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Block Runge-Kutta Methods on Parallel Computers 

In drr corliegenden Arbeit werden Block-Methoden ::.ur Ldsung von gewdhnlichen Difl'erentialgleiclzungen C11(/' Paral!el­
Computern konstruiert. Die meisten in der Literatur ::ufindenden Block-Methoden er::eugen Niiherungen an die exakte Ldsung 
in aquidistanten Punk ten. Hier wird erlaubt, daj3 die Niiherungen nicht-iiquidistanten Pw1kte11 entsprechen kdnnen, wie das bei 
den Zwischenniiherungen der Fall ist, die mit Runge-Kutta-Methoden berechnet werden. Dieser Ansatz gestattet die Verbesserung 
der Genauigkeitsordnung. Wir kon::entrieren uns 1.mf expli::ite Methoden, die :::ur Amvendung aul Parallel-Computern geeignet 
sin d. 

In this paper block methods.fbr solving OD Es on parallel computers are constructed. Most block methods.found in the literature 
produce approximations to the exact solution at equidistant points. Here, we allow that the approximations correspond to 

nonequidistunt points like the intermediate approximations computed in Runge-Kut/a methods. This approach enables us to 
improt'e the order o(accuracy. We concentrate on explicit methods such that they are suitable.for use mz parallel computers. 
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1. Introduction 

Block methods turned out to be efficient methods for solving the initial-value problem for the system of ordinary differential 
equations (ODEs) 

dy(tl/dt = f (y(t)) 

on parallel computers (cf. e.g. WORLAND [I O] and CHU and HAMIL TON [3]). Most block methods occurring in the literature 
can be interpreted as block linear multistep methods (BLM methods), that is, they are derived from the linear multistep 
(LM) method 

Q(E) Yn = hO'(E) f(Ynl' 

in which Yn is replaced by an m-dimensional vector Y" := (J\111 , Ynm + 1, .. ., Ynm + m- il T and where the (scalar) coefficients of 
the polynomials Q and O' are replaced by matrices. Thus, in BLM methods the components of the block vector Y" represent 
approximations to the exact solution at equidistant points. 

In this paper, we consider block methods where the components of the block vector represent approximations to 
the exact solution at not neces sari ly e quid is tan t points. In this way, we obtain additional parameters for increasing 
the order of accuracy of the method. In the derivation of these methods it turns out to be convenient to start with a 
Runge-Kutta (RK) method, and, in analogy with BLM methods, to replace they-values generated by the method by vectors 
the components of which represent approximations to the exact solution. If these vectors are k-dimensional, then the RK 
parameters are replaced by k x k matrices. We shall call these methods block Runge-Kutta methods (BRK methods). 

In Section 2, we give a precise definition of BRK methods and we give examples of methods from the literature 
which can be written as BRK methods. The representation in BRK form provides a unifying way of describing all sorts 
of methods (including BLM methods) and is particularly convenient for describing block methods for use on parallel 
computers. ln Section 3 the order conditions for explicit one-stage methods and implicit two-stage methods are given, 
and Section 4 is devoted to the construction of these BRK methods with k = 2, 3, 4. We shall particularly be interested 
in explicit methods. For explicit methods with given k we tried to maximize the order and to minimize the number of 
processors without increasing the number of sequential righthand side evaluations per step (we shall call this minimal 
number of processors the optimal number of processors). It is possible to derive explicit one-stage methods of order 
2k - l, using not more than 2 processors. However, if the requirement of zero-stability is imposed (which is crucial if 
the method is to be used as a method on its own), then the order reduces to k + l. We also derive zero-stable, explicit 
two-stage methods of order 2k for two-processor computers. In Section 5, the various methods are compared for a few 
test problems from the literature. 

It turned out that, likC" for all block methods, stability is a critical aspect of ERK methods. In this paper, we did 
not concentrate on stability aspects. Only when free parameters were available which could not be used for increasing 
the order, we have employed them to increase the stability of the method. A more systematic construction of BRK methods 
with large stability regions is the subject of a forthcoming paper. 

I• 
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2. Block Runge-Kutta methods 

Let us start with the conventional s-stage RK method 

s 

(i) - + h " b f( ,Ul ) Yn + 1 - Yn L.. ij } n + 1 ' i=l, ... ,s+l; Yn+l = Y~s+\11, n= 0, 1, .... (2.1) 
j;l 

The general structure of the block Runge-Kutta methods considered in this paper is a direct generalization of this 
conventional method. We introduce block vectors Y., the components of which are numerical approximations to the exact 
solution values at k points. To be more precise, let Yn+ 1 be defined by 

where Yn,c denotes a numerical approximation to the exact solution value y(t) at t = tn+c: tn + eh. For scalar OD Es, we 
now define the s-stage block RK (BRK) method 

s 

Y~iL = A;Yn + h L Bijj(Y~JL), i= l, ... ,s + 1; Y.+ i = y~•+\ll, n = 0, 1, ... , (2.1')" 
j;l 

where A; and B;1 are k x k matrices and where we use the convention that for any given vector v = (v), f(v) denotes the 
vector with entries f(v). This method can be considered as the block analogue of (2.1). It is straightforwardly extended 
to systems of OD Es and therefore also to nonautonomous equations. In order to start the method, one needs the initial 
vector Y0 , which requires as many starting values as there are distinct values c1, j = 1, .. ., k. 

In analogy with the Butcher array for describing the RK methods (2.1), i.e., the (s + 1) x (s + 1) array 

b.. , 

b.+ 1, 1 

we may describe the BRK methods (2.1') by the k(s + 1) x k(s + 1) array 

A, B., 

As+ 1 B.+ l, 1 Bs+l.s 

This notation is particularly convenient when more than two stages are involved. It frequently happens that the two last 
rows of this array are identical. In such cases, we shall omit the last row in order to save space. 

