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1 Introduction 

Center manifold theory plays a key role in the description and understanding of the dynamics 
of nonlinear systems. Especially for infinite dimensional systems it provides us with a very 
powerful tool. If the center manifold is finite dimensional, the reduction leads to the relatively 
easy setting of an ordinary differential equation. Hence results about stability and bifurcations 
are readily available. 

Since the introduction of the center manifold some twenty years ago by Pliss [Pli64] and 
Kelley [Ke167], many papers have been published which consider the reduction process in 
different contexts. An readable presentation in :finite dimensions is given by Vanderbauwhede 
[Van89]. 

There are two different methods to prove a center manifold theorem. The method of 
graph transforms, see for instance [HPS77], is a geometric construction. The other method 
is more analytical and uses the variation-of-constants formula. This goes at least back to 
Perron [Per30], as was pointed out by Duistermaa.t [Dui76]. 

For bounded nonlinearities the proof makes no difference between the :finite - and the 
infinite dimensional case provided the spectral projection corresponding to the imaginary axis 
has finite rank (see [Sca89] for the case of infinite rank). For partial differential equations one 
can employ subtle ways to express a.nd exploit the relative boundedness of the nonlinearity in 
terms offractional power and/or interpolation spaces; see [VI89, preprint] a.nd the references 
given there. 

For retarded functional differential equations the nonlineari ty becomes bounded once a 
convenient framework is introduced. The convolution part of the variation-of-constants for­
mula involves the so-called fundamental solution; see Hale [Hal77, Chapter 7]. The fundamen­
tal solution does not belong to the state space of continuous functions, but the convolution 
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produces a continuous function. The framework of dual semigroups is suitable to give a. gen­
eral functional analytic description of this phenomenon a.nd the releVa.nt perturbation theory 
has been worked out in a. series of papers [CDG+87a., CDG+87b, CDG+89a., CDG+89b), while 
the application to delay equations is presented in [Die87]. 

Without this framework one ca.n also prove the existence of invariant manifolds, see for 
instance [Cha.71, Ste84]. However, the proof becomes technically more involved because of 
the lack of a. true variation-of-constants formula. and a true a.djoint. 

The aim of the present pa.per is to formulate and prove the center manifold theorem 
for retarded functional differential equations (RFDE). The method of proof is based on the 
va.ria.tion-of-consta.nts formula. a.nd we shall exploit the framework of dual semigroups to be 
able to consider the nonlinea.rity a.s bounded. As an application we deal with the Hopf 
bifurcation theorem. 

2 Dual semigroups 

Let {T(t)} be a. strongly continuous semigroup on a. Banach space X, with infinitesimal 
genera.tor A. Then {T*(t)} is a. weak* continuous semigroup on the dual space X*. In general 
{T*(t)} is not strongly continuous. The maximal subspace (of X*) of strong continuity is 
denoted by xe (pronounced as X-sun). Actually one can prove, see [HP57], that xe = 
'V(A•). Let {T®(t)} be the restriction of {T*(t)} to the invariant subspace X®, then {T0(t)} 
is a. strongly continuous semigroup on the Banach space X0. So we can repeat this process 
of taking duals and considering suitable restrictions. We thus introduce 

x00 = {:r:0 • e x 0 • : lim llT0 *(t):r:0 * - :r:0 *11 = o }. 
tlO 

Since {T(t)} is strongly continuous on X we have that X C x00 (if we identify X with its 
natural embedding into X®*). 

Definition 2.1 X is called 0-reflexive with respect to A iff X®® ~ X. 

Theorem 2.2 Let f: [O,oo)-+ X®* be norm continuous, then t-+ JJ T0*(t - r)f(r) dr is 
a norm continuous x00 valued function. 

Remark 2.3 The integral is a. weak* integral. This means that by definition 
foT0*(t- r)f(r)dr is the element in X®* defined by 

{:r:0 , l T®*(t -r)f(r) dr) =lot (T®(t - r):r:®,/(r)) dr. 

Let {To(t)} be a. strongly continuous semigroup on X with genera.tor Ao. These we refer to 
as the unperturbed semigroup and genera.tor. A bounded perturbation is defined, on the level 
of the genera.tor as a. bounded linear opera.tor from x into xe·. 



124 

Theorem 2.4 Let X be 0-reftexive with respect to Ao, and let B be a bounded perturbation 
of A0 • Then the operator Ax = A~*x +Bx with 'V(A) = {x E 'V(Ag>*) I Ax E X} is the 
generator of a strongly continuous semigroup {T(t)} and the variation-of-constants formula 

T(t)x = To(t)x +lot T~*(t - r)BT(r)xdr (2.1) 

holds. 

3 The shift semigroup 

We repeat some of the material presented in [Die87]. Let (be a given n x n real-matrix valued 
function of bounded variation such that ((8) = 0 for 8 5 0 and ((8) = ((h) for 8 ~ h > 0. 
Here and in the following we assume that all bounded variation functions a.re normalized such 
that they are right continuous on (0, h ), zero on ( -oo, O] and constant on [h, oo ). Let g be a 
Ck mapping, k ;?: 1, of X = C([-h, O]; R") into R" such that g(O) = 0 and Dg(O) = 0. We 
consider the nonlinear RFDE 

:i:(t) = lh d((r)x(t- r) + g(xt), (3.1) 

with initial condition 
x( 8) = </>( 8) - h 5 8 5 0, (3.2) 

where </> E X. As usual the linear semi group {T( t)} on X is defined by 

(T(t)</>)(8) = Xt(8; </>), (3.3) 

where x(t; </>) denotes the solution of (3.1)-(3.2) with g = 0 a.nd x1(8; </>) = x(t + 8; </>). We 
pay special attention to the unperturbed semigroup {T0(t)} related to the equation :i: = 0, i.e. 
( = 0. 

