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Introduction 

Following the classification of finite simple groups, one of the major problems in 
finite group theory is the determination of the maximal subgroups of the almost 
simple groups-that is, of the groups X such that L ~ X ~ Aut L for some 
non-abelian finite simple group L. In the investigation of the maximal subgroups 
M of X, the analysis is often divided into two parts: the local case, in which 
M = Nx(E) for some elementary abelian subgroup E of X; and the non-local 
case, in which the socle of Mis a direct product of non-abelian simple groups. In 
this paper we determine the local maximal subgroups of the finite exceptional 
groups of Lie type in the families G2 , F:i, £ 6 , £ 7 , £ 8 , 2G2 , 2F'.i and 2£ 6 . (The 
maximal subgroups of the other families of exceptional groups, 2B2 and 3 D4 , can 
be found in [29, 18].) It is a consequence of our main result, Theorem 1 (stated in 
§ 1), together with the results of [23] and work on the other simple groups 
discussed in [21, I-III], that the local maximal subgroups of the almost simple 
groups are all explicitly known, apart from the 2-locals of the sporadic groups BM 
and M. Theorem 1 is used in the proof of [22, Theorem 2], where the study of 
maximal subgroups of finite exceptional groups of Lie type is reduced to the case 
of almost simple subgroups. We remark that the 'maximal local subgroups' of X 
form a larger class than the 'local maximal subgroups', and we make no attempt 
to determine the former class. 

For most of our proof of Theorem 1 we work in the simple algebraic group G 
corresponding to the finite exceptional group L. Our methods also yield the 
determination of the local maximal subgroups of simple algebraic groups of 
exceptional type over algebraically closed fields. The results are stated in 
Theorem 2 (the positive-dimensional subgroups) and Theorem 3 (the zero­
dimensional subgroups). Theorem 2 is used in [22, Theorem l], which determines 
all positive-dimensional maximal subgroups of G. 

One of the local subgroups occurring in the conclusion of Theorem 1 is a 
subgroup 53 .SL3(5) of E8(pu) (see Table 1). This turns out to be non-maximal 
when p = 2, because it lies in a subgroup L4(5) of £ 8(4) in that case. This 
embedding LiS) < £ 8(4), which may be of independent interest, is exhibited 
in§ 5. 

Finally, we remark that our proofs are all independent of the classification of 
finite simple groups. 
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l. Statement of results and notation 

Let L be a finite exceptional simple group of Lie type over Fq, where q =pa 
and p is prime. As described in [27], there is a simple ad joint algebraic group G 
over the algebraic closure of Fq, and a surjective endomorphism a of G such that 
L = ()P'( Ga)· Also Ga= lnndiag(L), the group generated by all inner and 
diagonal automorphisms of L. 

Let X be a group such that L ""'X ""'Aut L, and let M be a local maximal 
subgroup of X. Then M = Nx(E) for some elementary abelian r-subgroup E of X 
with r prime. Choosing E minimal, we may assume that 

M normalizes no proper non-trivial subgroup of E. ( *) 

Assume that E""' Ga (the case where E 'f Ga is discussed in the note after 
Theorem 1 below). If r = p then by [5, 3.12] (see also [8]), M lies in a parabolic 
subgroup of X. Otherwise, we may take it that one of the following holds: 

(I) E lies in a a-stable maximal torus of G; or 
(II) M normalizes no non-trivial subgroup of a torus of Ga. 

In Case (I), let D = Ca(E)0 . Then D is a a-stable closed connected reductive 
subgroup of G containing a maximal torus, and M = Nx(Da n L). In the situation 
of the previous sentence, we say that Mis a subgroup of maximal rank in X (and 
also that D is a subgroup of maximal rank in G). The subgroup D has a root 
system relative to the maximal torus which is a subsystem of the root system of G. 
The possibilities for such subsystems are given in Tables A and B of [23, § 2], and 
the results of [23] include a complete determination of the maximal subgroups of 
maximal rank in exceptional groups of Lie type. 

Theorem 1 determines all the subgroups Min Case (II). 

THEOREM 1. Let L, X, G be as above, and let M = Nx(E) be a local maximal 
subgroup of X, with E""' Ga, E an elementary abelian r-group. Then either 

(I) M is a parabolic subgroup or a subgroup of maximal rank (determined in 
[23]), or 

(II) the pair (L, E) is as in Table l; in each case r =i= p and there is just one 
Ga-conjugacy class of such subgroups E. 

In Table 1 we use the notation E~(q) for E 6(q) if E = + 1, and 2 E6(q) ifs= -1. 
Also for a prime r, we write just re for an elementary abelian group of that order. 

TABLE 1 

L E CG0 (£) NG0 (E)/CaJE) Conditions 

Gz(p) 23 E SL3(2) 
zG2(3)' 23 E Z1 
F4(p) 33 E SL3(3) p'35 
E~(p) 33 special, of order 36 SLD) e=±l,3\p-e,p'35 
Elq) 22 Ex (PQ;(q).22) S3 PQ;(q ).22 = Inndiag(D4(q)) 
Ea(P) 25 special, of order 215 SL5(2) 

Es(P") 53 E SL3(5) p oF2, 5, a={l, if5 \p 2 - ! 

2£6(2) 32 Ex G2(2) NL(E) = Ul2) X G2(2) 
2, if 5 \ p 2 + I 

£7(3) 22 Ex F4(3) NL(E) = L1(3) x F4(3) 
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REMARK. In the maximal rank case in (I), our proof in fact shows that M 
normalizes a non-trivial subgroup of a torus of Ga (see Lemma 2.2). 

Constructions of the subgroups in Table 1 can be found in the proof of 
Theorem 1 in § 2. It is of interest to note that the condition that p 1:- 2, when E is 
33 or 53 and L is F4(p) or E8(pa), occurs because of the embeddings Li3) < f4(2) 
and L4(5) < £ 8(4); the subgroups L4(3) and L4(5) contain NL(E) in each case. 
The embedding L4(3) < Fl2) is known [U, 25], but the fact that L4(5) < £ 8 ( 4) is 
new, and we give a proof in§ 5. 

Note. In Theorem 1 we assume that E ~Ga. When E ~ G0 , we have 
EnG0 =l by(*), and so MnL=CL(a) for some automorphism aE 
(Aut L)\G0 of prime order r. Then a is a field, graph-field or graph automorph­
ism (see [16, § 7]). The conjugacy classes of such automorphisms are known, by 
[16, § 7; 3, § 19] and Proposition 2.7 of this paper. The centralizers arising are 
subgroups of the same type as Lover a maximal subfield of Fq, subgroups 2Gz(q), 
2f4(q), 2E6(q~) in G2(q), F4(q), E 6(q), and subgroups C4(q) (with q odd) and 
F4(q) in E~(q). 

Next we turn to algebraic groups. We prove Theorems 2 and 3, which 
determine all local subgroups (that is, normalizers of finite abelian subgroups) of 
simple algebraic groups of exceptional type over algebraically closed fields, 
subject to certain maximality conditions. Theorem 2 handles the subgroups of 
positive dimension and Theorem 3 those of dimension zero. 

THEOREM 2. Let G be a simple adjoint algebraic group of exceptional type 
(G2 , F4 , £ 6 , £ 7 or E 8) over an algebraically closed field of characteristic 1. Let S be 
a subgroup of Aut G such that D =(Sn G)0 is a non-trivial closed connected 
subgroup of G, and assume that 

(1) Nc(D)/ Dis finite, 
(2) for some primer, O,(C0 (D)) i= I, and 
(3) Dis maximal among closed connected S-invariant subgroups of G. 

Then either D is parabolic or a subgroup of maximal rank, or G = E 7 , l i= 2, 
D = D4 and NG(D) = (22 x D4).S3 (with Cu(D) = 22 as in Table 1). 

THEOREM 3. Let G be as in Theorem 2, and suppose A is a subgroup of G 
satisfying the following conditions: 

(a) A is an elementary abelian r-group, where r is prime and r 1:-l, 

(b) NG(A) is finite, 

(c) N0 (A) normalizes no proper non-trivial subgroup of A, 

(d) Nc;(A) is maximal with respect to (a), (b) and (c), 

( e) there is no proper non-trivial connected NG(A)-invariant subgroup of G. 

Then A is given in Table 2, and is uniquely determined up to G-conjugacy. 

Theorem 3 generalizes to arbitrary characteristic a result stated for characteris­
tic zero in [1]. We give the proof, which runs along the same lines as that of 
Theorem 1, in§ 4. The subgroups A in Table 2 are called Jordan subgroups of G 
in (1], and a result similar to Theorem 3 concerning Jordan subgroups is proved in 
[7]. 
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TABLE 2 

G A Na(A) 

G2 23 23.SLJ(2) 
F4 33 33.S~(3) 
E6 33 33 +3.SL3(3) 
Es 25 25 + 10.SL5(2) 

53 53.SL3(5) 

COROLLARY. Let G be as in Theorem 2. 
(i) The local maximal subgroups of G of positive dimension are those given in 

Theorem 2. 
(ii) Suppose H is a finite local subgroup of G which is contained in no proper 

closed connected subgroup of G. Then His one of the groups Nc(A) in Table 2. 

The corollary is immediate from Theorems 2 and 3. 
The actions of the local subgroups N0 (A) in Table 2 on the Lie algebra L( G) 

of G yield interesting orthogonal decompositions of L( G), which are studied in 
[6, 19]. 

The layout of the rest of the paper is as follows. Sections 2, 3 and 4 contain the 
proofs of Theorems 1, 2 and 3, respectively. Finally, in § 5 we exhibit the 
embedding L4(5) < £ 8(4). 

2. Proof of Theorem 1 

Assume the hypotheses of Theorem 1. Thus G is a simple adjoint group of 
exceptional type, L = ()!" (Ga) is a simple group of Lie type over F q, q =pa, and 
X is a group with L ~ X ~ Aut L. Also M = Nx(E) is a non-parabolic local 
maximal subgroup of X normalizing no non-trivial subgroup of a torus of G0 , and 
also normalizing no non-trivial proper subgroup of E, where E is an elementary 
abelian r-subgroup of Ga consisting of semisimple elements. Notice that we are 
not excluding the possibility that M is of maximal rank here; in fact, Lemma 2.2 
rules this out (see the Remark after Theorem 1). 

We introduce some further notation. Let G be the simply connected cover of 
G, let Ebe the full preimage of E in G, and let g be a preimage of an element 
g E G. Write also E# = E\{l}, and W = W(G), the Wey! group of G, and denote 
by T; a torus of rank i in G. 

If K is a connected reductive subgroup of G, define a homogeneous factor of K 
to be the product of all the simple connected normal subgroups of K in a single 
(Aut G)-conjugacy class; if Z(K)0 =I= l, define Z(K)0 also to be a homogeneous 
factor. Thus K is the commuting product of its homogeneous factors. 

Note that Aut L is generated by inner, diagonal, field and graph automorph­
isms (see (9, 28]), all of which extend to automorphisms of the abstract group G 
which commute with a. Thus there is a subgroup X of CAuida) such that 
X = X I (a), and so X acts on the set of a-stable subsets of G. For a a-stable 
subset Y, we write Nx(Y) for the stabilizer in X of Y. 

We now embark upon the proof of Theorem 1. This is carried out in a series of 
lemmas (2.1 to 2.17). Lemmas 2.1 to 2.9 are concerned with restricting the 
structure of Cc( e) for e E £#. The remaining lemmas deal separately with the 
various possibilities for G and r. 
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LEMMA 2.1. Suppose that M (a) normalizes a non-trivial, proper, connected, 
semisimple subgroup K of G. Then one of the following holds: 

(i) [K, E] = 1; 

(ii) q = 3 and K has components of type A 1 such that if C is the product of these 
components then E<IQP'(C") == L 2(3Y, a direct product of x copies of 
L2(3); in particular, the rank of Eis even; 

(iii) q = 2 and K has components of type A2 such that if C is the product of these 
components then E<JQP'(Ca) == U3(2)Y for some y ;;;;=: 1. 

