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Abstract

Van der Houwen, P.J., B.P. Sommeijer and Nguyen huu Cong, Parallel diagonally implicit Runge—Kutta—
Nystrém methods, Applied Numerical Mathematics 9 (1992) 111-131.

In this paper, we study diagonally implicit iteration methods for solving implicit Runge-Kutta—Nystrom
(RKN) methods on parallel computers. These iteration methods are such that in each step, the iterated
method can be regarded as a diagonally implicit Runge~Kutta—~Nystrdm method (DIRKN method). The
number of stages of this DIRKN method depends on the number of iterations and may vary from step to step.
Since a large number of these stages can be computed in parallel, and since the total number of stages can be
kept small by a suitable choice of the parameters in the iteration process, the resulting variable-stage DIRKN
methods are efficient on parallel computers. By using implicit Runge-Kutta—~Nystrém methods with high stage
order, the phenomenon of order reduction exhibited in many problems with large Lipschitz constants does not
deteriorate the accuracy of these variable-stage DIRKN methods. By a number of numerical experiments the
superiority of the parallel iterated RKN methods over sequential DIRKN methods from the literature is
demonstrated.
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1. Introduction

Consider the initial-value problem for systems of special second-order, ordinary differential
equations (ODEs) of dimension d:

Y'(&)=f(y(),  y(t)=yo, ¥ (t)=Yos 1)
Yy RoRY  fiRYSRY f<t<teny- '
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Important examples from this class of problems originate from structural mechanics. Such
problems possess periodic solution components with frequencies ranging from small to large of
which the lower harmonics are of interest and the higher harmonics are not, that is, only the
solution components corresponding to eigenvalues of the Jacobian matrix 3f,/dy close to the
origin are of interest. In such cases, the ideal method would be a method without dissipation of
the lower harmonics (i.e., nonempty periodicity interval), high order of dispersion, and damping
of the higher harmonics. The presence of unwanted high harmonics (a form of stiffness) may
considerably reduce the order at the step points (henceforth, this classical order will be called
step point order). In many stiff problems, it is the stage order that determines the accuracy,
rather than the step point order (cf. [2]). In order to diminish the effect of order reduction we
need methods that have, in addition to a high step point order and the property of A-stability,
a high stage order. We remark that A-stability for second-order problems is sometimes
referred to as R-stability (cf. [17]).

In this paper, we consider integration methods based on iteration of fully implicit Runge—
Kutta—Nystrom (RKN) methods of collocation type. Such RKN methods possess the largest
possible stage order, so that we automatically achieve high stage orders if the RKN method is
solved sufficiently accurate. Furthermore, after only a few iterations, the step point order of the
iterated method equals that of the underlying implicit RKN method. Since there are A-stable
RKN methods available of arbitrarily high step point order, the iterated methods possess the
requirements stated above. For an extensive set of suitable RKN methods with high stage
orders we refer to [9].

In Section 2, we shall investigate diagonal-implicit iteration methods for solving the implicit
relations in the RKN method. Such iteration methods possess the same degree of implicitness
as diagonally implicit Runge-Kutta-Nystrom methods (DIRKN methods). In fact, after a finite
number of iterations, they belong to the class of DIRKN methods. We remark that the step
point order p of these DIRKN methods can be made arbitrarily high by iterating an RKN
method with step point order p, where p is sufficiently large. Hence, the restriction p <4
which applies to the DIRKN methods available in the literature (see Section 1.2) is easily
relaxed. Adopting the terminology used for iterating implicit linear multistep methods, we shall
call the underlying implicit RKN method the corrector and the method used for starting the
iteration the predictor (which are discussed in Sections 1.1 and 2.3, respectively). The iteration
process will be called predictor—corrector (PC) method.

The number of stages of this PC method increases with the number of iterations and may
vary from step to step depending on the convergence behaviour. Because of the nature of
diagonal-implicit PC methods, a large number of the stages of the resulting variable-stage
DIRKN method can be computed in parallel, so that the number of stages that have to be
computed sequentially is substantially reduced when implemented on multi-processor comput-
ers. A second advantage is that only one LU-decomposition per processor is required. Hence,
the method can be regarded as a singly-implicit DIRKN method (SDIRKN method). Thirdly,
we shall reduce the number of iterations per step by a suitable choice of the parameters in the
iteration process (to be discussed in Section 2.5). In this paper, our approach of choosing the
iteration parameters is based on the minimization of the spectral radius of the stage vector
iteration matrix. For a number of RKN correctors generated by collocation-based RK methods,
we have calculated the iteration parameters with this minimizing property. However, fast
convergence of the PC iteration is useless if the overall stability is insufficient. Therefore, from
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thf: yarious PC methods, we selected (in Section 2.6) those methods that are A-stable for a
minimal number of iterations per step. Finally, the use of collocation-based corrector methods
guarantees high stage order, so that the phenomenon of order reduction, exhibited in many
problems with large Lipschitz constants, does not deteriorate the accuracy of the methods.

By a number of numerical examples, it is demonstrated (see Section 3) that the high-order

Fipally, in Section 4, we briefly summarize the main results of this paper and discuss some
possible extensions.

1.1. RKN methods

We consider RKN correctors of the form

k
Yoi1 =Y, T hy, + bohzf(yn) +h? Z b, f(Y:),

i=1

k
y;;+1 =yr;+d0hf(yn)+h Zdif(Yi)’ (1-2)

i=1

k
Y, =y, +chy, +ah*f(y,)+h* Y a,;f(Y), i=1,...,k,

i=1

or using the Butcher array notation (cf. e.g., [5]),

(1.3)

where a =(a,), b= (b)), c=(c;) and d = (d,) are k-dimensional vectors, A4 =(a;;) is a k by k
matrix and 0 is a k-dimensional vector with zero entries. We always assume that the matrix A
is nonsingular. Scheme (1.2) presents an (s = k + 1)-stage RKN method requiring & implicit
stages and one explicit stage. In the case where a, b, and d, vanish, the explicit stage is not
needed and (1.2) reduces to the general (s = k)-stage RKN method with s implicit stages. For a
discussion of the order of accuracy p and the stage order r of RKN methods, we refer to the
literature (e.g., [4,9)).