{ </>(O), t + 8 > 0 
(To(t)</>)(9) = </>(t + 8), t + 8 ~ 0 (3.4) 

As we demonstrate later in this section, the semigroups {T(t)} and {T0 (t)} are related by 
the variation-of-constants formula (2.1) if we choose the operator B suitably. Hence we need 
to pay special attention to the unperturbed semigroup and specify the various spaces and 
operators involved. 

Lemma 3.1 The semigroup {T0(t)} is generated by 

Ao</>=~. V(Ao) = {</> E C1 I ~(O) = O}. 

Let X* be represented by N BV([O, oo ); R"), with the pairing given by 

(/,</>} = fo00 df(r)</>(-r) = lh df(r)<f>(-r). 

Lemma 3.2 The semigroup 

(T0(t)f)(u) = f(t +a) for a> 0, 
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:V(Ao) = {/ : J(t) = /(O+) + f~ g(T) dr for t > O, where 

g E NBV a.nd g(h) = O} 

Ao! = g. 

From the general theory we know that X® = V(A0). In the case at hand this results in 

Lemma 3.3 

x0 = {/ : f(t) = /(0+) + IJ g(T) dT for t > 0, where 

g E L1(R+) and g(u) = 0 for u ~ h} 

:V(A8>) = {/ : /(t) = /(0+) + JJ g(T) dT for t > 0, where 

g E AC(R+) and g(u) = 0 for u ~ h} 

Elements of X® are completely described by /(0+) E R" and g E L1([0, h]; R"). In other 
words, the space X® is isometrically isomorphic to R" x L1 ([O, h]; R") equiped with the norm 

ll(c,g)ll = lcl•" + llgllLt· 

In these coordinates we have 

Lemma 3.4 The semigroup 
Tg>(t)(c,g) = ( c + fo g(r) dT, g(t + ·)) is generated by 

V(A~) = {(c,g) : g E AC(R+)} and A~(c,g) = (g(O),g). 

We represent X®• by R" x L00([0,h];R") equiped with the norm 

and the pairing 

{(c,g), (a,</>))= ea+ foh g(T)</>(-r) dr. 

Lemma 3.5 The semigroup Tg>*(t)(a,</>) = (a,</>f), where by definition 

is generated by 
V(A~*) = {(a,c/>): </> E Lip(a)}, AW*(a,c/>) = (O,~). 

Here Lip( a) denotes the subset of L00(R+; R") whose elements contain a Lipschitz continuous 
function which assumes the value a at r = 0. Taking the closure of :V(A~*) we lose the 
Lipschitz condition but the continuity remains. 

Lemma 3.6 X®® ={(a,</>) I</> is continuous and </>(O) =a}~ X. 
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This ends our analysis of the unperturbed semigroup. Next we define the bounded opera.tor 
B from X into x0• by 

B</> = (((,</>},O) = {(,l/>}r0•, 

where r0• = (I, 0). The following lemma. is the key step in proving the equivalence between 
the variation-of-constants formula. (2.1) and the RFDE. 

Lemma 3. 7 Let g : R+ - X be a norm continuous function, then JJ Tg>*( t - T )B g( r) dr = 
J~{O,t+·}{(,g(r)} dr. 

Proof. 

lot Tg>*(t -r)Bg(r) dr =lot (((,g(r)), {(,g(r))H(t- r + -)) dr, 

where H is the Hea.viside function defined by 

H(t) = { 0 for t ::;; 0 
1 for t > 0. 

Using the definition of the weak• integral, Fubini's theorem a.swell a.s the identification of 
x with its embedding x00 in x0• we can rewrite the last integral a.s 

r {ma.x{O,t+·} 
lo (((,g(r)), {(,g(r))H(t- r + ·)) dr =lo ((,g(r)) dr. 

This completes the proof. 0 

Let {T(t)} denote the solution of the variation-of-constants formula.. The existence and 
uniqueness is guaranteed by Theorem 2.4. We show tha.t one obtains the solution of the 
RFDE by evaluating the semigroup a.t 0 = O. 

Corollary 3.8 If we define for t ?: 0 

x(t;<f>) = (T(t)<f>)(O) = <f>(O)+ l<c,T(a)lf>)da 

then 

(i). x(t,tj>) = ((, T(t)<f>), 

(ii). fort+ T > 0: (T(t)<f>)(r) = 4'(0) + JJ+.,. {(, T(a)<f>) du= x(t +Ti 4'), 

(iii). fort+ r::; 0: (T(t)lf>)(r) = (To(t)<f>)(r) = <f>(t + r), 
or, in other words, T(t)lf> is exactly the semigroup obtained by solving the RFDE given by 
x(t) = ((, Zt) and shifting. 

4 Retarded functional differential equations as abstract in­
tegral equations 

Consider the FDE 

{ x(t) = 
z(O) = 

g(zt) + h(t), 
4>(0), 

t 2: 0 
-h :5 0 :5 0 

(4.1) 
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and the abstract integral equation (AIE) 

u(t) = To(t)<f> +lot Tg'*(t - r)r®*(g(u(r)) + h(r)) dr (4.2) 

Here g: X-+ Rn is, say, continuous, h: R+ -+Rn is, say, L1 and r®* =(I, 0). 

