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Abstract. 

We analyse the attainable order and the stability of Runge-Kutta-Nystri:im (RKN) methods for special 
second-order initial-value problems derived by collocation techniques. Like collocation methods for 
first-order equations the step point order of s-stage methods can be raised to 2s for all s. The attainable 
stage order is one higher and equals s + 1. However, the stability results derived in this paper show that 
we have to pay a high price for the increased stage order. 

AMS Subject classification: 65M10, 65M20. 

l. Introduction. 

In this paper we shall be concerned with the analysis of implicit Runge-Kutta­
Nystrom (RKN methods) based on collocation for integrating the initial-value 
problem (IVP) for systems of special second-order, ordinary differential equations 
(ODEs) of dimension d, i.e. the problem, 

(1.1) y"(t) = f(t,y(t)), y(to) =Yo, y'(to) = Uo,, 

y: IR--. !Rd, f: IR x !Rd--. !Rd, t 0 :::; t :::; T 

Our motivation for studying implicit RKN methods is the arrival of parallel 
computers which enables us to solve the implicit relations occurring in the stage 
vector equation quite efficiently, so that, what is so far considered as the main 
disadvantage of fully implicit RKN methods, is reduced a great deal. We consider 
two types of collocation methods for second-order equations: methods based on 
direct collocation and on indirect collocation (that is, methods obtained by writing 
the special second-order equation in first-order form and by applying collocation 
methods for first-order equations [6]). The theory of indirect collocation methods 

*) These investigations were supported by the University of Amsterdam who provided the third 
author with a research grant for spending a total of two years in Amsterdam. 

Received September 1990. Revised February 1991. 



470 P. J. VAN DER HOUWEN, B. P. SOMMEIJER AND NGUYEN HUU CONG 

for problem (1.1) completely parallels the well-known theory of collocation methods 
for first-order equations (cf. [3], [7]). The attainable step point and stage order using 
s stages equals 2s and s. For alls, these methods can be made A-stable and of order 2s 
(Gauss-type methods) or L-stable and of order 2s - 1 (Radau IIA type methods) by 
a suitable choice of the collocation parameters. There even exist indirect collocation 
methods with stage orders using only s - 1 implicit stages (and one expli~it stage) 
which are known to be A-stable for s s 9 (Newton-Cotes methods [15]) or strongly 
A-stable for s s 5 (Lagrange methods [9]). In the following, k will denote the 
number of implicit stages of the method. Since in actual computation, it is the 
number of implicit stages that determines the computational complexity of the 
method, we shall often characterize RKN methods by k rather than by s. 

The stability of direct collocation was investigated in Kramarz [12] (see also [1]). 
The main object of the present paper is to extend the work of Kramarz and to derive 
order and stability results for direct collocation methods. It will be shown that the 
attainable step point order is similar to that of indirect collocation methods, but the 
stage order can be raised to s + 1 leaving all but one collocation parameters free. 
High stage orders are attractive in the case of stiff problems, provided that the 
method is A or P-stable. However, it seems that the increased-stage-order methods 
all have finite stability boundaries. If the stage order is decreased to s, then infinite 
stability boundaries can be obtained. We found A-stable methods with k = s = 2, 
k = s = 3 and with k = s - 1 = 4 implicit stages. 

We also investigated two stabilizing techniques for achieving A-stability. The first 
stabilizing technique is based on the preconditioning of the right-hand side in (1.1), 
that is, stiff components in the right-hand side are damped. In this way, it is possible 
to transform conditionally stable RKN methods into unconditionally stable pre­
conditioned RKN methods (P RKN methods) at the cost of a slightly more compli­
cated relation for the stage vector. The second stabilizing technique is based on the 
combination of different, conditionally stable RKN methods. We will give examples 
of A-stable, composite methods (CRKN methods) with stage orders and k = s - 1 
implicit stages for k s 4. 