We call the method explicit if the matrices B;1 vanish for j ~ i and implicit otherwise. In this paper, we are mainly 
interested in exp! ici t methods. For explicit methods, the k components of the blocks f(Y.\ii 1) can be computed in parallel; 
hence, if k processors are available, then (explicit) BRK methods require not more than s (sequential) righthand side 
evaluations per step. However, the required number of processors is often less than k, without causing the number of 
(sequential) righthand side evaluations per step to exceeds. For instance, it may happen that in the formula for a particular 
component of Yn + 1 no righthand side evaluations occur, that is, all rows in the matrices BiJ corresponding to this component 
vanish. In such cases, the processor assigned to this component is not needed. Similarly, if the r-th column of all matrices B;1 
vanishes, then the computation of the corresponding component of Yn+ 1 does not require any righthand side evaluation 
not already occurring in the formulas for the other components, so that there is no need to assign a processor to this 
component. We define the optimal number of processors as the number of processors for which the number of (sequential) 
righthand side evaluations per step is minimal. In the explicit case, the representation (2.1') is very convenient for 
implementing the method on a computer, because the actual code is a direct translation of the formula (2.1') and the 
instructions for the computer in order to exploit the built-in parallelism of the method are obvious. 

The points t" and t" + c1h, j =F k, will respectively be called step points and block points. Block points coincide 
with step points if the corresponding value of cJ is an integer. Upon completion of the integration process, the order 
of accuracy of the numerical solution obtained is not necessarily the same at all points t" + c1h. Points where 
the corresponding components of Y.+ 1 do have the same order as the components corresponding to the step points t" 
will be called output points. 
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The general explicit one- and two-stage methods are respectively given by 

~~ '-~, i.e., Yn+! = A1Yn + hB2l./H1 Yn)' Azl B21 

A1 tf'~O A1 B21 0 

~-:- B31 B32, 

i.e., 

Here, 0 denotes the k x k matrix with zero entries. 

As a numerical example of an (explic_it) 3-stage method. we present the modified multistep method of BUTCHER ! I] 

of order 5 as a BRK method: the block po111t vector is given by c = (0. l)T and the Butcher array assumes the form: 

I 0 

0 1 

I 0 

0 1 

-23/5 28/5 

0 
---···----·--

0 1 

-1/31 32/31 

3/8 9/8 
0 0 

-26/15 0 

0 0 
32/15 -4 

0 0 

0 
-1/93 

0 0 0 
0 12/93 64/93 

0 0 
15/93 0 

l' = (Q. l)T. 

. The construction of higher-order BRK methods is rather difficult in the general case. In this paper. we shall construct 

high-order methods of a special form which are obtained by using the predictor-corrector (PC) technique. Our starting 

point is the special implicit two-stage method ~ 

1·~00 !~00 A B C A B C 

--·--- -~-- == - - ----------
A B C 

1.e., Yn+l =AY,, + hBf(Yn) + hCf(Yn+il· (2.2) 

If C does not vanish, then we can use this method as corrector and if C = 0, then it can be used as (a one-stage) 

predictor formula, e.g., 

I -t~- 1.e., 

A B 
Yn+i = AY,, + hBf(Y,,). (2.2') 

From this pair we can generate higher-stage BRK methods by PC iteration provided that the block point vectors 

c '= (c 1, ••• , ck)T are identical. For example, in PECE mode we obtain the special two-stage BRK method 

i.e., Y,,+ 1 = AY,, + hBf(Y,,) + hCf(DY" + hEf(Y")). 
(2.3) 

Finally, it should be remarked that (2.2) is also the representation of the so-called general linear 111ethod.1 introduced 

by Butcher in 1966 (see BUTCHER [2]). Most methods from the literature (including the general BRK method (2.1 ')) can 

be cast into the form (2.2). However, although the original method is explicit, the general linear method version is often 

implicit. For example, the explicit two-stage BRK method ('.U) can be rewritten in the form (2.2) by redefining the 

matrices A, B, and C in (2.2), but C will not be a zero matrix. Thus, for implementation of higher-stage BRK methods 

on parallel computers, the representation (2.2) is less suitable. 

In the following subsections, we present in BRK form a number of methods which have been proposed for use on 

parallel computers. In particular, we give examples of the predictor-corrector methods of MIRANKER and LlNIGER [8] and 

SHAMPINE and WATTS (cf. WORLAND [10]), and the multi-block methods of CHU and HAMIL TON [3]. A discussion of block 

methods for parallel computation may be found in GEAR [5]. 
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2.1 Methods of Miranker and Li11iger 

The methods of MIRANKER and LINIGER [8] can be presented as explicit. one-stage BRK methods. For example, their 
second-order method can be represented by the array 

~~---
0 1 2 0 
0 1 I /2 1/2 

C=(2,l)T, (2.4) 

and their fourth-order method by 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 
-------- -~------------·----- C=(-J,0,2,l)T. (2.5) 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 -1/3 4/3 8/3 -5/3 
0 0 0 1/24 -5/24 9/24 19/24 

Both methods require only two processors and respectively two and four starting values when implemented in BRK form. 

2.2 Predictor-Corrector method of Shampine and Watts 

The PC method of SHAMPINE and WATTS [9] is based on the block method of CLIPPINGER and DIMSDALE [1958], which 
can be presented in the form (2.2) by defining 

UI 
0 

0 5/24 1/3 -1/24 
0 1/6 2/3 1/6 

--· --------- -

and on the predictor method defined by 

1 0 
0 
0 0 
0 0 

0 
0 
1 
0 

0 
0 
0 

l' = (1/2, l)T, 

---· ··--·---~·- ---- ---------~--------~- ... -

0 0 1 0 0 0 0 0 
0 0 0 1 () 0 0 0 
0 1/3 1/3 1/3 0 1/4 -1/3 13/12 
0 1/3 1/3 1/3 0 29/24 -3 79/24 

(2.6) 

l' = (-1/2, Q, 1/2, l)T. (2.7) 

Method (2.6) is one of the oldest block methods proposed in the literature. SHAMPINE and WATTS proved that this corrector 
method is fourth-order accurate at the step points. They also proved that the predictor method is third-order accurate 
and possesses favourable stability properties. This predictor can also be applied as a method on its own and requires four 
starting values and one processor. 

In order to apply the PC pair (2.7)- (2.6) using the BRK format, we rewrite the corrector in the form 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

0 0 1 0 0 0 0 0 0 0 0 0 (2.6') 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 5/24 0 0 1/3 -1/24 

0 0 0 0 0 0 1/6 0 0 2/3 1/6 

C = ( -1/2, 0, 1/2, l)T. 