Theorem 4.1 There is a one-to-one correspondence between solutions of (4.1) and (4.2) 
given by 

{ <f>(t) t < 0 
u(t) = Xt a.nd x(t) = (o, u(t)) t ~ 0 

Here ( 5 E X® is the functional which assigns to a.n element of X®* the Rn component; so, 
considered a.s a.n element of X*, 5 is indeed the Dirac 5 at zero) 

Proof. Let z be a solution of (4.1). Define u(t) = Zt. Then 

u(t)(a) = x(t +a)= { ~~~~+o-f+"(g(u(r)) + h(r)) dr : ! : ~ ~ 
{ma.:r:{O,t+u} 

= (To(t)<f>)(a)+ Jo (g(u(r))+h(r))dr 

Lem~a3·7 (To(t)<f>)(u) +(lot Tg>*(t - r)r®• (g(u(r)) + h(r)) dr) (o-). 

We thus have verified that ( 4.2) holds. Let now u be a. solution of ( 4.2). Define 

(t) = { (c5, u(t)) t 2::: 0 
x </>(t) t ~ 0 

Applying 5 to ( 4.2) and using Lemma. 3. 7 we find for t 2::: 0, 

x(t) = </>(O) +lot (g(u(r)) + h(r)) dr ~ x(t) = g(u(t)) + h(t). 

Using Lemma. 3.7 once more we find 

u(t)(o-) = { <f>(t + u) t + o- ~ 0 
x(t +a) t + o- 2::: O, 

or, in other words, u(t) = Xt. 

Simila.rly, there is a one-to-one correspondence between the FDE 

{ x(t) =Joh d((B)z(t - 8) dB+ g(zt), t 2::: 0 
z(a) = <f>(a), -h ~ u ~ 0 

and the AIE 

u(t) = T(t)<f>+ l T®*(t- r)r0*g(u(r)) dr. 

0 

(4.3) 

(4.4) 

Here T is the semigroup generated by Ag>*+ B, where, a.s in the previous section, B : X -+ x0• 
is defined by 

B<P = (((,</J),O) = r®*((,</>). (4.5) 
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Theorem 4.2 There is a one-to-one correspondence between solutions of (4.3) and (../ • ./) 
given by 

{ </>(t) t ~ 0 
u(i) = Zt a.nd :t(t) = (6, u(t)} t 2!: 0. 

The proof of this theorem is based on Theorem 4.1 a.nd Proposition 2.5 in [CDG+87b], which 
we here repeat as 

Lemma 4.3 Let B : X - x0• be a bounded linear operator and let {T(t)} be a Co-semigroup 
on X generated by A, the part of A~*+ B in X. Let :i: E X and let f : [O, T] -+ xe• be an 
arbitrary continuous function. Let u( t) be a norm continuous solution of the integral equation 

u(t) = To(t):t +lot T~*(t - r){Bu(r) + f(r)} dr, 0 ~ t ~ T, 

then 

u(t) = T(t):i: +lot r0•(t - r)f(r)dr. 

5 Bounded solutions of the inhomogeneous equation 

For). E C we define A(..\) by 

(5.1) 

A0• = A~*+ Bis a closed operator with compact resolvent. Hence the spectrum of A0• 
is pure point spectrum a.nd consists of isolated poles of finite ra.nk of the resolvent (see for 
instance [Tay64]). In fact the eigenvalues are precisely the zeros of the characteristic equation 
A{).)= 0. These facts allow us to conclude tha.t X®* admits an exponential dichotomy. 

Theorem 5.1 One can decompose xe• as 

with corresponding projection operators P~*, P~* and P~* such that 

(i). T0*(s) and A®* leave the subspaces X~*, X 0, and X+ invariant, 

{ii). the spectrum of the restriction of A®* to x~·, Xo, X+ is precisely the subset of P6 (A®*) 
that belongs to, respectively, the left half plane, the imaginary axis and the right half 
plane, i.e. 
X+ = EB n(P~*), where A+ = {). E P6(A0•) I Re().)> O} 

~EA+ 

Xo= EB 
~EAo 

x~·= n 
n(P~*), where Ao= {..\ E P.,(A®*) I Re(..\)= O} 

N(P~*), 
~EA+UAo 

(here J"f* denotes the spectral projection operator associated with ).), 
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(iii). Xo and X+ are finite dimensional subspaces on which T0*(s) can be naturally extended 
to a group on R and on which T0•(s) = T(s). Moreover the decomposition is an 
exponential dichotomy on R, i.e., for any £ positive there exists a positive constant 
K = K(l) such that 

where 

llT(s)xll :$ Keh+-()sllxll 
llT(s)xll :$ Ke•l"'lllxll 
llT(s)x0*11 :$ Keh-+•)sllx0•11 

1+ = inf {Re().) I A E A+} 

for s :s; 0 and x E X+, 
for s E R and x E Xo, 
for s 2: 0 and x0• E X~*, 

'Y- =sup {Re( A) I>. E P"(A0•) and Re (A)< O}. 

(5.2) 

Whenever we use tl1e symbol K, we mean the above constant K in the exponential dichotomy. 
For the construction of the center manifold we need a lemma to characterize the bounded 
solutions of the linear inhomogeneous equation. 

u(t) = T(t - s)u(s) + 1t T0*(t - r)h(r) dr, (5.3) 

where h: R :::>I~ X0• is norm continuous. 

Definition 5.2 Bc'1(R; E) is the space of all continuous functions from R into E such that 
sup11 e-•*'llf(t)ll < oo. In case 1J = 0 we write BC(R; E). 

Provided with the norm 11111=11/1171 = sup1 e-'111'11/(t)ll, this is a Banach space. 