Summarizing, this paper investigates three families of methods based on direct 
collocation. Assuming that they all use k implicit stages (including those the CRKN 
methods are composed of), we get the following survey of main characteristics (p and 
r denote the step point and stage orders): 

Table 1.1. Survey of characteristics of methods based on direct collocation 

Family s p r Stability With Subsections 
preconditioning 

A. single: Gauss k 2k k + 1 Conditionally stable Weakly A-stable 4.2.1, 4.3 
Radau k 2k-1 k+ 1 Conditionally stable Weakly A-stable 4.2.1, 4.3 
Lobatto k + 1 2k k+2 Conditionally stable Weakly A-stable 4.2.1, 4.3 

B. single: k = 2,3 k k k Strongly A-stable 4.2.2 
k=4 k+ 1 k + 1 k + 1 Strongly A-stable 4.2.2 

C. composite: k::;; 4 k + 1 k + 1 Strongly A-stable 4.2.3 
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2. RKN methods. 

For the sake of simplicity of notation, we assume that (1.1) is a scalar problem. 
However, all considerations can be trivially extended to systems of equations. For 
scalar ODEs, the generals-stage RKN method is defined by 

Yn+ i = Yn + hy~ + h2brf(etn +eh, Y), Y~+ 1 = y~ + hdr f(etn +eh, Y), 
(2.1) 

Y = eyn + ehy~ + h2 Af(etn + eh, Y), 

where h is the stepsize, { tn} is the set of step points and Yn + 1' Y~+ 1 denote the 
numerical approximations to y(tn + 1), y'(tn + i). Furthermore, b, e and dare s-dimen­
sional vectors, e is the s-dimensional vector with unit entries, A is an s x s matrix, 
and, for any pair of vectors Y = (v;), w = (w;),f(Y, w) denotes the vector with entries 
f(V;, W;). 

If the last row of A equals the row vector br, i.e., br = e'[ A, then, as in the case of 
RK methods for first-order IVPs, such methods are said to be stiffly accurate. In 
general, stiffly accurate methods perform better on stiff problems than methods that 
are not stiffly accurate. 

2.1. Order of accuracy. 
Let Y(t.+ 1) denote the vector with components y(tn + c;h) with y the locally exact 
solution of(l.1) satisfying y(tn) = Yn and y'(t.) = y~, and suppose thatthe local errors 
are given by 

(2.2) 
y(tn+i)-Yn+1 = O(hP'+ 1), y'(tn+1)-y~+l = O(hP2 + 1), 

Y(tn+ i) - eyn - chy~ - h2 Af(etn +eh, Y(tn+ i)) = O(hp,+ 1), 

then the (global) order of accuracy p and the (global) stage order r are respectively 
defined by p = min {pi,p2 } and r = rnin {Pi.P2 ,p3 }. Notice that the local stage 
order equals p3 + 1. 

For stiff first-order OD Es the accuracy reducing effect of order reduction for 
methods with low stage orders is well known [ 4], and therefore collocation methods 
with their high stage orders are rather accurate for stiff problems. A similar 
phenomenon occurs in stiff second-order equations (cf. Example 2.1 in [10]). 

2.2. Linear stability. 
The linear stability of RKN methods is investigated by applying them to the test 
equation y" = A.y, where A. runs through the eigenvalues of 8f/8y. This leads to 
a recursion of the form 

(2.3) 

1 + zbr(l - Az)- 1c) 
1 + zdr(l - Az)- 1e ' 
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where z: = )..h 2 . The damping effect of the matrix M(z) can be characterized by the 
stability function R(z) of the RKN method defined by the spectral radius p(M(z)) of 
M(z). 

DEFINITION 2.1. The collection of points on the negative real z-axis is called 
(i) the region of stability if in this region R(z): = p(M(z)) < 1, 
(ii) the region of periodicity if R(z) = 1 and [trace M(z)] 2 - 4 <let M(z) < 0. 