It will be assumed that the eigenvalues of the Jacobian matrix 3f/dy in (1.1) are negative.
This means that the integration step should satisfy the stability condition

2 < Bstab
= p(af/3y)’

where p(3f/dy) is the spectral radius of the Jacobian matrix 3f/dy and B,,, denotes the
stability boundary of the RKN method. Thus, if we have a stiff problem where p(3f/dy) is
extremely large, then we should apply an A-stable RKN method, i.e., B, = ®. Unfortunately,
the RKN methods with maximal stage order possess finite stability boundaries (cf. [10,9]). In

(1.4)
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this connection, we remark that for certain classes of problems it is possible to use nop-A—stable
RKN methods for stiff problems by preconditioning the equation in (1.1). Then, instead of
integrating (1.1), we integrate the equation (see [9])

y'(t)=g(x(), g(»)=T"")f(»)

y(t,) =Y, y'(t,) =y, t,<t<t,+th, (1.5)

_ ()

T(x)=1+e(=x)"s  o=lp+1)/2,  Jy=—p

n

b

where p is the order of the RKN method and ¢ is a small parameter. The advantage is that,
irrespective the size of the (negative) eigenvalue interval of 3f/dy, the eigenvalues of dg/dy are
in a finite interval [—p*, 0], with

o—1

" e o

Hence, for the preconditioned equation (1.5) the stability condition (1.4) can be written as

1 -1\’
6> (0 )h%, (1.7)

o-1 Uﬁstab

where h denotes the step one wants to use. This condition shows that £ can be chosen of order
O(h?9), so that (1.5) can be interpreted as a perturbed problem in which the perturbation is of
order 2¢ in h, that is, at least of order p.

In this paper, we shall concentrate on the iteration of A-stable RKN correctors. However,
ve shall present all formulas for equation (1.5), so that the use of non-4-stable RKN correctors
is included in the subsequent analysis (notice that by setting & =0, we recover the original
equation (1.1)). In a future paper, we intend to study the performance of non-4-stable RKN
correctors with increased stage order.

1.2. Sequential SDIRKN methods from the literature

Although the total volume of arithmetic operations of the methods constructed in this paper is
considerably larger than that of SDIRKN methods from the literature, matters are different
when parallel computers are used. As we shall see in Section 2.1, many of the stages of the new
methods can be performed in parallel, thus reducing the effective (or, sequential) run time to
such an extent that it is comparable to that of SDIRKN methods on sequential machines. In
order to facilitate a comparison of our parallel methods with already available sequential
SDIRKN methods, we shall list a few of such SDIRKN methods from the literature.

Firstly, we remark that SDIRKN methods can be generated starting from SDIRK methods
for first-order ODEs. Writing (1.1) in first-order form and application of an SDIRK method
straightforwardly yields an SDIRKN method. Such methods will be called indirect SDIRKN
methods. In particular, we mention the two-stage and three-stage A-stable SDIRKN methods
of orders p =3 and p = 4, respectively, based on the SDIRK methods of Ngrsett [13]. These
indirect methods will be denoted by Ngrsett, and Ngrsett,, the subscript referring to the
number of implicit stages per step. Since these methods do not possess an explicit stage, they

oo
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have vanishing a, b, and d,. Therefore, their Butcher arrays will be presented in the
condensed form

c| A
T . (1.3")
dT
Using this format, the indirect Ngrsett methods are now defined by
3 £? 0 0
A X 0 } £(1-2¢) g2 0
1—-A | 20(1-2)) A 1-¢ 8£2 -3¢+ 26(1—4¢) £2
7(1-1) 34 S¢n—E-—m+3 —6éntét+n £
3 3 U 1—2n n
where
A 3+V3 ; 3+ 2V3 cos(w/18) 1
TTe 0 7 6 T s(1—2e)

Furthermore, we mention the indirect SDIRKN method generated by the third-order
A-stable SDIRK method of Burrage [1]. This four-stage method has the special property that its
order of B-convergence equals 3 for semi-linear problems. In the format (1.3'), its Butcher
array reads

0.7886751346 0.6220084679
3.1742957030 3.7629592451 0.6220084679

—0.0195951646 | —1.2749253740 0.0 0.6220084679
1.0830184350 0.7564996127 —0.0739506877 —0.2182664410 0.6220084679 ,

—0.1353633836 —0.0473517944 0.2862835400 0.3964316380
0.0763188000 —0.0301592919 0.4511853166 0.5026551753
This method will be denoted by B,.

In addition to the aforementioned indirect SDIRKN methods, we mention two direct
SDIRKN methods. By “direct” we mean that they do not originate from an SDIRK method for
first-order ODEs, but are constructed directly for the special second-order equation (1.1). In
[17], Sharp, Fine and Burrage proposed two-stage and three-stage A-stable direct SDIRKN
methods. In the form (1.3'), their Butcher arrays are given by

3 9
5 50
17 289 9 9 2
14 392 10 0 30
23 | 234179 289 6 | 234657 _ 891891 9
60 352800 392 » 37 | 1266325 2532650 50
2L 18 115 55 42439
698 349 729 2457 132678
49 300 575 550 50653
349 349 1458 2457 132678

These methods have step point orders p =3 and p = 4, respectively, and possess an increased
order of dispersion which makes these methods highly accurate for oscillatory problems. They
will be denoted by SFB, and SFB;.
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2. Diagonal-implicit PC methods

We shall construct integration methods by diagonal-implicit PC iteration of fully implicit
RKN methods. Thus, assuming that in (1.2) the matrix A4 = (a,,-) is a full matrix, we have to
find the solution of the equation for the stage vector ¥ = (Y;). Our aim is to construct solution
methods that run fast on parallel computers. In the case where all eigenvalues of the Jacobian
matrix are close to the origin, the stage vector equation in (1.2) can be solved by fixed point
iteration which is well suited for implementation on parallel computers. For first-order ODEs
this has been discussed in [14,11,7]. However, if the problem is “stiff” (by which we mean that
dg /9y also has negative eigenvalues of large modulus), then fixed point iteration would dictate
very small stepsizes in order to get convergence. Therefore, we consider a more powerful class
of parallel iteration processes which leads to the same degree of implicitness as occurring in
SDIRKN methods. These processes are similar to the stiff iteration method applied in [8] for
solving the stage vector equation associated with RK methods for first-order ODEs. In order to
include RKN correctors that are not A4-stable, the analysis will be presented for the precondi-
tioned problem (1.5) (recall that (1.5) reduces to the original problem (1.1) if ¢ tends to zero).

2.1. Iteration of the stage-vector equation

Let Y’ denote the wth iterate to ¥;, and define
X, =Y —x, Xi(#) = Yi(m—xi’ .

