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Prolusion 

Paul Vitanyi's 2003 Kolmogorov complexity lecture included a computer exer­

cise in which a polynomial relation had to be learnt from samples. 1 The following 

data were provided: a sequence of pairs of numbers (h1, d1), (h2, d2), ... , (hn, dn), 
supposedly noisy measurements of a classical urn, hi being the height from the 

floor and di being the diameter of the urn at the height hi. The goal was to 

infer a polynomial that represented the relation between height and diameter. 

For a given degree, this can easily be done using linear algebra. The crux of the 

exercise was finding the best degree. An example is shown in Figure 1. 

To me, learning from given data is only part of a more general concept of 

learning, and I started to wonder whether the techniques that I learnt dur­

ing my studies could be adapted to an interactive setting, allowing the learner 

to perform experiments. For example, when learning polynomials, the learner 

could be allowed to choose a point, and she would then receive the value of the 

polynomial at that point. 
For this thesis, I started working on the interactive polynomial learning 

problem, but it turned out to be much too hard. I then devised the balance scale 

problem (see Chapter 4), a toy problem that conserves the important features of 

the polynomial learning problem: it is interactive, probabilistic, model-based, 

but finite. I had by then developed a slight aversion to subjective Bayesian 

methods, for my initial work on the polynomial learning problem suggested 

that they are not robust. It seemed that a subjective Bayesian learner can be 

tricked into assigning high posterior probability to a certain proposition while 

Figure 1 Urn example 

1 The exercise by Troy Lee is still available online at http://www.lri.fr;-lee/final.html. 



this proposition is false, and additionally, great confidence in this proposition 

leads to great confidence in the usefulness of experiments that in fact do not 

help to determine that this proposition is false. 

With this in mind, I decided to perform a worst-case analysis of the balance 

scale problem, and of similar problems in general. This problem naturally de­

composed into the truth-finding problem, where we want to find the true model 

from given data, and the experiment-design problem, where experiments have 

to be selected, whose outcomes subsequently serve as the data for truth finding. 

I have yet to solve the balance scale problem completely. But I have already 

learned and discovered much more than I could initially imagine. 

I hope that this thesis will provide inspiration to others. 

Wouter Koolen-Wijkstra 
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Amsterdam 
23rd November, 2006 
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Chapter 1 

Introduction 

1.1 Problem statement 

Science progresses by the performing of 
experiments to evaluate hypotheses. 

This thesis is motivated by two important and interesting questions: 

Question 1. How can data be used to learn about reality? 

Question 2. How can experiments be used to accelerate learning? 

These questions are important, because their answers should provide a solid 

foundation for rational, e.g. scientific, learning. The answers will most likely 

also provide new insights into natural, e.g. human, learning. These questions 

are interesting, because they have not yet been answered satisfactorily, in spite of 

their importance. Existing approaches require prior knowledge of a specific kind, 

focus on the learning of predictors, and are mostly analysed in non-sequential 

settings. 
In this thesis, we formalise the first question in the framework of decision 

theory as the Nature versus Learner truth-finding game. This game focuses 

on finding the true model instead of on prediction. We perform a worst-case 

analysis of this game, requiring no prior knowledge. We provide the solution to 

the truth-finding game in the form of optimal strategies for both players, and 

interpret the value of the game as a measure of certainty. 

We formalise the second question as the Nature versus Experimenter experi­

mentation game: a straightforward generalisation of the truth-finding game that 

includes sequential experimentation. We also solve this game, and compare our 

solution to that of Bayesian experiment design. 

Overview This introduction is structured as follows. We describe the compo­

nents of the learning setting in §1.2, and introduce our two running examples. 

In §2.6.l we explain how information can be quantified. This allows us to mea­

sure how much has been learned. Then in §1.3, we put forward the truth-finding 

problem: its interpretation as a game, and the first detailed example. In §1.4 we 

extend the truth-finding game with experiments, and give the second detailed 

1 



1.2. Basic terminology Chapter 1. Introduction 

example. We summarise the contribution of this thesis in §1.5. We conclude 

with a list of related work, and words of gratitude. 

