
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 333, Number I, September 1992 

ON q-ANALOGUES OF THE FOURIER AND HANKEL TRANSFORMS 

TOM H. KOORNWINDER AND RENE F. SWARTTOUW 

ABSTRACT. For H. Exton's q-analogue of the Bessel function (going back to 
W. Hahn in a special case, but different from F. H. Jackson's q-Bessel functions) 
we derive Hansen-Lommel type orthogonality relations, which, by a symmetry, 
tum out to be equivalent to orthogonality relations which are q-analogues of 
the Hankel integral transform pair. These results are implicit, in the context of 
quantum groups, in a paper by Vaksman and Korogodskii. As a specialization 
we get q-cosines and q-sines which admit q-analogues of the Fourier-cosine 
and Fourier-sine transforms. We also get a formula which is both an analogue of 
Graf's addition formula and of the Weber-Schafheitlin discontinuous integral. 

1. INTRODUCTION 

Several possible q-analogues of the Bessel fanction 

( 1.1) 

have been considered in the literature. The best known are two related q-Bessel 
functions denoted J~ 1 \x ; q) and J~2l (x; q) by Ismail [ 1 O], but first introduced 
by Jackson in a series of papers during the years 1903-1905 (see the references 
in [ 10]) and also studied by Hahn [7]. A third q-Bessel function was introduced 
by Hahn [8] (in a special case; we thank G. Gasper for this reference) and by 
Exton [3; 4, (5.3.1.11)] (in full). In Exton's notation, 

( 1.2) 
C (q. x) ._ (l _ q)"' ~ qk(k-1)/2 (q"'+k+I; q)oo (-x(l _ q)2)k 

"' ' .- (q; q)oo f:o (q; q)k ' 

where the q-shifted factorials are defined by 

k-1 

( 1.3) 
(a; q)k := IT ( l - aqj), k = 1, 2, . . . (a; q)o := 1; 

j=O 

(a; q)oo := lim (a; q)k> lql < 1. 
k-+oo 

Hahn [8] considered the case a = 0 of ( 1.2). They obtained these functions as 
the solutions of a special basic Sturm-Liouville equation, by which they could 
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also derive the following q-analogue of the Fourier-Bessel orthogonality rela
tions: 

fo 1 x(l Ca(q; µiqX) Ca(q; µjqX) dqX = 0, i-::j:.j, a>-l, 

where µ 1 , µ2 , ••• are the roots of the equation Ca(q; µ) = 0, and where the 
q-integral is defined by 

fn 1 f(x) dqx := (1- q) f f(qk) qk. 
0 k=O 

By specialization to a = ±1/2, Exton obtained similar orthogonalities for q
analogues of the sines and cosines. So some of the harmonic analysis involving 
Bessel functions, sines and cosines has been extended to the q-case. However, 
q-analogues of the Fourier-cosine, Fourier-sine and Hankel transforms were 
missing until now (except for a q-Laplace transform with inversion formula, 
cf. Hahn [7, §9] and Feinsilver [5]). 

Exton [4, (5.3.3.l)] also generalized the generating function 

00 

(1.4) ez(t-1-1)/2 = L tk Jk(z) 

k=-oo 

(cf. Watson [15, §2.1(1)]) to the case of his q-Bessel functions (1.2): 

00 

(1.5) eq((l - q)t)Eq(-(l - q)t- 1x) = L tnCn(q; x), 
n=-oo 

where 

( 1.6) 
oo zk 1 

eq(z) := E (q; q)k = (z; q)oo ' izl < 1, 

and 
00 qk(k-1)/2 zk 

Eq(z) := L ( . ) = (-z; q) 00 

k=O q' q k 
( 1.7) 

are q-analogues of the exponential function (cf. Gasper and Rahman [6, 
( 1.3.15), ( 1.3.16)]). 

Recently, Vaksman and Korogodskii [14] gave an interpretation of the q
Bessel functions (1.2) as matrix elements of irreducible representations of the 
quantum group of plane motions. Their paper, which does not contain proofs, 
implicitly contains some new orthogonality relations for the functions ( 1.2). In 
particular, the unitariness of the representations implies a q-analogue of the 
Hansen-Lommel orthogonality relations 

00 

( 1.8) <>nm = L lk+n(X) lk+m(X), n, mEZ 
k=-oo 

(cf. [15, §2.5(3),(4)]). Furthermore, the Schur type orthogonality relations for 
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matrix elements of irreducible unitary representations which are square inte
grable with respect to a suitable Haar functional yield a q-analogue of Hankel's 
Fourier-Bessel integral 

( 1. 9) f(x) = fo 00 
J,,(xt) (fo00 

la(ty)f(y)y dy) t dt 

(cf. [15, § 14.3]). 
It is the purpose of the present note to state these two types of orthogonality 

relations for the functions ( 1.2) explicitly, to show that the first type is imme
diately implied by the generating function ( 1. 5), and to rewrite the first type as 
the second type by use of a simple, but possibly new, symmetry for the func
tions ( 1.2). This will be done in §2. In §3 we will show that the second type 
of orthogonality is, on the one hand, a limit case of the orthogonality for the 
little q-Jacobi polynomials and, on the other hand, allows the Hankel transform 
inversion formula as a limit case for q T 1 . In §4 we will generalize the two 
orthogonality relations to two equivalent formulas, which are respectively the 
q-analogues of Grafs addition formula and the Weber-Schafheitlin discontin
uous integral. The special cases of the q-Fourier-cosine and sine transforms 
will be the topic of §5. No material from §4 is needed in this section. Finally, 
Appendix A will contain rigorous proofs of two limit results. 