If ( -f3stab' 0) lies in the stability region, then f3stab is called the stability boundary, 
and if ( - /3pm 0) lies in the periodicity region, then /3per is called the periodicity 
boundary. If f3stab = oo, then the RKN method is called A-stable and if /3per = oo, 
then it is called P-stable. An A-stable RKN method is called L-stable if R( - oo) = 0. 

3. RKN methods based on collocation. 

3.1. Indirect collocation methods. 
Indirect collocation methods are generated by applying an RK collocation 

method to the first-order representation of ( 1.1). Thus, writing (1.1) in the form 

( 1.1 ') y'(t) = u(t), u'(t) = f(t,y(t)), y(to) =Yo, 

and applying an RK method for first-order equations: 

Yn+l = Yn + hdTf(etn +eh, Y), Y = eyn + hAJ(etn +eh, Y), 

we obtain an RKN method of the form (2.1) with (cf. [6]) 

(3.1) b=ATd, A=A2• 

Notice that when the generating RK method has order p and k implicit stages, 
then this is true for the RKN method as well. Now, let the generating RK method be 
a collocation method based on the s distinct collocation points { tnj: = tn + c jh, 
j = 1, ... , s }, then (see e.g. [7]) 

x 

(3.2) A= (aij):= (aj(cJ), d = (d;):= (a;(l)), ai(x):= J Lj(~)d~, 
0 

where i,j = 1, ... , s. The family of indirect collocation methods defined by (3.1) and 
(3.2) has order p = r = s for all collocation vectors c(see e.g. [ 4]). The RKN method 
will be called symmetric if the location of the collocation points tni is symmetric with 
respect to tn + h/2. 

By a special choice of the collocation points, it is possible to increase the step point 
order p beyond s (superconvergence at the step points). The following theorem holds 
(see e.g. [7, p. 207]): 
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THEOREM 3.1. The indirect RKN method defined by {(3.1),(3.2)} has global step 

point order and global stage order p = r = s for all sets of distinct collocation 

parameters c;. We have p = s + q if, in addition, 

(3.3) Pj(l) = 0, 

x 

Pi(x): = f ~j-1 i01 (~ - cJ d~, 
0 

j = 1, 2, ... , q. 

3.2. Direct collocation methods. 
3.2.1. Methods of order p = r = s. Following [2, p. 241], let S be the space of real, 
piecewise continuously differentiable polynomials of degree not exceeding s + 1 
associated with the set of intervals [t"' tn + 1]. Thus, if u is in S, then u(t) is a poly­
nomial of degree =:::;; s + 1 on each interval [t"' tn + 1], n = 0, ... , N - 1. For such 
functions u, the second derivative u" is a polynomial of degree not exceeding s - 1 on 
each of the intervals [tn, tn+ 1]. Using the L/x) defined in (3.2) we may write 

s s 

u"(tn + xh) = L Lj(x)u"(tnJ, 

(3.4) j= 1 

u'(tn + xh) = u'(tn) + h L o:j(x)u"(tnj), 
j= 1 

s 

u(tn + xh) = u(tn) + xhu'(tn) + h2 L /3j(x)u"(tnj), 
j= 1 

where cxi(x) is defined in (3.2) and 

x ,, x x x 

(3.5) /]j(x): = ff Li(~)dl; dry = ff Lii;)dryd~ = f (x - l;)Li(l;)dl; 

0 0 0 ~ 0 
x 

= xo:i(x) - f ~Lj(~)d/;. 
0 

Next, we require that the function u satisfies the collocation equations u"(tnj) = 
f(tni• u(tnj)) for j = 1, ... , s. Then (3.4) leads to: 