Proof As Ka* l, by the maximality of M we have M = Nx(K") = Nx(E). 
Thus K":,,;:; Mand E:,,;:; N(K"). It follows that 

[Ka, E]<IK", [K", E].,;;K"nE. 

Assume first that every factor of K~ is quasisimple, where K~ means (K")'. We 
show that conclusion (i) holds. Since [K~, E]<IK~, we deduce that [K~, E]:,,;:; 
Z(K~), so that [K~, E, K~] = [E, K~, K~] = 1. By the three-subgroup lemma, 
[K~, E] = 1. Now let e EE#. Then K~~ CK(e). 

We claim that CK(e) is reductive. For if not, let Q = Ru(CK(e)), the unipotent 
radical of CK(e). Then K~~NK(Q)~P, where P is the canonical parabolic 
subgroup of K determined by Q as in [5]. Moreover P is a-stable and Pa is a 
parabolic subgroup of K". But K~ normalizes Ru(P)a and Ru(P)a.,;; ()P'(K") = 
K~, so Ru(P)a<IK~, a contradiction. Thus CK(e) is reductive, as claimed. Now 
K~= (CK(e)a)', so, in particular, 

IK~IP = ICK(e)~lp· 
Since IK~IP is qn, where n is the number of positive roots in the root system of K, 
we deduce that CK(e) = K. Hence [K, E] = 1, giving conclusion (i). 

Now suppose that (i) fails. Then some factor of Ka is not quasisimple, so is of 
type A 1(2), A 1(3), 2A2(2) or 28 2(2). If there is a factor A 1(2) or 2B2(2) then the 
product A of all such factors is M-invariant, so Mo;;;N(O,(A)) where r is 3 or 5; 
but O,(A) intersects each factor in a cyclic group, and so lies in a maximal torus 
of G, contrary to our hypothesis on M. If there is a factor A 1(3) or 2A2(2) of the 
form SL2(3) or SU3(2) then M normalizes the product of the centres of all such 
factors, which again lies in a torus. Thus K must have components of type A 1 or 
A 2 , such that if C is the product of these components then ()P'(Ca) == L2(3Y or 
U3(2)Y for some positive integers x, y. Moreover, if [C"' E] = 1 then ICalp = 
JCc(e) 0 JP, and hence as above, [C, E] = 1; consequently [K, E] = 1, which 
is false. So [C"' E] * 1. Since M normalizes Ca and E, we have 1 *[Ca, E]:,,;:; 
C0 n E, and hence E.;;; Ca as M normalizes no proper subgroup of E. Thus (ii) or 
(iii) holds. 

LEMMA 2.2. Suppose that M (a) normalizes a connected subgroup D of G, such 
that D is normalized by a maximal torus of G. Then D is 1 or G. 

Proof. Suppose that D is not 1 or G, and take D maximal with respect to the 
hypotheses of the lemma. Let T be a maximal torus in Na(D). If Q = Ru(D) * 1 
then M (a).;;; No(Q):,,;:; P, where P is the canonical parabolic subgroup of G 
determined by Q as in [5]. But then M normalizes the parabolic Pc,, so M must be 
parabolic, a contradiction. 
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Thus D is reductive, so D = D'Z with D' semisimple and Z = Z(D)0• The 
maximality of D implies that D = (DC0 (D))0 • We claim that DT :s:; DCo(D): for 
DT is reductive and so corresponds to a subsystem of roots relative to T, from 
which the claim is clear. Thus T :s:; D, and hence Z = Cr(D)0• Since M normalizes 
Z, our hypothesis on M forces Zu = 1. Moreover, we may take T to be a-stable, 
by [26, I, 2.9]. 

Suppose that D' =I= 1. Since T :s:; D, components A 1 and A2 of the root system of 
D' (relative to T) are generated by root subgroups of G, so cannot have a-fixed 
point groups of the form L2(3) or U3(2). Thus by Lemma 2.1 we have 
[D', E] = 1. Note also that Z =I= l, since otherwise T :s:; D = D', giving E :s:; 
C0 (D')0 :s:; C0 (T) 0 = T0 , contrary to hypothesis. Also Z(D) :s:; C(T) = T. We 
have now 

D=D'Z, D'=l=l, Z=l=l. 

We next claim that C0 (D') = Z(D')Z. To see this, let D' = H1 .•• Hm be the 
expression for D' as a commuting product of its homogeneous factors H; (see the 
beginning of this section for the definition). By the maximality of D, for each i, 
C0 (H;)0 is the product of those Hj with j =I= i, and also C0 (Z)0 =D. Moreover, the 
rank of D' is less than the rank of G, as Z =I= 1. Let b be the root system of D'. 
The possibilities for b satisfying the above conditions are not hard to determine, 
using the lists of all closed subsystems of the root system of G given in [10, Tables 
7-11]. Indeed, the possibilities are as follows: 

G G2 E. E6 E1 Es 

fl. none B 3 (p odd) D5 , D4, 4A1> 2A 1 + A 3 E6, A 6 , 3A2 D1, A1, 2A3 

Assume that G=t=E,. Then Cw(~)=l (see [10, Tables 7-11]). Since Na(D):s:; 
DN0 (T), this forces Ca(D') = Cr(D') = Z(D')Z, as claimed. And if G =F.,, 
D.= B3 and p is odd, then M normalizes Z(D) = Z2 , contrary to hypothesis. This 
establishes the claim. It follows that E :s:; C0 (D') 0 = (Z(D')Z)0 :s:; Ta, a 
contradiction. 

We have now shown that D' = 1, and so D = T. Consequently M normalizes 
Ta, so by hypothesis we must have Tu= 1. By [26, II, 1.7), !Tai= f(q), where f is 
the characteristic polynomial of some w e W acting on the associated Euclidean 
space. It follows that w = 1 and q = 2, so that Mn G0 = W. Now for G =I= G2 , 

E <J W forces r = q = 2, a contradiction. And if G = G2 then L = G2(2) and M is 
clearly non-maximal. This completes the proof. 

LEMMA 2.3. Suppose that K is a connected subgroup of G normalized by M (a). 
Then K is semisimple and Z(K) = l. In particular, C0 (E)0 is semisimple with 
trivial centre. 

Proof. First, K is reductive: for if not, we can use [5], as at the beginning of 
the proof of Lemma 2.2, to show that M is parabolic, a contradiction. Thus 
K = K'Z(K) with K' semisimple and Z(K) contained in a torus. We must have 
Z(K) = 1 by Lemma 2.2. The result follows. 

LEMMA 2.4. (i) If e EE# then E = (e 0 n E). 
(ii) r is 2, 3 or 5. Moreover, r is 5 only if G = E8 . 

(iii) The rank m(E) of Eis at least 2. Further, if (G, r) is not (E6 , 3) or (E7 , 2) 
then m(E);;;;.:, 3. 
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Proof. Part (i) is immediate from the hypothesis that M normalizes no proper 
non-trivial subgroup of E. By assumption, E does not lie in a torus of G. Hence 
(ii) follows from [26, II, 5.8 and 5.11], as the torsion primes for G (see [26, I, 4.4]) 
are 2, 3 and 5, with 5 occurring only for £ 8 . Finally, for (iii), suppose that 
E = (e,f) and (G, r) is not (E6 , 3) or (£7 , 2). Then CG(e) is connected, by 
(26, II, 4.6]. Hence there is a torus of CG(e) containing f and e, again a 
contradiction. Thus m(E) ;;_;;,: 3, as required. 

LEMMA 2.5. (i) CG(E) contains no normal torus. 
(ii) Let e e £#. Then CG(e) does not contain a central torus. Moreover, if 

Ca(e) contains a normal torus then E f CG(e)0• 

Proof Part (i) is immediate from Lemma 2.3. Part (ii) follows from (i), since if 
Tisa torus in Z(C(e)) then T~Z(C(E)). 

The possibilities for the centralizers in G of semisimple elements can be 
calculated using [16, 14.1] and its proof. Provided (G, r) is not (£6 , 3) or (£7 , 2), 
Ca(e) is connected, and hence has no normal torus by Lemma 2.5(ii). From these 
observations we deduce: 

LEMMA 2.6. For e e £#, the group CG(e) has one of the structures given in 
Table 3 below. In the table, w2 and w3 denote elements of W = W(G) of orders 2 
and 3, respectively. 

G r=2 

A,•A, 
A 1•C3 orB4 

A 1•A 5 

A,•D6 , A7 (w2 ) or 7;£6 (w2 ) 

A1 •£7 or D8 

TABLE 3 

r=3 

Ai 
Ai•A2 

(A 2 •A2 •A2)(w3 ) or T2D4 (w3 ) 

Az•As 
A 2 •E6 or A 8 

r=5 

In order to restrict further the possibilities for Ca(e) (e e £#), it is convenient 
to handle first the local subgroups U3(2) x G2(2) in 2£ 6(2) and L2(3) x ~(3) in 
£ 7(3) given in Table 1 of Theorem 1. For this we require a proposition 
concerning graph automorphisms of groups of type An and £ 6 . 

PROPOSITION 2. 7. Assume that p is odd and that Y is a simple adjoint algebraic 
group of type A2n-I or E6 over the algebraic closure of FP. Let r be the standard 
involutory graph automorphism of Y given in [9, Chapter 12] (with centralizer Cn 
or~ respectively). Then there are precisely two classes of involutions in Y.r, with 
representatives rand Th, where h is an involution in Y. The connected centralizers 
of T, Th have types Cn, Dn if Y = A2n-I• and types h C4 if Y = E6. 

Proof. Let Y be the simply connected cover of Y. Picky e Yr. By [27, 7.5}, y 
normalizes a Borel subgroup B of Y and a maximal torus T of B. Moreover 
NY'M(T) n Ny<~>(B) = T( o) with o a conjugate of T, so we may take o =rand 
y = Tt for some t e T. Further, T is the direct product of I-dimensional tori T«, 
one for each fundamental root a of Y. 
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Suppose that Y = £ 6 . Here r interchanges two pairs of groups Ta and fixes the 
other two. Write T = Tn 'ft, where Tn (respectively, Tr) is the product of those Ta 
not fixed (respectively, fixed) by r, and corresponding to this decomposition, 
write t = tnt1. Since rt has order 2, rt is conjugate to rt1 by an element of T, so we 
replace rt by rt1. Now tj = 1 and t1 lies in the product of the two fixed tori Ta, so t1 
is contained in a subgroup A2 centralized by r. All involutions in this A1 are 
conjugate. Thus y is conjugate to either r or rta, where ta is the involution in a 
fundamental subgroup SL2 centralized by r. Conjugating by an element of the 
Wey! group of Cy( r), we see that a can be replaced by the highest root O:'o. 
Finally, we identify Cy(r) and Cy(rt".,). We know that Cy(r) = ~- We now claim 
that Cy(rtaJ=C4 . First note that Cy(r) contains D=(A 1) 4 , and this can be 
chosen with ta11 EZ(D). So it is clear that Cy(rta11 ) contains D. Let CY be a root 
of £ 6 and Ua the corresponding T-root subgroup. If CYT = a then one checks 
from the known action of the graph automorphism r that Va~ Cy(rt") if and 
only if to:11 centralizes Va. A direct check of roots shows that such root subgroups 
Vo: span D. Now suppose that CYr *a. One checks from the Chevalley 
commutator relations that in each case ( U('(, v(XT) = u('( x u()(T• and hence 
Cy( rt".) n ( Ua, Va,) is 1-dimensional. There are 24 pairs of roots interchanged 
by r, and hence 

dim L( Cy( rta,))?: 24 +dim L(D) = 36. 