The PC method of Shampine and Watts was implemented by WORLAND [10] on two processors. 
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2.3 Multi-block methods of Chu and Hamilton 

CHU and HAMILTON [3] generalized the cyclic linear multistep methods of DONELSON and HANSEN [4]. Families of third- and 
fourth-order multi-block methods were derived. We give two examples of their k = 2 methods which can be represented 
in the form (2.2) or (2.2'). The first example is the explicit third-order method 

I 0 
0 I 

C = (1/2, l)T, 
5 -4 I 2 

28 -27 6 9 

and the second example is the fourth-order implicit method 

i ~ I 1/48 13/48 13/48 -1/48 
~ 0 1/6 2/3 1/6 

C = (J/2, l)T. 

2.4 Parallel MRK methods 

(2.8) 

(2.9) 

An example of methods which can be written in the form (2.3), and which do not originate from PECE methods, is the 
family of first-order, explicit parallel MRK methods (cf. VAN DER HouwEN et al. [6]) 

1 0 0 0 0 0 
0 0 0 0 0 
0 1 - a 1 ai 0 0 0 

C = (0, C, J)T, 
0 0 0 0 0 

0 0 0 
b3 

0 
(1 - ai) 

0 0 1 - (' - b1 b1 c 

where a 1, b 1, b3 and care free parameters. Third-order is obtained by setting 

a 1 == _1_ + 2_ ± _1_ 1 V, 
2 6c 2V 1T3z. 

5 
b3 = --, 

6c 

(2.10) 

with c as free parameter. These methods require three starting values and only one sequential righthand side evaluation 
on two processors. Notice that (2.10) is of the general explicit one-stage form in which the matrix A 1 has not been 
replaced by the identity matrix as was the case in (2.2'). 

3. Order conditions 

In this section, we restrict our considerations to parameter arrays of the form (2.2) either with C = 0 or C =1= 0. Let the 
exact solution be substituted into (2.2). Then, in general, the order conditions are derived by requiring that the residual 
vector is of order hP+ 1 for all components (that is, we require that all components of Y. + 1 are pth-order approximations 
to the corresponding exact solution values). In this way, we obtain the following condition for pth-order consistency: 

(I - zC) exp (zc) - (A + zB) exp (zc - ze) = O(zP+ 1), e == (1, 1, ... , W. 

By defining the error vectors 

C0 == Ae - e; C 1 == A(c - e) + Be + Ce - c; 

Ci == A(c - e)i + j[B(c - e)i- 1 + cd- 1] - d, j = 2, 3, ... , (3.1 a) 

the conditions for pth-order consistency take the form 

Ci = 0, j = 0, 1, ... , p. (3.1 b) 

Here, powers of vectors are meant to be componentwise powers. 
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In the construction of high-order formulas it is convenient to specify the matrix A in (2.2) in advance, because the 
eigenvalues of A should lie in a zero-stable configuration. that is, they should be on the unit disk, those on the unit circle 
being simple (such a zero-stability condition is difficult to satisfy simultaneously with the order conditions unless k is 
sufficiently small). A natural choice for the matrix A is suggested by observing that 

Yn+ i - y.e ~ ('T1 f(y(t)) dt). 

'" 
Replacing the integral term by a quadrature formula, we obtain a method where A is of the form 

A == [ ~ : : : ~ ~ • 
0 ... 0 1 

(3.2) 

This matrix has one eigenvalue 1 and k - 1 zero eigenvalues, so that a reasonable stability region may be expected (cf. 

the analogous situation for linear multistep methods of Adams type ). BRK methods possessing a matrix A of the form 
(3.2) will be called Adams-type methods. 

Assuming that A is given and is such that Ae = e, the most simple way to derive high-order formulas is to specify 
the vector c. This leaves us with a linear system of p equations for each component formula of the corrector formula. 
However, in this approach, the free parameters in the vector c are not exploited. These free parameters may be used for 
minimizing the error vector Cp+ 1• For instance, we may add to the order conditions (3.1) the condition that c is such that 
llCp+ ill is minimal for some norm II.II. Alternatively, one may sacrifice the linearity of the order conditions and choose c 
such that certain components of the error vector vanish, that is, it is not necessary that all components of Yn+ 1 are 
pth-order approximations. As an example, in the Adams-type BRK methods with matrix A of the form (3.2), the first 
k - 1 components of Y. only occur in the righthand side as argument of the function ;; so that these components are 
allowed to be of one order less than the order of y., without decreasing the order of the approximations at the points t •. 
To be more general, we denote the order of consistency of the formula for Yn.c, by P; and we define the set 
Jq = {iE {1,2, ... ,k} IP;= q}. Now we introduce the following property. 

Property 3.1: (i) JP u Jp-l = {1, 2, ... , k) and (ii) j(Jr each i E JP the matrix A has vanishing elements aii for all 
j E Jp-1· 

If this property is satisfied, then the method (2.2) produces pth-order accurate values at the points t. +c, for n = 1, 2, ... 
and a II i E J p· One may interpret this as a form of superconvergence. 

We recall that from an explicit and implicit BRK method with identical block point vector c == (c 1, .•. , cdT, we can 
derive higher-stage BRK methods by PC iteration. By requiring that the explicit method (predictor) and the implicit 
method (corrector) provide approximations to y(t. + c}1), respectively of orders q and p, for all j, we obtain after r 
iterations a method which provides approximations of order p* = min {p, q + r}. Since the predictor need not to be 
stable, one can employ the full freedom of the generating matrices, so that q is usually sufficiently large to get 
the maximal attainable order p of the corrector in just one correction (PECE mode). If not, then one may decide to 
continue the iteration. 

4. Construction of BRK methods 

Since the implementational complexity of the BRK method is mainly determined by the number of starting values 
and the associated storage needed to implement the method, we shall distinguish the various methods by their 
number of starting values. The methods constructed in the following subsections will be compared with methods from 
the literature. 