1.2 Basic terminology 

Experiment An experiment is a two-stage act. First, one influences the state 

of the world in a controlled way, for example by injecting a mouse with a certain 

dose of elixir. The action that is undertaken in this first stage is called the input 

of the experiment. Second, one observes the value of a predetermined quantity, 

for example the lifespan of said mouse measured in days. The value obtained 

in this second stage is called the outcome of the experiment. Note that in 

controlled experiments, for example clinical trials, one separately observes the 

outcome that occurs when no influence is exerted. In this thesis, we do not 

assume that there is such a special null input, but always compare the outcomes 

of several experiments. A series of experiments yields data, the concatenation 

of successive input/outcome pairs. 

Hypothesis A hypothesis provides an explanation for a phenomenon; it re­

lates that what one can influence to that what one can observe. A deterministic 

hypothesis predicts a single outcome for each possible input. A probabilistic 

hypothesis assigns a likelihood to each outcome for each possible input. Deter­

ministic hypotheses are mathematically represented as functions; probabilistic 

hypotheses are represented as (conditional) probability distributions. The latter, 

more general type, will be used in this thesis, as we are interested in modelling 

phenomena that involve chance. Hypotheses of both types abound in science. 

We can regard science as the prime application of both learning from data and 

experimental learning. 
In practice, hypotheses are used for different purposes: 

• to describe regularities in past experiments, 

• to predict the outcome of future experiments, and 

• to explain, i.e. formally specify, a data-generating process. 

In this thesis, we focus on the third interpretation. 

Evaluation Experiments provide the empirical basis for the evaluation of hy­

potheses. A deterministic hypothesis can (theoretically) be disqualified on the 

basis of a single contradictory outcome. It is generally impossible to reject 

probabilistic hypotheses, but they lose credibility when they predict poorly, i.e. , 

they assign low probability to subsequently observed outcomes of experiments. 

In the absence of prior knowledge of the generating process, there is no abso­

lute quantitative scale to judge prediction quality, hence we can only evaluate 

prediction quality in comparison to the prediction quality of other hypotheses. 

Model A collection of similar probabilistic hypotheses is called a model. A 

model has no direct relation to the phenomena that its member hypotheses ex­

plain; it is a cognitive device, created by the learner to structure the learning 

problem at hand. Models as such are not hypotheses in our strict sense; they 

2 



Chapter 1. Introduction 1.2. Basic terminology 

provide no means to combine the specific predictions made by the member hy­

potheses into a single prediction. There are ways to achieve such prediction 

though, for instance by using a Bayesian universal model. This is a model en­

dowed with weights for each member hypothesis. A Bayesian universal model 

can be translated into a hypothesis, by taking the weighted average of the mem­

ber hypotheses. 
A collection of models is called competing if no pair of models shares a 

common hypothesis. As an example, consider the following scenarios, which are 

summarised in Table 1.1. 

Scenario 1 (Biased coin). A coiner has just minted a prototype coin showing 

the new queen's face. The new queen is rather gourmand, so he wonders whether 

the coin is loaded. To find out, he can perform experiments by flipping the coin, 

and observing the side that turns up, either heads or tails. Hypotheses are of 

the form: the probability that heads turn up is B, where B is a number between 

0 and 1. Models are, for example, the coin is fair (ex. model 1), which is a 

singleton set, or the coin favours heads (ex. model 2), which is an uncountable 

set of hypotheses. 

Scenario 2 (Anvil drop). Galileo, author of the definitive guide to Earth's 

gravity, established that sufficiently heavy objects, when dropped from equal 

height, hit the ground simultaneously. Now he wants to find out how falling 

time relates to height. To this end, he has brought an anvil and a stopwatch 

to the tower of Pisa. He performs an experiment by climbing up to some floor 

at height h, dropping the anvil, and measuring the amount of time t it takes 

the anvil to hit the pavement. His hypotheses relate t to h, for example via 

the equation h :::::; 4t2 . (We write :::::; to signify that we use a fixed zero-mean 

noise model. In this case, t = Jh74 + Z, where Z is a normally distributed 

random variable with mean zero. The outcome of an experiment, the measured 

time t, is noisy; it cannot be obtained exactly due to limited reaction speed and 

precision. We approximate the combined influence of such small errors with a 

normal distribution. Thus, again we use probabilistic hypotheses.) 