C i=1,... k. (2.1)

Xi=DY, +Cihyn + aih g(yn)’

Following [6] we shall compute iterates X(*, rather than the iterates Y,*), because the
quantities X'* are of smaller magnitude and are therefore less sensitive to rounding errors. In
terms of X, and x,, the stage vector equation in (1.2) reads

k
X,.=hZZaUg(Xj+xj), i=1,... k. (1.2")
j=1
For each of these equations, we define the iteration process (cf. [8])

X — 5,h% (X +x,) =XV — 5,h% (X# D +x,)

k
—w,| XD —h? Y aug( X0 +x;) ), (2.2)

j=1
where i =1,...,k and w=1,...,m. Here, the w, are relaxation parameters and the §; are

iteration parameters which are assumed to be positive. Notice that the X*) are implicitly
defined in (2.2). This is a consequence of the introduction of the §-parameters, and enables us
to integrate stiff equations. In order to start the iteration (2.2), we need a predictor to compute
the initial approximations X*. The choice of a suitable predictor will be discussed in Section
2.3.

Evidently, if (2.2) converges, then X{*) converges to X,. Since the k systems that are to be
solved in each iteration of (2.2) can be solved in parallel and each has a dimension equal to that
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of the system of ODEs, the iteration process (2.2) is on a k-processor computer of the same
computational complexity as an m-stage SDIRKIN method on a one-processor computer.

We remark that, if nonzero values for e in (1.5) are used, then the implementation of the
iteration formula (2.2) can be simplified by premultiplying with the matrix 7(J,):

T(J,) X = 8,23 (X +x,) = T(J,) X* D = 8,2 (X#~D +x,)

k
-, T(J)X# D—h%Y, a,-jf(X}’“”+xj) .
j=1

(2.2)

This recursion shows that the preconditioning hardly complicates the form of the implicit
relations to be solved.

2.1.1. Definition of the step values

Suppose that we adopt Y™ = X" +x, as a sufficiently accurate approximation to the exact
stage vector solutions ¥; of the corrector (1.2). Then, the most natural way to approximate the
step values y,,, and y,,, in (1.2) defines the values according to the formulas (cf. [8])

k
Vuos =2,y byhg(3,) B T big(X™),
i=1

k
Yoo =y, +dohg(y,) +h ) dg(Y'™)

i=1

(2.3)

(in order to avoid confusion, we shall from now on denote the corrector solution values
obtained from y, and y, by u,., and u, ;). However, the presence of the righthand side
evaluations in these formulas may give rise to loss of accuracy in the case of stiff problems (cf.
[16)). This difficulty can be overcome by applying a similar approach as proposed in [6] for the
implementation of implicit RK methods. For simplicity, we describe this approach for the
scalar equation y” = g(y). Defining ¥ =(Y;) and G = (g(Y})), the corrector (1.2) can be written
in the form

Uy, =Y, +hy, +bohzg(yn) +h%b7G, U, =y, +dohg(y,) +hd’G,
G=h"24"'[Y —ey, —chy,—ah’g(y,)],

provided A is nonsingular. This representation shows that we can eliminate the righthand side
evaluations and that u, ,, and u],, can be expressed solely in terms of the stage vector Y. Now
we will compute y, ., and y, ., according to these formulas with Y replaced by Y. Returning
to systems of ODEs and to the notation X{”, we obtain

k
Yis1=Yn + hyr; + bthg(yn) + Z aiXi(m)’

i=1

k
yr,1+l =y,', + dOhg(yn) + h_l Z BiXi(m)v

i=1

(2.4a)
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where «; and B, are the components of the vectors

a=b"4"", Bi=d™ ! (2.4b)
In many cases the corrector is of so-called “stiffly accurate” type, which means that it satisfies
c,=1,b,=a, and b"4 "' = e[ (see e.g. [2,6]). In such cases, the step value u, ., produced by

the corrector is given by the last component of the stage vector, i.e., by Y,. Accordingly, in case
of a stiffly accurate corrector, the final approximation y, ., at the steppoints is obtained by
taking the last component of the iterated analogue, i.e., Y. In terms of the iterate X\, y, .,
is defined by

Yus1 =¥n T hy, +boh’g(y,) + X (24"
2.2. The iteration error

We shall say that the order of the iteration error of the PC method {(2.1), (2.2), (2.4)} equals

q if
un+1—yn+1=o(hq+l)v Upir = Yn =O(RT), (2.5)
where (u,,, u,.,) and (y,,,, ¥..,) denote the step values obtained from the values (y,, y,)
by respectively solving the corrector equation exactly and by performing a finite number of
iterations. The iteration error associated with {(2.1), (2.2), (2.4)} can be studied by applying it to

the scalar test equation y” = Ay, where A runs through the eigenvalues of dg /dy. Defining the
error

e =X-XW, Xe=(X), X®=(XW), (2.6)
ve deduce from (2.2) that the iteration error (2.6) satisfies the recursion

e = [I—-w#H(z)]s(“'“,

H(z)=[I-zD]"'[I-2A], z=AR*, p=1,...,m,

where D is the diagonal matrix with diagonal entries §,. Hence,
m

g™ =P (H(z))e"?, P(x)=T1(1-w,x). (2.7)

u=1

The matrix P,(H(z)) will be called the stage vector iteration matrix.
In the following, we use the notation

un +1 yn +1
w"“::(hu;ﬂ)’ vn+l:=(hy,+l). (283)
n
In terms of these vectors, we can derive an error equation of the form
wn+1 _vn+1 =Em(z)vn’ (ng)

where the matrix E,(z) is a 2 by 2 matrix determined by the RKN parameters and the matrix
D. This matrix will be called the iteration matrix of the diagonal-implicit PC method. From the
formulas (2.4) and (2.4') for the step values it follows that

Ups1=Vas1 =P Pu(H(2))e®,  hu,  —hy,  =d"A7'P,(H(z))e?, (2.9)
where p™ =574~ for nonstiffly accurate correctors, and pT = e[ for stiffly accurate correctors.



P.J. van der Houwen et al. / Parallel DIRKN methods 119

We shall first give an order result for the PC method. The actual choice of the predictor will
be discussed in Section 2.3. The preceding considerations lead to the following theorem:

Theorem 2.1. Let the predictor be of order p*, i.e.,
eO=X-XO=0(hr"*).
Let

Po(x)=(1=x)" Qp_ps(x), Qp_yge(1)#0.