4.1 Methods requiring two starting values 

In this subsection we consider methods where the block vector Yn is defined by 

At first sight, it would be natural to choose c = 1/2. However, as we shall see, a more judicious choice is 
possible. 
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4.1.1. Explicit one-stage methods 

We shall construct the family of second-order BRK methods of Adams type and the general family of third-order methods. 
Second-order methods of Adams r_ipe. The conditions (3.1) with C = 0 and A defined by (3.2) can be satisfied for 

p = 2 and yield 

1 0 
0 

' c(2 - c) -c-
0 ---- ----

2(1 - c) 2(1 - c) 

-1 3 - 2c 
0 ----- ----

2(1 - c) 2(1 - c) 

with error vector 

C3 = L(c2(c - 3)). 
2 3c - 5 

C = (C, l)T, c =F 1 , 

The following special cases of (4.1) will be tested in the numerical experiments at the end of this section: 

c = 0 
c = 1/2 
c = 5/3 
(' = 2 
c = I + 4113 

c = 3 

-----------·-··----------- ---

( 4.1) reduces to the Adams-Bashforth method 
'natural choice' 
Local error at tn + 1 is O(h4 ) 

(4.1) reduces to Miranker-Liniger method (2.4) 
II C 3 II , minimized 
Local error at t 11 +c is 0('14 ) 

C3 = (0.0, -2.5)T 
C3 ~ ( -0.3, - l.8)T 
C3 ~ (-1.9, +0.0)T 
c3 = (-2.0, +o.w 
C3 ~ (- 1.4, + l.4)T 
C3 = (0.0, + 2.0)T 

----------------------------------------- ---------------------

(4.1) 

(4.2) 

We observe that the case c = 5/3 will raise the order to 3 at all step points t., in spite of the second-order accuracy of 
Yn +c• because of the special form of the matrix A ( cf. Property 3.1 ). 

Third-order methods. Next we construct the family of one-stage BRK methods in which all components are at least of 
third order. We find the method 

0 
0 

c=(c,l)T, c =F 1, 
c2 (3 - c) 
------ --- ·- ·------

( l - c)3 

1 - 3c 
----
(1 - c) 3 

(4.3) 
(1-d (l-c)2 

5 - 3c -c3 + 3c2 - 4 2 - c (2 - c)2 
----- ---·-·-----~-----

(1 - c)3 (I - c)3 (1-c)2 (1-c)2 

with error vector 

c4 = ( 
('2 ) 

-(2 - c)2 . 

This method is zero-stable for all values of c for which the eigenvalues of A are on the unit disk and are not both equal 
to l. Since A has the eigenvalues 1 and (c 2 - 2c - 5)/(c - 1) 2, we obtain the condition 

-l;?;Jc<l, 
, c2 - 2c - 5 
Jc:=---

(c - 1)2 

This leads to the necessary condition 

c;?;l-if.3, (4.4) 

The parasitic eigenvalue )" vanishes for c = 1 ± V6- If c = 1/2, then the method reduces to the method (2.8) of Chu and 
Hamilton. 
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A number of experiments were carried out in order to illustrate the effect of con the accuracy of the methods (4.1) and 
(4.3). We chose the nonlinear initial-value problem 

y'(t) = sin(ys) - sin(sins(t)) + cos(t), y(O) = 0, (4.S) 

with exact solution y(t) = sin(t). 
In the following table the results are given. In this table, the absolute error obtained at the end point of the integration 

interval is written in the form 10-ct (d may be interpreted as the number of correct decimal digits). Each column contains 
results which required the same number of sequential righthand sides. In these and subsequent experiments, the starting 
values incorporated in the initial vector Y0 are taken from the exact solution. 

Table 4.1. Correct decimal digits at t = 1 for problem (4.5) obtained by BRK methods with k = 2 and s = 1 

Sequential righthand sides 6 12 24 48 96 order 

Adams-Bashforth method 1.8 2.4 3.0 3.6 4.2 2 
Miranker-Liniger method (2.4) 2.7 3.2 3.7 4.3 4.9 2 
BRK method (4.1): c = 1/2 2.0 2.5 3.1 3.7 4.4 2 
BRK method (4.1): c = 1 + 4 113 2.1 2.7 3.3 3.9 4.5 2 
BRK method (4.1): c = 3 1.9 2.5 3.1 3.7 4.3 2 
BRK method (4.1): c = 5/3 3.1 4.0 5.0 5.9 6.8 3 
BRK method (4.3): c = 1 + v§: 3.1 4.0 4.9 5.8 6.7 3 
BRK method (4.3): c = 1 - {<S 3.3 4.1 4.9 5.8 6.7 3 

These results show the theoretical order of accuracy. It is clear that the choice c = 1/2 is not the best possible. 
Furthermore, the value c = 1 + 41' 3 (minimal norm value) does not improve the accuracy, so that we refrain from 
considering this special case in subsequent sections. Notice that the method (4.1) with c = S/3 produces results which are 

comparable with the results of the method (4.3) with c = 1 ± V6-
4.1.2. Implicit two-stage methods of Adams-type 

The conditions (3.1) with nonvanishing matrix C can be satisfied for p = 4 by 

1 0 
0 

0 1 
-c3 c(c2 - 6c + 6) c(c2 - 6c + 6) -c3 

12(1 - c) 12(1 - c) 12(1 - c) 12(1 - c) 

0 1 
(1 - 2c) -6c2 + lOc - 3 3 - 2c 6c2 - 14c + 7 

12(1 - c) (2 - c) 12c(l - c) 12c(l - c) 12(1 - c) (2 - c) 
C = (C, l)T, 

c =!= 0, 1, 2. (4.6) 

The corresponding error vector is given by 

__ 1 (c3 (c2 - Sc+ S)) 
Cs - - , . 

6 Sc- - lOc + 4) 

The following special cases of (4.6) will be considered: 

1 
c = -

2 
(4.6) is equivalent with the corrector (2.9) ( 11 8 )T 

Cs = - 192 ,- 192 

Cs = (- 4 VS, o)T 
12S 

C= 
_ vs 

s Local error at t0 + 1 is 0 (h6 ) 

4.1.3. Predictor-corrector methods 

In order to 'solve' the corrector equation defined by (4.6) one may use a PC method with predictor defined by (4.3). The 
PC methods determined by the matrices (4.3)- (4.6) require two starting values and, in PECE mode, they have all at least 

order 4. For c = 1 - yS/5, we achieve order S in PE(CE)2 mode. We remark that for the predictor formula, the value 
of c is not required to satisfy the inequalities (4.4). 
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We illustrate the performance of the PC method (4.3)- (4.6) by comparing it with the 2-step Adams PC method (notice 
that the BRK method (4.3)- (4.6) with c = 1/2 is equivalent with the Chu-Hamilton pair (2.8)- (2.9)). In the Tables 4.2, 
the correct decimal digits at t = 1 and the total numbers of sequential righthand sides are listed for the various methods 
in PECE mode and in PE(CE) 2 mode. 