Models are, for example, linear gravity (ex. model 1) or quadratic gravity 

(ex. model 2). 

Reality, worlds In this thesis, we use the word reality in a technical sense. 

It designates a data-generating process, which we cannot identify, but on which 

we can run experiments. We regard the procedural details of the execution of 

the experiment as part of reality itself. For example, in Scenario 2, reality is 

the process that generates a stopwatch reading when provided with a height . 

Table 1.1 Example scenarios with hypotheses and models. 

Scenario 

Input 
Outcome 
Ex. hypothesis 
Ex. model 1 
Ex. model 2 

Biased coin 

none 
H(eads) or T(ails) 
P(H) = 0.6 
{P(H) = 0.5} 
{ P(H) = B I B E (0.5, l J} 

3 

Anvil drop 

height h 
time t with Gaussian noise 
h:::::; 4t2 

{ h:::::; at I a E [l, 10]} 
{ h:::::; at2 I a E [l, 10]} 



1.3. Selection tasks Chapter 1. Introduction 

Reality is not necessarily a probability distribution, although we will require 

this assumption later when we turn to truth finding. 

Reality, which we will also call the state of nature, is unknown to us. We can, 

however, consider a collection of candidate explanations of reality: alternative 

states of nature that we cannot yet distinguish from the actual state. We adopt 

the nomenclature of modal reasoning, and call such alternative states possible 

worlds. We refer to the current state, reality, as the actual world. Again, in 

truth finding, we assume that the actual world is a possible world. 

Overfitting Intuitively, a hypothesis over-fits if it describes past outcomes 

well, but predicts future outcomes poorly. Such a hypothesis is too specific; it 

describes the noise instead of the regularity in the past outcomes, hence it misses 

the general pattern. See Figure 1.1 for a graphical example. Ten data-points 

were generated from the true dotted curve, with Gaussian noise added. The 

best fitting polynomials of degree 1, 3 and 9 are shown. The under-fitting curve 

(a) describes the sampled points poorly, and explains the true curve poorly. The 

over-fitting curve (c) describes the sampled points perfectly, but explains the true 

curve extremely badly. Curve (b) strikes a good balance between descriptive and 

explanatory quality. 
The statistical literature, e.g. [Mit97], is full of theorems showing that to get 

good predictive quality, you need to take the hypothesis that optimises some 

trade-off between complexity and goodness of fit. 

1.3 Selection tasks 

Learning amounts to finding regularity in data. An elegant formalisation of this 

idea is given by the theory of Kolmogorov complexity, where all computable 

regularities are considered. See [LV93] for an introduction to the field. The 

Kolmogorov complexity itself is not computable. 

To obtain a computable notion of regularity, one must restrict the class of 

regularities under consideration. Such restrictions lie at the heart of minimum 

description length (MDL) methods, see [GMP05]. As in MDL, we use models 

to explicitly state which regularities are considered. 

The following question is a more precise formulation of Question 1: 

Figure 1.1 Example of fit 
(a) Degree 1: under-fit (b) Degree 3: good fit (c) Degree 9: over-fit 

' ., 
• _% ___ _ 

4 



Chapter 1. Introduction 1.3. Selection tasks 

Question 3. Given a sequence of data obtained from reality and a list of reg­

ularities, how can we infer the best explanation for reality on the list, i.e. learn 

something about it? 

We list three answers to Question 3, that differ in the precise interpretation of 

"best explanation": hypothesis selection, model selection, and truth finding. But 

first we make the following observation about selection methods on probabilistic 

objects in general. 

Probabilistic humility The general principle 

probabilities in =? probabilities out (PIPO) 

states that, once a problem has been formalised in probability theory, then 

reasoning within probability theory can only yield the probability of new events. 

The goal of model selection is to find the best model. By PIPO, probability 

theory can only give us a probability distribution on the candidate models. We 

need an additional criterion, outside of probability theory, to judge the quality 

of such distributions. The same holds for hypothesis selection and truth finding. 