(3.6) 

s 

u(tn;) = u(tn) + C;hu'(tn) + h2 L /3/c;)f(tni• u(tnj)), 
j=l 

s 

u'(tnJ = u'(t.) + h L Cl.j(cJf(tni• u(tnj)), i = 1, ... , S, 
j= 1 

s 

u(tn+d = u(tn) + hu'(tn) + h2 L /3j(l)f(tnj,U(tn)), 
j= 1 

s 

u'(t.+i) = u'(tn) + h L ctj(l)f(tni•u(tnj)). 
j=l 

By writing Yn: = u(t.), y~: = u'(tn) and Y: = (u(tn;)) and by introducing the quantities 
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the method (3. 6) is recognized as the s-stage RKN method (2. 1 ). As in the case of 
indirect collocation methods, the RKN method defined by (3. 7) will be called 

symmetric if the location of the collocation points tni is symmetric with respect to 

tn + h/2. 
Since in the interval [t., t. + 1] the function u is a polynomial of degree :s;; s + 1 

satisfying the collocation equations, it follows that p1 = s + 1, p2 = s and p 3 = 
s + 1. Hence, locally, the order of the y'-component is one lower than the order of 
the other components. Therefore, we have the global order result p = r = s (see also 
Subsection 2.1). 

THEOREM 3.2. The direct RKN method defined by (3.7) has global step point order 
and global stage order p = r = s for. all sets of distinct collocation parameters C;. 

3.2.2. Superconvergence. As in the case of indirect collocation, it is possible to 

increase the orders p 1 and p2 beyond s + 1 and s by a special choice of the 
collocation points (superconvergence at the step points). We first consider the local 

order of y~ + 1 by writing the local error of y~ + 1 in the form 

tn +I 

(3.8) f f(t, y(t)) dt = ~'(tn + il - y~ = hdTf(etn +eh, Y) + O(hP 2 + 1 ). 

It can be shown that d generates a quadrature formula with quadrature error of 
O(h' + q + 1) whenever the collocation points satisfy the relations (3. 3), i.e., p2 = s + q. 

Thus, setting q = 1, we have: 

THEOREM 3.3. If (3.3) is satisfied.for q = 1, then the direct RKN method defined by 
(3.7) has global step point order and global stage order p = r = s + 1. For all 
symmetric methods with an odd number of stages, condition (3.3) is satisfied for q = 1. 

EXAMPLE 3.1. Fors = 2 and q = 1 condition (3.3) yields c2 = (2 - 3c 1)/(3 - 6c i). 
Choosing c1 = 0, we find that c2 = 2/3. Thus, the direct collocation method with 
c = (0, 2/3)r has order p = r = 3 and requires only one implicit stage. Furthermore, 

for c = (1/3, lf a stiffly accurate method results with order p = r = 3. 

THEOREM 3.4. If condition (3.3) is satisfied, then the direct RKN method (3.7) has 
global step point order p = s + q. 

PROOF. From (3.3) it follows that p2 = s + q (cf. (3.8)). Furthermore, the condi­

tion P 1(1) = 0 implies 

1 1 

J.rl (~ -C;)d~ = f(~ - Cj). n .(~ -C;)d~ = 0. 
•=! •=l.•*J 

0 0 
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Hence, from the definition of the Lagrange polynomials Li in (3.2) it follows that 

1 1 

(3.9) J ~Lj(~)d~ - f ciLi(~)d~ = 0. 

0 0 

By observing that (cf. (3.7)) 

l 1 

bi= /fi(l) = e>:;(l) - f ~L;(~)d~, d; = cx;(l) = f L;(~)d~. 
0 0 

we derive from (3.9) that b; = d; - d;c; for i = 1, ... , s. This condition is recognized 
as a well-known simplifying condition for RKN methods (see, e.g. [7, p. 268]). 
According to a lemma ofHairer [5], this simplifying condition implies that the order 
conditions for the y-component are a subset of the order conditions for they'­
component. Thus, if p2 = s + q, then p1 = s + q, so that the assertion of the theorem 
is proved. II 

COROLLARY 3.1. Direct and indirect collocation methods with the same collocation 

points have the same step point order. The stage order of direct collocation methods is 

one higher whenever P1 (1) = 0. 

For a numerical example illustrating this corollary, we refer to [10]. 