On the other hand, the same arguments at the level of the Lie algebra show that 
dim(L(Y) n C( rta.)) = 36. Thus Cy( rtaJ is a reductive group of dimension 36, 
and Dis a maximal commuting set of fundamental subgroups SL2 (this is already 
true in Y). It follows that C y( rt" ) = C4 , as claimed. 

Now let Y = A 2n-I• so Y = SL2n- Here it will be convenient to replace r by 
r' = hb, where b is the inverse-transpose map and h is the n x n matrix ( O;.n + i-;) 
(that is, the matrix with entries 1 on the opposite diagonal and entries 0 
elsewhere). Then r' E Yr. Now r' normalizes the lower triangular group and also 
the diagonal group T. An easy computation shows that any element of r' T is 
T-conjugate to an element of the form r't, where t = diag(l, ... , 1, Cn+t• •. ., c2") 

for some C; E FP. If we also assume that r't corresponds to an involution in Y < r), 
then (r't)2EZ(Y). It then follows that t=diag(l, .. ., 1,c, .. ., c) with c= ±1. 
Then Cy(r't) is Dn or Cn according as c is 1 or -1. 

LEMMA 2.8. There are local subgroups U3(2) X Gi(2) in 2£ 6(2), and 
Li(3) x ~(3) in £ 7(3). These subgroups are unique up to G0 -conjugacy. 

Proof. First consider L = £ 7(3). The ad joint algebraic group G contains three 
conjugacy classes of involutions, with centralizers A 1 D6 , A 1< wi) and T1 £ 6 ( w2 ) 

(see [17]). Let a be an involution in G0 with Ca(a) = Ti£6 (w2 ). Here w2 induces 
a graph automorphism on the £ 6 • By Proposition 2. 7, we may pick an involution 
b E Cda) such that Ca(a, b )0 = h Write F =Cc( a, b )0. Then I;~ Ca(F). Since 
C0 (b) contains F, b must be conjugate to a, so Ca(b) = T;E~ ( w;). Then F ~ E~ 
and so Cc(F) contains (T1 , T;). We claim that C0 (F) is reductive. For 
otherwise, FCa(F) lies in a parabolic subgroup P of G. Since P contains F == ~, 
P must be an E6-parabolic with F fixing a 1-space of the unipotent radical. But F 
also fixes a 1-space of the unipotent radical of the opposite parabolic, contradict­
ing the fact that C0 (F)0 .;; P. This proves the claim. Also Cc(F)0 n C0 (a) = T1 , so 
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Cc(F)0 has rank at most 1, and so Ca(F)0 =A 1. Thus we have constructed a 
subgroup A 1 x ~in G = E7 • The subgroup A 1 here is of adjoint type, as A 1 x F4 

does not centralize any involution. Taking fixed points under a then, we have a 
subgroup Lz(3) X F4(3) of E1(3). This subgroup is NL( (a, b) ). Since the above 
proof shows that (a, b) is unique up to G0 -conjugacy, the result is proved for this 
case. 

The argument for L = 2£ 6(2) is similar. Here we take an element a EL of order 
3 with Cc(a) = T2 D4(w3 ). Choosing b = w3 , we find that Ca(a, b)0 = G2 , and a., b 
are conjugate. Further, if T~ is the centre of Cc(b)0 , then Cc(G2) contains 
(T2 , T~), and we calculate as above that Cc(G2) 0 =A2 . Thus we obtain a 
subgroup A 2 x G2 in £ 6 , and, taking fixed points, a subgroup U3(2) x G2(2) in 
2£ 6(2). Uniqueness follows as before. 

For the remainder of the proof we assume that NL(E) is not one of the 
subgroups given in Lemma 2.8. 

LEMMA 2.9. (i) Suppose that Z(G) has order r. Then E (the preimage of E 
in G) is either elementary abelian or extraspecial. 

(ii) Fore E £#, Cc(e)0 is semisimple. 

Proof Now E is the commuting product of an abelian group and an 
extraspecial group, and M normalizes Z(E). Thus our hypothesis on M, together 
with Lemma 2.4(i), implies Part (i). 

For (ii), assume that e E £# is such that Cc(e)0 is not semisimple. Then 
Cc(e )0 = TD, a commuting product of a non-trivial torus T and a semisimple 
group D. By Lemma 2.6, there are precisely two possibilities: TD= T,_D4 with 
(G, r) = (£6 , 3), and TD= T1E6 with (G, r) = (£7 , 2). By Lemma 2.S(ii), we 
have E f Cc(e )0 , and so Part (i) implies that E is extraspecial. Thus for each 
f E £# there is an element i E Z( G)# such that J is £-conjugate to ]i. Since the 
order of the multiplier of D is not divisible by r, it follows that E n D = 1, and 
hence IEI = r2. Write E = (e,/). Define Y= C0 (E)0 and K = Ca(Y)0. Then Y 
and K are both semisimple by Lemma 2.3, and we have Y:::;; D, T:::;; K. Moreover 
Y ::/= 1, since f induces an element in the coset of a graph automorphism of D. 
Thus K<G. 

Suppose first that [K, E] = 1. Then K:::;; C0 (E)0 = Y and so K:::;; Z(Y), which is 
absurd as Kand Y are semisimple. 

Thus [ K, E] ::/=I, so by Lemma 2.1, L is £ 7(3) or £6(2) and K 0 has factors L2(3) 
or U3(2), respectively. Since E is extraspecial, the multiplier of L has order 
divisible by r, so when q = 2 we have L = 2£ 6(2). Consider L = £ 7(3). Now 
Cc( e) = T1 £ 6 ( w2 ) and f induces an element in the coset of a graph automorphism 
of D = £ 6 . Hence by Proposition 2. 7, Y = C0 (£)0 is C4 or ~- Moreover, 
Kn Cc(e) =Ti, so as K 0 has a factor L2(3), we must have K = A 1 and 
K~ = L2(3). Thus E = (Z2 ) 2 <JK0 • If Y = C4 then E is not fused in G (see the 
proof of Lemma 2.15 below, third paragraph), which is absurd. Thus Y= F4 and 
NL(E) = Lz(3) x F4(3). This is conjugate to the subgroup of Lemma 2.8, which we 
have excluded by assumption. An entirely similar argument for L = 2£ 6(2) (using 
here [16, 9.1] for the classes of graph automorphisms of D of order 3), shows that 
NL(E) is the subgroup of Lemma 2.8 in this case also. 
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In the remaining lemmas we deal separately with the various possibilities for G 
and r. 

LEMMA 2.10. (i) If G = G2 then r = 2 and Nc(E) = 23.SL3(2). 
(ii) Let G be F4 or E8 with r = 3 or 5, respectively. Then Nc(E) = _r3.SL3(r): 
Jn both cases (i) and (ii), L and NcJE) are as in Table 1, and E is determined 

uniquely up to Ga-conjugacy. 

Proof Fix e E £#. First assume that G = G2 and r = 3. Then E ~ CG.(e) = SL3 
by Lemma 2.6, so E lies in a maximal torus of G, contrary to hypothesis. Thus r 
is 2, 3 or 5 according as G is G2, F4 or £ 8 (by the hypothesis of the lemma). From 
Lemma 2.6 we see that Cc(e)=X1X 2 , a commuting product with X1=X2 of 
type A 1, A 2 or A 4 , respectively. Moreover Z (X 1X 2 ) = ( e). 

Let x EX;\(e) for some i, with x of order r (this is not possible if G = G2 as 
then X, = SL2). If G = F4 then x is contained in a fundamental subgroup SL2 , and 
if G =Es then x lies in a product of two commuting fundamental subgroups SL2 . 

Consequently Cc(x) contains C3 , D6 in the F4, E 8 cases, respectively, and we 
deduce that x is not G-conjugate to e. Hence in any case, we may by Lemma 
2.4(i) choose e' EE\(e) with e' =a1a2 and a; EX;\(e) for i= 1, 2. Note that a1 

has distinct eigenvalues on the natural module for X 1: for otherwise C( e, e ') has a 
central torus, whence C(E) has a normal torus, contrary to Lemma 2.5. 

By Lemma 2.4(iii) there exists e" EE\( e, e'), and by Lemma 2.4(i) we may take 
e"==b 1b2 with b;EX,\(e). We have [a 1, b 1]=Fl. A straightforward calculation in 
X 1X2 shows that (e, e', e") is self-centralizing in C0 (e), so 

E == C0 (E) = (e, e', e"). 

Now the group F = (a 1 , a2 , b1 , b2 ) is extraspecial of order r5 and normalizes E, 
inducing a group of automorphisms of E of order r2 and centralizing El (e) (this 
is a group of transvections in SL3(r)). Considering the above configuration, we 
see that beginning with the group Cc( e ') = Cc( e) yields a group normalizing E 
and inducing a group of order r2 centralizing EI ( e'). We conclude that 

N0 (E)/ E;;;: SL3(r ). 

Since Cc(e) n Cc(e') = T(e") with Ta maximal torus of X 1X 2 , it follows that no 
element of N0 (E) can centralize a hyperplane of E without centralizing E. 
Therefore Nc(E)/ E = SL3(r). This proves (i) and (ii). To complete the proof of 
the lemma, we must analyse the situation in the finite group L = G0 • 

In the case where L = 2Gz(q)' we have NL(E)/E == 2 7 (see [31]), and q = 3 by 
the maximality of M, as in Table 1. And if L = 2F4(q)' then the 3-rank of L is 
only 2 (see [16, 10.2]), so E f L, a contradiction. 

Now let L be G2(q) or f4(q ), or E8(q) with 5 I p 2 - 1. The subgroup E lies in 
the a-stable group Y=X,X~, and ()P'(Yu)=SL;(q) 0 SL;(q). Write Z== (e), so 
that Y = Cc(Z). If E ~ ()P (Ya) then the above argument shows that E is 
conjugate to a subgroup E, in SL;(p) 0 SL:·(p), where r Ip - e, and N c;( E 1) lies in 
Gz(P ), F4(~) or Es(~) in the respective cases. Hence q = p by the maximality of 
M, and E is determmed up to L-conjugacy here. Also when L = F4(2) we have 
N(E) < L4(3) < L (see [11, p. 170] or [25]), so this case is excluded from Table 1. 
No:"' suppose tha~ E 'f QP'(~0 ). We_ may take it that a1a2 E ()P'(Y0 ), b 1b2 q: 
()P (Ya)· Now M mduces an meduc1ble subgroup of SLJ(r) on E containing a 
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transvection (one exists in Ny..(£)). Hence M induces SL3(r) on E (see [24]). 
Consequently NM(Z) is transitive on (£/Z)#. But this is impossible as a 1a2 E 

(Y"(C(Z)0 ) and b1b2!$ O"'(C(Z)a)· 
Finally, let G = £ 8 with 5 t p 2 - 1. If L = E 8(p) then C L(e) must be SU5(p2 ) 

(see [13, p. 215]); but then E lies in a maximal torus of C1.(e), which is not so. 
Hence q > p. As above we see that E""' QP'(Y0 ). Then E is conjugate to a 
subgroup £ 1 in SU5(p 2) 0 SU5(p 2), and Nc;(E 1)""' E8(p 2). Consequently q = p 2 

here. All parts of the lemma are now proved, apart from the non-maximality of 
NL(E) when p = 2 and G = £ 8 . As stated in § 1, this is due to the embedding 
NL(E) < L4 (5) < £x(4), which is demonstrated in§ 5. 

LEMMA 2.11. Suppose that G = £ 6 with:-= 3. Then E = (Z3) 3, C0 (E) is special 
of order 36 with derived group E, and NG(E)/C0 (E) = SL3(3). Moreover, Land 
N 0 ,, (£) are as in Table 1, and E is determined uniquely up to G0 -conjugacy. 