Hypothesis selection The hypothesis-selection problem is stated as follows: 

given a collection of hypotheses and data obtained from reality, find the hypothe­

sis that explains reality best. Of course, one cannot evaluate directly how well a 

hypothesis explains reality, one can only evaluate how well it describes the data. 

To guard against over-fitting, one must select a hypothesis that strikes a balance 

between expressiveness and simplicity. This can be achieved by (1) adopting a 

measure of complexity for hypotheses, and (2) penalising hypotheses by their 

complexity. For example, in Figure 1.1, we penalise polynomials according to 

their order. This ensures that we prefer (b) over ( c). 

The hypothesis-selection problem between two hypotheses is called hypoth­

esis testing. To obtain a true selection, beyond PIPO, one uses a significance 

level as a selection threshold. 

Model selection The model-selection problem is the following: given a collec­

tion of models and data obtained from reality, find the model that explains reality 

best. This problem is often solved by reducing it to the hypothesis-selection prob­

lem using universal codes. A universal code for a model corresponds to a single 

hypothesis, composed of a weighted average over the partaking hypotheses. Two 

well-known approaches are Bayesian and MDL model selection, see [GMP05]. 

Truth finding The truth-finding problem is the following: given a collection 

of competing models and data obtained from reality, find the true model. We 

regard the hypotheses in the models as possible worlds, and assume that one of 

them is reality. The model that contains reality is called the true model, and 

we want to obtain as much information about its identity as possible. Selecting 

a single model with certainty is generally impossible, because we are working 

with probabilistic hypotheses. We allow a more general answer: a probability 

distribution on models, which expresses any remaining uncertainty about the 

true model. The performance of such a distribution is evaluated by the well­

known log loss measure. The truth-finding problem is discussed in Chapter 3. 

5 



1.3. Selection tasks Chapter 1. Introduction 

Quantifying information The truth-finding problem is different from the 

preceding two problems, for it makes the additional assumption that reality is 

in one of the models. The availability of a true model allows a natural measure of 

error or loss, namely the amount of information that we, the learner, lack about 

this true model. To measure this amount, consider the following hypothetical 

situation. Suppose that there is a helpful external observer that knows which 

model is true. This observer sends us a message (e.g. an SMS), to tell us which 

model is true. The more information we already possess about the true model, 

the shorter this message needs be. We equate the amount of information that 

we lack about the true model with the length of the shortest message that will 

make us totally informed about the true model. 

Log loss The above sending of messages is formalised in information theory 

using codes. Codes allow us to measure message lengths in bits. Throughout 

this thesis, we will use probability distributions as mathematical generalisations 

of codes. A probability distribution can be regarded as a code with idealised 

(non-integer) code-lengths. This correspondence will be explained in more detail 

in §2.6.1. Let P be the distribution on models that represents our uncertainty 

about the true model, i.e. that we use as a code, and let M* be the true model. 

Then the amount of information that we lack about M*, denoted L1og and called 

the log loss, is given by 

L1og(P, M*) = - log P(M*). (1.1) 

Minimising the log loss is equivalent to maximising the probability that we 

assign to the true model. Of course, we - the learner - cannot determine the 

log loss ourselves, because we do not know the true model. 

We stress that the distribution P on models that is learned can always be 

interpreted as a code. Only in special situations can the probabilities that P 

assigns to the models be interpreted as their relative frequencies of occurrence, 

or as the learner's subjective degree of belief in their truth. We describe these 

situations in §3.7.4. 

Truth-finding game To analyse the truth-finding problem with log loss, we 

formulate it as a game. The truth-finding game, a strictly competitive game with 

chance moves, is played between the players Learner, Chance and Nature. The 

arena of the truth-finding game is a set of competing models. Nature picks the 

world that generates the data from one of the models, Chance actually generates 

the data, and Learner tries to gain as much information as possible about the 

true model using the data. The entire game is shown in Protocol 1.1. 

Protocol 1.1 The truth-finding game 

Arena: Competing models M = {Mi, M 2 . .. } . 