Table 4.2a. Correct decimal digits at r =I for problem !4.5J Table 4.2b. Correct decimal digits at t = I for problem(4.5) ob-
obtained by BRK methods in PECE mode with k = 2 tained by BRK methods in PE(CE)2 mode with k = 2 

---~------·-----~ 

Sequential righthand sides 6 12 24 48 96 order Sequential righthand sides 6 12 24 48 96 order 
·-----· --------· 

Two-step Adams-PC method 2.1 3.1 4.1 5.0 5.9 3 Two-step Adams-PC method 1.8 3.1 4.2 5.1 6.0 3 
Chu-Hamilton pair (2.8)- (2.9) 4.3 5.4 6.5 7.6 8.7 4 Chu-Hamilton pair (2.8)- (2.9) 3.9 5.7 9.3 8.4 9.5 4 
BRK method (4.3)- (4.6): 4.8 5.4 6.5 7.6 8.8 4 BRK method (4.3)-(4.6): 3.9 5.5 7.0 8.5 10.0 5 

c = I - VS/5 c = 1 - i1S 1s 

4.2. Methods requiring three starting values 

The block vector Y" is now defined by 

providing us with two free parameters. As before, equidistant output points need not to be the best choice. Because of 
the rapidly increasing complexity of the derivations if more than 2 starting values are used, we shall not consider the general 
case as in the preceding section, but we shall restrict our considerations to a few special cases. 

4.2.l. Explicit one-stage methods 

We consider Adams-type methods and a more general family of zero-stable methods. 
Third-order methods of Adams type. If C = 0, then the following array satisfies the order conditions (3.1) for p = 3 and 

for all (distinct) values of c1 and c2 different from 1: 

1 0 0 

0 0 

0 0 
~---~-- ··--·---- c= (C1, C2 l)T' (4.7) 

0 0 a I - (Cz - l) h1 (cl 1) h1 C1 - a1 + (Cz - C1) h1 

0 0 a2 - (c2 - 1) h2 (c 1 1) h2 C2 - Cl2 + (Cz - C1) h2 

0 0 G3 - (C2 - 1) h3 (cl 1) h3 C3 - Cl3 + (Cz - l'1) h3 

where 

j = 1, 2, 3. 

We restrict our considerations to the two-processor case, that is, we set c1 = 0. By virtue of the special form of A we 
obtain order p = 4 at the step points if the third formula has order 4 while the first and second formula have order 3. 
Setting the third error component equal to zero we find c2 = 17/10. 

Fourth-order methods. Let us consider methods of the form 

0 0 

0 1 0 

0 0 
-----.-··--- --------- C = (0, C, l)T. (4.8) 
0 0 0 0 0 

a21 a 22 a23 h21 h12 h23 

il31 Cl32 ll33 b31 h32 b33 
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Solving the conditions (3.1) for p = 4 with c = 1/2 we obtain 

1 0 0 
0 1 0 
0 0 

C = (Q, 1/2, l)T. 

0 0 0 0 0 
-9 - a 9 1 + a (-10 - a)/6 (-22 - 4a)/6 (8 - a)/6 

-b 64 -63 + b (-9 - b)/6 (108 - 4b)/6 (99 - b)/6 

where a and b are free parameters. We could have used these parameters for increasing the order of accuracy to p = 5. 
However, then the method turns out to be zero-unstable. Therefore, we shall employ them for improving the stability of the 
method. In particular, we choose a and b such that A has zero parasitic roots. The characteristic equation of A is given by 

(b - 1) (b2 + (55 - b)b + 9b - 64a - 576) = 0, 

so that we are led to the values a = -81/64 and b = 55. The corresponding Butcher array becomes 

1 0 0 
0 1 0 
0 0 

C = (0, 1/2, l)T. (4.9) 
0 0 1 0 0 0 

-495/64 9 -17/64 -559/384 -271/96 593/384 
-55 64 -8 -32/3 -56/3 22/3 

The following table illustrates the performance of the above explicit, one-stage methods. 

Tab I e 4.3. Correct decimal digits at t = 1 for problem (4.5) obtained by BRK methods with k = 3 and ~ = I 

Sequential righthand sides 6 12 24 48 96 order 

Adams-Bashforth 3.2 3.9 4.8 5.6 6.5 3 
BRK method (4.7): (c 1, c2 ) = (0, 1/2) 3.4 4.2 5.1 6.0 6.9 3 
BRK method (4.7): (c 1, c2 ) = (0, 17/10) 4.1 5.3 6.5 7.7 8.9 4 
BRK method (4.9) 4.0 5.1 6.4 7.6 8.8 4 

4.2.2. Implicit two-stage methods 

We assume the generating array of the form 

1 0 0 
0 1 0 
0 0 1 
0 0 1 0 0 0 0 0 0 (4.10) 

a21 a22 a23 h21 b22 b23 0 C22 C23 
a31 a32 a33 b31 b32 b33 0 C32 C33 

c = (O,c, W 

and we derive a fifth-order method of Adams type. Let us choose c = 1/2 and define A according to (3.2), then the order 
conditions (3.1) can be satisfied for p = 5 by 

1 0 0 
0 1 0 
0 0 1 

0 0 0 0 0 0 0 0 (4.11) 

0 0 1 11/1440 -37/720 19/60 0 173/720 -19/1440 

0 0 1 -1/180 1/45 2/15 0 31/45 29/180 

c = (0, 1/2, w. 
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If the method is not required to be of Adams type, then a corrector of order 6 can be constructed. In the 
following subsection, this will be carried out as part of the construction of a PECE method with increased real stability 
interval. 

