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RECURSION-FREE PROGRAMS 

The following section completes the analysis of arithmetic complexity of perfect 
models and has been inadvertently omitted in the previous version of the paper. 

We say that a general program P is recursionjree if in its dependency graph Dp there 
is no cycle. Clearly recursion-free programs form a subclass of stratified programs. 
Recursion-free programs form a very simple generalization of the class of hierarchical 

programs introduced in [C78]. Hierarchical programs satisfy an additional condition 
on variable occurrences in clauses that prevents floundering, i.e. a forced selection of a 
non-ground negative literal in an SLDNF- derivation. In this section we study the 

complexity of perfect models of recursion-free programs. 

1. Hierarchical stratifications 
We call a stratification 

P = P1 U · · · U Pn 

of a general program hierarchical if for i = 1, ... ,n and for every relation symbol which 
occurs in a body of a general clause from P;, its definition is contained within some 

P1 forj<i. . . . . 
The following lemma shows that general programs adrruttmg hierarchical 

stratifications and recursion-free programs coincide. It is in fact a special case of the 
well known fact that a finite relation can be topologically sorted iff it is acyclic. 

Therefore we omit the proof. 

LEMMA 1: A general program P is recursionjree iff there is a hierarchical stratification 

ef ~ 0 

*)to the version of this paper that appeared in Fundamenta lnformaticae 13, pp.1-18, 1990. 
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2. Completions of recursionjree programs 
In the sequel we shall study comp(P), CLARK'S [C78] completion of a general pro
gram P. Its definition can be found in [Ll87]. comp(P) is a theory whose language is 
the first order language L(P) of the general program P augmented by the equality 
relation symbol"=". Given a general program P we denote by L(=) the language 
obtained by deleting from L (P) all relation symbols and by adding "=" to it. From 
now on in presence of a general program P we denote L (P) by L. 

comp(P) is a set of formulas which consists of free equality axioms, which we 
denote by Eq, together with certain other formulas, about which we only need to 
know the following two properties. 

PROPERTY 1: For every m-ary relation symbol q of L with the empty definition in P, 
the formula 

Vx 1 ••. 'v'xm--, q(x 1' ... , Xm) 

is in comp (P). 

PROPERTY 2: For every m-ary relation symbol q of L with the non-empty definition 
in P, there is in comp (P) a formula of the form 

q(x J, · · . , Xm)-fq 

such that every relation symbol occurring in fq, other than "= ", occurs in the 
definition of q in P. 

The equality axioms in Eq are the usual axioms of first-order logic with equality 
that say that = is a congruence, together with axioms that say that the function sym
bols of L, including the 0-ary ones, denote one-one functions with disjoint ranges, 
and axioms which say that all functions definable by composition from the given 
function symbols have no fixed points. As pointed out by KuNEN [K87], these are 
the axioms required for justifying the soundness of both success and failure of 
unification. 

In the proof of the next lemma we shall need the following result from mathemati
cal logic (see [Sh67] p. 34). 

THEOREM 2: (Equivalence Theorem). Let T be a theory and q, a formula. Suppose that q,' 
is obtained from q, by replacing some, possibly all occurrences of subformulas 
f i. ... , fn by o/' J, ... , f' n respectively. Then if for i = 1, ... , n, 

Trf;-o/';, 

then 

Trq,-q,'. D 

Here replacing involves an appropriate renaming of variables performed in order to 
avoid variable clashes. 

LEMMA 3: Let P be a recursionjree program. For every atom A of L there exists a for
mula q, A of L ( =) all of whose free variables occur in A such that 

comp(P)rA -'i>A· (1) 

PROOF. Let P = P 1 U · · · U Pn be a hierarchical stratification of P whose existence 
is guaranteed by lemma 1. We define a mapping height from relation symbols of L 
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into {O, l, ... ,n} as follows. 
~et r be a relation. symbol of L_ whose definition within P is empty. Then we put 

he1ght(r)=O. Otherwise we put he1ght(r)=i iff the definition of r is contained in P·. 
Suppose that A-~(ti..:., tm) for a_relation symbol rand terms tJ, ... ,tm. 'we 

prove the lemma by mduction on the height of r. If height(r)=O, then by property 1 

comp(P) r A ~false, 

sow~ can take false for <f>A· We can regard false as an abbreviation of -,'Vx(x =x). 
If height (r)= 1, then by property 2 lji, is a formula from L(=) with free variables 
X1> ... , Xm· Let lji', stand for lji,{x1ltJ, ... , Xmltm}· Then fr is a formula from 
L ( =) all of whose free variables occur in A such that 

comp(P)rA ~lji'n (2) 

so we can take 1// r for </>A. 
Assume n~w that the claim holds for all relation symbols with height <k and sup

pose that he1ght(r)=k. By property 2, (2) holds, but where, instead of lji', being a for
mula of L(=), every relation symbol q occurring in lji', and different from 
occurs in the definition of r in P. But the stratification 

P=P1U···UPn 

of P is hierarchical, so every such relation symbol q is of height <k. Thus by the 
induction hypothesis, for every atom B occurring in o/' r and whose relation symbol 
differs from "= ", there exists a formula <f>B if L ( =) all of whose free variables occur 
in B such that 

comp(P)rB ~<f>B· (3) 

Now, replace each occurrence of such an atom B in lji', by <f>B and call the resulting 
formula <f>A· Note that <f>A is a formula of L(=) and that all its free variables appear 
in A. Now by theorem 2 we get (1) by virtue of (2) and (3). 