Proof. Fix e E £#. By Lemmas 2.6 and 2.9(ii), we have 

C:= Co(e) = (X1X 2 X3)<w3), 

where each Xt=SL3 , Z(X;)=(e) and (w3 ) is transitive on {X 1,X2 ,X3 }. 

Moreover, E#=e0 nE. Set D=X 1X 2 X 3 • For i=l,2,3 let Z(X;)=(e,). 
Notation may be chosen so that e1e2e3 = 1, Z(G)= (e 1e2 1) and e=e;Z(G) for 
i = 1, 2, 3. Hence e1 = e2 = e3 =e. 

We next claim that if f is an element of order 3 in XiXj \ ( e) for some i =t- j, then 
f is not conjugate to e. For let l be a fundamental subgroup SL2 within the third 
SL3 . Viewing f as an element of Cc;(l) = A 5 , we compute that C,(f) contains 
SL4 or (SL2) 3 , and hence that Cc;(f) contains SL4 or (SL2) 4 , which proves the 
claim. Therefore, if f E (£ n D )\(e) then f has the form a 1a2a3 with a; EX;\( e) 
fori=l,2,3. 

We now show that E ~D. For suppose that there exists f E £\D. It is easy to 
check that C\ ( e) contains precisely one conjugacy class of subgroups of order 3 
lying outside D\(e). Consequently C contains a unique class of elementary 
abelian subgroups of order 9 which contain e and are not contained in D, and 
(e, !) is a representative of this class. For i = 1, 2, 3 let a; be an element of order 
3 in X;\(e) and let a=a 1a2 a3 • Then (Cc;(e)nCc;(a))0 =T;,, a maximal torus. 
The possibilities for C0 (a)0 can be read off from [16, 14.1). ¥iewing e as an 
element of Co(a) we see that the fact that (CG(e) n Cc(a))0 = T6 forces 
C0 (a )0 = (A 2 ) 3 , and hence a is conjugate to e. For i = 1, 2 choose b; of order 3 in 
X; \ ( e) such that [a;, b;] = e, and set b = b 1 b2 1• Then (a, b) is elementary abelian 
of order 9, but (ii, 6) is not abelian. It follows that b $ Cc(a )0, and hence by the 
above, (a, b) is conjugate to (e, !). But this is impossible since (e,f)# is fused, 
while (a, b )# is not. This contradiction shows that E ~D. 

Let f = a1a2 a3 E £\(e ). As CG(e, /)0 = T6 , Lemma 2.3 implies that E > (e, !) , 
so we may pick g = b 1 b 2 b 3 E £\ ( e, !) . By the second paragraph, b; $ (a;, e) for 
i = 1, 2, 3. Replacing g by g 2 if necessary, we may assume that [a;, b;) = e for 
i= 1, 2, 3 (since [a;, b;] = 1 implies that b; E (a;, e)). It follows that E= \e,f, g). 

Let K= (a 1 , a 2 , a3 , b 1 , b2 , b 3 ), an extraspecial group of order 37 normalizing 
E. We have 
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and Cc;(E) = CK(E)(t) where (t) is transitive on {X1, X2, X3}. Replacing e ~ 
other elements of E# in the above arguments, we see that Nc(E)/Co(E)-

SL,(3). e · _ 1 N E r We now consider the finite group L. Here L = E6(q) with s - ± · ow l~S 
in the a-stable subgroup D = X 1X 2 X 3 • First suppose that 3 IP - s. We see, as m 
the proof of Lemma 2.10, that E.;;:; ()P'(Da), so Eis conjugate to a subgroup E1 
in SL~(p)oSL3(p)oSq(p), which lies in E6(p). More~ver the above arg~ment 
gives Nc(E) ~ E6(p) and hence q = p and E is determined up t~ Ga-c~njugacy 
here. Finally, let 3 jp + s. Then E lies in a subgroup -'.V'~SL~(p )e0 SL3 (p)) of 
E6(p) (see [14, p. 50]), and we find that Eis self-centrahzmg m E6(P ). T~en by 
Lemma 2.10 the normalizer of E in E~(p) lies in a subgroup F'.i(p ). Agam the 
G -class of Eis determined, so Nx(E) is non-maximal here, a contradiction. To 
c~~clude, note that L=/= 2£ 6(2) here also, since in this case NL(E) lies in a 
subgroup Q7(3) of L (see (11, p.191]). Thus Land Nca(E) are as in Table 1, and 
the proof is complete. 

LEMMA 2.12. If r = 3 then G is not E 7 or Es. 

Proof First suppose that G = £ 7 . Let e E £#. By Lemma 2.6, C0 (e) = A2As. 
Write Cc;(e)/(e) =A2A5 correspondingly, and let £ 0 be the projection of E in 
A5• If the preimage of E0 in A 5 is abelian then E is contained in a maximal torus, 
which is not so. Otherwise, by 2.5, the preimage is extraspecial and Ca(E)0 is a 
subgroup A 1 of A 5 . The centralizer of this A 1 in G contains A 2 A 2 (within Co(e)), 
and is normalized by M = Nx(E). As M is maximal, it therefore contains 
Cu(A 1) 0 n L. But this group does not normalize E. 

Thus we assume that G = £ 8 • Then E ~ K 1 R, a commuting product with 
K1==SL, and R==-E6 . Let (e 1)=Z(K1R). Now R?!:K2 K3 K4 ==-(A 2) 3 , and we 
write (ei) = Z(K;) for i = 1, 2, 3, 4. Let K = K 1K 2 K3 K 4 • One checks that Nu(K) 
induces S4 on {K1> .. ., K4} and Gli(3) on Z(K) = (e 1 , e2 ). We may choose 
notation so that the relations on (e 1, e2 , e3 , e 4 ) are spanned by e1e2e3 1 = 
e::.e.~e4 = l. 

Suppose that g E £# with B = Cc(g) of type As. Let f e E\(g). Now 
CB(f)0 contains a normal torus, so Lemma 2.5 implies that there exists he 
En(~B(f)\~8(/)0). It follows that C8 (f)0 =(A2) 3 . Hence 0 3(Z(C(E))) 
contains con1ugates of e1> and by Lemma 2.4(i) we may (and do) replace E by 

n 03(Z(C(£)))). Hence we may assume that e 1 e E. 
Thus E:;:;; Cc(E):;:;; Cc(e 1) = K 1R, and without loss of generality, we may 

assui:i~ that £:;:;;.K(t), where (t) centralizes K 1 and permutes {K2 , K 3 , K 4 } 

transitively._ By Lemma 2.3, E does not centralize K 1 • Hence there is an element 
~=:a.ix E ef' n E wit~ a 1 E K 1 \( e1 /, x E KzK3K 4 ( t). By Lemma 2.3 also, there 
exists g = biY EE with [a1> b 1] = e1, b 1 e K 1 and y EK K K (t). L' b K . 3 2 3 4 , _et . E 1 with lbl 1= 9 and b: E Z(Kj). Then a direct check shows that b is not 
K1-con1ugate to bei . In particular, the relation [a1> bi]= e1 implies that the 
group (a 1 , b 1} has exponent 3. 

Now R is the simply connected group £6, which has three classes of centralizers 
of non-central elements of order 3 of types (A ) 3 T D a d -r A ( · h action of W ""' SO · ' . 2 ' 2 4 n L 1 s smce t e . - ,(3) on QJ(T),. where T 1s a maximally split torus, has three 
('.rb1ts o~ 1-sp~ces). Thus CR(x) 1s of one of these types. If CR(x) =(A )3 then 
1 =a1x is con1ugate by an element of R to a 1 e~, where 6 = ±1. Now N~(K) is 
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3-transitive on {Ki. ... , K4}, so K1K2 K3 is contained in a subgroup As, and 
working within this As we see clearly that C0 (a1e2) contains a subgroup (A3) 2 ; 

consequently, by Lemma 2.6, C0 (f) must be A 8 , contradicting the fact that f is 
conjugate to ei. Thus CR(x) is not (A 2) 3• If CR(x) is 11A5 then x(e1)/(e1) is 
contained in a fundamental SLi of R/(e1), so its centralizer in R/(e1) is 
connected and C0 (e1, f) contains a central torus, contrary to Lemma 2.5. Hence 
CR(x) must be T2D4. 

Now at least one of the elements f, g, Jg and fg- 1 lies in K. Leth be such an 
element, with h = k 1k2k3k 4 and k; EK;. If En K = (eI> h) then E = (e 11 h, e'), 
where either e' = 1 or e' E E\K. In either case C(E) contains a normal torus, 
contrary to Lemma 2.5. Therefore (ei. h) <En Kand so we may rechoose h if 
necessary so that lkd = 3 for some i > 1. Previous remarks (in the fifth paragraph 
of this proof) imply that lk11=3, and so from the relations on the elements ei we 
conclude that lk;I:,.;; 3 for each j. Set r = k2 k 3k 4 • We may write h = kik;k;, as 
otherwise CR(r) = (A2)3, contradicting the previous paragraph. As E:,;;:; C(h) we 
conclude that E.::; K. We may thus take x = a2a3 with a; EK; and a; of order 3. If 
K 4 o:;; C(E) then (C0 (E)0 )' = K 4 , contradicting Lemma 2.3. Hence there exists 
d E ef n E such that d = d' d4, where d' E K1 K2 K3 and d4 E K4. Then d = d;d;d4 

where i =f:. j, i, j E {1, 2, 3} and d; e K;, d; EK;. If [a;, d;] =I= 1 or [a;, d;] =I= 1 then 
[f, d] =f:.1 since (e;, e;) = (Z3) 2. Thus d; e (a;, e;) \(e;) and d; E (a;, e;) \(e; ). 

Since [x, y] = ej1, we have y = b2 b3b4 with b; EK; and [b2, a2] E ( e2) #, 

[b3 , a3] e (e3 )#. But then [g, d] =I= 1 unless [b4 , d4] e (e4)#. Now earlier remarks 
imply that lb;I = 3 for all i. We have g = b 1b2b3 b4 with each b; of order 3 in 
K;\(e; ). But then CR(b2b3b4 ) = (A 2) 3, whereas we have seen that this centralizer 
should be T;D4. 

This completes the proof of the lemma. 

LEMMA 2.13. If r = 2 then G is not ~ or £ 6 • 

Proof Suppose that the lemma is false. First let G = £ 6 • Let z and e be 
representatives of the two classes of involutions in G, with C0 (z) = Ti.D5 and 
C0 (e) = A 1A 5 • By Lemma 2.6 we have E# = e0 n E, and, in particular, we may 
assume that e EE. Write C0 (e) = XD with X = A 1 , D = A 5 • If d is an involution 
in (DnE)\(e), then CD(d)=A 1 XA 3 , and setting c=d or de, we have 
c e Z(A3). Now consideration of C0 (c) yields c E z0 , a contradiction. 

Thus En D = (e), and it follows that E has rank at most 3. Consequently, by 
Lemma 2.4, E has rank 3. Write E=(e,f,g). Then C0 (e,f)nX=71, a 
!-dimensional torus inverted by g. As E projects to a quaternion subgroup of D 
acting homogeneously on the usual 6-dimensional module, ( C0 (E)0)' = K =A2 . 

Lemma 2.3 implies that C0 (K)0 is semisimple, and as E does not centralize 1j, it 
cannot centralize C0 (K)0• Hence by Lemma 2.1, q = 3 and (Co(K)0) 0 has factors 
L2(3). But E has rank 3, so this contradicts Lemma 2.l(ii). 

Now suppose G = ~· Again G has two classes of involutions, with repre­
sentatives e and z such that C0 (e) = A1 C3 and C0 (z) = B4 . If E# = e0 n Ethen 
we obtain a contradiction as above-the only change is that here K is A 1 rather 
than A2 • 

So assume that z e E = (z0 n E). Let ye (z 0 n E)\(z ). Then C0 (y, z) is D4 

or A 1A 1B2 • In the latter case Z(C0 (y, z)) = Z(A1 x A 1) contains only 
one conjugate of z, a contradiction. Thus C0 (y, z) = D4 andy has eight eigenvalues 
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-1 on the usual 9-dimensional module for B4 • The product of two commuting 
involutions of this type cannot again be of this type, so it follows that E has rank 
at most 2. This contradicts Lemma 2.4. 