Then, for any choice of the matrix D, the order q of the iteration error of the PC method
{(2.1), (2.2), (2.4)} is given by g =2g* +p* — 1.

Proof. Since P, has a zero at x = 1 of multiplicity g*, it follows from (2.9) that for z —» 0
u""‘l _yn+1 =zq*Qm—ll*(1)pT(A —D)q O(hp*'*'l)’
Uy =Yh =290+ (1)dA (A =D) hIO(hP ),

Recalling definition (2.5) and observing that z = O(42), the theorem easily follows. O

2.3. The predictor

In view of stability, an important property of the predictors is the degree of amplification of
stiff components. Therefore, apart from the usual approach to choose an explicit predictor, we
will also consider some implicit predictors. Notice that, as a consequence of this choice, the
number of implicit relations to be solved per step is increased by one.

In Table 1 we have collected various possibilities for choosing the predictor. We remark that,
in this paper, we confine our considerations to one-step predictors. Notice that these low-order
predictors might be improved upon by using multistep predictors of higher order, since it is
likely that these will result in fewer iterations. Observe that the predictors III and IV are of
order 2, whereas the first two predictors are only of first order. Furthermore, we remark that
the predictors II and IV have a strongly damping effect on the stiff components.

To compare the computational costs required by the various predictors, we also list the
number of systems of dimension d to be solved in each step on each processor, and the number
of sequential LU-decompositions (LUDs) per step. Since predictor IV needs an LUD of the
matrix I —y;h%g/dy (to solve for X{?) in addition to an LUD of I—§,;h%g/dy (needed in

Table 1

Survey of one-step predictors (y, = ¢?)

Predictor X0 i=1,...,k p* Systems LUDs
I —a;h?g(y,) 1 m 1

11 - a;h’g(y,)+ 8:h°g(X® + x,) 1 m+1 1

111 —a;h’g(y,)+ h*[8,2(X(0 + x)+(y; - 8,)g(y,)] 2 m+1 1

v —a;h’g(y,)+ vih’e(XO + x,) 2 m+1 2
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each iteration of (2.2)), this predictor seems to be less attractive from a computational point of
view.

The predictors listed in Table 1 are such that we can write
eV =X-XD=k(z)y, +ky(2)hy,, (2.10)

where the vectors k (z) and k,(z) are determined by the RKN parameters and, in case of the
predictors II and III, also by the matrix D. The iteration matrix E,(z) in (2.8b) assumes the
form

p'P,(H(z))k\(2) p'P,(H(z))k,(z)

~ . (2.8¢c)
AP, (H(2))ki(z) dA7'P,(H(z))ky(2)

E (z)= p

This matrix will be used in deriving the stability function of the PC methods (see Section
2.5.3).

2.4. The rate of convergence

Ideally, the overall rate of convergence should be based on some norm of the iteration
matrix E,(z) for all z-values that are relevant for the problem (1.5). However, this would lead
to iteration parameters that depend on the predictor and on m. This is an undesirable
situation, since the number of iterations m is not known a priori and may vary from step to
step. By observing that the entries of E,(z) are small if the magnitude of the stage vector
iteration matrix P, (H(z)) is small, we are led to minimize, in some sense, the magnitude of
P,(H(z)) for negative values of z. In this paper, we consider the case where the magnitude of
P,(H(z)) is estimated by its spectral radius. By minimizing the spectral radius of P,(H(z)), the
iteration parameters can be determined independently of the predictor and of the number of
iterations m. Denoting the spectral radius of a matrix M by p(M), we characterize the rate of
convergence of the stage vector iteration by

ra(z) == p(B(H(2))),  rni= Max r,(z),

—B<z<0 (2.11)
re=(r;,ry,...), B=h%*,

where p* is the parameter occurring in (1.6).
Furthermore, we denote the spectrum of H(z) by A(H(z)), and we define

p(z)=Max{|A —1]: A€ A(H(z2))}, p=Max{|A—1]: A € A(H)},

A(H) ={A(H(z)): —B<z<0)}. (2.12)

2.5. Choice of iteration parameters

In the following subsections, we shall discuss a few special cases for choosing the relaxation
parameters w, and the matrix D. We start with a discussion of the stiff iteration approach
which was investigated in [8] for solving implicit RK methods for first-order ODEs.
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2.5.1. Stiff iteration

In this case the matrix D is such that A(H(—)) is contained in a circle with minimal radius
p(—) and centered at 1, and the relaxation parameters are all equal to 1, so that r, = p. Stiff

iteration preassumes that the corrector is A-stable, hence we set 8 =« in (2.15). The following
theorem holds for k = 2:

Theorem 2.2. Let k =2, then the following assertions hold for the stiff iteration method:
(a) if det(A4) >0 and if either {a,a,, <0 and a5, >0} or {a,, >0 and a,, <0}, then there
exists a matrix D with positive entries such that p(—o) = 0.
(b) if (a) holds, then one eigenvalue of H(z) equals 1 for all z.
(c) if (a) holds and if Tr(A)> —2 [det(A)]'/?, then the eigenvalues of H(z) are real and
positive for all negative z.

Proof. (a) For k = 2 the value of p(—) vanishes if the matrix H(—») —] =D~'4 — I has zero
eigenvalues. This can be achieved by choosing

_ det(4)

8, = ——(1+{1-a,a,/det(A) ), 5,
asy

ap

By an elementary calculation assertion (a) can now be verified.

(b) Assertion (b) is satisfied if there exists a vector v, such that H(z)v =v for all z, ie., if
(I —zA)v = (I — zD)v. This relation is true for all z if D~ 'Av = v. Evidently, if (a) holds, then
D™ '4 has only eigenvalues 1 which proves (b).