In a recent paper by Rahman [13], where a q-analogue of the Fourier-Bessel 
orthogonality for Jackson's q-Bessel functions is discussed, the author states in 
his concluding remarks that Jackson's q-Bessel functions probably have nicer 
properties than those of Exton. However, the results obtained in [14] and in the 
present paper might suggest that the Hahn-Exton functions are more suitable 
for harmonic analysis, both within and without the context of quantum groups. 
Future research will help to clarify the merits of the various types of q-Bessel 
functions. 

In this paper we will not preserve Exton's notation Cc,(q; x) in ( 1.2), but 
state the results in terms of the q-hypergeometric function 

( 1.10) 
oo (-l)k qk(k-I)/2 zk 

,i.. (O· w · q z) ·- "'-----1'1'1 , , , .-f::'o (w;q)k(q;q)k 

Our motivation is that (i) the r<Ps notation is fairly well known nowadays and 
clarifies the position of these q-Bessel functions among other q-hypergeometric 
functions; (ii) q-analysis should not depend too much on the q = 1 case, so 
scaling factors simplifying the limit transition q T l easy should not be hidden 
in the definitions of q-special functions; and (iii) the classical definition ( 1.1) 
of Bessel functions is very natural in the context of the generating function ( 1.4) 
and for analysis concentrating on J0 , but it is less fortunate when the focus is 
on another Bessel function of fixed order (cf. 1-1;2(x) versus cosx), so one 
should be very careful before fixing the definition and notation of a q-Bessel 
function. Therefore, the notations for q-Bessel functions, q-cosines and q
sines in §§3 and 5 should be considered as ad hoe notations, which are only 
used locally in this paper for clarifying the analogy of the functions with the 
q = 1 case. 
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2. SYMMETRY AND ORTHOGONALITY FOR q-BESSEL FUNCTIONS 

We will always assume that 0 < q < 1 . The general q-hypergeometric series 
is defined by 
(2.1) 

" [a1, ... , a,. ] ·-~ (ai, ... , a,; q)k((-l)k qk(k-1)/2y-r+I zk 
r'!'s b b ' q ' Z .- L.. (b b ) ( ) ' 

I , · · · , s k=O I , · · · , s ; q k q ; q k 

where the q-shifted factorial is defined by ( 1. 3) and 

(a1, ... , a,; q)k := (a1; q)k(a2; q)k .. ·(a,; q)k. 

The upper and lower parameters in the left-hand side of ( 2.1) may also be 
written on one line as a1 , ••• , a,; b1 , ••• , bs . The power series, in the non
terminating case of (2.1 ), has radius of convergence oo, 1 or 0 according to 
whether r - s < l, = 1, or > l, respectively (see [6, Chapter 1] for further 
details). Thus the defining formula ( 1.2) for the Hahn-Exton q-Bessel function 
can be rewritten as 

(1 - )" (qa+!. q) 
C,,(q;x):= q(.)' 00 14>1(0;qa+l;q,x(l-q)2) 

q' q 00 

and the q-exponential functions ( 1.6), ( 1. 7) can be written as 1 <Po(O; - ; q, z) 
and o<Po(-; - ; q, -z), respectively. 

Our object will be the Hahn-Exton q-Bessel function written as the q-hyper
geometric series ( 1.10). It is well defined for z, w E C with w outside 
{ 1 , q- 1 , q-2 , ••• } • These singularities can be removed by multiplication by 
(w;q)oo: 

(w·q) "(O·w·q z)=~(-l)kqk(k-1)/2(qkw;q)oozk 
(2.2) ' 00 l '1'1 ' ' ' L.. ( ) 

k=O q; q k 

Proposition 2.1. The series in (2.2) de.fines an entire analytic function in z, w , 
which is also symmetric in z, w : 

(2.3) (w; q)oo14>1(0;w; q, z) = (z; q) 00 14>1(0; z; q, w). 

Both sides can be majorized by 

(2.4) (-lzl; q)oo(-lwl; q)oo. 