4. Stability of collocation methods. 

4.1. Indirect collocation. 
In the case of the indirect collocation methods, we can resort to the theory of 

collocation methods for first-order equations and the derivation of suitable methods 
is straightforward. For indirect methods of the form (3.1) it can be derived that the 
matrix M(z) defined in (2.3) is given by 

(4.1) M(z)=R*(Z), Z:=(~ ~) R*(w):= l+wbT(I-Aw)- 1e, z:=A.h2 , 

where R*(w) denotes the stability function of the generating RK method. Hence, the 
stability function of the generated RKN method is given by R(z): = p(M(z)) = 

Max { R*( ± .jz)}. From this formula, we conclude that if, and only if, (2.1) possesses 
the stability interval ( - Pstab• 0), then the generating RK method possesses the 
imaginary stability boundary (/isiab)112 . Hence, A-stable RK methods (i.e., 
(/isiab) 112 = oo) generate A-stable RKN methods. In particular, the s-stage Radau 
IIA methods generate L-stable RKN methods with step point order 2s - 1 and 
stage order equal to the number of implicit stages s. However, the Lagrange methods 
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derived in [9] generate (strongly) A-stable RKN methods where the stage order 
equals the number of implicit stages plus one. If one wants RKN methods with 
a nonempty periodicity interval, we have to choose generating RK methods with 
stability functions that have modulus 1 along the imaginary axis. This means that 
R*(w) should satisfy the (necessary and sufficient) condition R*(w)R*( -w) = 1, that 
is, the collocation points should be distributed symmetrically with respect to 1/2 (see 
also [16], where an analytical expression for R*(w) is derived, merely in terms of the 
collocation points). For example, the diagonal elements of the Pade table associated 
with exp(w) satisfy this condition, and hence, the s-stage Gauss-Legendre methods 
generates-stage, ?-stable RKN methods with stage orders and step point order 2s 
(cf. [6]). 

4.2. Direct collocation. 
Similar to the analysis performed by Wright [16] in the case offirst order OD Es, it 

is possible to derive closed form expressions for the RKN parameters in terms of the 
collocation vector c (see the Appendix to [10], where full details can be found). With 
the help of these expressions, the matrix M and its spectral radius can, at least 
formally, be expressed in terms of c. However, the complexity of these expressions is 
beyond a manageable level. Therefore, we resorted to numerical search techniques. 
Especially in the derivation of methods with three or more stages, we think this is the 
only practical approach. As a result of this numerical search, it turned out that the 
situation for direct collocation methods is less favourable than for indirect methods; 
the construction of direct collocation methods which are A-stable or ?-stable and 
have RKN parameters of acceptable magnitude (say, not greater than 10 in magni­
tude) is quite cumbersome. For instance, we did not find stiffly accurate methods in 
the family A of Table 1.1 that are A-stable or ?-stable. For two-stage methods this is 
immediate from a result of Kramarz [12], who proved that two-stage, stiffly 
accurate methods (i.e., c2 = 1) can only be A-stable if 0.7 :=:; c1 < 1. This conflicts 
with the requirement to obtain p = r = 3 which needs c1 = 1/3 (see Example 3.1). 

4.2.1. Conditionally stable RKN methods. In Table 4.1 order and stability charac­
teristics of methods generated by conventional sets of collocation points are listed 
(these methods belong to family A of Table 1.1). In general, these methods have 
a number of intervals of instability of which the first two are listed. They are 
indicated by U1 and U2 , and the corresponding maximum values of the stability 
function R are denoted by Rma.<U;). These stability results indicate that, from 
a practical point of view, direct collocation methods based on Gauss, Radau and 
Lobatto collocation points are oflimited value, because the rather small stability or 
periodicity boundaries make them unsuitable for stiff problems (which is the main 
class of problems where implicit RKN methods are used). The A-stable, indirect 
analogues are clearly more suitable for integrating stiff problems. However, in 
Section 4.3, we shall describe a stabilizing technique based on preconditioning 
matrices that removes stiff components from the right-hand side function and 
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transforms conditionally stable methods into A-stable or P-stable methods. By 
means of this technique the methods from Table 4.1 can be made A-stable or 
P-stable. 