(¢) Since the entries of H(z) are real for all negative z, we deduce from (b) that H(z) has
real eigenvalues for z < 0. Hence, by showing that

det(H(z)) = det(I —zD)™ ' det(I —z4) = det(I —zD) ™ '[det(A4)z%~Tr(A)z + 1]

is positive for z < 0, we can prove assertion (¢). 0O

Table 2

Stiff matrices D and corresponding vectors r

Generating RK method s k8§ 3, 84 5, pl—=x) r
Radau IIA 2 2 1/18 1/2 0 e/2
Lobatto IIIA ( = Newton-Cotes) 3 2 1/24 1/6 0 e/3
Lagrange with ¢ =(2, 1)T 3 2 3/32 1/6 0 e/3
Radau IIA 3 3 8417/16328 255/19799 1483/35645 0.0028 0.77e
Lobatto IIIA 4 3 754/7243 113/12480 999 /13576 0.0007 0.52e
Newton-Cotes 4 3 125/8979 988,/18531 85/729 0.0035 0.52e
Lagrange: ¢ =(%, 2, DT 4 3 362/8683  605/7281  783/6628 0.0019 0.53e
Radau ITA 4 4 2625/7342  1225/7601 76,/20731 71 /10024 0.023  0.81e
Lobatto IIIA 5 4 3384,/40409 25/5154 221,/10255  134/3319 0.074  0.58e
Newton—Cotes 5 4 81712772 493 /20960 337 /6661 921,/10594  0.026  0.64e
Lagrange: ¢ = (3, 5, ., DT 5 4 71/4500 105/9613  400,/7807 1177/18717 0.016  0.55e
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Table 3

Zarantonello matrices D and corresponding vectors r

Generating RK method sk § 8, 84 8, p(—) r
Radau IT1A 2 2 1,24 3/8 0.33e
Lobatto ITIA (= Newton-Cotes) 3 2 611/17603 347/2500 0.20e
Lagrange ¢ =(3, )T 3 2 391/5000  139,/1000 0.20e
Radau ITA 3 3 45372500 47/2500  547/2500 047  0.64e
Lobatto ITIA 4 3 13371250 1/100 431,/5000 0.47  0.47e
Newton-Cotes 4 3 57/5000 441710000 971/10000 036  0.42e
Lagrange with ¢ =(%, 2, )T 4 3 43/1250 69,1000  578/5871 0.34  0.44e
Radau I1A 4 4 2625/7342 1225/7601 76,20731  71,/10024  0.023  0.8le
Lobatto I1IA 5 4 1/10 1,200 1/50 7,/200 0.561  0.57e
Newton-Cotes 5 4 81712772 493720960 337/6661  921,/10594  0.026  0.64e
Lagrange: ¢ =(}, 15, 1, D7 5 4 71/4500 105/9613  400,/7807  1177/18717 0.016  0.55e

For k> 2, we did not succeed in deriving the optimal matrix D by analytical methods, so
that we resorted to numerical search techniques. For a few RKN correctors generated by
classical RK methods, Table 2 presents the entries of the matrices D that are optimal for stiff
iteration (stiff matrices D). The given entries in this table (and in the subsequent tables) are
rational approximations to the decimal numbers we found. Furthermore, we include the RKN
correctors generated by the Lagrange methods with collocation vectors ¢ = (3, DT, ¢=

5,2, D7 and ¢=(}, &, &, DT proposed in [8]. For all methods, we also list the vectors r as
defined in (2.11).

2.5.2. Zarantonello iteration

Assuming that all relaxation parameters equal 1, the optimal choice of the set A(H) is a
circle centered at 1 with minimal radius p. This follows from a lemma of Zarantonello (cf. [18]),
stating that the spectral radius of P,(H(z)) is minimized if P, has all its zeros at the center of
the circle (with smallest radius) containing the eigenvalues of H(z). We shall call this iteration
mode Zarantonello iteration. As for stiff iteration, we have r,, = p, however, r, is expected to
be smaller.

A numerical search yields the results listed in Table 3. For the 4-stage Radau IIA and the
5-stage Newton—Cotes and Lagrange correctors we could not find a better D matrix than in the
stiff case, so that the Zarantonello matrix D is identical with the stiff matrix D yielding
identical convergence factors. In all other cases, Zarantonello iteration possesses considerably
better convergence factors.

2.5.3. Chebyshev iteration

The PC method can be made more rapidly converging by a more sophisticated choice of the
relaxation parameters w, and the iteration parameters §,. The optimal choice of the relaxation
parameters leads to a minimax problem for the polynomial P,(x) on the set AC(H). Such
minimax problems have been extensively studied in the literature and can be solved by
identifying the polynomial P, in (2.7) with a shifted Chebyshev polynomial, the shift parame-
ters being determined by the ellipsoidal region containing the complex set A(H) (see [12]). We
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shall consider this approach for the simplified case where the matrix D is such that A(H) is

containefi in a real positive interval [a, b]. The optimal choice of P, is then given by the
polynomial (see e.g. [18)])

1 b+a—-2x b+a
P(x)=—T |— -
m(x) T m( b—a )’ Tm Tm(b __a)’ (213)

where T,, denotes the first-kind Chebyshev polynomial of degree m. From (2.7) it follows that

'fhe corresponding relaxation parameters are the inverses of the zeros of the polynomial (2.13),
ie.,

2

w, = =1,...,m
g 2u—1Nw\ KT Hee™
b+a~(b—a)cos(u)

2m

Since P, is bounded by 1/7, , we may write

m?>

\/' ‘/—2(b+a) _a[§,1] as a —b. (2.14)

Evidently, the Chebyshev approach will be more rapidly converging as b /a is closer to 1, hence
we determined D such that b/a is minimal (notice that b > 1). The corresponding iteration
method will be called Chebyshev iteration.

From Theorem 2.2 it follows that under the conditions of part (a) of the theorem, the
matrices D corresponding to stiff iteration can also be used for Chebyshev iteration. It turns
out that the conditions of part (a) are fulfilled by a number of RKN correctors generated by
classical RK collocation methods for first-order ODEs (for these correctors, we have B, = ®)
Moreover, we found that for these correctors the corresponding matrices D minimize the value
of b/a. Hence:

Corollary 2.3. For k =2 the matrices D corresponding to stiff iteration are optimal for Chebyshev
iteration.

Table 4 presents the matrices D that are optimal for Chebyshev iteration (Chebyshev
matrices D) and the numbers ry, r,,...,r, as defined in (2.14). A comparison with Tables 2
and 3 reveals that the convergence of Chebyshev stage vector iteration should be substantially
faster than that of stiff and Zarantonello iteration. A number of experiments where the rates of
convergence in a single step were considered, confirmed this conclusion. However, when the
global result of a whole integration process is considered, it turned out that Chebyshev iteration
is by far inferior to stiff and Zarantonello iteration. This is illustrated in the following example.