D 

COROLLARY 4: Let P be a recursionfree program. For every formula</> of L there exists 
a formula lji of L ( =) all of whose free variables occur as free variables in </> and such 
that 

PROOF. By lemma 3 for every atom A occurring in </> there exists a formula <f>A of 
L(=) all of whose free variables occur in A and such that (1) holds. Now, replace 
each occurrence of an atom A in</> by <f>A and call the resulting formula \jiq,. Then o/.p 
is a formula of L ( =) all of whose free variables occur as free variables in cJ>. By 
theorem 2 we now get the desired conclusion by virtue of (1). 

D 

3. Domain closure axiom 
In the sequel we shall refer to a number of basic concepts from mathematical logic 
which we now briefly recall. 

By a closed formula we mean a formula without free variables. A theory T is called 
complete if for all closed formulas </> either Tr</> ?r Tr-,cp. A theor~ T is calle~ con
sistent if for no formula cp both TrcJ> and Tr-,<J>. Fmally, a theory T is called decidable 
if (after the standard encoding) the set { <J>:Tr</>} is recursive. 

Let L be a first order language with finitely many function symbols and constants. 
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By DCA (the domain closure axiom) we mean the following first order formula of L: 

'<Ix j3Y1 ... 3yn(x=f(Y1, · · · ,yn)), 

where n is the number of arguments off, and is 0 if f is a constant. Thanks to the 
restriction on L, DCA is indeed a first order formula. For example, if L contains one 
constant a, one unary function symbol f and one binary function symbol g, then 
DCA can be taken as 

'<lx(x =a V 3y(x =/(JI) V 3y 13y2(x = g(Y 1,yz))). 

We now need the following result due to MAHER [M88]. 

THEOREM 5: Let L be a first order language with = and with finitely many function sym
bols and constants but at least with one constant. Then Eq U {DCA} is a complete and 
decidable theory. D 

Note that the Herbrand base corresponding to the language L augmented by "=" 
is a model of Eq U {DCA}, so Eq U {DCA} is also a consistent theory. 

Recall that we originally assumed that each general program P contains at least one 
constant and one function symbol. So we can apply the above theorem here. We can 
now prove the main result of this section. 

THEOREM 6: Let P be a recursionfree program. Then comp(P) U {DCA} is a complete 
and decidable theory. 

PROOF. Let cp be a closed formula of the language L(P) augmented by =. Then the 
formula ifi<P from corollary 4 is closed, as well. By corollary 4 

comp(P)U{DCA}r</> iff comp(P)U {DCA}rl/iq,. 
Moreover by theorem 5 

comp(P) U {DCA} r t/iq, !ff Eq U {DCA }ri/Jq, , 
since comp(P) U {DCA} is consistent. Combining these two equivalences we get 

comp(P) U {DCA } r </> !ff Eq U {DCA} r'l/iq, . (4) 
But by the form of i/Jq, we have that i/J..,q, is identical to -.i/Jq,, so since --,cf> is a closed 
formula, as well, 

comp(P) U {DCA }h</> !ff Eq U {DCA }hi/Jq,. (5) 
Now by virtue of theorem 5, (4) implies that comp(P) U {DCA} is decidable and (4) 
and (5) imply that comp(P) U {DCA} is complete. 

COROLLARY 7: Let P be a recursionfree program. Then for every ground atom A 
A EMp !ff comp(P) U {DCA }rA . 

D 

PROOF. Mp is a model of comp(P)U{DCA}. Thus A EMp implies that 
comp(P) U {DCA} r -,A does not hold which by theorem 6 implies 
comp(P)U{DCA}rA. Also, At/.Mp implies that comp (P)U{DCA}rA does not 
hold. 

D 
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We can obtain the desired conclusion. 

COROLLARY 8: Let P be a recursionjree program. Then Mp is recursive. 

PROOF. By corollary 7 and theorem 6. 
D 

4. Discussion 
It is straightforward to define the completion of a program, hence Eq, and in the case 
of stratified programs, the standard model Mp, with respect to a language L with 
possibly infinitely many function and relation symbols, where L is any particular 
extension of the smallest language L(P) in which the clauses of P can be expressed. 
It is easy to see that Mp is in fact dependent on the underlying language L. The 
point of view where all programs are taken as sets of clauses over the same denumer
able (effectively presented) language Lis extensively discussed by Maher [M88a]. 

If comp(P) and Mp are defined in this way with respect to L, the fundamental 
results that Mp is independent of the stratification of P, and that Mp is a model of 
comp(P) continue to hold. 

If the set of function symbols of L is infinite (and the sets of function and relation 
symbols of L are suitably effectively presented), then the theorem and corollaries of 
section 3 continue to hold, provided DCA is deleted from their statements and 
proofs. This holds because for such a language L, the equality theory Eq, (without a 
domain closure axiom, which would require an infinite disjunction to express) is com
plete and decidable, (cf. [K87]). 
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