Require: Number of outcomes n. 
1: Nature covertly chooses a hypothesis e• . Say e• is in model M*. 
2: Chance samples a sequence of outcomes YI, Y2 ... Yn from e·. 
3: Learner expresses his belief as a probability distribution P on models. 

Loss: Learner suffers -log P(M*). 

6 
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Example 1.1 (Biased coin). The following is a run of the truth-finding game 

for Scenario 1. We start with two models: fair coin, and coin favours heads. 

Formally, we have MI= {M 1,M2}, where 

M1 = { P(H) = 0.5} 

M2 = { P(H) E [0.6, lJ} 

fair coin 

coin favours heads 

We have slightly altered the definition of the second model in this example for 

illustrative purposes. This version of the biased coin scenario will be called 

Reduced Biased Coin in Chapter 3, where we continue this example. Say n, the 

number of coin flips we will perform, is fourteen. Now Nature starts by choosing 

a world from either of the models. Say she picks the coin with bias 0.6, from 

the second model. This means that, for the rest of this game, model two is the 

true model. (This simple strategy for Nature is not optimal. The best (minimax 

optimal) strategy is given in Chapter 3.) Then Chance generates 14 outcomes 

of the coin with bias 0.6. Say these are the outcomes: 

H,T,H,H,H,T,T,T,H,H,H,T,T,H 

Finally, Learner must express his belief about the true model as a probability 

distribution on models. He does not know which model is true, but he has seen 

the outcomes. Disregarding the order of the outcomes, he could just count: 

6 x T and 8 x H. Now, following the worst-case-optimal strategy described in 

Chapter 3, he produces the following probability distribution on models: 

P(M1) = 0.4701 P(M2) = 0.5299 

Note that Learner only slightly favours the second model. This a cautious choice, 

because the data are not very informative. Then the true model M 2 is revealed, 

and the information that Learner lacks about this model is computed using the 

log loss. It is given by - log P(M2) = 0.9162. Our analysis will show that 

the expected loss for Learner, using the worst-case-optimal strategy is 0.9040. 

The current loss is higher, but this is not due to Nature, but to Chance. The 

outcome, which Chance generated at random, is just not very informative. 

Worst-case-optimal strategy In this thesis we analyse the truth-finding 

game from a worst-case perspective. That is, we search for a learning procedure, 

a strategy, that constructs a probability distribution on models from observa­

tions , such that, using this procedure, we gain as much information about the 

true model as possible, in the worst state of nature for this particular proce­

dure. The motivation for this approach is that it gives the best performance 

guarantees if we are not prepared to make further assumptions. 

To evaluate a strategy, we compute its risk. This is the mean loss that the 

learner obtains using this strategy, where the average is taken over all Chance's 

moves. The risk of a strategy does depend on Nature's move, but no longer on 

Chance. Then, taking the worst-case-optimal strategy for Learner, we eliminate 

dependence on Nature. Therefore, the worst-case-optimal strategy and its risk 

require no assumptions about Nature. One of the models has to be true, but, in 

our worst-case analysis, it is immaterial which one. 

7 



1.4. Experiments Chapter 1. Introduction 

Worst-case belief Worst-case analysis is quite different from Bayesian anal­

ysis. In the latter, it is assumed that the learner can always construct a proba­

bility distribution on possible worlds, expressing his prior uncertainty about the 

actual world. The crucial difference is that the Bayesian learner uses this dis­

tribution for two purposes. First, he selects the act that is optimal with respect 

to this distribution. Second, he assesses his own performance with respect to 

this distribution, using it as though it were true. We think that this approach 

is essentially circular. 
It is interesting that our worst-case analysis also constructs a probability 

distribution on possible worlds. This probability distribution can be interpreted 

as the prior belief that the learner should have about the true model, in the 

sense that it is a worst-case-optimal mixed strategy for Nature. For Learner, 

believing this distribution is not problematic; if it is not true, then Nature does 

not play optimally, and the incurred risk for Learner can only decrease. The 

constructed probability distribution on models depends heavily on the structure 

of the models, and is often particularly non-uniform. This directly contradicts 

Bayesian philosophy, which, taken in a weak form, prescribes the assumption of 

a smooth, fairly uniform, distribution, in the absence of specific prior knowledge. 