Example 2.4. Consider the model problem (see Kramarz [10]):

ro-( 28 b s0=(2) yo-(3). veem
(2.15)
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Table 4

Chebyshev matrices D and corresponding vectors r

Generating RK method s k8, 8, 35 Oy [a,b] rl=(ry, ry, )t
Radau ITA 22 1/18 172 [1/2,1] (0.34,0.25,...,0.18)

Lobatto IITA

( = Newton-Cotes) 32 1724 1/6 [2/3,1] (0.20, 0.15,...,0.11)
Lagrangewith ¢ =(3, D" 3 2 3/32 1/6 [2/3,1] (0.20, 0.15,...,0.11)
Radau I1A 3 3 18/125  7/500  11/50 [0.33,1.48]  (0.63,0.50,...,0.36)
Lobatto I1IA 4 3 7/40 7/500 31,200 [0.27,1.00] (0.57,0.44,...,0.32)
Newton-Cotes 4 3 1/50 81,1000 93/500 [0.29,1.00]  (0.55, 0.42,...,0.30)
Lagrange:c=(5, 3, DT 4 3 1725 17/200 1/8 [0.41, 1.74] (0.62,0.49,...,0.35)
Radau IIA 4 4 14171000 7/1000 7/125 317200 [0.21,1.49] (0.75, 0.63,...,0.46)
Lobatto I1IA 5 4 1/20 9/1000 11371000 9/50  [0.15,1.00] (0.73,0.61,...,0.44)
Newton-Cotes 5 4 1/125 43/1250 167,2000 4,25  [0.18,1.38] (0.77,0.65,...,0.47)
Lagrange: ¢ = (4, &, . DT 5 4 29/1000 1/50 53/500  33/250 [0.20,1.00] (0.66,0.53,...,0.38)

with exact solution y{(#) =(2 cos(¢), —cos(1))T. For the indirect two-stage Radau IIA corrector
Table 5 lists the number of minimal correct digits

NCD(h) = ~log( |l global error at the endpoint of the integration interval || )

obtained for a few values of 4 and m. Negative NCD-values are indicated by . This table
shows the inferiority of Chebyshev iteration. Since the matrices D in the stiff and Chebyshev
iteration mode of the indirect two-stage Radau IIA corrector are identical (see Corollary 2.3),
the poor performance of Chebyshev iteration is apparently caused by the choice of the
elaxation parameters.

The explanation of the poor overall performance of Chebyshev iteration is that, in spite of
the rapid Chebyshev convergence in each step, the stability of the integration process requires

Table S

NCD-values for problem (2.15) obtained by the PC method with predictor I and indirect two-stage Radau IIA
corrector

Iteration mode h m=2 m=3 m=4 m=35 m =
Stiff T 25 2.6 2.6

& 3.4 35 3.5

= 4.4 4.4
Zarantonello & 2.5 26 2.6

= 35 3.5

= 4.4 4.4
Chebyshev % * * 0.1 0.9 . 2.6

v * * * 0.3 35

1

a8

* * * * 4.4
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many more iterations per step than required by the convergence criterion. To see the reasons
for this phenomenon we have to define the stability function for diagonal-implicit PC methods.
The RKN corrector satisfies the relation (cf. [9])

W1 = M(2)0,,
1+2zby+2zb"(I —Az) " '[e +za] 1+2zb"(I—Az) ‘¢
zd0’+sz(1——Az)_1[e+za] 1+2d™(I—Az) "¢
On substitution into (2.8b) we obtain
U, =|[M(2)—E,(2)|v,. (2.17)

We shall call the matrix M(z) — E, (z) the stability matrix of the iterated RKN method and its
spectral radius the stability function R, (z), i.e.,

R, (z)=p([M(z)—E,(2)]). (2.18)

From (2.16) it follows that M(z) approaches a matrix with a double unit eigenvalue for
z — 0. As a consequence, the eigenvalues of the stability matrix M(z) — E, (z) may easily move
outside the unit circle, unless the entries of E,(z) are close to zero as z — 0. The definition of
E,(z) strongly suggests choosing all zeros of the polynomial P,(x) at x =1, i.e., all relaxation
parameters equal to 1. In order to illustrate that unit relaxation parameters improve the
performance dramatically, we repeated the experiment in Example 2.4 by iterating the indirect
three-stage Radau IIA corrector using relaxation parameters equal to 1 together with the
Chebyshev matrix D (stationary Chebysheuv iteration).

M(z) = (2.16)

Example 2.5. Table 6 compares the Chebyshev and stationary Chebyshev mode of the indirect
three-stage Radau IIA corrector for problem (2.15). The superiority of the stationary Cheby-
shev mode over the “true” Chebyshev mode is evident.

2.6. Selection of methods

Since stability plays such a crucial role in the overall performance of the PC methods, we
have computed (numerically) the minimal value of m such that the iteration method is stable

Table 6

NCD-values for problem (2.15) obtained by the PC method with predictor I and indirect three-stage Radau IIA
corrector

Iteration mode h m=2 m=3 m=4 m=>5 m=o
Chebyshev 5 * * * * e 6.6

% * * * * .. 8.1

315 * * * * . 9.6
Stationary & # * * 6.6 6.6
Chebyshev = 4.6 7.7 8.1 8.1

= 5.9 9.4 9.6 9.6
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Table 7
Values of m, for Zarantonello and stationary Chebyshev iteration
Generating RK method k r=s Zarantonello iteration Stationary Chebyshev
Explicit Implicit lteration
Predictor Predictor Explicit Implicit
Predictor Predictor
Radau IIA 2 2 4 2 2 2
Lobatto I1IA (= Newton-Cotes) 2 3 >10 > 10 7 7
Lagrange with ¢ = (3, 1)T 2 3 3 4 2 3
Radau IIA 3 3 8 5 7 4
Lobatto ITIA 3 4 >10 >10 > 10 >10
Newton-Cotes 3 4 >10 > 10 > 10 > 10
Lagrange: ¢ = (5, 2, DT 3 4 6 6 6 7
Radau IT1A 4 4 >10 > 10 > 10 >10
Lobatto ITIA 4 5 >10 > 10 > 10 >10
Newton-Cotes 4 5 >10 > 10 > 10 > 10
Lagrange: ¢ = (3, %, 13, DT 4 5 7 8 >10 >10

for all z in the interval [—3,0] and for all m equal to or greater than this value. Let us denote
this critical value of m by m, and let m, denote the minimal number of systems (of dimension
d) that are to be solved per step and per processor such that the PC method is stable. From
Table 1 it follows that m, =m, for the explicit predictor I, and m, = m,+ 1 for the implicit
predictors II, III, and IV. In Table 7, the values of m, are listed for a number of RK-generated
RKN correctors using the explicit predictor I and the implicit predictor II. For each k, the
minimal values are indicated in bold face.