4.2.3. Predictor-corrector methods 

We consider two PC methods which are in PECE mode of orders 5 and 6, respectively. 

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11) determine a PC method of 
order p = 5. It requires three starting values and, if two processors are available, then only two sequential righthand side 
evaluations per step are needed. 

Method of order 6. Next we consider PC methods where the predictor and corrector are generated by matrices of 
the form (4.8) and (4.10), and where c is still a free parameter. We try to construct a PC method which is of order 6 in 
PECE mode by choosing the free parameters such that the corrector formula for Yn+ 1 becomes of order p = 6, whereas 
the other corrector formula and the two predictor formulas have order p = 5. 

In this paper, we have investigated methods where 

[
o o 1 

A:= 0 0 1 
a 0 1 - a 

(notice that A does not refer to the second component of the block vector so that the corrector formula corresponding 
to this component may be of one order Jess than that of the third component). This leads to a one-parameter fami"ly of 
sixth-order PECE methods which can be represented in the form (2.3), i.e. 

Y.+ 1 = AY. + hBf(Yn) + hCf(DY. + hEf(Y.)). 

The free parameter will be used to improve the (linear) stability of the method. The (linear) stability of this 
two-stage BRK method can be investigated by applying the method to the test equation y' = Icy to obtain the 
recursion 

Y.+ 1 = R(z) Y., R(z) :=A + z(B + CD) + z2CE, z:= lch, 

and by requiring that the matrix R satisfies the simple von Neumann stability condition, that is, it has its eigenvalues on 
the unit disk those on the unit circle being simple. Choosing c as the free parameter, we start with determining a range 
of relevant c-values by requiring that R(O) satisfies the stability condition (zero-stability). Since the eigenvalues of R(O) = A 
are given by 0, 1 and - a, we require -1 ~ - a < 1. It can be shown that imposing the conditions for sixth-order accuracy 
on the corrector formula for Yn+ 1 leads to 

a= 
15c2 - 31c + 13 

l5c 2 + c - 3 ' 

so that c should be not less than 1/2 in order to ensure zero-stability. As before, we shall not consider the maximization 
of the general stability boundary. Instead we consider the simpler case of maximizing the real stability boundary. 
A numerical search reveals that the real stability boundary is maximized for c :::::: 4.16 and is approximately given 
by 2.247. In order to obtain rational expressions for the entries of the various matrices, we do not choose this 'optimal' 
value of c, but we set c = 4 yielding the stability boundary 1.766. The predictor is generated by the 
matrices 

1 0 0 

0 1 0 

0 0 

c = (0,4, w' 
0 0 0 0 0 
27 -25 -325 25 100 

(4.12) 
-- 5 -

2 54 27 9 9 
3 5 -16 -1 16 

-
2 54 27 2 18 9 
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and the corrector by 

1 0 0 

0 1 0 

0 0 

0 0 0 0 0 0 0 0 

4 76 2 58 88 (4.13) 
0 0 0 

75 45 45 225 45 

129 112 1141 -47 2110 26 896 
--- 0 0 --

7230 4338 2169 10845 2169 241 241 
c = (0, 4, w. ------

The following table is the k = 3 analogue of the preceding tables. 

Table 4.4. Correct decimal digits at t = 1 for problem (4.5) obtained by BRK methods in PECE mode with k = 3 

Sequential righthand sides 6 12 24 48 96 order 

Three-step Adams-PC method 3.6 4.5 5.7 6.9 8.1 4 
BRK method (4.9)-(4.11) 4.5 6.0 7.5 9.0 10.5 5 
BRK method (4.12)-(4.13) 5.0 6.9 8.9 10.9 13.0 6 

4.3. Predictor-Corrector method requiring four starting values 

We have searched for two-processor predictors in the class of methods of the form 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 

C = (-1, 0, C, l)T. 

0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 

ll31 ll32 ll33 ll34 b31 b32 b33 b34 

ll41 ll42 ll43 ll44 b41 b42 b43 b44 

For a given value of c we can achieve order 7 by solving two linear systems of 8 equations each m 8 
unknowns. 

The corrector was chosen such that 

I 0 0 0 

0 1 0 0 

0 0 1 0 
0 0 0 1 
0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

ll31 ll32 0 1 - ll31 - ll32 b31 b32 b33 b34 0 0 C33 C34 

ll41 ll42 0 1 - ll41 - ll42 b41 b42 b43 b44 0 0 C43 C44 

C = ( -1, 0, C, l)T. 

By this choice we achieve that the order conditions (3.1) simplify considerably. Given the value of c, this method can be 

made order 8 accurate in each component equation, again by solving two linear systems of 8 equations in 8 unknowns. 

These four systems of 8 equations have been solved numerically in terms of the parameter c and for a range of c-values 
we computed the real stability boundary /3,0 • 1 of the PECE mode. We found that /3,0 • 1 was maximal for c ::::: 2.58 (fJ,0• 1 ::::: 0.358). 
In order to obtain a method with rational parameter values we chose c = 5/2 resulting in {3, 0 • 1 ::::: 0.302. The corresponding 
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predictor is generated by 

1 0 0 0 
0 1 0 0 
0 0 0 
0 0 0 

c = ( -1, 0, 5/2, w. 
0 1 0 0 0 0 0 0 (4.14) 
0 0 0 0 0 0 0 

5975 1539 537 
--

2793 225 567 
9 

2205 
--

224 20 35 32 32 8 32 
82 117 63232 2 3 18 128 
343 125 128625 3 49 25 1225 

and the corresponding corrector by 

0 0 0 
() I 0 0 
0 0 I 0 
0 0 0 I 

0 I 0 0 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 0 0 0 

53 • 73 . 13 83 3° · 5·' · 263 3• . 73 . 827 

30469. 210 30469. 27 - 30469. 210 

3' · s• · 7' 3• . 52 • 7 . 17. 67 3' · s' · 7' 35 • s. 73 • 13 
0 0 

3" 5. 7. 809 3·' . 53 . 73 . 37 

30469. 29 30469 . 210 30469. 25 30469. 2 5 30469. 25 30469. 210 

4549 33 • 1039 33 . 79 23029 33 . 13. 1709 2'. 3'. 31 32 . 61 . 337 
0 0 

29 . 11 14369 

30469 30469 30469 30469·3·7 30469·5·7 30469 . 5 . 7 30469. 5 30469·3·5·7 30469 

C = ( -1, 0, 5/2,l)T. (4.15) 

Table 4.5 compares this method in PECE mode with the four-step Adams and four-step Shampine-Watts method. 