1.4 Experiments 

We now address the task of truth finding when we can perform experiments. 

Experiment design The experiment-design problem is the following: given 

a collection of competing models, perform the experiments that, in the end, yield 

most information about the true model. We allow experiments to be chosen 

sequentially, this means that we can choose the next experiment based on the 

data obtained in all previous experiments. Example 1.2 is provided below as an 

illustration. 
Previously, hypotheses were probability distributions on outcomes. In exper­

iment design, hypotheses are conditional probability distributions on outcomes 

given input. Here, the input is the experiment selected by the learner. The true 

hypothesis fixes the way experiments work, by dictating the probability of each 

outcome for each input. 
The experiment-design problem can be seen as experiment selection followed 

by truth finding. The data used for truth finding are the outcomes of the 

selected experiments. The task of experiment design amounts to choosing an 

experimentation strategy to maximise the amount of information that truth 

finding obtains. 
To analyse the experiment-design problem, we translate it into a game. 

Experimentation game The experimentation game, a strictly competitive 

game with chance moves, is played between the players Experimenter, Chance 

and Nature. The experimentation game extends the truth-finding game with 

experiments. This extra ability for Learner licenses his new name: Experimenter. 

A run of the game proceeds as follows. Nature initially picks the world in 

which all experiments take place. Then Experimenter chooses an experiment, and 

Chance responds by generating an outcome according to the actual world and 

the chosen experiment. These two steps are repeated a predetermined number of 

8 



Chapter 1. Introduction 1.4. Experiments 

times, allowing Experimenter to base his choice on previous outcomes. Finally, 

Experimenter is evaluated as in the truth-finding game. He must provide a 

probability distribution on models, and suffers the log loss, that is, the amount of 

information this distribution lacks about the true model. The experimentation 

game is summarised in Protocol 1.2. 

Protocol 1.2 The experimentation game 

Arena: Competing models MI= {M1, Mz, ... }. 
Require: Number of experiments n. 

1: Nature covertly chooses a hypothesis e•. Say e• is in model M*. 

2: for n turns do 
3: Experimenter chooses an experiment input ~· 

4: Chance generates an outcome as predicted bye• on~· 

5: end for 
6: Experimenter expresses his belief as a probability distribution P on models. 

Loss: Experimenter suffers - log P(M*). 

Example 1.2 (Anvil drop). The following is a run of the experimentation game 

for Scenario 2. We start with two models: linear gravity and quadratic gravity. 

Formally, we have MI= {M 1,M2}, where 

M1 = { h ~at I a E [l, 10]} 
Mz = { h ~ at2 I a E [l, 10]} 

linear gravity 
quadratic gravity 

The tower of Pisa has six galleries. Correcting for inclination, the first one is 

located at the height of four metres above the tower base. Each next one adds 

another four metres of height. Experimenter, Galileo, drops an anvil by gently 

pushing it over the edge of a loggia. 
First Nature chooses the actual world; suppose she chooses h ~ 5t2 . More 

precisely, this means t ,...., Vh/5 + E, where E is Gaussian noise with variance 

0.1. This fixes quadratic gravity as the true model for the rest of the game. 

Historical fiction 1 tells us that Galileo dropped two heavy objects from the 

tower. We adopt this number of experiments. Say the first anvil is dropped 

from the topmost gallery, h = 6 · 4 = 24. Then Chance generates an outcome 

according to h ~ 5t2
, say t = 2.2 seconds. Now Experimenter can choose another 

experiment, say he drops the second anvil from h = 3 · 4 = 12, and Chance 

generates t = 1.6. 
It now remains to perform the evaluation step, which continues exactly 

as in the truth-finding game. The data, the concatenation of successive in­

put/outcome pairs, are 
(24, 2.2) , (12, 1.6) 

1This story, although reported by Galileo's own student, is widely considered to be a legend 

according to [Wik06J. 
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1.5 Contribution of the thesis 

Truth-finding2 is, to the best of our knowledge, a new way to formalise the 

learning problem. Its prime motivations are the following. 