This table shows that for k =2 there are four combinations of predictor, corrector and
iteration mode with a minimal m-value. From these combinations we have chosen the
Lagrange-based method because the stage order r of the indirect Lagrange corrector is higher
than that of the indirect Radau corrector. For k =3 and k =4 there is just one “optimal”
combination. Thus, we are led to the following three optimal A-stable combinations:

Explicit—Lagrange—Chebyshev

with at least 2 implicit sequential stages (ELC,)
Implicit—Radau ITA-Chebyshev

with at least 4 implicit sequential stages (IRC,)
Explicit—Lagrange—Zarantonello

with at least 7 implicit sequential stages (ELZ,).

(2.19)

Since the global order of PC methods equals min{ p, g}, it follows from Table 1 and Theorem
2.1 that the global orders of the methods ELC,, IRC, and ELZ, are given by min{p, 2m}
(recall that g* equals the number of iterations), so that both the order and the stage order of
the corrector is already reached for m >p/2. Hence, by satisfying the stability condition
m >m,, we are sure that the PC method has the same order p and stage order r as the
corrector.
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For completeness, we give the correctors selected above, and the corresponding vector 8 (see

(2.4b)). Since these correctors originate from stiffly accurate RK methods, they all have a = e}

The indirect Lagrange corrector with k = 2 is defined by

0| 0 O 0
3 75 _ 2L
4| 128 16 128
1l 1 2
4 77 9, B= (-
oo 2
5 7 9
3 8 -1
8 9 6

k-

The indirect Radau IIA corrector with k =s — 1 = 3 (written in the form (1.3")) reads

0.155051025722
0.644948974278

0.021835034191
0.177190587432

—0.019857254099
0.038164965809

0.010042630197
—0.007375963530

1.000000000000 | 0.318041381744 0.181958618256 0.000000000000,
’ 0.318041381744 0.181958618256 0.000000000000
0.376403062700 0.512485826188 0.111111111111

with B = (5.531972647422, —7.531972647422, 5)T.
The indirect Lagrange corrector with & =4 is given by

0.0 0.0 0.0 0.0 0.0 0.0
0.166666666667 | 0.007240660574 0.008214814815  —0.003273544974 0.004739057239  —0.003032098765
0.583333333333 | 0.027437044052 0.114192181070 0.040901388889  —0.030997357838 0.018605632716
0.916666666667 | 0.034578097443  0.229227777778 0.165230621693  —0.032210648148 0.023313040123
1.000000000000 | 0.037142857143 0.256177777778 0.202057142857 —0.017777777778 0.022400000000
0.037142857143  0.256177777778 0.202057142857 —0.017777777718 0.022400000000
0.029870129870 0.325333333333 0.438857142857 0.193939393939 0.012000000000

with B =(—4.8, 3.526530612245, —19.834710743802, 17.6)".

3. Numerical comparisons

In this section, we restrict our considerations to the methods (2.19) and the two-, three- and
four-stage SDIRKN methods of Section 1.2. In the experiments reported below, we dropped
the fixed-number-of-iterations strategy used in the preceding examples. Instead, the number of
iterations m was determined dynamically by the stability criterion m > m, together with a
condition on the iteration error. It seems natural to require that the iteration error is of the
same (stiff) order in A as the local error of the corrector. This leads us to the convergence

criterion

k
m>=mg, Mlax HX}”‘)—hZZa,.jg(Xj‘m)+xj) lo < ChP*1,

i=1

(3.1)
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Table 8

Values of NCD /M for problem (2.15)

Method k D r N=35 N=10 N=20 N=40 N=280
Norsett, 2 3 1 0.9/10 1.8/20 2.7/40 3.6/80 4.5/160
SFB, 2 3 1 0.6/10 1.5/20 2.4/40 3.3/80 4.2/160
Norsett, 3 4 1 31/15 3.1/30 4.1/60 5.2/120 6.4,/240
SFB, 3 4 1 24/15 3.6,/30 4.8/60 6.0/120 7.2/240
B, 4 3 1 0.9/20 1.8,/40 2.7/80 3.6/160 4.5/320
ELC, 2 3 3 2.0/19 2.9/39 3.8/78 4.6/156

IRC, 3 5 3 42/20 6.1/40 7.7/80 9.4/160

ELZ, 4 S 5 6.6/35 8.1/70 9.6/140 10.9 /280

where C is a parameter independent of A. In our numerical experiments we always used
C=10"2

Furthermore, in the tables of results, M denotes the (averaged) number of sequential
systems to be solved per unit interval and N denotes the number of integration steps per unit
interval.

3.1. Kramarz problem

Table 8 compares the methods specified above when applied to problem (2.15) of Kramarz.
For this linear problem, where the Jacobian and its LU-decomposition can be computed once
nd for all at the beginning of the integration interval, the value of M may serve as a measure
the sequential computational costs. The results clearly show that the parallel methods IRC,,

d ELZ, are by far the most efficient ones, in spite of the fact that in this example no order
eduction is observed. However, by the same reason, the method ELC, is only slightly more
efficient than the other third-order methods. We observe that IRC, and ELZ, do not need

more iterations to satisfy the convergence criterion (3.1) than already prescribed by the stability
condition m > m,,.

3.2. Nonlinear partial differential equation

We apply the methods to the semidiscretization of the partial differential equation (see also

(9D

3%u 42y? o%u [ 5

— = — +uld cos*(2wt) -1 0<rgl, Lx< .

a2 1+2x—2x% ax? (2me) 1], <l O<x<l, (3.2)
with initial and Dirichlet boundary conditions such that its exact solution is given by u =(1+
2x —2x?) cos(2t). By using second-order symmetric spatial discretization on a uniform grid
with mesh Ax = 5, we obtain a set of 19 ODEs. Observe that this spatial discretization yields
exact results for 8%u /dx?; hence, the exact solution of the system of ODEs is identical to the
PDE solution, restricted to the gridpoints. Table 9 is the analogue of Table 8. Again, no order
reduction is shown. If M is taken as a measure for the sequential computational costs, then
only the four-processor method ELZ, can beat the one-processor methods. However, in this
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Table 9

Values of NCD /M for problem (3.2)