Proof. Substitute for (qkw; q) 00 in (2.2) the o<Po series given by ( 1. 7): 

~ ~ (-1)' qlU-I)f2wl (-l)k qk(k-I)/2 zk 
(w;q)oo1<P1(0;w;q,z)=L..L..qkl ( ) ( ) . 

k=O 1=0 q ; q I q ; q k 

The summand of the double series can be majorized by 

ql(/-1)/2 lwll qk(k-1)/2 lzlk 

(q;q), (q;q)k 

Thus the double sum converges absolutely, uniformly for z, w in compacta, 
and it is symmetric in z and w . o 

Remark 2.2. Formula (2.3) is a limit case of Heine's transformation formula 

(2.5) " [a , b . ] _ ( b , a z ; q) co ,-/.. [ c / b , z . b] 
2'1'1 ' q, z - ( ) 2'1'1 ' q, c c, z; q 00 az 
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(cf.[6,(1.4.1)]). Indeed,firstlet b--tO,thenreplace z by z/a andlet a-too. 
At least formally, by termwise limits, we obtain (2.3). 

Remark 2.3. For w := ql-n (n = 1, 2, ... ) we interpret the left hand side 
of (2.2) by the series at its right-hand side. Then the first n terms vanish, so 
the summation starts with k = n . When we make the change of summation 
variable k = n + l, we obtain 

(ql-n; q)oo 14>1 (0; ql-n; q' z) 
(2.6) = (-l)n qn(n-1)/2 zn (qn+1; q)oo i</Jl (0; qn+I; q, qn z) 

for n E Z. (The case n < 0 follows from the case n > 0 of (2.6) by changing 
z into q-n z .) 

Remark 2.4. Because of (2.6), the behaviour of the two equal sides of (2.3) as 
lwl --too (cf. (2.4)) drastically improves when w runs over the values q 1-n, 
n = 1 , 2, .... For such w we can majorize these expressions by 

qn(n-1)/2 jzjn (-Jzl; q)oo (-q; q)oo-

We will now restate Exton's generating function ( 1.5) in terms of the notation 
(2.2), and also give the short proof, for reasons of completeness. 

Proposition 2.5. For z, t EC such that 0 < ltl < Jz1- 1 there is the absolutely 
convergent expansion 

(2.7) 

e (tz) E (-r1 z) = u-1 z; q)oo = ~ tn zn (qn+I; q)oo A. (0. qn+I. q z2) 
q q (tz;q)oo n~oo (q;q)oo 1'!'1 ' ' ' 

(2.8) 

Proof. 

oo (z2. q) = '"""' tn zn ' oo A. (0. z2. q qn+I) 
n~oo (q; q)oo l'!'I ' ' ' . 

Expansion of the left-hand side of (2. 7) gives 

oo oo (-l)kqk(k-l)f2tl-kzl+k 

~ ~ (q; q)k (q; q), 

= f f (ql+I; q)oo (-l)k qk(k-1)/2 tl-k zl+k' 

k=O i=-oo (q; q)oo (q; q)k 

which is an absolutely convergent double sum for z, t EC such that 0 < lti < 
Jz1- 1 • Now pass to new summation variables k, n by substituting l = k + n. 
This yields, by substitution of (2.2), the right-hand side of (2.7). Formula (2.8) 
follows by the symmetry (2.3). o 

In §3 we will show that (2.8) is a q-analogue of an infinite integral of Weber 
and Sonine. Replace t by r 1 in (2.7) and multiply the new identity by the 
original identity. The resulting formula 

(2.9) 

oo oo ( n+ I . ) 
1= L L tn-mzn q ,qoo1</i1(0;qn+l;q,z2) 

n=-oo m=-oo (q; q)oo 

xzm (q(m+I; )q)oo 1</>1(0; qm+I; q, z2) 
q; q 00 
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is absolutely convergent for z, t EC such that t =/:: 0 and lzl < ltl < lzl- 1 • So 
equality of coefficients of equal powers of t at both sides yields a q-analogue 
of the orthogonality relations ( 1.8): 

Proposition 2.6. For I z I < 1 and n , m E Z we have 

(2.10) 

and 

(2.11) 

00 ( n+k+I. ) L zk+n q ( ) q oo 1!/J1(0; qn+k+I; q, zl) 
k=-oo q; q 00 

( m+k+l . q) 
xzk+m q ' oo ,.1.. (O· qm+k+I. q zl) = 0 ( ) l\f'l , , , nm 

q; q 00 

f: zk+n \~2·; q/oo 1!/J1(0; zl; q, qn+k+l) 
k=-oo 'q 00 

x zk+m (r; q/ 00 14>1 (0; z2 ; q' qm+k+I) = Onm, 
q; q 00 

where the sums on the left-hand sides are absolutely convergent, uniformly on 
compact subsets of the open unit disk. 

Formula (2.11) follows from (2.10) by the symmetry (2.3). In §3 we will 
show that (2.11) is a q-version of Hankel's Fourier-Bessel integral ( 1.9). 