• Models are the interesting level of abstraction for learning. 

• Worst-case analysis is a good answer to the absence of prior information, 

as it provides rigorous bounds without further assumptions. 

We provide the worst-case solution of the truth-finding game, in the form of a 

procedure to find the worst-case-optimal strategy. We give an algorithm, and 

prove that it finds the worst case optimal strategy. As already described, this 

procedure constructs a probability distribution on possible worlds, and then acts 

optimally with respect to this distribution. One might say that this probability 

distribution is objective, as it is induced by the structure of the game, and not 

based on the learner's judgement. 
The second half of this thesis is devoted to experiment design. We use 

truth finding as a building block, and hence adopt its motivations. We add the 

following 

• Experiments are performed sequentially. 

There is considerable literature on Bayesian experiment design, but most of the 

literature covers a setting in which all experiments are performed simultaneously. 

See [CV95] for an overview. The sequential setting is, of course, more powerful. 

There also literature on frequentist experiment design, for example [Puk93]. 

Also here, there is a focus on performing experiments simultaneously. Other 

than that, it is not clear how this approach is related. 

Theorems 2.30, 2.31 and 3.41 are more minor contributions. The last the­

orem is both interesting and simple to prove; we suspect it is not new, but we 

could not find a published statement of this result. 

Related work 

Information theory is covered in [CT90], game theory in [Bin91]. Decision theory 

is covered in the classical [Fer67]. Non-Bayesian experiment design is covered 

in [Puk93J, which focuses on linear models . [CV95] reviews the current state of 

Bayesian experiment design, while [SWOOJ compares Bayesian experiment design 

to Maximum Entropy Selection. The relation between Bayes acts and the Max­

imum Entropy Principle is treated in detail in [GD04] . Minimum Description 

Length model selection is covered in [GMP05]. 

Organisation of the thesis 

Chapter 2 provides notions and results that will be used later. It also serves 

to introduce our notation and conventions. Among other things, Chapter 2 

2 The term truth finding already has a legal meaning, and it has also been defined as a desirable 

quality of learning frameworks. Our usage refers to the interpretation/definition that we 

present in the first half of this thesis . 
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introduces the relevant strategic game theory that allows us to analyse and 

solve the games in later chapters. 
Chapter 3 addresses the problem of truth finding. It provides an analysis 

and solution of the truth-finding game. It also addresses the problem that there 

often is no analytical solution, and provides a numerical solution to a simple 

example. 
Experiment design is covered in Chapter 4, where we analyse and solve the 

experimentation game. Chapter 5 concludes and provides a list of directions for 

future research. 
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Chapter 2 

Preliminaries 

This chapter covers the notions and results needed for the development of the 

theory of truth finding and experiment design in Chapters 3 and 4. This chapter 

does not contain new material, with the exception of §2.6.3; it is intended as 

a reference, and serves to introduce notation. Readers that are familiar with 

some of the areas of research described herein may skip these without difficulty, 

because standard notation has been used wherever possible. 

2.1 General notation 

We denote by N and lR the sets of natural and real numbers. Both contain 0. The 

extended real numbers are defined by iR := [-oo, oo] = lR U {-oo, oo }, and they 

are endowed with the intuitive order and the corresponding order topology. IR+ 

is the set of non-negative real numbers. IR++ is the set of positive real numbers. 

As usual, !Rn is the n-fold Cartesian product of JR. We use log for the binary 

logarithm. It is convenient to regard log as a function from IR+ to iR, by defining 

logo: = -oo. 

2.2 Set theory 

Notation 2.1. Let qi and n be sets. We denote the power set of f2 by &J(fl). 

The identity function on n is denoted by ln. We denote by [n ~qi] the set of 

all functions from f2 to qi, We abbreviate f E [S! ~qi] to J: f2 ~ qi , We write 

f : n --+> qi if f is a surjective function from n to qi , 

Notation 2.2. Let qi be a set, I a well-ordered set of indices , and ni ~ qi for 

each i E I, with duplicates allowed. We denote the function if--> fli by (S!i)iEJ· 

We call a function of this form an I-family or an I-sequence. 

