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Z. Fiiredi and D. 1. Kleitman proved that if an integer weight is assigned to each 
edge of a complete graph on p + I vertices, then some spanning tree has total 
weight divisible by p. We obtain a simpler proof by generalizing the result to 
hypergraphs. i[1 1991 Academic Press, Inc. 

1. INTRODUCTION 

The following theorem is due to Z. Fiiredi and D. J. Kleitman [2]. (It 
was conjectured by A. Bialostocki and P. Dierker [I], who proved the 
case when p is prime.) 

THEOREM ( 1.1 ). Let I' be a finite abelian group of order p, and let 
w: E(Kp+ I)~ r be some function. Then there is a spanning tree T of Kp+ I 
with w( T) = 0. 

(K,, denotes the complete graph with n vertices; E(G) denotes the set of 
edges of a graph G; w(T) means L'(w(e): e E E(T)), where the summation is 
in I'.) 

* This research was performed under a consulting agreement with Bellcore. 
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We shall give a simpler proof of ( 1.1 ). For inductive purposes, it is 
advantageous to prove a version of (l .1) for complete uniform hyper­

graphs, because it is then easy to reduce the general problem to the case 

when p is prime. 
Thus, let V be a finite set. A hypergraph in V is a collection of subsets 

of V; and it is r-uniform if each of these subsets has cardinality r. (In this 
paper, all our hypergraphs will be r-uniform for some r.) If His a hyper­
graph, we denote U (e: e EH) by V(H). A hypergraph T is connected if 
T ":I 0 and for every partition (A, B) of V( T) such that A and B are both 
nonempty there is a member e E T with en A, en B both nonempty. It 
is easy to see that if T is connected and r-uniform then I V( T) I ::::; 
(r - 1) I TI + 1; and if equality holds we say that T is a tree. (If r = 2, this 
coincides with the usual definition of a tree for graphs, except for trees with 
::::; 1 vertex.) If H is r-uniform, and T s; H is a tree, we call it a tree of H; 
and if V( T) = V( H) we call it a spanning tree of H. If V is a finite set with 
I VI ;;::; r, we denote by ( ~·) the collection of all r-element subsets of V. We 
shall prove the following generalization of ( 1.1 ). 

THEOREM ( 1.2 ). Let r be a finite abelian group of order p, let r ~ 2 be 

an integer, let V be a set of cardinality p(r - 1) + 1, and let w: ( ~) ~ r be 

some function. Then there is a spanning tree T of ( ~) with w( T) = 0. 

(w(T) means L'(w(e): eE T).) 

2. THE PROOF OF ( 1.2) 

We require several lemmas. First, we shall need the following, which is 
a special case of the Cauchy-Davenport theorem (see [3] ). (It can also be 
proved directly in a couple of lines, as the reader may verify.) 

LEMMA (2.1 ). Let p be prime, let As; ZP, and let b, c E ZP be distinct. If 
l::::;IAl::::;p-1 then 

l{a+b :aEA}v {a+c :aEA}I > IAI. 

If T is an r-uniform tree, we say that f E T is a leaf of T if there exists 
uEf such that enjs; {v} for every eE T-{f}. We call such an element 
u a root of the leaf e. If T, T' are trees in ( ~) with leaves e, e', respectively, 
and T - { e} = T' - { e'}, we say that T' is obtained from T by shifting a 

leaf If T, T's; ( ~·) are trees, we say that T is shift able to T' if there is a 
sequence 
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of trees in ( ~) such that T; + 1 is obtained from T; by shifting a leaf for 
1 ~ i ~ k - 1. This is evidently an equivalence relation, and in fact all trees 
in ( ~) of the same cardinality are shiftable to one another, but we only 
need a weaker result, the following. 

LEMMA (2.2). Let r~2, k~ 1 be integers, let IVI ~k(r-1)+2, and let 
v0 E V. Let T0 be a tree in ( ~) with I T01 = k. Then T0 is shiftable to a tree 
T with v0 rf; V( T). 