Table 4.1. Order and stability characteristics of direct Gauss, Radau and Lobatto 
collocation methods. 

Method CT p r U1 Rm.,(U,) U2 Rmax(U2) R(w) 

k = 2 Gauss cf. [ 4] 4 3 ( -12, -9) 1.23 (-:c. -35.9) 13.9 13.9 
Radau cf. [4] 3 3 (-16.73, -8.61) 1.25 (-oc,-108) 2.0 2.0 
Lobatto cf. [4] 4 4 ( -12.0, -9.6) 1.17 ( CIJ, -48) 7.9 7.9 

k = 3 Gauss cf. [4] 6 4 (-10.01, -9. 77) 1.01 (-60.1, -34.2) 2.1 26.0 
Radau cf. [4] 5 4 (-10.32, -9.55) 1.04 ( - 103.1, -34.9) 1.97 3.0 
Lobatto cf. [ 4] 6 5 (-10, -9.82) I.OJ (-w. -37.5) 13.9 13.9 

k = 4 Gauss cf. [7] 8 5 ( -9.876, -9.865) 1.0007 (-42.1, -37.8) 1.17 42.0 
Radau cf. [9] 7 5 (-9.90, -9.84) 1.002 (-45.8, -36.5) 1.29 4.0 
Lobatto cf. [9] 8 6 ( -9.876. -9.866) 1.0006 ( -42. -38.5) 1.13 21.9 

4.2.2. A-stable RKN methods with p = r = s. If we drop the additional order 
condition (3.3), then the orders are given by p 1 = p3 = s + 1 and p2 = s (see Section 
2.1), so that p = r = s (family B of Table 1.1). We found A-stable methods with k = s 
implicit stages fork = 2 and k = 3, and an A-stable method with k = s - 1 implicit 
stages for k = 4. These are respectively generated by er= (3/4, 1), er= 
(-1/5, 9/10, 1) and er= (-1/4,0, 9/10, 19/20, 1) (for more details we refer to the 
Appendix to [10]). In the following subsection these methods are compared with 
methods based on composition of RKN methods. 

4.2.3 A-stable composite methods with p = r = k + 1. It is sometimes possible to 
construct methods with improved stability properties by composing a new method 
from a sequence of given RKN methods (preferably with equal numbers of implicit 
stages). In order to define these composite RKN methods (CRKN methods), we write 
the RKN method (2.1) in the compact form Wn+l = L(h,wn), wn:= (y",y~)r, where 
Lis a (nonlinear) operator defined by the RKN method. Suppose that we are given 
v RKN methods (not necessarily with the same number of stages) characterized by 
operators Li and all of order p. Then we may define the methods wn + i = Li(h, w" + i- i) 
for n = 0, v, 2v, ... , and i = 1, ... , v. Evidently, these CRKN methods are again of 
order p. Applying the CRKN method to the equation y" = A.y, we may write 
wn +i = M;(z) Wn where as before z: = J.h 2 and where the Mi(z) denote the amplifica­
tion matrices of the individual methods. The stability function becomes the spectral 
radius of the product of the matrices Mi(z) with i = v, v - 1, ... , 1. Presenting 
CRKN methods by the formula Ilcf, where the ci correspond to the individual RKN 
methods, we found three suitable A-stable CRKN methods with p = r = k + 1 
(family C of Table 1.1). These are generated by: (1/3, 1) * (0, 19/20, 1)2 , 

I 
'~ l i 
: I• 

l I, 
I: 
I 
I. 
! 
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(0, 1/2, 19/20, 1) * (0, 9/10, 19/20, 1)2 and (1/10, 26/53, 19/20, 1) * (0, 1/4, 9/10, 
19/20, 1)2• The first two methods improve on the k = 2 and k = 3 methods of family 
B. We remark that the collocation vector (1/10, 26/53, 19/20, 1) occurring in the 
third method sat.i.sfies condition (3.3) for q = 1 (for more details we refer to the 
Appendix to [10]). 