It remains to deal with the cases where r = 2 and G is E7 or E8 . These require 
considerably more work than the previous cases. 

LEMMA 2.14. Suppose that p is odd, G = E 8 , and that 11 ••• ls is a maximal 
commuting product of fundamental subgroups SL2 in G. Let Z(J;) = (e;) for 
1 ::;;;; i::;;;; 8. Then with suitable ordering, 

(i) e1 ... e8 = l, 
(ii) (ev ... , e8 ) = ((e1 ) x ... X (e8 ) )/R, where 

R = ( e1 e2e3e8 , e1 e4 e5e8 , e2e4e6e8 , eJe4e1es), 

Proof. Choose a subsystem (A 1) 8 in the £ 8 root system. The elements e; are 
the elements hrx(-1) as described in [9, Chapter 6] for the roots a in the 
subsystem. A direct check using these elements gives the assertions. 

LEMMA 2.15. Let r = 2 and G = E7 . Then E = (Z2)2, C0 (E) =Ex D4 (D4 of 
adjoint type), and No(E)/Cc(E) = S3 . Moreover, Land N0 .,(E) are as in Table 1, 
and Eis determined up to G0 -conjugacy. 

Proof. First note that G has precisely three classes of involutions, with 
centralizers A1 D6 , A7 ( w2 ) and 7JE6 ( w2 ). Of these, the first lifts to a class of 
involutions in E7 , while the other two lift to elements of order 4. 

Let (z)=Z(G). By Lemma 2.9(i), Eis either extraspecial or elementary 
abelian. Suppose that Eis extraspecial. Then e is conjugate to ez for every e EE, 
and hence C0 (e)0 < C0 (e) for each e EE#. Hence Lemmas 2.6 and 2.9(ii) imply 
that each element of E# has centralizer A7 ( w2 ). Consequently, every element of 
E\(z) has order 4, and so E = Q8 and E = (e, /)with [e,f] = z. 

Let y be an involution of G with centralizer T1E 6 ( w2 ) and let d be an 
involution in C0 (y )\C0 (y )0• (To see that d exists, let T be a maximal torus of 
7!E6 and let T ~11 .•• 17 , a maximal commuting product of fundamental 
subgroups SL2• Let S; be a fundamental reflection in l; and set d = s1 •.• s7 • Then 
cxd = - a for each root a and so d induces a graph automorphism on the factor 
£ 6. Finally, d is an involution.) Write C = ( C0 (y )0)' = £ 6 • The proof of 
Proposition 2. 7 shows that there is an involution h in a fundamental subgroup SL2 

of K = C n C0 (d) such that d, dh are representatives of the two classes of 
involutions in Cd. Suppose that d, dh E y 0 . Then 

C0 (d, dh)0 = (C0 (d)0 n C0 (h))0 = T1A 1A 5 • 

Bence d8 = dh implies that g normalizes T1• Then g normalizes Cc(T1) == CG(y)0 . 

lut d, dh are not conjugate in Nc(C0 (y)0) = C0 (y), a contradiction. Thus d, dh 
·e not both conjugates of y. Now d E C(y)\C(y)0, so [d, y] -=F 1 and therefore 
:;(d)0 < Cc(d). Similarly C0 (dh )0 < C0 (dh). It follows that at least one of d, dh 
conjugate to an element of E#. Consequently, we may choose e E En such that 
y commute but e, y do not commute. 
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We now have the two non-conjugate involutions f, y E C(e)\C(e)0• Moreover, 
since e E C(y)\C(y)0 , Proposition 2.7 implies that (C(e) n C(y)0)' is of type E, or 
C4 ; as this subgroup lies in C(e )0 = A 7 , it must be of type C4 • Hence, also by 
Proposition 2.7, C(e )0 n C(f)0 = D4 , that is, Cc(E)0 = D4 (of ad joint type). 
Further, E#=e0 nE andf, fe are conjugate in C0 (e)=A7 (w2 ) (regarding the 
action off as the 'inverse-transpose' action, f and fe are conjugate by a suitable 
diagonal element of A7). Repeating this for each element of E#, we see that 
N0 (E)/C0 (E) = S3 . We claim that the group S3 here acts as graph automorphisms 
on the factor D = C0 (E)0 = D4 . For suppose to the contrary that there is a 
3-element x centralizing D. Now D has two composition factors on the minimal 
56-dimensional module for G, each of dimension 28 (each is the skew-square of a 
natural 8-dimensional module). It follows that x has precisely two distinct 
eigenvalues on the module, and C0 (x) acts on the corresponding eigenspaces, 
each of which has dimension 28. But D is irreducible on each eigenspace, so by 
[16, 14.1] the only possibility for Cc;(x )0 is A 7 . This is absurd as A 7 centralizes 
only 2-elements. Hence our claim is proved. 

To conclude this case (assuming E extraspecial), we consider the situation in 
the finite group Ga. We have proved that the G-class of E is uniquely 
determined, and Nc(E) =(Ex D4).S3 . Applying [26, I, 2.7 and 2.8], we see that 
the Ga-classes of subgroups (E 1)a for a-stable E 1 E £ 0 are in bijective correspon­
dence with the classes of elements in the coset S4a = (E.S3)a. The only such 
classes giving Klein 4-groups (E1)a are represented by a and ea, where e E £#. In 
the latter case, however, the corresponding Klein 4-group does not have an 
element of order 3 acting on it. Hence the G0 -class of E is uniquely determined, 
and N0 JE) =(Ex Inndiag(D4(q)).S3 , as in Table 1. 

We may now assume that E is elementary abelian. Thus each involution in £# 
has centralizer of type A 1D6 • We view G as a subgroup of E8 , centralizing a 
fundamental subgroup SL2 , say 18 (in the notation of Lemma 2.14). We may then 
use the relations in Lemma 2.14, setting (z)=(e8 )=Z(G), and e=e1. Let 
Ce( e) = 11 Y, a commuting product of 11 =A 1 and Y = D6. Note that e l and e1 z 
are not conjugate in G, since otherwise Cc;(e) would not be connected, a 
contradiction. 

Suppose that there exists J E (En Y)\(e, z ). Choose a maximal torus T of 11 Y 
containing e and f Then 11 is contained in 11 T ~ Ct;(/) = Jlf P for some g E G. 
Since 11 is T-invariant, it follows that 11 ~ P and so [11, 11] = 1. Hence 
J E Jlf ~ C(J1) = Y. Thus J lies in a fundamental SL2 of Y, so 

E ~ Ca(e, /) = Ct;(e, ])0 =11l2l3R, 

where 11, 12 , 13 are conjugate fundamental subgroups SL2 , and R = D4. Letting 
(e;) = Z(J;), we have Z(JJ213R) = (e 1) x (e 2 ) x (e3 ) and Z(J1l2l3) n Z(R) = 
(e 1e2 , e2e3 ). By Lemma 2.3, C.1;(£)0 = 1 for i = 1, 2, 3, so there exist elements 
a1a2r1, b 1b2r2 , a;a 3r3 , b;b 3r4E E such that a; and b; (also a; and bD are elements 
of order 4 in l; with [a;, b;] = e; (also [a;, b;] = e2), and r1 , r2 , r3 , r4ER. But then 
either [a 2 , a;]* 1 or [a 2 , b;] * 1, say the latter. This forces [a 1a2r1, b;b3r4] * 1, a 
contradiction. Thus there is no such element/. 

By Lemmas 2.3 and 2.5, there exist x 1 =a 1 y,, x2=b1Y2EE with a1, b1El1, 
y1 , y2 E Y and ai =bi= yi = y~ = [a 1 , bi]= [y 1 , y2] = e 1• The previous paragraph 
implies that 
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Now Y/(z> is a half-spin group: to see this, regard Y/~z) as a_Levi factor of G; 
the corresponding unipotent radical is a 32-dimen~ional spm modul~ for a 
half-spin group of type D6 . Since z is conjugate to e1 m NE,(Y), YI (e1) is also a 
half-spin group, and hence Y/(ze 1) =S012 • Moreover, Y1(ze,) and Y2(ze1) are 
elements of order 4 squaring to the central involution. Consequently 

Cc(e, z, x1)0 = T2As. 

Further, x 2 = b 1y2 inverts T2 a~d acts as a graph automorphism on~;· ~hus by 
Proposition 2.7, K = Co(E)0 is of type C3 or D3 . Also T2 ~ C(K) . Smee Xz 
inverts T-, E does not centralize C(K)0 , so by Lemma 2.1, q =3 and (C(K)0 )a 
has facto;~ L2(3). But the rank of Eis 3, which contradicts Lemma 2. l(ii). 

For the final lemma, handling the case where G = £ 8 and r = 2, we require the 
following elementary proposition. 

PROPOSITION 2.16. Let D be an elementary abelian group of order 2,,. ~ 4, and 
let V be a module for D over a field of odd characteristic. Then 

V = Cv(D) E9 2: CU.Do). 
where the sum is over the subgroups D0 of index 2 in D, and c<i(D0 ) is the unique 
"'-invariant complement to Cv(D) in Cv(D0). In particular, if f =dim Cv(D) then 

dim V + (2" - 2)f = 2: dim Cv(D0 ). 

Proof. This follows from [15, 3.3.3]. 

LEMMA 2.17. Suppose that G=E8 and r=2. Then E=(Z2 ) 5 , C<;(E)/E= 
(Z2 ) 10, C0 (E)' = E and No(E)/Cc(E) = SL5(2). Moreover, L = £ 8(p) and 
NL(E) = N0 (E) as in Table 1, and Eis uniquely determined up to L-conjugacy. 

Proof Let e, z be involutions in G with C0 (z) = D = D8 and CG(e) = 11 Y, 
where 11 is a fundamental subgroup SLz and Y is simply connected of type E 7 . 
Note that Dis a half-spin group (see [17]). 

Let F = 11 ••. 18 be as in Lemma 2.14, with ( e;) = Z(J;) for I ~ i ~ 8. Take 
F ~ D, so that z E Z(F). The group N0 (F)/F induces 23.SL3(2) on F (see [2J), 
and Z(F) = (e1, ez, e7 , e8 ) has two N 0 (F)-classes of involutions: eG n Z(F) = 
{e;ll~i.;;:8}, andz0 nZ(F)={e;ei\i::f.j}. Takee=e1 andz=e 1e8 • 

Throughout, a1 and b; denote elements of order 4 in l; satisfying af = b7 = 
[a;, bi]= e;. We divide the proof into steps. 

Step 1. Involutions in D. We make some observations concerning involutions 
in D. If x is an involution in D such that C0 (,x) = S1S2 with S1 and S2 of type D4 , 
then Z(Co(z, x)) = (z, x) and z, x, xz are all conjugate. We may take J1J2J118 ~ 
S1 and l4lsl6f1,.;: Sz. Then Z(S1) = Z(Sz) = (e1e2 , e2 e3 ) = (e4 e7 , e4e5 ). 
. Next, J? contains two classes of subgroups A 7 . In one class the groups A 7 are 
1somorph1c to SLs, with central involution z. The groups A 7 in the other class 
have centre of order 4 and do not contain z; the central involutions in these latter 
groups A1 are conjugates of e. Note that a subgroup A 7 of E7 has centre of 
order 4. 
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Step 2. Involutions in F. Let L\. = { {i, j, k, l} I e;eieke1 =1}. The 4-sets in L\. are 
determined by Lemma 2.14(ii). We have IL\.I = 14 and Nc(F)/ F = AGL3(2) is 
transitive on L\.. Each 4-set in L\. corresponds to a product of two groups S04 in an 
N(F)-conjugate of D. For an involution t ED corresponding to an element of 
so,6 with a eigenvalues -1 and b eigenvalues + 1 (with a+ b = 16), we say that t 
is of type (- lt(l)b. Thus 

e=e1 isoftype(-1)4(1) 12 , 

e,e8 = z is of type (-1)8(1)8 • 

The involutions in F\Z(F) are a 1 ... a8 and a;aiaka1e;, where {i, j, k, /}EL\. and 
r $. {i, j, k, !}, s = 0 or 1. Calculation in D gives: 

a1 ••• a8 is of type (-1)8 (1)8 , conjugate to e1e8 , 

a;aiaka1 is of type ( -1)4 (1) 12 , conjugate to e 1, 

a;aiaka1er (r <f. {i, j, k, l}) is of type (-1)8(1)8 , conjugate to e1e8. 