Definition 5.3 We define fort E R and 1J E (0, min{ -1-, i+}) K on Bc'1(R; X0*) by 

(Kh)(t) =lot T0*(t - r)P~*h(r) dr 

+ j~ T0*(t - r)P~*h(r) dr + [
00 

T0*(t - r)P~"h(r) dr. 

Lemma 5.4 

(i). For each 1J E {O, min{-1-,1+}), K is a bounded linear mapping from Bc'1(R;X0*) 
into Bc'1(R; X). Kh is the unique solution of (5.3) in this space with vanishing Xo 
component at t = 0. 

(ii). For17E(O,min{-1-,1+}), (I-Pg>")K isa boundedlinearmappingfromBc'1(R;X0•) 
into BC(R; X). 

Proof. Choose 1J E (0, min{ -1-, 1+}) and E E (0, 1J ). Then it is a straightforward calculation 
to show that for each t E R, h E Bc'1{R, X0*) we have the estimate 

e-'11tlllK:h(t)11::; Kllhlll'J {-1- + 1 + 1 } . 
'T/ - £ -;- - £ - 17 1+ - £ - 1J 

As K.h is continuous this proves that indeed K:h E Bc'1(R; X) and that K: is bounded. The 
difference of two solutions satisfying (5.3) is a solution of the homogenous equation 

x(t) = T(t- s)x(s} - oo < s :$ t < oo. 
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Applying P~'" and putting t = 0 we deduce, using the exponential dichotomy 

llP~*x(O)ll s; Ke-h-+<)sllP _x(s)ll. 

As we assume that the difference of the two solutions lies in the space BC71(R; X) we conclude 
that P~*x(O) = 0. Similarly one proves that the X+ component of the difference of two 
solutions necessarily vanishes at t = 0. We conclude that (i) holds. If P~*h = 0 then we 
obtain the estimate 

e-1JltlllA::h(t)1i ::5 Kllhll'l { 1 + 1 } ' 
-1- - € - 1J 1+ - € - 1J 

and the derivation makes still sense if we let 1J = 0 and€ E (O,min{-1-,1+}). This proves 
(ii). 0 

6 The center manifold 

Suppose that A has spectrum on the imaginary axis. The exponential dichotomy (5.2) tells 
us to look for solutions of (6.1) which stay exponentially bounded on R with arbitrarily small 
exponent. Therefore we allow exponential growth and work in Bc"(R; X). However, this space 
is not left invariant by the nonlinearity. So we must modify the nonlinear part of the vector 
field outside a. small ball. Unfortunately this cannot be done straightforwardly in a smooth 
manner. We work in an infinite dimensional space and in these spaces cutoff functions are not 
smooth in general. (Note that in the case of a system of RFDE we can restrict ourselves to 
a modification in the Rn component of Rn X L00 • Here we shall not exploit this observation) 

First we will modify the nonlinearity suitably. Then we will construct a Lipschitz con· 
tinuous global center manifold. Finally we state a general result on contractions on scales 
of Banach spaces. The general results obtained in this context we then use to get optimal 
smoothness of the center manifold. 

We rewrite (3.1) as the integral equation 

u(t) = T(t - s)u(s) + J.t T 0 *(t - r)r(u(r)) dr, (6.1) 

where r: X - x0• is defined by r(</J) = r0*g(</>). As before we assume that 9 E Ck, k ~ 1, 
g(O) = 0 and Dg(O) = 0. 

6.1 Modification of the nonlinearity 

Let e: R+ - R be a C00-smooth function such that 

(i). e(y) = 1 for 0 5 y ~ 1 

(ii). 0 5 e(y) ::5 1 for 1 ::5 y ::5 2 

(iii). e(y) = 0 for y ~ 2. 

We modify r in the center and the hyperbolic directions separately; for 6 positive we let 

(6.2) 



131 

Definition 6.1 Let E and F be Banach spaces. Let f be a locally Lipschitz mapping from E 
into F. We say that f has vanishing Lipschitz constant at the origin if there exists So positive 
and a. continuous mapping L : [O, 60] __. R+ such that L(O) = 0 and if llxll, llYll :::; 6 then 

llJ(x)- f(y)ll:::; L(6)llx - Yll· 

Lemma 6.2 The mapping Tmod is globally Lipschitz continuous with vanishing Lipschitz con­
stant at the origin. 

Lemma 6.3 Let E and F be Banach spaces and let f be a globally Lipschitz continuous 
function, with Lipschitz constant L. Let j be the substitution operator from Bc'1(R; E) into 
Bc"(R; F) defined by 

(j(h))(s) = f(h(s)). 

Then j is globally Lipschitz continuous with the same Lipschitz constant. 

Proof. The result follows from the estimate 

llieh) - j(g)ll., = 
supe-"1"111/(h(s))- f(g(s))ll:::; 
a ER 

sup e-'ll•ILllh(s)- g(s)ll = Lllh - ull.,. 
aER 

0 

Corollary 6.4 If we define rmod as above, then this mapping is globally Lipschitz continuous 
with a constant L,.mod(I) = L,.(26) which is vanishing at the origin. 

6.2 A Lipschitz center manifold 

We define the mapping :F from Bc"(R; X) x Xo into Bc'1(R; X) by 

:F(v.,</>) = T(-)</>+Krmod(v.). 