Remark 2.7. Analogous to Proposition 2.5 there are the two generating func
tions for the q-Bessel functions J~ 1 l(x; q) and 1Pl(x; q) of Jackson and Is
mail [10): 

(2.12) 

e (tz)e (-t- 1z) = ----1---
q q (tz; q)00 (-t- 1 Z; q) 00 

00 ( IHI ) 
= """" tn zn q ; q oo ..I.. (0 0. qn+ I . q - zl) 

nf:'oo (q; q)oo 2\f'l ' ' ' ' ' 

for lzl < jtJ < lzJ-1 , and 

Eq(tz)Eq(-t- 1z) = (-tz; q)00 (t- 1z; q) 00 

oo n(n-1)/2 ( n+l. ) 
= """' tn 2 n q q ' q oo ,.1,, (-. qn+l . q -qn 2 2). 

nf:'oo (q; q)oo O\f'I ' ' ' 

(2.13) 

In a way similar to (2.10) we can now derive the biorthogonality relations 
00 ( n+k+l . ) 

"""" 2 k+n q 'q oo ,.1,, (0 0· qn+k+I. q _ 2 2) 
k~oo (q; q)oo 2\f'l ' ' ' ' 

(2.14) ( m+k+l. ) x zk+m q(m+k)(m+k-1)/2 q ' q 00 

(q; q)oo 

x o</J1 (-; qm+k+I; q' -qm+k z2) = Onm' 

valid for lzl < 1 and n, m E Z. The case n = m of this result goes back to 
Jackson (see also [7, §8]). Formula (2.14) can be rewritten in several ways by 
substitution of the transformations 

1 
o</J1(-;c;q,cz)=(z;q)oo2iP1(0,0;c;q,z)= (. ) 1</J1(z;O;q,c). 

c' q 00 
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However, this will not transform (2.14) into an orthogonality; it remains a 
biorthogonality. 

3. SOME LIMIT TRANSITIONS 

Jacobi polynomials tend to Bessel functions: 

P~a,/3\1 - x2 /(2N2 )) ( x 2 ) 
N (a,/3) =1F1 -nN,nN+a+,B+l;a+1; 4N 2 

PnN ( 1) 

~ 0F1 (-;a+ 1; -(~xr) = ('1';)-" f(a+ l)J0 (h), 

where n N / N tends to A. for N -+ oo . When this limit transition is applied to 
the formula which recovers a function from its Fourier-Jacobi coefficients, we 
obtain, at least formally, Hankel's Fourier-Bessel integral ( 1.9). 

The q-analogue of this limit transition starts with the little q-Jacobi polyno
mials 

Pn(X; a, b; q) := 2</>1(q-n, abqn+I; aq; q, qx), 

which satisfy orthogonality relations 

(3.1) 

(qa' qb; q)oo ~( )( k b ) ( )k (qk+l; q)oo 
(q' q2ab; q)oo f::o PnPm q ; a, ; q qa (qk+lb; q)oo 

_ (qa)n (1 - qab) (qb, q; q)n 0 
- (1-q2n+lab)(qa, qab; q)n nm, 

where 0 <a< q- 1 , b < q- 1 (see Andrews and Askey [2]). 
It is clear that 

PN-n(qN x; a, b; q) = 2</>1 (q-N+n, abqN-n+l; aq; q, qN+l x) 

tends formally (termwise) to 1</> 1(0; aq; q, qn+ 1x) as N-+ oo. (See Propo
sition A.1 for a rigorous proof of this limit result.) Also, when we replace 
n, m, k in (3.1) by N - n, N - m, N + k, respectively (so the sum runs from 
-N to oo), and when we let N-+ oo, we obtain as a formal (termwise) limit 
the orthogonality relations (2.11 ). 

In order to see that (2.11) is a q-analogue of Hankel's Fourier-Bessel integral 
(1.9), rewrite (2.11) as the transform pair 
(3.2) 

l g(qn) = f q(k+n)(a+l) (q(2":~; ;)2)oo l</>l(O; q2a+2; q2, q2k+2n+2)J(l), 

k=-oo q ' q 00 

oo ( 2a+2. 2) 
J(qk) = n~oo q(k+n)(a+l) ~q2 ; ~;)oo oo l</>l(O; q2a+2; q2, q2k+2n+2) g(qn), 

where f, g are L2-functions on the set { qk I k E Z} with respect to counting 

measure. With the ad hoe notation 

a (q2a+2. q2) 
J. ( . q2) ·= Z , oo ,i., (0. q2a+2. q2 q2 22) 

a z' . ( 2. 2) l '1'1 ' ' ' q , q 00 
(3.3) 
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(different from Rahman's proposal in [ 13, ( 1.13) ]) and with the replacement of 
f(qk), g(qn) by qk f(qk), qn g(qn) this becomes 

00 

g(qn) = L q2k la(qk+n; q2) j(qk), 

(3.4) k=-oo 
00 

j(qk) = L q2n la.(l+n; q2) g(qn). 
n=-oo 

Now observe that 

J;,((1 - q)z; q2) = (~ ;(~~al~a 1c/J1 ( 0; q2a+2; q2' (1 - q2)2 ( l ~ q) 2) 

converges, for q T 1 , to the Bessel function 

2-a.za ( -z2 ) 
la. ( z) = f (a + 1) 0F1 - ; a + 1 ; 4 , 

where we used Proposition A.2 and the fact that 

(1 _ q2)a (q2a+2; q2) 00 = ~ ~~~ 

(q2; q2) 00 fq2(a + 1) f(a + 1) 