Note also that CD(a 1 ••• a8) 0 = CD(a;aiaka1erY) = D4D4 • 

The remainder of the proof falls into two sections: in Part A we show that 
E# = z 0 n E, that is, Eis a z-group; and in Part B we show that the z-group Eis 
the group (Z2) 5 in the conclusion of the lemma. 

PART A. Eis a z-group. 

Suppose that this is false, and take e EE. Write £ 0 =En Y (recall that 
C0 (e) = 11 Y with Y = E7 ). 

Step 3. There exists f E £ 0\(e ). By Lemmas 2.3 and 2.5, there exist a 1y, 
b 1y' EE such that a 1, b, El1, y, y' E Y and 

aT = bT = y 2 = (y')2 = [ai, bi]= [y, y'] =e. 

Suppose that E 0 = (e).Then E = (e, a1y, b,y'). Now C0 (a 1y) nJ, = T1 and b1 

inverts Ti. Moreover, C(e, a 1y)0 is T1A 1 or T, T;E6 (see Lemma 2.15· for the 
involution classes in Y), and y' acts as a graph automorphism on (C(e, a 1y)0)'. 

Thus by Proposition 2. 7, ( C(E)")' = K is of type h D4 or C4 . Clearly K 
centralizes T1 , so T1 ~ C(K)0 • Moreover En C(K)0 contains e, so E ~ C(K)°. 
Since b 1y' inverts T1, E does not centralize C(K)0 . Hence Lemma 2.l(ii) applies 
to give a contradiction. 

Step 4. The subgroup Cc,(e, f). In this step we calculate Ca(e, f) (where f is as 
given by Step 3). As Y is simply connected, Cv(f) is A 1D6 , A7 or T1E6 • The last 
possibility does not hold, by Lemma 2.5(i); and in the second case Cy(f) = 
SJ,,8/Z2 , forcing/=e, which is false. Hence Cc(e,f)=J1Cy(f)=A 1A 1D6 • We 
may take 

Cc;(e, f) = 1118R 

where R = D6 • Then (e, !) = Z(Cc;(e, f)) = (e 1, e8 ), and z EE. Also lif8 n R = 
(e1> e8 ). 
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Step 5. We have En R = (e1> e8). Suppose that the claim is false, and pick 
g e (En R)\(e1, e8). Then CR(g) =A 1A 1D4• We may take g = e1, CR(g) = 
J2/3S2, so that C0 (e1, e8 , g) = 111213lsS2 (recall that S2 = D4). 

First assume that there also exists he En (S2\Z(S2)). We may take Cs2(h) = 
J4J5J6J7 , so that E::;:;; F and Z = Z(F).;:; E. For 1.;:; i.;:; 8 choose a;, b; El; of order 
4 with [a;, b;] = e;. For a 4-set A= {a, /3, y, c5} E .6., write 

aA = a"'apayat,, bA = b()(bpbybe,. 

Define the subgroups U, YA (A e .6.) of F as follows: 

V=(Z,a8 ,b1 ••• b8 \ al!Be.6.), 

YA= (Z, aA, bA, ll,4, bA), 

where A denotes the complement of A in {l, ... , 8}. Thus U = (Z2)9 and 
YA= (Z2)8• Moreover, if V0 = (Z, as j BE Li}, the coset Vob 1 ••• b8 in U consists 
entirely of conjugates of z. 

We claim now that for some A e .6. and choice of a;, b;, the group E is 
contained in either U or YA. To see this, note that if E contains as and ac with B, 
C e Li and IB n Cl= 2, then E can contain no element bA (as Eis abelian), and 
hence E::;:;; U. Otherwise, the set {a8 I a8 EE} is contained in {a A, a.4} for some 
A e 6., and then clearly E ~YA, proving the claim. 

If E::;:;; U then (e 0 n E) ~ V0 , and hence E ~ U0 by Lemma 2.4; but clearly V0 

lies in a maximal torus of F, so this contradicts our hypothesis on E. Hence 
E.;:; YA for some A e 6. and choice of a;, b;. Now E centralizes no l; by Lemma 
2.3, and hence we may assume that aAaA = a1 ... a8 EE. Further, CF(a1 ... a 8) 0 = 
78. By Lemma 2.5, E centralizes no torus in 78, and hence E also contains 
bAbA = b1 ... b8 • Thus 

(Z, a1 ••• a8 , b1 ... b8 ) ~E.;:; YA-

lf IEI = 26 then (ea n E) ~ Z < E, a contradiction. If IEI = 27 then we may take 
E=(Z,aA,afi,b 1 ... b8 ) and then b1 ••• b8 ~(eGnE), again a contradiction. 
Thus IEI = 28 and E =YA. Write A= {i, j, k, l}. One checks now that (e;ei, e;ek) 
is the unique largest z-pure subgroup of YA whose involutions t satisfy 
tx E zG U {1} for all x e En z0. Consequently Na(E) normalizes (e;ei, e;ek), 
which lies in a torus, contrary to hypothesis. 

Thus there is no such element he En (S2\Z(S2)). 
We have E~l1l2l3JsS2 and (e1>e2,e8 )o;:;E. Since En(S2\Z(S2))=0, 

elements z' of (Enz0 )\(e1, e2, e8 ) have the form a1a2a3a8s or a;ais with s eSi: 
for if xs EE with x E Z(l112l3J8) then s e E, a contradiction. If z' = a1a2a3a8s, 
then z' (e1, e1, es) is fused (that is, consists entirely of z-conjugates), and if 
z' = a;ais then z ' ( e;, ei) is fused. 

Suppose that E contains a;ais1 with s 1 E S2 , and let {i, j, k, l} = {l, 2, 3, 8}. 
Then there exist s2 , s3 , s4 e Si such that 

E.;:; ( e1, ez, es, a;ais1, b;bis2, aka1s3 , bkb1s4 ). 

It follows that the intersection of all maximal z-pure subgroups of E must contain 
e;ei: a~d hence m~s~ be a proper non-trivial subgroup of E normalized by M, 
which is.a contradiction. Consequently E contains no such element a;ais1, and so 
there exist s 1.si e Si such that 

£::;:;; (e1, e2, e8 , a1a2a3a8s1> h1b2b3b8s2). 
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Lemmas 2.3 and 2.5 force equality here, and Lemma 2.4(i) allows us to take 
a1a2a3a8s1> b 1b2b3b8s2 E zc. But then (En eG) < E, a contradiction. 

Thus the element g does not exist, and so En R = (e 1, e8 ), completing Step 5. 

From Step 5 it follows that 

where r; E R = D6 for 1 .;;; i .;;; 4. 

Step 6. We have a8 r1 ft. E. Suppose that a8r1 E £. Recall that a8r1 E Y = £ 7 , 

where Cc(e 1)=11 Y. Since Y is simply connected, we have Cy(a8 ri) =A 1D6 (see 
Lemma 2.15 for the involution classes of Y), and Z(D6) = (a 8r" e1). From Step 2 
we see that a8 r1 and a8 r1e1 are not conjugate in G, and hence we may assume that 
a8r1 E zc. Similarly we may take b8 r2 , a,r3 and b 1r4 to lie in zG. We now compute 
connected centralizers as follows. First, we have 

CG(e8 , a 8 r1) 0 = I;A7 , 

since a8r1 E zG and r1 is an element of order 4 in the factor £ 7 of Cc(e8). Next, 

Cc(e8 , a8r1 , e 1) 0 = T211A 5 , 

since C(e 1, e8 ) 0 = J1J8R and r 1 is an element of order 4 in R. Also, 

Cc(e8, a8r,, e1, b8 r2) 0 =11 C3 or l 1D3, 

since r2 inverts r1, hence interchanges the two distinct 6-dimensional eigenspaces 
of r1 on the natural 12-dimensional R-module, and hence induces a graph 
automorphism on the factor A 5 in Cc;(e8 , a8rr, e 1) 0 : now use Proposition 2.7. 
Next, 

since r3 lies in C3 or D3 • Finally, 

Cc(e8 , a8 r1> e1, b8 r2 , a1r3 , b 1r4) 0 =A 1, 

since r4 inverts r3 . 

Now recall that (e 1, e8 , a8 r1 ) .;;;£.Let I; =Z(Cc;(e8 , a8 r1) 0 ). Since C0 (£) has 
no normal torus by Lemma 2.5, E contains an element inverting 7;. From the 
above calculations we see that K = C0 (£)0 * 1 and T1 .;;; Cc(K)0• Moreover 
e8 EE n Cc(K)0 , so E.;;; Cc(K)0. Now E does not centralize Cc(K)0 , so Lemma 
2.l(ii) applies. Thus the rank m(E) of Eis even, so it is 4 or 6. If m(E) = 6 then 
K = Cc(E)0 =A 1 and M normalizes Ku= PGL2 (3). But then M normalizes 
Oi(K0 ) = (Z2) 2 , which lies in a torus of G0 • 

Therefore m(E) = 4. Now C(e 1 , e8 , a8 r1) 0 = Tzl1A 5 , so if C = C(£)0 n A 5 then 
C' is a group of rank at least 2, normalized by M. Then Cc(C') contains T1, so 
does not centralize E, and hence Lemma 2.l(ii) applies to C0 (C'). This is 
impossible as Cc( C') contains 1118• 

Thus a 8r1 ~ E, and Step 6 is complete. 

Similarly b8 r2 , a,r3, b 1 r4 ~ E. Consequently, by Lemma 2.5 we may assume that 

E = (e1 , e8 , a 1a8r, b 1b8 r') 
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where r,r'eRsD6• The cosets a1asr(e1,es)'. .b1bsr'(e1,e~) and a1a8rbibsr' (et> e8) are each fused in J1J8 • Hence 1t 1s not possible that 
E = (eG n E) = (zG n £), contrary to Lemma 2.4. . This completes Part A. Thus from now on we assume that Eis a z-group, and 
that z = e1es EE. 

PART B. E == (Z2) 5 is as in the conclusion of the lemma. 

We begin by producing the z-pure subgroups (Z2)5 of the conclusion. 

Step 1. Let F =11 ... J8 with each 1; a fundamental subgroup SL2. and Z(J;) = ( e;), as above. Let Z0 = ( e;ei I all i, j). Define 

A= (Z0 , a1 ••• as, b1 ... bs)· 

Then: 

(i) A is a z-group and A== (Z2) 5; any z-pure subgroup (Z2) 5 of F containing 
Z0 is F-conjugate to A; 

(ii) CG(A) is a special group of order 215, with C0 (A)' =A and Cc(A )/A == 
(Z2)1°; 

(iii) X=NG(A)/C0 (A)=SL5(2), and the action of X on C0 (A)/A is that of SL5(2) on the skew-square of a 5-dimensional module V5(2); 
(iv) A lies in no larger z-pure subgroup of G. 