Choose 8 in (6.2) small enough such that 

1 
L,.mod(1) llX:ll < 2' 

This can be done uniformly for 'f/ in a. compact interval of (0, min{7+, -7_}), If 

R 
11</>ll < 2K' 

(6.3) 

then :F( ·,</>)leaves the ball with radius R in Bc"(R; X) invariant. Moreover, :F(·, </>) is Lips­
chitz continuous with Lipschitz constant !· We thus obtain the following 

Theorem 6.5 If 6 and R are chosen as above, then there exists a Lipschitz continuous map­
ping v.* from B a (Xo) into Ba(Bc"(R; X)) such that v. = v.*( If>) is the unique solution of the m­
equation 

u = :F(u,</>). 
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Definition 6.6 (Lipschitz center manifold) We define the center manifold as the map­
ping from B a (Xo) into X given by 

~ 

C(4>) = u*(4>)(0). 

We end with a trivial but nevertheless important observation: 

Remark 6. 7 Although u*( </>)may grow exponentially, this does not happen in the hyperbolic 
directions; indeed it follows easily that 

!l(I-P~*)u*(ef>)ll < ~-
We will use the above results to deduce the smoothness of the mapping Tmod defined in (6.2). 
We let 

V'1 = { h E Bc"(R; X) I ll(I - PS'*)hllo < oo} , (6.4) 

with the norm llhllv11 = llP~*hll,, + ll(I - P~*)hllo· Provided with this norm V 11 becomes a 
Banach space. 

Lemma 6.8 Let 1]1 and 1'/2 be positive constants such that 0 < k1]1 < 1/2· Let llhllv'll :::;; f. 
Then rmod : V"1 -1- Bc'12(R; X0•) is Ck-smooth at h. 

Proof. Because llhllv'll :::;; ! it follows that (compare (6.2)) 

As both r and J1* a.re smooth mappings the result follows from the next lemma. For a proof 
of this lemma we refer to [VvG87] Cl 

Lemma 6.9 Let E and F be Banach spaces and let f be a C"-smooth mapping from E into 
F. If his a mapping from R into E then we define the mapping j(h) from R into F by 

j(h)(s) = f(h(s)). 

For 1 :::;; l :::; k, multilinear mappings iJ1(h) are defined as follows. If gi, ... ,91 are mappings 
from R into Ethen ~1(h)(gi, .•• ,g1) is the mapping from R into F defined by 

ir11(h)(g1, •.. ,g1)(s) = D1 f(h(s))(g1(s), ... ,g,(s)). 

Finally, we set ~0(h) = j(h). 
Let 1Jt and 1/2 be positive constants such that k1]t < 1/2· The mapping j from Bc'11(R; E) into 
Bc"2(R; F) is C"-smooth. Moreover, for 1 ~ l:::;; k the identity 

D1j = iJ1 

holds. 
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6.3 Contractions on embedded Banach spaces 

Let Yo, Y, Yi a.nd A be Bana.ch spa.ces with norms denoted by 11 • llo- II· II, II· Iii and I· I a.nd such 
that Yo is continuously embedded in Y, and Y is continuously embedded in Yi. We denote 
the embedding operators by Jo : Yo -+ Y and J : Y -+ Yi. We will consider a fixed point 
equation: 

y = J(y,>.) 

where f : Y X A -+ Y satisfies the following hypotheses: 

Hl J f : Y X A -+ Yi has a. continuous partial derivative 

Dy(JJ): Y x A-+ .C(Y, Yi) 

and for all (y, >.) E Y x A we have 

D11(J J)(y, >.) = J f(tl(y, >..) = f11)(y, >.)J 

for some j(l) : Y x A -+ .C(Y) and f p> : Y x A -+ .C(Yi ), 

(6.5) 

H2 Jo : Yo X A-+ Y, (yo,>.)-+ fo(Yo, >..) := J( Joyo,>..) has a continuous partial derivative 

D).Jo: Yo x A-+ .C(A; Y), 

H3 There exists some K. E [O, 1) such that Vy, ii E Y and V>. E A 

llJ(y, >..) - !(ii, >.)II 5 K-llY - fill 

and 

It follows from H3 that for ea.eh ).. EA (6.5) has a unique solution y = y*(>.) E Y. We ma.ke 
a. last assumption: 

H4 y*(>.) = Joy0(>.) for some continuous Yo : A-+ Yo. 

The hypotheses allow us to consider in .C(A, Y) the equation 

(6.6) 

Because of H3 this equation has for ea.eh).. a unique solution A*(>.) E .C(A; Y). We will show 
that A*(>..) is, if suitably looked at, the derivative of y*(.\). 

Theorem 6.10 Assume that Hl-H4 hold. Then the solution map y• : A -+ Y of (6.5} is 
Lipschitz continuous and Yi= Jy* : A-+ Y1 is of class C1 with 

Dyi(>..) =JA*(>.), V>.. EA. 

For the proof of this theorem we refer to [VvG87, Theorem 3]. 
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6.4 A Ck center manifold 

So far we ha.ve obtained a. Lipschitz smooth center manifold. In this section we will prove 
tha.t this manifold is actually smooth. Recall that the center manifold is obtained by first 
solving the fixed point equation (6.3) 

u = :F(u,</>) with :F(u,</>) = T(·)</>+ K:rmod(u). 

Theorem 6.11 The mapping</>-+ u*(</>) obtained in Theorem 6.6 is Ck. 

Corollary 6.12 The center manifold is Clc. 

(6.7) 

Idea of the proof. Our basic ingredients a.re the smoothness of the substitution operator 
and contractions on scales of Banach spaces. We ha.ve freedom in choosing the exponent by 
which we allow solutions on the center manifold to grow exponentially. This fa.et we exploit 
carefully. 