Method k )4 r N=40 N =280 N =160 N =320
Ngrsett, 2 3 1 2.5/80 3.2/160 4.1/320 4.9 /640
SFB, 2 3 1 x 3.3/160 42/320 5.1/640
Negrsett, 3 4 1 * 3.6,/240 4.5 /480 5.3 /960
SFB, 3 4 1 4.4/120 5.6,/240 6.8,/480 7.9/960
B, 4 3 1 * 3.9/320 5.1/640 6.3,/1280
ELC, 2 3 3 3.8/296 4.7/566 5.5 /946 6.4,/1628
IRC, 3 5 3 6.4 /698 7.8/1126 9.2/1572 10.5 /2274
ELZ, 4 5 5 6.7/422 8.2/584 11.2/1120 13.1/2240

case of a semidiscrete nonlinear PDE, it is more realistic to consider the evaluations of the
Jacobian and the corresponding LU-decompositions as the bulk of the computational work.
This implies that all methods require approximately the same effort per step. As a conse-
quence, both IRC, and ELZ, are the most efficient methods, while ELC, is only superseded
by SFB;. Notice that the residual condition in (3.1) now plays a dominant role in the
determination of the number of iterations needed by the PC methods.

3.3. Prothero—-Robinson-type problem

Consider the system of (uncoupled) second-order Prothero—Robinson-type equations (cf.

[15]:

y'(1)=J[y(r) —g(1)] +&" (1),

J:=diag(—100'""), g(r)=(1+e7), j=1,...,6; 0<tr<10, (3.3)
with initial values y(0) = g(0), y'(0) = g'(0), so that its exact solution is given by y(¢) = g(¢). For
this problem, most methods show an irregular order behaviour, which is far from their
theoretical (order p) behaviour. Hence, in this example, order reduction really occurs, which is
caused by the stiffness of the problem. The results in Table 10 demonstrate the superiority of

the methods IRC, and ELZ,. The number of iterations in the PC methods is completely
determined by the residual condition in (3.1).

Table 10

Values of NCD/M for problem (3.3)

Method k D r N= N=2 N=4 N=8 N=16
Ngrsett, 2 3 1 1.5/2 23/4 3.1/8 3.9/16 4.0/32
SFB, 2 3 1 13,2 2.0/4 2.9/8 3.8/16 49/32
Norsett 3 4 1 1.7/3 23/6 33/12 4.5 /24 5.0/48
SFB, 3 4 1 1.2/3 2.8/6 3.3/12 3.5/24 4.6/48
B, 4 3 1 1.6/4 2.3/8 3.0/16 3.9/32 4.8 /64
ELC, 2 3 3 23/4 3.1/8 42/17 42/34 5.7/77
IRC, 3 5 3 3.7/5 5.1/13 6.0/30 6.5/84

ELZ, 4 5 5 5.1/10 53/18 7.6/33 9.5/97
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Table 11

Values of NCD /M for problem (3.4) with M and N rounded to integer values

Method k D r N=10 N=20 N =39 N=78 N=156
Norsett, 2 3 1 0.1/20 0.1/39 0.6/78 1.5/157 2.4/313
SFB, 2 3 1 0.1/20 0.1/39 0.4/78 1.2/157 2.1/313
Nersett 4 3 4 1 0.1/29 0.2/59 0.8/117 1.8/235 3.1/470
SFB, 3 4 1 -0.1/29 0.4/59 1.6/117 2.7/235 3.9/470
B, 4 3 1 0.1/39 0.1/78 0.6/157 1.5/313 2.4/627
ELC, 2 3 3 0.2/86 0.8/135 1.7/229 2.6/413 3.6/766
IRC, 3 5 3 1.2/130 2.7/173 42/274 5.7/477 7.2/867
ELZ, 4 5 5 2.5/75 4.1/137 5.7/274 7.2/548 8.7/1096

3.4. Fehlberg problem

Consider the nonlinear orbit equation (cf. [3]):

-4 =2/r(1) _ ’
2/r(t)  —4r? ) r(t)=Ily(t)ll2; Jm/2 <t<3m,

with exact solution y(z) = (cos(z?), sin(¢#2))T. Similar to the previous example, we observe the
srder reduction phenomenon. As in the preceding examples, the methods IRC, and ELZ, are
msiderably more efficient, see Table 11.

y"(2) =Jy(t), J==(

. Concluding remarks

Our starting point for the integration of systems of special second-order ODEs y”(¢) = f(y(t))
with large Lipschitz constants is an implicit Runge—Kutta—Nystrom method. Since a direct
approach to solve the resulting system of nonlinear equations is not feasible because of its huge
dimension (i.e., a multiple of the ODE dimension), we propose an iterative solution procedure.

To increase the efficiency, this iteration process is designed in such a way that it can be easily
mapped onto a parallel computer architecture. This property is achieved by a so-called
diagonal-implicit iteration which has the effect that—on each processor—a number of implicit
relations has to be solved of a much lower dimension (i.e., the ODE dimension). Furthermore,
the process has the additional advantage that (per processor) only one LU factorization per
step is required.

- The nature of the resulting algorithm is quite similar to so-called singly diagonally implicit
RKN methods, several of which have been proposed in the literature or can easily be obtained
from a singly diagonally implicit RK method for first-order ODEs. However, these schemes all
suffer from the order reduction phenomenon due to their low stage order. This means that the
observed order of convergence is much less than the classical order. Since our methods are
based on a fully implicit RKN method which can easily be given a high stage order, the
prospects for achieving an efficient behaviour are much better.

The technical part of the paper (Section 2) deals with the analysis of the iteration scheme
and several approaches for choosing the free parameters in this iteration are discussed. On the
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basis of its convergence analysis and the stability of the resulting method, we end up with an
optimal selection consisting of (i) the underlying implicit RKN method, (ii) the iteration
parameters and (iii) the predictor to start up the iteration. These specifications are given for
methods to be implemented on parallel computers possessing 2, 3 or 4 (groups of) processors.

By means of four numerical examples it is shown that the new methods are much more
efficient than the existing methods from the literature. This is due to the fact that they
effectively exploit the parallel features of modern computers but also because they have a much
higher (stage) order.

Since the successive iterations yield approximations of increasing order, a reference solution
is available without additional costs, which can be used to extend the methods with error
control and a varying stepsize strategy. Finally, the techniques described in this paper can

straightforwardly be used to construct similar methods for the special ODE y®X(¢) =f(y(1)),
v>2.
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