EXAMPLE 4.1. The A-stable methods of the families B and C are applied to the 
semidiscretization of 

a2 u u2 a2 u 
(4.2) -8 2 = 1 2 2 2 -8 2 + u(4cos2 (t) - 1), o ::;; t ::;; 2n, o::;; x ::;; 1, 

t + x- x x 

with initial and Dirichlet boundary conditions such that the solution is given by 
u = ( 1 + 2x - 2x2 ) cos ( t). Using 3-point symmetric spatial discretization on grid 
points xi = j/20, we obtain a set of 19 OD Es. 

Table4.2. NCD values produced by A-stable methods from the families Band C for 
Problem (4.2). 

Method p r h = it/15 h = n/30 h = n/60 

k=2 (3/4, 1) 2 2 * 3.6 4.1 
(1/3, 1) *(O, 19/20, 1)2 3 3 3.7 4.6 5.5 

k=3 ( -1/5, 9/10, 1) 3 3 * 4.4 5.3 
(0, 1/2, 19/20, 1),.(0, 9/10, 19/20, 1)2 4 4 6.3 7.3 8.5 

k=4 (-1/4, 0, 9/10, 19/20, 1) 5 5 6.9 8.4 9.9 
(1;10, 26/53, 19;20, 1) .. (o, 1/4, 9/10, 19;20, 1)2 5 5 7.8 9.2 10.8 

Table 4.2 lists the number of correct digits (NCD) obtained at the end of the 
integration interval, i.e., the value defined by NCD(h): = -log10 (\I global error 
(obtained with stepsize h) at t = tend II co). An asterisk denotes an unstable behaviour. 

The composite methods perform rather well, in particular in the cases k = 2 and 
k = 3. 

4.3. A-stable preconditioned methods. 
As observed above, RKN methods based on direct collocation methods often have 
finite stability boundaries. A simple technique for constructing methods with large 
stability boundaries replaces the scalar parameters in an RKN method by matrix 
operators, usually functions of hand of the Jacobian matrix of the system ofODEs. 
In [8] such methods were called generalized RK ( N) methods. Special cases are the 
celebrated Rosenbrock methods [14] and the Liniger-Willoughby methods [13]. In 
this paper, we consider generalized RKN methods obtained by replacing in the 
RKN method all righthand side evaluations f by Sf (see also [11] where related 
right-hand side smoothings are discussed). The preconditioning matrix Sis required 
to be such that Sf converges to f as h tends to 0. Furthermore, to be effective, 
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S should strongly damp the "high frequency (or, stift) components" (i.e., eigenvec­
tors of the Jacobian corresponding to eigenvalues of large modulus). On the other 
hand, to preserve accuracy, S should have a negligible effect on the "low frequency 
components" (eigenvectors corresponding to eigenvalues of small modulus). This 
leads us to a preconditioning matrix of the form 

(4.3) T(z): = 1 + <:{ - z)'1, 

where e is a small (nonnegative) number, (J is a positive integer, and the minus sign in 
front of z is added to make T nonsingular for all negative z. The resulting method 
will be called a preconditioned RKN method (PRKN method). The following 
theorem presents a condition for A- and P-stability. 

THEOREM 4.1. Given an RKN method with step point and stage order p, with 

stability boundary f3stab• and with periodicity boundary /Jper· The PRKN method 

generated by (4.3) has step point and stage order p if 2(J ~ p, and it is A-stable if e is 

bounded below by ( (J - 1 )" - 1 ( (J f3stab)- ". The method is P-stable if in this lower bound 

f3stab is replaced by f3pm provided that f3per i= 0. 