Proof. Choose ij, ij, E a.nd 6 positive such that 0 < kij < ii and llX:llLrmod(~ ~ ! for a.11 
1J E [?;, 71]. (Note tha.t llX:ll depends on 1J and E.) 
To a.void too much notation we write out the details for k = 1, 2. The proof for general k 
is a straightforward generalization of the case k = 2, but involves a. lot of (trivia.I) notation, 
which we will sa.ve the reader. 
k = 1. Choose K. such that 0 < K. < ij. View rmod as a mapping from Bd(R; X) into 

Bd+"(R; X®*). We noticed in Remark 6.7 that if in Xo, 114>11 :s; ~then ll(I-Po)u*(t/>)11 :s; c. 
Then Lemma 6.8 implies that rmod(6) is C 1 in u*(ef>). X: is a bounded linear opera.tor from 

Bd+"(R; X®*) into ndi+"(R; X). We are now in the position to apply Lemma 6.10 with 
- -+ -

Yo= Y = Bc"(R; X), A= X 0 and Y1 =Be" "(R; X). In .C(X0 ; Bc"(R; X)) we solve 

u(l) = T(-) + X:Dfmod(6)(u*(</>))u(l) 
= :Fi( u(l), </>). 

(6.8) 

Lemma 6.10 tells us that if we view its solution u(1)*(</>), and u*(</>), as mappings from x 0 

into .C(X0 ; Bd+"(R; X)), and nd+"(R; X), respectively, then the mapping </>-+ u*( </>)is C1 

with derivative</>-+ u(l)•( t/>). 
k = 2. We consider in .C(XJ; Bc2ii(R; X) the equation 

u<2> = X:Dr mod(6)( u*(<f>))uC2) + X:D2rmod(6)( u*( </>))( u<1l*( 4>))2 ( 6.9) 
= :F2( u<2> I</>). 

We would like to apply directly Lemma 6.10. There a.re two problems. :F2( u(l), t/>) is not 
continuously differentiable with respect to both uC1) and </>. This forces us to apply Lemma 
6.10 to its full strength, that is using three different spaces Yo, Y, Y1 • Differentiation with 
respect to uC1) becomes continuous if we embed Bc2ii(R; X) in Bc2ii+"(R; X). Now to see that 
differentiation with respect to</> is actually continuous we observe that u*(</>) and u<1>*(</>) 
have arbitrarily small exponential growth rate; if we would divide everywhere ij by 2 we 
would not find different solutions to the va.rious fixed point equations. We apply Lemma 6.10 

~ ,..:J" ...:J-+ 
with Yo = BC 2 , Y = Be...· 11 and Y1 = Be...· 'I ". We then meet the conditions of Lemma 6.10. D 
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Theorem 6.13 (Center Manifold) Assume that g E Ck, k;;?: 1, g(O) = 0, Dg(O) = 0 and 
let Ao -:fi 0. There exist a Ck-mapping</>-+ C(</>) of a neighbourhood of the origin in X 0 into 
X and a positive constant 5 such that 

(i). Im(C) is locally inv.ariant in the sense that u*(</>)(t) satisfies the equation 
C(Po(u*(</>)(t))) = u*(</>)(t) and u*(</>) is a solution of (6.1} on the interval I= [S,T], 
S < 0 < T, provided fort in this interval llu*(</>)(t)ll $ 6, 

(ii). Im(C) is tangent to Xo at zero: C{O) = 0 and ~{0)1/1 = .,P, 

(iii). Im(C) contains all solutions of (6.1} which are defined on R and bounded above by 5 in 
the supremum norm. 

We conclude this section by stating the attraction property of the center manifold. For the 
proof we refer to [Bal73]. 

Theorem 6.14 {Attraction of the center manifold) For every positive constant v there 
exist positive constants C and 5 such that, 

(i). if u and v are solutions of (6.1) on the interval I= [T, O], T < 0, satisfying 

(a) (P~* + PS'*)u(O) = (P~* + PS'*)v(O), 
(b) for all t E J, llu(t)ll $ 5 and llv(t)ll $ 5, 

then 
llP~*(u(O)- v(O))ll $ CllP~*(u(T)- v(T))lle-h-+v)T. 

(ii). if u and v are solutions of (6.1) on the interval I= [O, T], T > 0, satisfying 

(a) (P~* + PS'*)u(O) = (P~* + PS'*)v(O), 

(b) for all t EI, llu(t)ll $ 5 and llv(t)ll $ 5, 

then 
llP~*(u(O)- v(O))ll $ CllP~*(u(T)- v(T))lle-h+-v)T. 

Finally we remark that if we let y(t) = Pij>"(u*(<f>)(t)) then y(t) satisfies the ordinary differ- • 
ential equation in Xo · 

fJ = Ay + Pg'*r©*g(C(y)). (6.10) 

6.5 Parameter dependence 

We need to modify the theory such that we can deal witl1 parameter dependent systems. We 
have in mind the FDE 

{ x(t) = J/; d((O,µ)x(t - 0) + g(xi.µ), t;;?: 0, 
x(O') = </>(O'), -h $ CT $ 0. 

{6.11) 

So both the linear part as well as the nonlineari ty may depend on parameters µ E RP. 
An interesting situation occurs when for a specific parameter value the linear equation 

has eigenvalues on the imaginary axis. As the parameters are varied in a neighbourhood of 
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this critical value, we ma.y expect tha.t these eigenvalues move a.round. So, the dimension 
of the local unstable manifold va.ries with the parameters. We will ha.ndle this situation by 
extending the phase spa.ce. We add to (6.11) the initial value problem 

{ jJ. = 0 
µ(O) = l'o· 

(6.12) 

Then we can a.pply the center manifold theorem as derived in the previous section. Note that 
(6.12) has implications for the spectrum; we add p (the dimension of the parameter space) 
eigenvalues at zero. We will, as usual by now, rewrite (6.11) as an AIE. We let A,.= Aij>*+B,., 
where B,. : X -+ X®* is defined by 

B,.</> = ((((·,µ),</>},O) = r®*(((·,µ),c/>) (6.13) 

We assume that the dependence on the para.meters is smooth. 