Proof We may assume that k ~ 2, for the result is clear if k = 1. If T is 
a tree in ( ~) with v0 E V( T) and f is a leaf of T, we define d( T, f) to be the 
unique d~ 1 such that there is a sequence 

satisfying 

(i) v1> v2 , ••• , vde V(T) are all distinct, and so are e 1, e2 , ••• , ede T 

(ii) V;Ee;_ 1 for 2 ~ i~ d, and V;Ee; for 1 ~ i~d. 

Let us choose a tree Tin ( ~) such that T0 is shiftable to T and v0 E V( T), 
and a leaf f of T, in such a way that d(T, f) is maximum. Let u be a root 
off. Since ITI ~2 it follows that Thas at least two leaves; letf' be another 
leaf, with root u'. Since d(T,f')~d(T,f) it follows that v0 rf:f-{u}. 
Choose vef-{u}, and let e=(/'-{u'})u{v}. Now T'=(T- 0{f'})u 
{ e} is shiftable from T and hence from T0 , and e is a leaf of it, and if 
v0 rf; f' - { u'} then d( T', e) > d( T, f ), a contradiction. Thus v0 e f' - { u'} 
and, since V( T) # V, the result follows. I 

Again, let r~2, k~l and let IVl~k(r-1)+1. We say that Ss;;;(~) is 
a ( V, k )-blocker if IS n TI # 0 for every tree T in ( ~) with I TI = k. Our 
third lemma is the following. 

LEMMA (2.3 ). Let r ~ 2, k ~ 1 be integers, and let I VI = k(r - 1) + 1. If 
S s;;; ( ~) is a ( V, k )-blocker then S includes a spanning tree of ( ~). 

Proof The result holds if k = 1, and so we may assume that k ~ 2 and 
proceed by induction on k. Since there is a spanning tree and we may 
assume that it is not included in S, it follows that 0 # S # ( ~). Thus, we 
may choose e,/E(~) with len/l=r-1 and eeS,frf;S. Let V­
( e n f) = V'. If T' is a spanning tree of ( ~·) then T' u {!} is a spanning 
tree of ( ~), and so Sn (T' u {!}) # 0, that is, S' n T' # 0, where S' = 
Sn ( ~·). Hence S' is a ( V', k - 1 )-blocker, and so S' includes a spanning 
tree T' of ( ~· ), from the inductive hypothesis. Then T' u { e} s;;; S is a 
spanning tree of ( ~), as required. I 
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We shall use (2.1 )-(2.3) to prove the following, which is the main step 
in the proof of ( 1.2 ). 

LEMMA (2.4 ). Let p be prime, let k ~ 1, r ~ 2 he integers with k ~ p, let 

V be a set of cardinality k(r - 1) + 1, and let w: ( ~) ~ ZP he some function. 

Then either 

(i) there are k spanning trees Ti. ... , Tk with w(Ti), ... , w(Tk) all 

distinct, or 

(ii) k ~ 2 and there is a monochromatic ( V, k - 1 )-blocker. 

(A subset Sr;:;; ( ~) is monochromatic if the restriction of w to S is 
constant.) 

Proof The result holds if k = 1, and so we may assume that k ~ 2 and 
proceed by induction on k. We say that X s V is joint if IX\ = r - 1 and 
X=f1 nf2 for somef1 ,f2 E(~) with w(f1)#w(f2 ). We assume that (i) is 
false. We may assume that 

( 1) Some set X s V is joint. For ( ~-) is a ( V, k - 1 )-blocker since 
k ~ 2, and so we may assume that w is non-constant on ( ~'), for otherwise 
(ii) holds. The claim follows. 