as q T 1 (cf. Andrews [l, Appendix A], Koornwinder [11, Appendix B]). We can 
apply this to (3.4) when we let q T 1 under the side condition that 10~i~~q) E 2Z. 
For such q we can replace qk, qn in (3.4) by(! -q) 112qk, (l -q) 112qn, and 
next f(( l - q) 112qk), g((l - q) 112qn) by f(qk), g(qn). With the q-integral 
notation 

fn00 h(z) dqz := ( 1 - q) f h(qi) qi, 
0 J=-oo 

(3.4) then takes the form 

{ 
g().) =loo f(x)Ja((l-q)A.x; q2 )xdqX, 

f(x) =loo g(A.) ln((l - q)A.x; q2 )A. dqA, 

where A in the first identity and x in the second identity take the values qn , 
n E Z. For q T 1 we obtain, at least formally, the Hankel transform pair 

{ 
g(A.) =loo f(x) la(Ax)x dx, 

f(x) = fo 00 g(lc) la(Ax)AdA, 

which is equivalent to ( 1.9). 
In order to find the classical formula corresponding to (2.8), we rewrite (2.8) 

first in terms of the notation (3.3): 

(q a.+ l-t. q2) 00 
' oo _ ~ n n1 J ( n. 2) -(q_a._+-l+-t -; q-2-)

00
- - ~ q q " q 'q ' 

n=-oo 

Rt> -Ra - 1. 
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For log( l - q) / log q E Z this can be rewritten as 

(1 + q) 1 lq2((0: + l + t)/2) _ r= t . l 

lq2((0: + 1 - t)/2) - lo x la((l - q)x' q ) dqX. 

Formally, as q T 1 , this yields 

21 f'((o: + 1 + t)/2) = r= IJ. ( ) d 
f'((o:+ 1-t)/2) lo X a X X, 

which formula, valid for -1 /2 > ~t > -~o: - 1 , goes back to Weber and 
Sonine, (cf. [15, 13.24(1)]). 

4. A q-ANALOGUE OF GRAF'S ADDITION FORMULA 

In this section we will generalize the considerations which led to the orthog
onality relations in Proposition 2.6. The resulting formula will turn out to be 
a q-analogue of Grafs addition formula and, at the same time, of the discon
tinuous integral of Weber and Schafheitlin. In a final remark we will point 
out that the Graf type addition formula part can also be done for the q-Bessel 
functions of Jackson and Ismail, by similar methods, which go back to Heine, 
the founding father of q-hypergeometric series. 

A formula more general than (2.9) can be derived by expanding the expression 

(xs- 1 t; q)= (yt- 1 ; q)= 

(yt; q)= (xst- 1 ; q) 00 

( 4.1) 

as a Laurent series in ([sx[ < [t[ < [y[- 1) in two different ways. On the one 
hand, ( 4.1) can be expanded by twofold substitution of the q-binomial formula 
(cf. [6, (1.3.2)]) as 

,i... ( -1 -1. . t) ,+.. ( -1 -1. . t-1) 
l'f'O s xy , - , q, y l'+'O s yx , - , q, xs 

= = ( -1 -1 ) ( -1 -1 l+l ) ="°'""""' s yx ;qk s xy ,q ;q=skxk/tl-k 
f:'o l~oo (q; q)k (qls-lxy-1' q; q)oo 

= oo ( -1 -1 ) ( -1 -1 n+k+l ) 
= """"' tn n """"' s yx ; q k s xy , q ; q oo (sxy)k, 

nf::'oo Y f:o (q; q)k (qn+ks-lxy-1' q; q)oo 

where we substituted I = k + n. Since the inner sum in the last part can be 
expressed in terms of a 24> 1 series, we obtain the identity 

(xs- 1t; q)oo (yt-l; q)oo 

(yt; q)oo (xst- 1 ; q) 00 

(4.2) 
oo (s-1 xy-1 qn+i. q) 

_ """"' tn n , , oo 
- nf::'oo Y (qns-lxy-1, q; q)oo 

[
qns-Ixy-1, s-Iyx-1. ] 

x 24>1 qn+l , q, sxy , 

Here we use, for n < 0, an interpretation of the 2 ef> 1 similar to our conven
tion in Remark 2.3. The case that s- 1 xy- 1 is an integer power of q is then 
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understood by continuity in s, x, y. The analogue of (2.6) becomes 

(4.3) 

(s-1 xy-1, ql+n; q)oo [qns-1 xy-1, rlyx-1 . q sxy] 
(qns-lxy-1, q; q)oo 2</>1 ql+n ' ' 

-n (rlyx-1, ql-n; q)oo [q-ns-lyx-1, s-1 xy-1 . ] 
= (sxy) 1 1 ) 2</>1 1 , q, sxy • 

(q-ns- yx- ' q; q oo q -n 

Note that (4.2) reduces to (2.7) in the special case x = 0 (and also, in view of 
(2.6), for y = 0). Formula (4.2) is a q-analogue of (1.4) with z and t replaced 
by 2(y- r 1 x) 112(y - sx)112 and t(y - s- 1 x) 112(y - sx)- 112 , respectively. 