PROOF. Evidently, by replacing f by Sf, we introduce local perturbations at worst 
of O(hP+ 1), so that the global step point and stage order of the PRKN method is still 
p. Furthermore, if the PRKN method is applied to the test equation y" = A.y, then 
the recursion (2.3) assumes the form 

Yn+l = M(((z))v., 
z 

((z):=----
1 +e(-z)" 

The corresponding stability function takes the form R*(z): = p(Mff (z))) = R(((z)), 

where R(z) denotes the stability function of the original RKN method. The stabilized 
RKN method is A-stable if ((z) satisfies the inequality - f3stab s; ((z) s; 0, where {3,1ab 

denotes the stability boundary of the original RKN method. It is easily verified that 
this leads to the lower bound for<: of the theorem. By replacing f3stab by /Jpen and by 
observing that the values of R* on the negative z-axis are composed of the values of 
R on the interval ( -f3pen 0) which equal 1, it is immediate that we have P-stabil-
ity. II 

EXAMPLE 4.2. In order to see the effect of the preconditioning technique on the 
accuracy we choose a conditionally stable method from family A (see Table 1.1), and 
we perform computations with and without preconditioning. The sequence of 
stepsizes is chosen such that for certain values of h (in the table ofresults indicated in 
bold face) the eigenvalues of h2 Jn enter the region of instability U of the method. By 
choosing large integration intervals, we achieve that there are sufficiently many 
steps to develop instabilities when the region U is entered. Hence, we expect 
a sudden drop of accuracy when this happens. If preconditioning is applied, then 
such a drop of accuracy should not occur. Table 4.3 lists results for the problem [12] 
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( 2498 4998) ( 2) (0) (4·4l y"(tl = -2499 -4999 y'(t), y(O) = -1 ' y'(O) = 0 ' O ~ t ~ lOO, 

with exact solutiony(t) = (2cos(t), -cos(t))r. Without preconditioning, the direct 
3-stage Radau method is unstable for the stepsize h = 1/6 and h = 1/15.8, that is at 
the points : = -69.4 and : = - 10 (cf. Table 4.1 ). These results show that A­

stability is retained by preconditioning without reduction of the accuracy. We also 
applied the indirect version of the 3-stage Radau method (which is L-stable and does 
not need preconditioning). It turned out to perform slightly less accurate than its 

preconditioned, direct counterpart. 

Table 4.3. NCO values produced by the 3-stage (A) and indirect (B) Radau methods 
for Problem (4.4). 

Method a h-1 = 4 6 11 15.4 15.8 16.2 20 
-Z= 156 69.4 20.7 10.5 10 9.5 6.25 

A 0 5.2 * 7.4 8.2 * 8.3 8.7 

A 0.0002 3 5.1 6.0 7.4 8.1 8.2 8.2 8.7 

A 0.000015 4 5.2 6.1 7.4 8.2 8.2 8.3 8.7 

B 4.6 5.5 6.8 7.6 7.6 7.7 8.1 

In addition to the autonomous problem (4.4), we also performed a test with 
a nonautonomous variant of this problem. For that purpose, we added the term 
-;•(y 1 - 2cos(t), y2 + cos(rW to the right-hand side of(4.4). Notice that this does 
not change the exact solution. For i'-values up to, say, 100, the preconditioned 
methods show a similar accuracy as for the autonomous problem, but quickly loose 
accuracy if/' increases. The reason is, of course, that for such large }'-values the right­
hand side is dominated by the nonautonomous term, whereas its influence does not 
enter into the preconditioning matrix S. The indirect method, on the other hand, 
performs very well, also for large 1•-values (full details on this experiment can be 
found in [10]). 

Summarizing, we conclude that the preconditioning technique is a useful tool (i.e., 
for retaining A-stability without loosing accuracy) for problems where the Jacobian 
matrix is constant or slowly varying (with respect to the stepsize) and where the 
nonautonomous (inhomogeneous) term is also of moderate variation. 
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