Proof. We have Z0 == (Z2) 3, so A== (Z2) 5. Moreover A is z-pure by Step 2. It is clear from Step 2 that any z-pure (Z2)5 in F containing Z 0 is of the form (Z0 , a; ... a~, b; ... b~}, and hence is conjugate in F to A. Thus (i) is proved. We next calculate CG(A). Since Ca(Z0) 0 = F, we have Cc;(A) ~ Nc;(F). Moreover NG(F)/FCG(F) = (Z2)3.SL3(2), and Cc(Z0)/ F lies in the normal subgroup (Z2)3 acting regularly on {11, .. ., ls}· It follows from (i) using a Frattini argument that 

Na(F) = F(NG(A) n Na(F)). ( *) 
Moreover, F n N0 (A) induces S:i on the Klein group A/Z0 . Thus there is a subgroup (r, s, t) ~ Na(A) n NG(F) inducing the regular normal subgroup (Z2)·' on {11, .. ., 18}. Now there exist i, j, k, l such that 

[r, a1 ... as]= (e;ei)'', [r, b1 ... b8] = (eke1)'2, 

where S1, s2 E {O, 1}. Replacing r by r(b;bi)''(aka1)9', we haver E Cc(A). Similarly we may takes, t E Ca(A), and so we have the subgroup 

(r, s, t) ~ Ca(A). 
Recall the set 11?f4-sets defined in Step 2, and that for R = {i, j, k, /} E 11, we set aR = a;aiaka,. Direct calculation gives . 

CF(A) =(A, e1> aR, bR I RE 11), 
and hence 
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Thus ICa(A)/Al = 210 and Ca(A)/A contains the elementary abelian subgroup 
CF(A)/A of order 27 . 

We now show that X = Nc(A)f Cc(A) = L5(2). First note that for any 
a EA \Z0 , there is a maximal torus I;, of F, and hence of G, such that 
(Z0 , a)~ I;,. Now Na(T0 )/T0 = W(E8) = 2.0t(2). The non-trivial central ele­
ment here is Wo, the longest element of W(E8 ), and the corresponding element 
nw0 of Na(I;,) inverts every element of T,,. Moreover, A induces (nw0 ) on T0 • 

Write Q=Q1(02(T0 ))=(Z2) 8. Obviously (Z0,a)~Q, and Na(Ta) induces the 
group Ot(2) acting naturally on Q. Since (Z0 , a) is z-pure, it is a totally singular 
4-space in Q. Let Y be any 3-space in (Z0 , a). Then there exists g E Na(T0 ) such 
that Z~ = Y. Further, Cc(Y) 0 = P. Also g normalizes ( T,,, nw0 ) ( = Ca(Q)), a 
group containing A, and hence A~ F8 . Also A 8 ~ F8, and so by the uniqueness 
of the conjugacy class of A 8 in F8 given by (i), there exists f E FE such that 
A1 = A 8 . Then 

g1-I E Nc(A), zrr' = Y. 

As a was an arbitrary element of A\Z0 , we deduce that X = Na(A)/C0 (A) is 
transitive on the set of 3-spaces in A. Moreover, the element a 1a2 lies in N0 (A) 
and induces a transvection in X. Consequently X = L5(2). 

By ( *) there is an element u E Nc(A) of order 3 which acts on {11, •.. , 18} as a 
product of two 3-cycles. Write Vi= CF(A)/A, Vi= Cc(A)/CF(A). Elementary 
calculation shows that dim CVi(u) = 3, dim Cv2(U) = 1, that [Vi, u] is a direct sum 
of two 2-spaces, and that dim [Vz, u] = 2. Now the non-trivial irreducible modules 
in characteristic 2 for X = L5(2) of dimension 10 or less are the natural module W 
of dimension 5, its dual W*, and the skew-squares A2 W, A2 W*. Since 
dim[W, u] = dim[W*, u] = 2, it follows from the above information that Cc(A) I A 
must be the irreducible X-module A2 W or A2 W* (and in particular that 
Cc(A)/A = (Z2) 10). It is now immediate that Ca(A) is a special group of order 
215 , and so Parts (ii) and (iii) are proved. 

It remains to prove (iv). Now X = L5(2) has precisely two orbits on the 
non-zero vectors of A2W or A2W* (see (20, 2.5]). In CG(A)/A these orbits are 
represented by e 1A and aR,bR,A, where R 1 , R 2 E Li with IR 1 n R2 1=2. Since 
e1 E ec and aR,bR, is an element of order 4 in CG(A), (iv) follows. This completes 
Step 7. 

Recall now that z = e 1e8 EE. Pick z1 E E\(z ). 

Step 8. We have ( Cc(z, z1))0 = S1S2 = D4 D4 , and Z(S1) = Z(S2) = (z, z1 ). To 
see this, note that any z-pure Klein 4-subgroup V of G can be embedded in a 
maximal torus T of G, and No(T) induces Ot(2) on the 8-space Q 1(02(T)). Since 
it is z-pure, V is a totally singular 2-space here, and Ot(2) is transitive on such 
2-spaces. Consequently G has just one class of z-pure Klein 4-groups. Since 
(z, z1) is one such, Step 8 follows. 

Step 9. E contains no element interchanging S1 and S2 . Suppose this is false, and 
pick z2 EE interchanging S1 and S2 • Then CG(z, z1 , z2) = (z, z1 , z2 )N with 
N =- D4 . Let V = L(G), the 248-dimensional Lie algebra of G. Then Cv(z, z1 , z2) 

contains L(N), so if f =dim Cv(z, z1 , z2) then f ~ 28. On the other hand, by Step 
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8, for each hyperplane D0 of (z, z1, z2 ), we have, using (4, Corollary 9.2], 

dim Cv(D0 ) =dim (L(D4) E9 L(D4)) = 56. 

Thus by Proposition 2.16, 6/ + 248 = 7 x 56. This yields f = 24, a contradiction. 
This proves Step 9. 

Step 10. There exists z2 EE such that C0 (z, Zi. z2) 0 is conjugate to F. By Step 9, 
we have E ~ S1S2 = C0(z, z1)0 • Thus for Zz E E\(z, z1) the group (z, z1, z2) is 
contained in a maximal torus T of G. Since Eis z-pure, this is a totally singular 
3-subspace of Q = Q 1(0i(T)) regarded as an orthogonal space for WQ = Ot(2). 
Since W is transitive on the set of totally singular 3-spaces in Q, we deduce that 
(z, z1 , Zz) is conjugate to (e;ei \ all i, j) = (Z(F) n z 0 ) = Z 0 . Hence 
C0 (z, z1, z2) 0 is conjugate to C0 (Z0) 0 = F, as required for Step 10. 

By Step 10 we may take 

C0 (z, Zv Zz)0 =F=11 ••• 18 , 

and also (z, z1, z2 ) = Z 0 and E ~ N0 (F) n CG(Z(F)). Further, we may assume 
that 

Step 11. We have E ~F. Suppose this is false, and pick x E E\F. As x E z 0 and 
also x E S1S2 , (x) must act semiregularly on both {11, 12, 13 , 18} and 
{h 15 , 16 , 17}. Clearly then there exists RE~ such that x interchanges Il;eRl; and 
Il;,Rl;. Consequently we can find V ~ Z 0 with V = (Zi)2 such that C0 (V) = 
R 1R2 = D4 D4 , R 1 contains Il;eRl;, R 2 contains Il;,Rl;, and such that x 
interchanges R 1 and R 2 • This cannot happen, by Step 9. 

Step 12. Completion of the proof for the group G. We have Z0 = (z, z1, z2 ) = 
(e1ei \ all i, j) ~ E ~F. By Step 2, any conjugate of z in F\Z(F) is of the form 
a1 •.• a8 or aRer with Re /l, r ~ R. Since (Z0 , aRe,) contains elements of e0 , any 
element of E\Z0 must be of the form a1 ••• a8 • Further, by Lemmas 2.3 and 2.5, E 
must contain elements a 1 ••• a 8 and b1 ... b8 . Thus by Step 7(iv), we have 

E =A= (Zo, a1 ••• a8 , b1 ... bs). 

All conclusions of the lemma for the algebraic group G = E 8 are now proved. 

Step 13. Completion of the proof for the finite group L. We finally verify the 
statements of the lemma for the finite group L = G0 • The group E is contained in 
the a-stable group F = 11 ... 18 • Since a centralizes E, it centralizes Z0 = ( e1ei \ all 
i, j). It follows that a either fixes each f;, or has four orbits of length 2 on the 11• 

Correspondingly, QP'(F0 ) is a central product of either eight copies of SL2(q) or 
four copies of SLi(q2). 

Suppose first that QP'(Fa) = SL2(q) 0 ••• 0 SL2(q) (eight copies). If E ~ (JP'(Fu) 
then E is conjugate to a subgroup E 1 of SL2(p) 0 ••• 0 SL2(p ). Moreover we can 
argue as before that NdE1)~E8(p) and that E 1 is unique up to E 8(p)­
conjugacy. Thus L = Es(P) by the maximality of M, and the conclusion of the 
lemma holds in this case. Now assume that E :f; QP'(F0 ). We may then take 
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a= a1 ... a8 E QP'(F0 ) and b = b1 ... b8 f/. ()P' (F0 ). Now M acts irreducibly on E 
and M /CM(E) ~ SL5(2). Moreover M /CM(E) contains 2-elements such as a1a2 , 

so M /CM(E) = SL5(2) (see [30]). Thus NM(Z0) is transitive on (E/Z0)#. But 
NM(Z0 ) cannot send a to b, since a E QP'(C(Z0)) and b t$ QP'(C(Z0)). Hence this 
case does not occur. 

Finally, suppose that QP'(Fa) = SL2(q 2) 0 ••• 0 SL2(q 2) (four copies). As in the 
previous paragraph, the irreducibility of M on E and the existence of 2-elements 
in M /CM(E) imply that M /CM(E) = SL5(2). Consequently NL(Z0 ) induces SL3(2) 
on Z0 • This is impossible since 0P'(CL(Z0)) = QP'(F0 ), a central product of only 
four quasisimple groups, which cannot admit SL3(2). 

Lemma 2. 17 completes the proof of Theorem 1, apart from the demonstration 
of the embedding L4(5) < E8( 4), which, as pointed out in the Introduction and in 
the proof of Lemma 2.10, is needed to show the non-maximality of the subgroup 
53 .SL3 (5) in Table 1 when p = 2. This embedding is exhibited in § 5. 

3. Proof of Theorem 2 

In this section we give a proof of Theorem 2. Thus let G be a simple 
exceptional adjoint algebraic group in characteristic/, and let S be a subgroup of 
Aut G such that D =(Sn G)0 is non-trivial, closed, and satisfies Conditions (1), 
(2) and (3) of Theorem 2. Suppose that D is not parabolic or of maximal rank, 
that is, D does not contain a maximal torus of G. 

By Condition (2), the group E = Q 1(0r(Cc;(D))) is non-trivial. Clearly S 
normalizes E, so by Condition (3) we have D = C0 (E)0 and N0 (D) = Nc(E). Let 
Q=Ru(D). If Q:i=l or if r=l, then by [5,3.12], S normalizes a parabolic 
subgroup P containing N(Q) or N(E), forcing D = P; but then D contains a 
maximal torus, a contradiction. Thus Q = 1, and so Dis reductive. Moreover, if S 
normalizes a connected subgroup K * l,G then by (3), D = N(K)0 , and hence 
N(K) contains no maximal torus. In particular Z(D)0 = 1, so Dis semisimple. As 
S normalizes DC(D), (3) gives C(D)0 ~ D, whence C(D) is finite. Since r * l, E 
consists of semisimple elements. 

We claim next that if 1 * E 1 ~ E, then Cc(E 1) contains no non-trivial normal 
torus. For otherwise, if T<JC0 (E 1) with Ta non-trivial torus, then D = C0 (E)0 

normalizes T, and hence centralizes T, contrary to C(D) being finite. 
As E lies in no torus, we see as in Lemma 2.4 that r = 2, 3 or 5 and m(E);;;,, 2. 