On the other hand we expand ( 4.1) by twofold substitution of (2. 7): 

(4.4) 

(xr 1t; q) 00 (yt-I; q)oo 

(yt; q) 00 (xst- 1 ; q) 00 

co oo ( n+k+I. ) 
= L L tnskyn+k q(q;q)~ool<f>l(O;qn+k+l;q,y2) 

n=-oo k=-oo 

x xk (qk+I; q)oo "' (0. qk+I . q x2) 
(q;q)oo 1'1'1' , ' , 

which generalizes (2.9). When we compare coefficients of equal powers of t in 
(4.2) and (4.4), we obtain 

Proposition 4.1. For jsxyl < 1 we have 

n (rlxy-1, qn+l; q)oo [qnrlxy-1, s-lyx-1. sx ] 
Y (qns-lxy-1, q; q)oo 2</>1 qn+I 'q' Y 

(4.5) 
oo ( n+k+I . ) 

= ~ skyn+k q , q oo ,i. (O· qn+k+I. q y2) 
~ (q; q)oo 1'1'1 ' , ' 

k=-oo 

x xk (qk+I; q)oo "' (O· qk+I. q x2). 
(q; q)oo l 'l'l , , , 

Formula ( 4.5) is a q-analogue of the addition formula 

due to Graf ( cf. [ 15, § 11.3 ( 1 )]). The special case n = 0 of ( 4.5) is a q-analogue 
of Neumann's addition formula for Bessel functions lo (cf. [15, § 11.2 ( 1 )]). In 
the special case x = y, s = 1 the left-hand side of (4.5) becomes yn 6n,o, so 
then ( 4.5) reduces to the orthogonality relations (2.10). 

When we apply the symmetries (2.5) and (4.3) to the left-hand side and (2.3) 
to the right-hand side of ( 4.5), and replace n by n - m and then k by k + m , 
we obtain an equivalent identity: 
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Proposition 4.2. For lsxyl < 1 we have 
( 4. 7) 

s-m yn-m (s-lxy-1' y2; q)oo A. [qsx-ly' sxy. n-ms-lx -1] 
(sxy,q;q)oo 2'1'1 y2 ,q,q y 

= s-n xm-n yx 'x ; q 00 A. qsxy 'sxy. m-ns-1 x-1 (s -1 -1 2 ) [ -I ] 

(sxy, q; q)oo 2'1'1 x2 , q, q y 

00 ( 2 
= '°"' skyn+k Y ; q)oo ,i., (O· y2. q qn+k+I) 
k~oo (q; q)oo l'l'I ' ' ' 

x xm+k (X 2; q)oo ,i., (O. x2. q qm+k+l) 
(q;q)oo 1'1'1 ' , ' • 

In particular, for x = y we have 

-m n-m (s-1, z2 ; q)oo A. [qs' sz2 . n-m -1] 
s z ( 2 ) 2'1'1 2 ' q' q s sz,q;qoo z 

= s-n zm-n (s-1' z2; q)oo 2c/>1 [qs' sz2; q' qm-ns-1] 
(sz2,q;q)= z2 

(4.8) 
= ~ skzn+k(z2 ;q)oo A.(O·z2·q qn+k+l) 

LI ( ) 1'1'1 , , , 
k=-00 q; q 00 

x zm+k (z2; q)= A. (0. z2. q qm+k+l) 
(q; q)oo l '1'1 , ' ' ' 

where Is z2 I < 1 . This can be considered as a kind of Poisson kernel for the 
orthogonal system with orthogonality relations (2.11 ). Inspection of the first 
two parts of ( 4.8) shows that this kernel is positive if 0 < z < 1 and 1 < s < 
min{q- 1 , z-2}. 

Let us look for the classical analogue of formula ( 4. 7). In ( 4. 7) first replace 
q by q2 , then x, y, s by qa+I, q/J+l, q-r- 1, respectively. Then, with the 
notation ( 3.3 ), formula ( 4. 7) can be rewritten as 

00 L qk(-y+I) la(qm+k; q2) Jp(qn+k; q2) 

k=-oo 

(qa-p+y+I q2f3+2. q2) 
n/3 m(y-.8-1) ' , oo 

q q (qM.8-Y+l, q2; q2) 00 

X z</Jl (qf3-a-y+l, qa+/J-y+I; q2f3+2; q2, q2n-2m+a-.B+y+I), 

(q /J-"+y+I q2a+2. q2) 
ma n(y-a-1) ' ' oo 

q q (qa+,8-y+I, q2; q2) 00 

x zrpl (q"-/J-y+l, qa+/J-y+I ; q2a+2; q2, q2m-2n+P-a+y+I), 

where ~( o: + fJ - y + 1) > 0. Now replace qk by qk (1 - q) (with 10~h~~q) E Z) 
and let m, n depend on q such that, as q T 1 , qm tends to a and qn tends 
to b. Depending on whether b < a or b > a , make the formal limit transition 
q T 1 in the first or second identity, respectively. Then, for ~(o:+ /J-y + 1) > 0, 