(H(µl) The mappingµ-+ L(µ) from RP into .C(X;Rn) defined by L(µ)</> = J; d((0,µ)</>(-8) 
is c.1:-smooth. 

It is necessary to linea.rize both a.round u = 0 and µ = µo. So we now consider the AIE 

u(t) = T"°(t)<f> + l TJfo*(t - r)r0 * Nmoc1(u(r), 11) dr, (6.14) 

where N : X X RP -+ Rn is defined by 

N(</>,11) = g(</>,JJ.o+ 11) + fo\dt;(8,µo + 11)- d((8,µo))</>(-8), (6.15) 

and, as in the previous section, Nmod is a suitable modification of N, affecting only it's first 
component and is defined similarly as rmoc1 in (6.2). Note that the projection operator must 
be ta.ken a.t the parameter value µ = µo. For t 2:: 0 we define the family of bounded linear 
operators {T(t)} from X x RP into X x RP by 

. T(t)(</>,11) = (T"°(t)</>,11). 

Thus we include the para.meters into our dynamical system. As the parameters have trivial 
dynamics (they a.re constant a.long an orbit) each of them adds an eigenvalue zero to the 
spectrum. 

As T(t) is diagonal and ea.eh component is sun reflexive, the latter is true for T(t) as well. 
We denote the generator of this semigroup by A. The following lemma is now obvious. 

Lemma 6.15 (i). {T(t)}t~o is a sun reflezive semigroup, 

(ii). a(A) = a(A(µo)) U{O}, 

(iii). (X x RP)0• = xe• x RP and T0•(t)(:i:0•,11) = (T~*(t)z0*,11). 
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The AIE (6.14) is equivalent to the AIE 

(u(t),v) = T(t)(</>,v) +Lt T(t - r)(r®*Nmoc1(u(r),v),O) dr. (6.16) 

We are now in a position to apply the center manifold theorem. This gives us a Ck mapping 
C from Pij'*(µo)X x RP into X x RP. Note that also the modified equation has a vanishing 
nonlinearity in the second component. Hence, the mapping C will be of the form C(<P,v) = 
(C1( <P, v), v). We will identify C with it's first component. 

To arrive at an ODE in finite dimensions we let for (<P, v) E X 0 (µ0 ) x RP, u*(<P, v) be 
the solution of (6.14) on the center manifold,i.e. u*(<P,11)(0) = C(</>,11) and we let y(t) = 
Pg>*(µo)( u*( </>, v)(t)). Then y(t) satisfies the equation 

y(t) = T"°(t)y(O) +lot T2,*(t - r)P~*(µo) r®*Nmod(C(y(r), v), v) dr, 

and consequently 
iJ = A(µo)Y + Pij'*(µo) r®* Nmoc1(C(y, v), v). (6.17) 

7 Hopf bifurcation 

The importance of the center manifold theorem lies in particular in the fact that it allows 
us to reduce the infinite dimensional dynamical system to an ODE in finite dimensions. The 
results about bifurcations, most easily proved in finite dimensions, just carry over. In this 
chapter we work this out for the Hopf bifurcation theorem for the FDE 

{ z(t) = J~d((8,µ):t(t-8)+g(:ti,µ), t~O, 
:i:(o') = </>(<T), -h ~ tT ~ 0. 

(7.1) 

Here g is a. Ck, k ~ 2, mapping from X x R into R", such that g(O,µ) = 0 and D:t:n(O,µ) = 0. 
As in the previous section we assume 

(H(l) The mappingµ-+ L(µ) from RP into .C{X; R") defined by L(µ)tJ> = J; d((8, µ)4>(-8) 
is Ck-smooth. 

We must relate assumptions a.nd quantities connected with the ODE to corresponding as­
sumptions a.nd quantities in terms of ( and g. 

For.\ EC a.nd µERP we define A(.\,µ) by 

A(.A,µ) =.\I - l" d((fJ,µ)e-'- 8• (7.2) 

Lemma 7.1 Assume (H(l) and let .\0 be a simple eigenvalue of A(µo). If p(O) :/; 0 satisfies 
the equation A(.A0,µ0)p(O) = O, then there exist 6 positive and Ck-functions µ _. ft(µ), 
µ-+ .5.(µ), defined for Iµ- µol ~ 6, such that 

{i). ft(µo) = p(O); .5.(µo) = Ao, 

{ii). A(5.(µ),µ)P(µ) = O, 
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(iii). If q(O+) is the adjoint eigenvector, i.e. q(O+ ).6.(..\o, JLo) = O, normalized such that 
(q(O+),Dl.6.(.\o,JLo)P(O)} = 1, then 

Dµ~(µo) = -(q(O+ ), Dµ.6.(.\o,µo)p(O)). 

First we recall the Hopf bifurcation theorem in finite dimensions, see for instance [Gol:85]. 
Consider the system of ODE 

:i: = f(x,µ), 

where x E Rn and µ E R, i.e. p = 1. We assume that 

(Hfl) f(O,µ) = 0, f E Ck, k;::: 2. 