Suppose that for some e EE#, C0 (e) is connected and has a factor An. Then 
since for semisimple x E An \Z(An), CAJx) has a normal torus, C(E) must 
contain the factor An. But then S normalizes the product of these factors An, and 
the normalizer of this product contains a maximal torus, a contradiction. This 
establishes the fact that for e E £#, C( e) has no normal torus, and if C( e) is 
connected, it has no factor An. We conclude (cf. Lemma 2.6) that C(e) is as 
follows: 

G r C(e) 

F4 2 B4 
Eh 3 (A 2 ° A 2 ° A 2) ( w3 ) 

£7 2 A1( W2) 
£8 2 D" 
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When G = ~. we argue as in the last paragraph of the proof of Lemma 2.13 that 
m(E) ~ 2, whence E lies in a maximal torus, a contradiction. For G = E 6 , let 
f eE\{e). If f E C(e)0 then C0 (e, f) has a normal torus, so f E C(e)\C(e)0 and 
E= (e,f). We now obtain a contradiction as in the third paragraph of the proof 
of Lemma 2.11. When G = E 7 , the same argument gives E = (e,f) with 
f e C(e)\C(e)0• Then as in Lemma 2.15, D = C(E)0 = D4, N 0 (D) = (22 x D4).S3. 
This is in the conclusion of Theorem 2. Finally, if G = E8 , we argue as in Steps 
8-11 of Lemma 2.17 that E:::;;, F = (A 1) 8 and E contains Z0 = ( Z(F) n zG). As E 
does not lie in a torus, E :f= Z 0 , so there exists f E E\Z0 . Then C(Zo, f) has a 
normal torus, which is a contradiction. This completes the proof of Theorem 2. 

4. Proof of Theorem 3 

Here we give the proof of Theorem 3. Thus let G be an exceptional simple 
adjoint algebraic group in characteristic l, and let A be an elementary abelian 
r-subgroup satisfying Conditions (a)-(e) of Theorem 3. The proof runs parallel to 
that of Theorem 1 in § 2. Since Na(A) is finite, it is clear that A does not lie in a 
torus of G, and C0 (A)0 = 1. 

First, the proof of Lemma 2.4 gives 

LEMMA 4.1. (i) A= (aG nA) for a EA#. 

(ii) r is 2, 3 or 5, and r = 5 only if G = E 8 • 

(iii) m(A)~2; and m(A)~3 if (G, r) is not (E6 , 3) or (E7 , 2). 

The fact that C0 (A)0 =1 implies the following analogue of Lemma 2.5. 

LEMMA 4.2. For a EA#, C0 (a) does not contain a central torus. Moreover, if 
Ca(a) has a normal torus then A 1' C0 (a)0 • 

Lemmas 4.1 and 4.2 give 

LEMMA 4.3. For a eA#, the possibilities for Ca(a) are those given in Table 3 of 
Lemma 2.6. 

LEMMA 4.4. (i) Suppose IZ(6)i = r. Then E is elementary abelian or 
extraspecial. 

(ii) For a EA#, C0 (a)0 is semisimple. 

Part (i) of Lemma 4.4 is proved as in Lemma 2.9(i). If (ii) fails, we argue as in 
Lemma 2.9 that IAI = r2 ; but then C0 (A)0 :f=1. 

Now the proofs of Lemmas 2.10-2.17 give Theorem 3. Note that these proofs 
are so0metimes greatly sin:iplified by the hypothesis of Theorem 3, since 
Ca(A) = 1 and the conclusions of Lemmas 2.1-2.3 are subsumed by the much 
stronger hypothesis ( e) of Theorem 3. 
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5. The embedding L4(5) < E 8 ( 4) 

In this final section we show that Es( 4) contains a subgroup L4(5), and also that 
for p * 2, 5, the algebraic group Es over the algebraic closure of FP does not 
contain Li5). As a consequence, the local subgroup N(E) = 53.SL3(5) of E 8(4) 
constructed in Lemma 2.10 is non-maximal (see Table 1 of Theorem 1). 

THEOREM 5 .1. Let G be the simple algebraic group of type E 8 over the algebraic 
closure of F P, where p is prime and p :;i: 5. Then G contains a subgroup isomorphic 
to L 4(5) if and only if p = 2. Moreover, this embeds Ll5) in E 8(4). 

The subgroup L4(5) will be constructed as the group generated by two 
conjugates of the local subgroup Na(E) = 53.SL3(5) constructed in Lemma 2.10. 
Write 

P= Na(E). 

We require a preliminary lemma concerning the group P. 

LEMMA 5.2. P is a split extension of E by SL3(5). 

Proof Let e EE#, and consider Cp(e). This has the form F.SLi(5), where, in 
the notation of the proof of Lemma 2.10, F= (a 11 b 1, a2 , b2 ) ==5 1+ 4 , an 
extraspecial group. By the construction of E (Lemma 2.10), CG(e) = X 1X 2 with 
each X;==SL5 . Since Cp(e) normalizes each X;, we conclude that Cp(e)/(e) acts 
completely reducibly on FI ( e). Thus FI ( e) has precisely six proper non-trivial 
Cp(e )/ (e)-invariant subgroups. Those lifting to extraspecial groups 51+2 come in 
pairs (orthogonal complements under the action of Sp4(5) on F). Since E is 
abelian, C p( e) therefore normalizes a complement EI ( e) to EI ( e) with E 
abelian. As SL2(5) has trivial first cohomology on the natural 2-dimensional 
module, we have E = (e) x S with S invariant under SL2(5). It now follows that a 
Sylow 5-subgroup of P splits over E, and hence P splits, as required. 

Proof of Theorem 5.1. In view of Lemma 5.2 we may write P =ED, with 
D == SL3(5). Let T == 2 4 x 2 4 be a Cartan subgroup of D, and let Ube a Sylow 
5-subgroup of P such that T ~Np( U) and U = E( Un D ). Consider the six 
T-composition factors of U. Each has centralizer 2 4 in T, and a direct check 
shows that these six subgroups of Tare distinct. 

It follows that there are precisely six T-invariant subgroups of U of order 5. We 
call these positive root subgroups; thus a positive root subgroup is determined by 
its centralizer in T. The group D contains three other T-invariant subgroups of 
order 5. These are the usual root groups in SL3(5) corresponding to negative 
roots. Each has centralizer in T equal to that of some positive root group, and we 
call such a subgroup the opposite root group. 

Label root subgroups as follows: E = Uo:Ua+f3Uo:+/3+r• with (e) = Uo:+/3+r 
Write D = ( U±/3• U±r), where notation is chosen so that S = UrUf3+r (here Sis 
the group constructed in the proof of Lemma 5.2). The usual commutator 
relations hold among the root groups in P, this group being isomorphic to a 
maximal parabolic subgroup of L4 (5). 
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Now E=UrUf3+rUix+f3+r (where Eis as in Lemma 5.2). Consider E(U±1i):;;; 
C0 (e) =X1X2 =SL5 °SL5. The group (U±/3) is diagonally embedded_ here (that 
is, it intersects each X; trivially), and it normalizes the intersection of E with each 
X;. But F intersects each X; in an extraspecial 51 +z, and the action of ( U ±fl) on 
E / ( e) is irreducible. Consequently E n X; = ( e) for i = 1, 2. From our construc­
tion of E in Lemma 2.10, we thus see that Eis conjugate to E. 

Hence P = N0 (E) = E.SLJ(S), and there is a unique complement D to E which 
contains T. Then jj contains precisely six I-invariant subgroups of order 5, and 
we have jj = ( u±IX' u±/3). That is, we have a new root subgroup u _a:' opposite 
to U"'. 

Set M = ( U±rx, U±f.l• U±r ). We shall show that if p = 2 then M = L4 (5). To do 
this, it suffices to show that [ ( U±y)' u_(\'] = 1; for then [ ( u±IX >' ( U±y > l = 1 and 
an application of the Curtis-Tits relations [12, Theorem 1.4] implies that M is an 
image of L4(5). 

To this end, set v = Ua:+{3UO!+f3+r v = u/HyUIX+{3+y and R = vvu{:i = 
Uo:+f!.Ua:+f3+rUf.l Uf.l+r· We check that R == 54 , and also Np(V)<"'l = R ( U±y) and 
N.P(V)<"'l = R ( U±"' ). 

We now consider N0 (R). Working in C0 (e) we see that Cc(V)0 is a maximal 
torus, say H, so Np(V):;;; N0 (H). As Np(V)/V is irreducible on R/V and 53 does 
not divide IW(E8)I, we have R:;;; H. Hence N0 (R) normalizes C0 (R)0 =H. 
Consider the actions of ( U±IX) and ( U±r) on R. We claim that these groups 
commute modulo H. To see this, note that N0 (R)' induces on R an irreducible 
subgroup of SLi5) of order dividing JW(E8)j, and containing a 5-element 
centralized by SLi(5) (corresponding to the image of U"' x ( U±r):;;; P). It follows 
that N0 (R)' /H == SL2(5) 0 SLz(5), corresponding to a subgroup Q4(2) x Q4(2) or 
Qt(4) in Qt(2). The former subgroup comes from W(A4 ) x W(A 4), which does 
not act faithfully and irreducibly on R. Hence No(R)'/H corresponds to Qt(4). 

Let t be the involution in T centralizing ( U ±a) and ( U ±r). Then ( tH) = 
Z(N(H)/H). Hence CN(R)'(t)=Q 1(02(H)).(SL2(5) 0 SL2(5)), showing that (U±a:) 
and ( U ±r) commute modulo Q 1 ( Oz(H)). 

If p = 2 then 0 2(H) = 1, so ( U±a:) and ( U±r) commute, which implies that 
M = L4(5). Moreover, all the groups occurring in the proof exist in £ 8(4), so this 
embeds L4(5) in £ 8(4), as required. 

It remains to show that if p -=!= 2, 5 then G has no subgroup Li5). To do this, 
we shall demonstrate that the extension CN(R).(t) = 28.(SL2(5) o SL2(5)) does not 
split. This implies that ( U±a) and ( U±r) do not commute. Hence if G had a 
subgroup L4(5), we could have performed all the above calculations within this 
subgroup to obtain a contradiction. 

Thus suppose for a contradiction that the extension splits. We have CN(RJ.(t) = 
29. (Alt5 x Alt5) with central involution t. This is a subgroup of Cc(t) = D8 . Let 
N=28 be the image of_!he normal 29 in C0 (t)/(t) =PQ 16(K), where K = \FP. Let 
N be the preimage of Nin Q 16(K), and let C be the preimage of CN(RJ'(t)/(t) in 
Q16(K). 

We claim that N is extraspecial. Otherwise, it is abelian (since the top factor 
Alts x Alt5 acts irreducibly on N), and an easy argument using the action of 
elements of order 5 shows that N = N1 x ( z), where z is the central involution in 
Q16(K) and N1 is normal in C. The action of Con N1 is Qt(4), which has orbits of 
size 75 and 180 on the linear characters of N1, and hence by Clifford's theorem, C 
cannot lie in Q16(K), a contradiction. Thus N is extraspecial, as claimed. 
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We now use an argument of R. L. Griess to complete the proof. We are 
assuming that the extension C == N. Q:(4) splits. Take a subgroup A of type 
Q 3( 4). There are an involution a EA and a singular vector s E NI { z) for 
which s" = s + n, where n is a non-singular vector fixed by A and n lifts to an 
element of order 4 in N. In the group N the preimage of {s, n) is a dihedral 
group with a inverting the element of order 4, which corresponds to n. But A 
normalizes this Z 4 and A= A'. This is a contradiction, completing the proof of 
Theorem 5 .1. 
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