456 T. H. KOORNWINDER AND R. F. SWARTTOUW 

Ry > -1 , we obtain the discontinuous integral of Weber and Schafheitlin: 

2Y fooo X-y J"(ax)Jp(bx) dX 

= 

ar-P-1 bP r((a + p -y + 1)/2) 
f((a - p + y + 1)/2)r(P + 1) 

F ( p - a - y + 1 a+ ft - y + 1 . fJ 1 . b2 ) 
X 2 I 2 ' 2 ' + ' a2 

aa by-a-I f((a + {J - Y + 1)/2) 
r((fJ - a+ y + 1)/2)r(a + 1) 

F ( a-fJ-y+ 1 a+fJ-y+ 1. 1. a2 ) 

x 2 t 2 ' 2 ' a + ' b2 

if b <a, 

if a< b, 

(cf. [15, §13.4 (2)]). Note that the two analytic expressions the right-hand side 
are no longer equal, as they were in the q-case. 

Remark 4.3. Analogous to ( 4.2) we have 

(4.9) 

for IYI < ltl < IYl-1 • The case s = 1 of (4.9) goes back to Heine [9, p. 121] 
(see also Hahn [7, §81). Its special cases (x, y, s) = (0, z, 1) and (-z, 0, 1) 
are the formulas (2.12) and (2.13). Like (4.2), formula (4.9) is a q-analogue of 
(1.4)with z and t replaced by 2(y-s-1x)1f2(y-sx) 112 and t(y-s-lx) 112x 
(y - sx)- 112, respectively. Similarly to ( 4.5) we obtain from (2.12), (2.13), and 
(4.9) that, for IYI < 1: 

n (s-lxy-1, qn+I; q)oo [qns-lxy-l 'sxy-1. 2] 
Y (qns-lxy-1, q; q)oo 2c/J1 qn+l 'q' -y 

(4.10) 
00 ( k+n+I. ) 

= ~ skyk+n q 'q 00 ,I. (0 O· qk+n+I. q -y2) 
L_..; (q; q)oo 2'1'1 , , , , 

k=-oo 

x xk qk(k-1)/2 (qk+t; q)oo ,1... (-. qk+I. q -qkx2). 
( q ; q )oo 0'1'1 , , , 

The special case n = 0 of this formula is the limit case v l 0 of Rahman's 
addition formula [12, (1.10)]. Like (4.5), formula (4.10) is a q-analogue of 
Grars addition formula (4.6). The special case x = y, s = 1 of (4.10) gives 
the biorthogonality relations ( 2.14). 
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5. q-ANALOGUES OF THE FOURIER-COSINE AND FOURIER-SINE TRANSFORM 

Put 

(5.1) 

(5.2) 

and 

(5.3) 

(5.4) 

cos(z; q2 ) := 14i 1(0; q; q2 , q 2 z 2) 

= f (-1 )k qk(k+l) z2k 

k=O (q; q)zk 

_ (q2; q2)oo 1/2 J ( . 2) 
- ( . 2) z -1/2 z ' q 

q' q 00 

sin(z; q2) := (1 - q)-1z14>1 (0; q3; q2' qi z2) 

= f (-1 )k qk(k+I) z2k+I 

k=O (q; qhk+I 

= (q2; q2)oo zl/2 J (z. q2) 
( . 2) 1 /2 ' . 
q' q 00 

Here we have used the notation (3.3). (The functions introduced above should 
not be confused with the functions cosq and sinq considered in [6, Exercise 
1.14].) Clearly we have the formal (termwise) limits 

cos((l - q)z; q2 )---> cosz and sin((l - q)z; q2 )---> sinz 

as q I 1 . By Proposition A.2 these limit transitions hold pointwise, uniformly 
on compacta. When we substitute (5.2) or (5.4) in (3.4) and replace f(qk), 

g(qn) by q-k/2 f(qk), q-n/2 g(qn), we obtain the transform pairs 

( 5.5) 

The transformations f ~ g and g ~ f of (5.5) establish an isometry of 
Hilbert spaces: 

00 00 

k=-00 n=-CX) 

Now let q T 1 under the side condition that 10~~~~q) E 2Z. Replace qk , qn 

in (5.5) by ( l -q)lf2qk' (l -q)lf2qn' and then f((l -q)l/2qk)' g((l -q)l/2qn) 
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by f(qk), g(qn). Then (5.5) takes the form 

{ 
cos((l - q)h; q2)} 

(l+q)l/2 {':>a 
g(A.) = 1q2(1/2) lo f(x) or dqx, 

sin((l - q)h; q2 ) 

{ 
cos((l - q),:tx; q2)} 

(l+q)l/2 {°o 
f(x) = 1q2(1/2) lo g(A.) or dqA.. 

sin((l - q)A.x; q2 ) 

Formally, as q T l , we obtain the classical Fourier pairs 

g(A.) = fiTir fo 00 f(x) cos(A.x) dx, 

and 

g(J.) = fiTir fo 00 f(x) sin(A.x) dx, 

With the notation 

f(x) = fi[ir fo 00 g(J.) cos(J.x) d). 

f(x) = fi[ir fo 00 g(J.) sin(A.x) dA.. 