Table4.5. Correct decimal digits at t = 1 for problem (4.5) obtained by BRK methods in PECE mode with k = 4 

Sequential righthand sides 6 12 24 48 96 order 

Four-step Adams-PC method 3.3 4.8 6.4 7.9 9.5 5 
Shampine-Watts pair (2.7)-(2.6') 3.6 4.8 6.0 7.2 8.4 4 
BRK pair (4.14)-(4.15) 7.3 10.2 12.8 8 

5. Summary of methods and numerical examples 

The explicit, zero-stable methods and the PC combinations discussed in the preceding sections will be applied to a 
number of initial-value problems. In addition, we give the results obtained by the classical Adams formulas. First, however, 
we summarize the main characteristics of the various methods. 

5.1. Summary of methods 

Below we have listed a few important features such as the block point vector c, the order p, and the number of processors 
P0 P, needed to implement the method with only one righthand side evaluation per step. 

Tab I e 5.1 a. Survey of explicit one-stage BRK methods of the form (2.2') 

Reference CT 
Popi p Remarks 

MIRANKER-LINIGER [8) (2. I) 2 2 See (2.4) 
(-1. O. 2, I) 2 4 See (2.5) 

SHAMPINE-WATTS [9] (-1/2, 0, 1/2, I) I 3 See (2.7) 
CHU-HAMILTON [3] (1/2. I) 2 3 See (2.8) 
This paper (c, I) 2 3 See (4.1) with c = 5/3 

(c, 1) 2 3 See (4.3) 
(c1, clo I) 2 3 See (4.7) 
(cl, C2, 1) 2 4 See (4.7) with (ci. c2) = (0, 17/10) 
(0, 1/2, 1) 2 4 See (4.9) 
(0,4, I) 2 5 See (4.12) 
(-1, 0, 5/2, 1) 2 7 See (4.14) 
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Table 5.lb. Survey of implicit BRK methods of the form (2.2) Table 5.lc. Survey of PC pairs in PE(CE)' mode 

Reference CT P,1rit p Remarks Predictor Corrector p r 
--------.. ----------------~------ -----·---· ··----··--- --- ·----------------- ------· ---·-·- ---

CLIPPINGER-DIMSDALE (I /2. 1) 2 4 See (2.6) (2.7) (2.6') (-1/2,0, 1/2, 1) 4 
[1958] 

See (2.9) CHU-HAMIL TON [3] ( 1/2. 1 )_ 2 4 
(2.8) (2.9) (1/2, l) ~ 4 
(4.3) (4.6) (1 - V5/5, 1) 5 2 

This paper (1 - 1"515, I) 2 5 Sec (4.6) 

(0. 1/2. I) 2 5 See (4.11) 
(0, 4, 1) 2 6 See (4.13 

(4.9) (4.11) (0, 1/2, 1) 5 1 
(4.12) (4.13) (0, 4, 1) 6 1 
(4.14) (4.15) ( - 1, 0, 5/2, I) 8 1 

(-1,0,5/2.1) 2 8 See (4.15) -------·-··~· ------------

5.2. Nonlinear problem with rapidly increasing solution 

The first test problem is the nonlinear problem 

y'(t) = - y3 + t9 (10 + t 21)' y(O) = 0, 0 ;::;; t ;::;; I , (5.1) 

with exact solution y(t) = t 10. In Table 5.2 the results are listed. Since the number of sequential righthand side evaluations 
per step varies from 1 to 3 for the various methods, we adapted the stepsize as to obtain that each column of this table 
contains results with an equal number of sequential righthand side evaluations over the whole integration interval. 

Table 5.2. Correct decimal digits at t = 1 for problem (5.1) 

Sequential righthand sides 6 12 24 48 96 order 
-··------

Two-step Adams-Bashforth method 0.3 0.8 1.3 1.9 2.5 2 
Miranker-Liniger method (2.4) 0.6 1.2 1.9 2.5 3.1 2 
BRK method (4.1): c = 5/3 2.6 2.4 3.1 3.9 4.8 3 
BRK method (4.3): c = 1 - V6 0.5 1.2 2.0 2.9 3.8 3 
Two-step Adams pair: PECE 0.2 0.9 1.7 2.5 3.4 3 
Chu-Hamilton pair (4.3)- (4.6): PECE, c = 1/2 1.1 1.9 3.0 4.2 5.5 4 
BRK pair (4.3)- (4.6): PE(CE)2, c = 1 - VS/5 2.0 2.9 4.1 5.7 7.4 5 

-----~ -- -----------

Three-step Adams-Bashforth method 0.5 1.1 1.9 2.7 3.6 3 
Method (4.7): (c 1 , c2 ) = (0, 17/10) 2.0 2.6 3.7 4.8 6.0 4 
Three-step Adams pair: PECE 0.3 1.1 2.1 3.3 4.5 4 
BRK pair (4.9)-(4.11): PECE 1.2 2.2 3.6 5.1 6.7 5 
BRK pair (4.12)-(4.13): PECE * * 1.5 5.3 7.4 6 
-------------------------------------------- ----- ---- -----
Four-step Adams-Bashforth method 0.6 1.4 2.5 3.6 4.8 4 
Miranker-Liniger method (2.5) 1.1 2.3 3.5 4.7 5.9 4 
Four-step Adams pair: PECE 1.3 2.6 4.0 5.5 7.0 5 
Shampine-Watts pair (2.7)- (2.6'): PECE 1.1 1.8 2.9 4.1 5.3 4 
BRK pair (4.14)-(4.15): PECE * 1.3 5.6 9.0 11.6 8 

A first observation is that most parallel methods behave more efficient than the corresponding one-processor Adams 
methods, showing that already on two-processor machines parallelism can be exploited. Furthermore, these results clearly 
demonstrate the superiority of the high-order methods, especially the 6th- and the 8th-order BRK methods. It should be 
remarked that these two methods produce unstable results (indicated by an '*' in Table 5.2) for large stepsizes, in spite of 
their large real stability boundary. The reason is that these methods employ a block point t" + eh, with c much larger 
than 1, viz. c = 4 and c = 5/2, respectively. Since the modulus of of/oy, which determines the maximally allowed stepsize, 
is a rapidly increasing function oft (viz. 3 · t20 ), it is clear that an evaluation off beyond the endpoint t = 1 may easily 
cause instabilities. 