(2) If X is joint then k ~ 3 and there exists a monochromatic 
( V -X, k- 2)-blocker. For let X r;:;; V be joint. Suppose that there are k-1 
spanning trees T 1 , .. ., Tk _ 1 of ( v; x) with w( T 1 ), .. ., w( Tk 1 ) all distinct. 
Choose f 1 , f~ E ( ~) with f 1 n f 2 = X and w(.f1) # w(j~ ). Now Tiu {f1 } and 
T; u {!2 } are spanning trees of ( ~) for 1 ~ i ~ k - 1, and 

I { w( T,) + w(.f1 ) : 1 :::; i:::; k - 1 } u { w( T;) + w(f2 ) : 1 :::; i:::; k - 1 } I ~ k 

by (2.1 ). Hence (i) holds, a contradiction. Thus, there do not exist k - 1 
such spanning trees. From our inductive hypothesis applied to V - X the 
claim follows. 

In particular, from ( 1) and (2) we deduce that k ~ 3. For each joint set 
X, let S(X) be a monochromatic ( V - X, k - 2) blocker, and let w( e) = q(X) 
for all e E S(X). 

(3) There exists q E ZP such that q(X) = q for every joint set X. For let 
X1 , X2 be joint; we shall show that q(X1) = q(X2 ). Let X, u X 2 s Zs V, 
where IZ1=2r-2. Now S(X 1 ) is a (V-X1,k-2)-blocker, and so 
S(X 1) n ( v ~ 2 ) is a ( V - Z, k - 2 )-blocker. By ( 2.3 ), there is a spanning tree 
T of (v~z) with TsS(X1). Similarly, S(X2 )n(v~z) is a (V-Z,k-2)­

blocker, and so S(X2 ) n T# 0. Hence, S(X1 ) n S(X2 ) # 0, and the claim 
follows. 

Let us say a tree T s ( ~) is bad if I TI = k - 1 and w( e) # q for all e E T. 
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( 4) If f 1 is a leaf of a bad tree T, and f 2 E ( ~) with lf2 n 

V( T- {Ji} )I ~ 1, then w(/2 ) = w(ji). For let V' = V( T - {Ji}). If 
Xs;; V- V' is joint then S(X) n (T- {!1 }) =f 0, which is impossible by (3), 
since T is bad. Thus no subset of V - V' is joint, and the claim follows. 

In particular, 

(5) If Tisa bad tree and T is shiftable to T' then T' is bad. 
Now by ( 1 ), there is a joint set X. If there is a bad tree, then by (r - 1) 

applications of (2.2 ), it is shiftable to a tree T with X n V( T) = 0; and by 
(5), T is bad. But then T n S(X) =f 0, a contradiction as before. We deduce 
that there is no bad tree, and so { e E ( ~) : w( e) = q} is a ( V, k - 1 )-blocker. 
Thus (ii) holds, as required. I 

Finally, we use (2.4) to prove (1.2). 

Proof of ( 1.2 ). We proceed by induction on p. If p is prime, then I'~ Z P 

and by (2.4) with k = p, either 

(i) there are p spanning trees T1 , ••• , TP with w( Ti), ... , w( TP) all 
distinct; but then one of them is zero, as required, or 

(ii) for some qEI' there is a (V, p-1)-blocker S such that w(e)=q 

for all e ES; but then S is a ( V, p )-blocker and hence includes a spanning 
tree T, and w(T)=L'(q: eE T)=O as required. 

We may assume then that p is not prime, and so I' has a proper sub­
group I", of order p' say. Let I'" be the quotient group I'/ I", of order p" 

say, where p = p'p", and let efJ: I'-> I'" be the homomorphism with kernel 
I". For each e E ( ~), we define w"(e) = rp( w(e)) EI'". Let r' = p"(r - 1) + 1. 
For each f £ V with lfl = r', we define w'(f) as follows. From our induc­
tive hypothesis applied to (;), I'" and w", there is a spanning tree T(f) of 
({) such that w"(T(f))=O; that is, w(T(f))EI''. We define w'(f)= 

w( T(f)). From our inductive hypothesis applied to ( n, I" and w', there is 
a spanning tree T' of ( n with w'( T') = 0. Let T = U ( T(f) : f ET'); then T 

is a spanning tree of ( ~) and 

w(T)= L I w(e)= L w'(f)=O 
(ET' eeT(f) fET' 

as required. I 
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