1k.k)(1 2b·)R 1k.k 1(1 ") 

k'":i(m-k)!(k!)2 C m-k - C m-k -L,C 

·(-l)k{b(l-c)}k/2Pk( z-[b+l-2bc]c) 

I-be 2cv'b(l-c)(l-bc) 

m (m+k)! 
+ I · (l - )k(b lk 1k.k1( b 1k,k) 

k=I (m-k)!(k!)2 c c R,,,.k 1-2 c)Rm-k(l-2c) 

·(-l)k{ 1-bc }k12p-k( z-[b+l-2bc]c) 
b(l-c) 2c~b(I-c)(l-bc) · 

Now use the formula Tk(x)=[pk(x)+p-k(x)]/2; then 

R~·0l(l -2z) = Rt,;;·0l(l - 2bc)R;~·0\1- 2b) 

"' (m+k)I 
+2 2: (-l)k · ,ck[b(l-c)(1-bc)]kn 

k=I (m -k) !(k!)-

• R<,:.1<2(1-2bc)R~~2(1-2c)Tk ( z-[b+ l-2bc]c ). 
· 2cv'b(1-c)(l-bc) 

Finally, choose 

then 

l-2z = xy-J1-x2J1-y2t, 

l -2bc = x, 

1-2c=y; 

R~·01(xy-J1 -x2J1- y 2 t) = R~·0 l(x)R;~·0>(y) 

m ( m + k) 1 ;-::--, ;-::--, 
+2 I (-l)k · -,-2k{vl-x2vl-v2}k 

k=I (m-k)!(k!)"~ y 

· R~~.1<1 (x) R~7:1'2 Cv) Tk ( t), 

which is the familiar addition formula for Legendre polynomials. By our method of 

proof this formula only holds for t E IC\IR (because we use Corollary 2), but since all 

the functions considered are analytic in t, the result definitely holds for every t E IC. 

4. Product formulas. If we multiply both sides of the addition formula (1.9) by 

Pv+k(q 2 ; qX,Ojq)qcx+I)z/(q; qlz and sum from z=O to oo, then by the orthogonality 

(1.4) and by (1.8) 

co . q(x+l)z 

L Pm(q 2 ;l,ljq)py(q 2 ;qx,Ojq)py+k(qz;qx,Ojq)-( -. -) 
z=O q,qz 

( ) ( ) k(y-m+k) 
_ q; q x+y+k q; q m+kq (qx+y. qk qkjq)p (qY. qk qkjq) 
- ') Pm-··k ' ' m-k ' ' 

( q; q)x+y( q; q)m-k( q; q)"k 

co (x+l)z 

"L P;+dqz; qX,Ojq)-(q. ) ' 
z=O q, q z 
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which holds whenever k E {O, 1, · · · , m}. In terms of orthonormal Wall polynomials 
we have by (1.8) 

( x+y k k I ) ( y. k k I ) Pm-k q ; q ' q q Pm-k q ' q • q q 

(4.1) = (-l)k (q; q)m-k(q; q)~ q-k(y+k-m) {q-k(x+I) (q; q)y(q; q)x+y } 112 

(q; q)m+k (q; q)y+k(q; q)x+y+k 
00 

·(qx+l;q)co L Pm(q';I,llq)w,.(qz+l;qx+l,q) 
z=O 

q(x+l)z 
( z+I x+l ) . Wy+k q ; q , q ....::( --)-' 

q; q z 

which can be considered as a product formula for the little q-Legendre polynomials 
and which (for k = 0) is equivalent with the product formula given by Koornwinder 
[8]. If we use the notation (1.7) then 

oo (x+l)z 

( x+l ) '\' ( z 1 1 I ) ( z+I x+! ) ( z+I x+I ) q 
q ; q oo z':,O Pm q ; , q Wy q ; q , q Wy+k q ; q , q ( q; q)z 

= L Pm(~; 1, 1 I q) Wy(z; qx+I, q)Wy+k(z; qx+1, q) dµ,(z; qx+1, q). 

Fix b, c in ( 0, 1) such that log b /log c = f3 / 1' with f3 and 1' positive integers and let 
q = b1f<nf3) = c•f(ny>, 1 + x = n/3, y = ny. Then as n ~ oo we have by Corollary 3 and by 
the uniform convergence in (3.2) (keep in mind that Pm((z/q); 1, 1 lq) is a polynomial 
of degree m) 

R~~-!:~(1- 2bc) R<,::-!:l(l - 2c) = (-l)k (m(~ ~ ~ \~ !)2 
c-k{ b( 1 - c )( 1 - be)} -k/2 

._!_J B+2A Rco.oJ(l-2z) Td(z-B)/2A) dz 
m I 2 2 ' 

7T B-2A v4A -(z-B) 

where A=cJb(l-c)(l-bc) and B=(b+l-2bc)c. Setting bc=x, c=y gives the 
familiar product formulas for Legendre polynomials: 

R;!:!'((l-2x)R;!:!'l(l-2y) = (-l)k (m(~k1 ~\~!)2 
{xy(l-y)(l-x)}-k 12 

._!_f B+2A R(o,oJ(l-2z) Tk(,(z-B)/2A) dz 
m I 2 2 ' 

7T n-2A v4A -(z-B) 

with A=Jxy(l-x)(l-y) and B=x+y-2xy. 
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