5.3. Orbit equation 

The second problem was taken from the test set of HuLL et al. [7]: 

..v'1 = Y3, 

Y2 = }'4, 

y~ = - y 1 (yi + y~)- 3/2 • 

Y1(0)=1-e, e=0.3, 
..vi(O) = 0, 

}'3(0) = 0' 

,.V4(0) = . 
£ 

(5.2) 
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For this example, which describes a system of OD Es, the errors are measured in the maximum norm. Since most methods 
nicely show their asymptotic order behaviour, the high-order BRK methods are again superior to the low-order ones. 
Hence, the conclusion can be drawn that the introduction of non-equally spaced block points tn + cih favourably influences 
the performance of the BRK methods. 

Table 5.3. Correct decimal digits at t = 20 for problem (5.2) 

Sequential righthand sides 240 480 960 1920 3840 order 

Two-step Adams-Bashforth method 0.3 0.7 1.2 1.7 2.3 2 
Miranker-Liniger method (2.4) 0.5 2.1 2.1 2.5 3.1 2 
BRK method (4.1): c = 5/3 0.3 1.2 2.1 3.0 3.9 3 
BRK method (4.3): c = 1 - V6 0.3 1.2 2.1 3.0 3.9 3 

Two-step Adams pair: PECE -0.l 0.6 1.4 2.3 3.2 3 
Chu-Hamilton pair (4.3)-(4.6): PECE, c = 1/2 -1.5 0.1 3.7 5.2 6.5 4 

BRK pair (4.3)-(4.6): PE(CE)2 , c = l - vfs/5 1.4 3.2 4.8 6.4 7.9 5 
------------------------------------------------------------------------
Three-step Adams-Bashforth method 0.1 
Method (4.7): (c 1, c2 ) = (0, 17/10) 1.9 
Three-step Adams pair: PECE 0.4 
BRK pair (4.9)-(4.11): PECE 1.3 
BRK pair (4.12)- (4.13): PECE 3.3 
----·- --- ~- ----- ---· ---- - -- -·---- -- -- -- - -- ---'~ -- -- -----

Four-step Adams-Bashforth method 1.4 
Miranker-Liniger method (2.5) 2.0 
Four-step Adams pair: PECE 0.8 
Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 
BRK pair (4.14)- (4.15): PECE 3.9 

5.4. Euler's equation of motion 

The third problem is Euler's equation of motion (cf. HULL et al. [7]): 

i1 = Y2Y3 · 
Y~ = -Y1Y3' 
Y3 = -0.51Y1Y2, 

Y1(0) = 0, 
.vi(O) = 1, 

)/3(0) = 1 . 

1.0 1.9 2.8 3.7 3 
3.5 4.4 5.5 6.7 4 
1.8 3.4 5.0 6.2 4 
2.8 4.4 5.9 7.4 5 
4.9 6.8 8.6 9.6 6 
- -- - ---- --- --- ··-- ·- --- - --

2.3 3.4 4.6 5.8 4 
4.4 4.8 5.8 6.9 4 
2.0 3.5 5.0 6.5 5 
2.9 4.1 5.1 6.2 4 
6.8 9.0 8 

The results in Table 5.4 give rise to the same conclusions as formulated for the previous test problems. 

Table 5.4. Correct decimal digits at t = 20 for problem (5.3) 

Sequential righthand sides 120 240 480 960 1920 order 

Two-step Adams-Bashforth method 1.2 1.9 2.5 3.1 3.7 2 
Miranker-Liniger method (2.4) 1.6 2.4 3.1 3.8 4.4 2 
BRK method (4.1): c = 5/3 1.7 2.6 3.5 4.4 5.3 3 
BRK method (4.3): c = 1 - V6 1.6 2.6 3.5 4.4 5.3 3 
Two-step Adams pair: PECE 1.2 2.0 2.9 3.8 4.7 3 
Chu-Hamilton pair (4.3)-(4.6): PECE, c = 1/2 * 3.3 4.7 6.0 7.3 4 

BRK pair (4.3)-(4.6): PE(CE)2, c = 1 - VS/5 2.5 3.9 5.5 7.0 8.5 5 
·------------·--·---·------ ----- - -- -- ·"-- -- - -----·------··--- ---

Three-step Adams-Bashforth method 1.5 2.4 3.3 4.2 5.1 3 
Method (4.7): (c 1, c2) = (0, 17/10) 2.8 4.1 5.4 6.6 7.9 4 
Three-step Adams pair: PECE 1.4 2.7 4.0 5.3 6.5 4 
BRK pair (4.9)-(4.11): PECE 2.7 4.1 5.6 7.1 8.6 5 
BRK pair (4.12)- (4.13): PECE 3.2 5.1 6.9 8.7 10.7 6 
--- - --- - - --- - -- -- - --- -- -- -· - -- --------·--·- ---

Four-step Adams-Bashforth method 3.3 3.8 4.8 6.0 7.1 4 
Miranker-Liniger method (2.5) 3.1 5.0 6.3 7.2 8.3 4 
Four-step Adams pair: PECE 2.5 3.4 4.8 6.2 7.7 5 
Shampine-Watts pair (2.7)-(2.6'): PECE 1.9 3.3 4.6 5.9 7.2 4 
BRK pair (4.14)- (4.15): PECE 2.9 7.4 9.8 8 

z. angew. Math. Mech., Bd. 72. H. I 

(5.3) 
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To sum up, these examples clearly show that, even when only 2 processors are used, a substantial gain in efficiency 
can be obtained when compared with sequential (uniprocessor) methods. This especially holds for the high-order BRK 
methods. 
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