If we let L(µ) = D:i:f(O, µ ), then we assume that 

{7.3) 

(Hf'2) L(µ0 ) has simple eigenvalues at ±iwo and no other eigenvalue equals kiwo, k E Z, 

{Hf3) 'R..e(Dµu(µ 0 )) -:j 0, where u(µ) is the branch of eigenvalues of L(µ) through iwo at 

µ = µo. 

Theorem 7.2 (Hopf bifurcation for a system of ODE) Let the above hypotheses be sat­
isfied and let p be the eigenvector of L(µo) at iwo. Then there exist Ck-l functions µ*( £), 
w*(£) and x*(£), defined for f. sufficiently small, such that at µ = µ*(£), x*(E) is a "'~Cc) 
periodic solution of (7.3). Moreoverµ* and w* are even in f. 1 µ(O) = µo, w(O) = w0 and 
x*(E)(t) = f.'R..e(eiwotp) + o(E). In addition, if x is a small periodic solution of this equation 
withµ close to µ0 and period close to~, then modulo a phase shift, µ = µ*( E) and x = x*( E). 

We recall the equation on the center manifold ( note that we do not assume that this equation 
is two dimensional) 

y = A(µo)y + P~*(µo) r®* Nmod(C(y, v), v). (7.4) 

With respect to a basis in X(µo), this is an equation in Rn. It is a consequence of (H(l) and 
the assumption on g that {Hfl) is satisfied. At µ = µo, i.e. v = 0, the eigenvalues of the 
linearization are given by the purely imaginary roots of the equation det(.6.(.\,µ0)) = 0. To 
satisfy (Hf2) we assume 

(H(2) Atµ= µo, the equation det{.6.(>.,µo)) = 0 has simple roots at,\= ±iw0 and no other 
root equals ,\ = kiwo, k E Z. 

The eigenfunction of A(µ0 ) at eigenvalue iw0 is given by 

(7.5) 

where p(O) is a nontrivial solution of the equation .6.(iwo,µo)p(O) = 0. Let q(O+) -:j 0 satisfy 
q(O+ ).6.(-iwo, µo) = 0. If 

q(t) = q(O+) + J~ g(r) dr 

g(t) = fth q(O+ )e-iwo(t-.-)((r,µ0) dr, 
(7.6) 

then q(t) is an eigenfunction of A'"(µ0 ) at the eigenvalue -iw0 : 

A'"(µo)q = -iwoq, (7.7) 
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and 
(q,p) = fohdq(r)p(-r) 

= q(O+ )DA.6.( iwo,µo)p(O). 
(7.8) 

We let P be the projection operator on the two dimensional subspace of X0(µ0 ) given by 

P</> = {q, </>)p + {ij, </>)ii, (7.9) 

and we write 
</> = tt + v, u E 'R(P), v E /l/(P). 

We let z = (q, </>}, z = (ij, </>). If w are coordinates in (J - P)Xo(Jlo) then with respect to 
the coordinates z, z, w the linear part of (7.4) is given by the matrix M(µ) = M(µ 0 ) + 
DµM(µo)(µ - µo) + o(µ - µo), where 

( 
iwo o 

M(µo) = o 
0

-iwo 

M(µ) has a branch of eigenvalues, say u(µ), through iw0 , and 

Dµu(µo) = DµMu(µo) 

= {q, P~"r8* !ah dDµ((8,µo)p(-8)} 

= (q,r8 * !ah dDµ((8,µo)P(-8)) 

= (q(O+ ), !ah dDµ((8,µo)p(O)e-' 6) 
= q(O+ )Dµ.6.( iwo, µo)p(O). 

So the condition that guarantees the transvcrsality is 

We now state the Hopf bifurcation theorem for a system of FDE. 

(7.10) 

Theorem 7 .3 (Hopf bifurcation for a system of FDE) Assume (H(l-H(3) and let g be 
as in (7.1). Then there exist Ck-l functionsµ*(€), </>*(f.) and w*(f.), with values in R, X0(µ0 ) 

and R respectively, defined for f. sufficiently small, such that the solution of (7.1) with initial 
condition <P = C(</>*(£),µ*(€)- µo) is w;~ periodic. Moreover, µ*(t:) and w*(t:) are even in f. 

and if x is any small periodic solution o this equation with µ close to µ0 and period close to 
~, then modulo a translation xo = C( </>*( t:), µ*( £) - µo) andµ =µ*(f.). 

Proof. The assumptions guarantee that Theorem 7.2 applies to (7.4). So on the center 
manifold (7.1) has a periodic orbit. Conversely, any small periodic solution of (7.1) lies on 
the center manifold and hence is a small periodic solution of (7.4). D 

Remark. The hypothesis (H(l) is somewhat restrictive. For instance, the problem 

:i:(t) = x(t - µ) + g(xt,µ) 
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is described by ((O,µ) = H(IJ - µ), where H is the Heavyside function, and (H(l) is not 
satisfied. The following trick can be used to widen the applicability of the center manifold 
technique to delay equations. 

If we consider the fixed point equation 

u = T( • )</> + K.N,,.0t1( u, v) (7.11) 

for u e Bc"(R; X) we should realize that we can restrict our attention to elements u of the 
form 

u(t) = Zt (7.12) 

for some x E Bc"(R; R"). Substituting (7.12) into (7.11) and applying 5 we obtain 

x = (c5, T(·)<f>} + {c5, K.N,,.od(z., v)} (7.13) 

which is a fixed point problem in Bc"(R; R") parametrized by</> E Xo. It so happens that 

v - {6,K,N,,.od(x.,v)} 

has better smoothness properties thanµ - L(µ). The details of this approach for FDE's will 
be elaborated elsewhere. For Volterra integral equations they are presented in [DvG84]. 
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