(D f)(z) = D f(z) := f(z) - f(qz) 
q q,z (1-q)z 

for the q-derivative, we obtain from (5.1) and (5.3) that 

(1- q)Dq,z cos(z; q2) = -q sin(qz; q2 ), 

(1 - q)Dq,z sin(z; q2) = cos(z; q2). 

Hence 

2 2 _ 1 { -q2 A.2 f(z) if f(z) = cos(J.z; q2 ), 

(l - q) (Dqf)(q z) = -q ).2 f(z) if f(z) = sin(J.z; q2 ). 

So the two systems of functions z 1-t cos(qn z) (n E Z) and z 1-t sin(qn z) 
(n E Z) have disjoint eigenvalues with respect to the operator which sends f 
to the function 

z 1-t (1 - q)2 (D~f)(q- 1 z) = qz-2(qf(q- 1 z) - (1 + q)f(z) + f(qz)). 

This operator also has the selfadjointness property 

00 00 

k=-oo k=-oo 

for f, g of finite support on {qk I k E Z}. 
Observe that the q-deformation of d2 / dx2 considered above yields a sym

metry breaking. The two-dimensional eigenspaces of d 2 / d x 2 are broken apart 
into one-dimensional eigenspaces. Therefore it does not seem to be very useful 
to consider a q-exponential built from the functions defined by ( 5 .1) and ( 5. 3). 
Any linear combination f(z) of cos(J.z; q2 ) and sin(A.z; q2 ) will no longer 
satisfy an eigenfunction equation 
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( 5.6) 

while the nice function 

f(z) := icPl(O; -ql/2; ql/2, ±iq3/4},_z) 

= cos(h; q2) =t= iq 114 sin(q 112},,z; q2) 

(cf. Exton [4, 5.2.2.l]), which satisfies (5.6) with µ = -q2},,2 , no longer remains 
within the spectral decompositions implied by (5.5). 

APPENDIX A. RIGOROUS PROOFS OF SOME LIMIT RESULTS 

In this appendix we will give proofs of the limit transitions from little q
Jacobi polynomials to q-Bessel functions and from q-Bessel functions to ordi
nary Bessel functions. 

Proposition A.1. For O <a< q- 1 and O::::; b < q- 1 we have 

lim 2<P1(q-n, qn+1ab; qa; q, qnx) = 14>1(0; qa; q, x), 
n--oo 

uniformly for x in compact subsets of C . 

Proof. Put 

Rn(X) := 24>1 (q-n, qn+ 1ab; qa; q, qnx) - 14>1 (0; qa; q, x) 

= L - q x -1 + rr(l -qn-j+I) (1 - qn+jab) . 
00 ( l)k k(k-1)/2 k ( k ) 

k=l (qa; q)k (q; q)k j=I 

Since 
k k 

II ( 1 - Xj) ~ l - L Xj if 0 ::::; Xj ::::; 1 ' j = 1 ' ... ' k' 
j=I j=I 

we have 

k 

-1 + rr(l -qn-j+l) (1 - qn+iab) 

}=I 

k k n+I 
::::; Lqn-j+t + Lqn+iab = { _ q ((1 - qk)ab- 1 + q-k). 

j=l J=l 

Thus, for lxl ::::; M, 

qn+I oo qk(k-1)/2 Mk 
IRn(x)I::::; -1 - L ( . ) ( . ) ((1 - qk)ab - 1 + q-k), 

- q k=l qa' q k q, q k 

where the infinite sum converges for all M > 0 by d' Alembert's ratio test. D 

Proposition A.2. For a > -1 we have 

lim 14>1(0; qa+I; q, (1 - q) 2z) = 0F1(-; a+ 1; -z), 
qTI 

uniformly for z in compact subsets of C . 
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Proof. 

DO (-l)k qk(k-1)/2 (1- q)2k zk 
"'(0· qa+I. q (1 q)2z) - ~ ...;..__---,------

1'1'1 , ' ' - - f:o (qa.+1; q)k (q; q)k 

and the summand in the sum on the right-hand side can be majorized by 

-a./2 k k-1 (q(et+j)/2 _ ql+(a+j)/2) (qj/2 _ ql+j/2) 

(A.l) (q izi) n (l _ ql+a+j) (1 _ ql+j) · 
J=O 

Now, by [ 11, Lemma A. l] (read -1 s µ - A. instead of 0 s µ - .A. in the 
formulation of that lemma), we see that 

q(a+j)/2 _ ql+(a+j)/2 

1 _ ql+a+j 

increases to ( 1 + a + j)- 1 as q l 1 if a + j ~ 0. So, the expression in (A. I) 
for l /2 < q < 1 is dominated by 

and by 

(2a/21zl)k 

(a+l)kk! 

const (a+ 1 )k k! 

if a~ 0 

if -1<a<0. 

So the proposition follows by dominated convergence. D 
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