Definition 2.3. Let qi be a set. We denote by qi* and qi <w the set of all finite 

sequences over qi , We denote by qiw the set of all infinite sequences over qi , 

Definition 2.4. Let J : qi x f2 ~ '11 . For all x E qi , we denote by f(x, ·) := 

{(y,f(x,y)) I y En}. Clearly, J(x, ·): n ~ '11 . The function J(x,·), viewed as 

a function of x, is called the Sch6nfinkelisation or Currying off. We analogously 

define J( ·, y). 
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Definition 2.5. Let n be a set. A set <I> ~ g:J(D) is called a partition of n if 

1. u <I> = n. (<I> covers n.) 

2. 0 ~<I>. 

3. I]! n 8 = 0 for all different I]!, 8 E <I>. (The elements of <I> are pairwise 

disjoint .) 

2.3 Linear algebra 

Whenever n is clear from the context, we denote by 0 and 1 the zero and unity 

vectors in lRn, i.e . the vectors that have all entries set to either zero or one. For 

1 ~ i ~ n, e i is the unit vector of dimension i. We denote the transpose of a 

vector p by pT. 

Definition 2.6. The unit n-simplex is the set given by 

6n := {PE JR~ j pTl = 1}. 
It is also called the standard n-simplex or probability n-simplex. One can equiv­

alently define t.n as the convex hull of {e1, ... ,en}· Note that we number the 

unit simplices by the number of partaking unit vectors, whereas some other 

authors number by dimension (which is n - 1), or equivalently include the zero 

vector in the convex hull definition. 
Each discrete probability distribution on a set of n outcomes can be repre­

sented by a point in t.n and vice versa. The unit 2- and 3-simplices are shown 

in Figure 2.1. 

2.4 Convex analysis 

All sets in this section are subsets of lRn. A set C is convex if it is closed under 

linear interpolation. We denote by conv(D) the convex hull of the set D, i.e. 

the intersection of all convex sets that contain n. The convex hull operation 

preserves openness, closedness and boundedness, hence also compactness. 

The following results can be found in a standard textbook on convex opti­

misation, for example in [BV04]. 

Figure 2.1 Examples of unit simplices 
(a) unit 2-simplex: a line segment in 
the plane 

·. 
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Theorem 2 . 7 (Supporting Hyperplane Theorem). For every convex set C, and 

point x on the border of C, there is a hyperplane P through x, such that C is 

contained in one of the half-spaces of P. 

Theorem 2.8 (Separating Hyperplane Theorem). Let Hand K be convex sets 

in lRn with disjoint interior. Then there exists a hyperplane { x I aT x = b} that 

separates H and K . 

Theorem 2.9. If f : JR2 
-t lR is convex in (x, y), and C a convex non-empty 

set, then the function 
g(x) = inf j(x , y) 

yEC 

is convex in x, provided g(x) > -oo for some x. 

2.5 Probability theory 

Probability theory deals with probabilities of events, that is, sets of outcomes. 

A rigid formalisation of probability theory using measure theory is given in 

Appendix A. For the current exposition, it suffices to define a probability dis­

tribution as a function that assigns probabilities, i.e. numbers from [O, l], to 

events, obeying certain conditions. We abbreviate probability distribution to 

distribution whenever convenient. 
Throughout this thesis , we will use three standard types of event sets, de­

pending on the type of the set of outcomes X as follows: 

• If X is finite, we use the events &J(X). 

• If X ~ IR, we use the events Bor(IR). This is the Borel a-algebra on JR, 

i.e. the smallest set of events that contains all open sets of IR, and that is 

closed under complements and countable unions. If X ~ lRn, we use the 

events Bor(IRn). 

• If X is a set distributions on a finite set of size n, we identify it with 

6.n C lRn, and use the Borel a-algebra on the latter. 

Note that in all cases, the singleton sets of X appear in the event set. 

Definition 2.10. A pair (X, E), where X is a set of one of the above categories, 

and E is the corresponding set of events, is called a sample space. Because E is 

always clear from the context, we identify a sample space with its carrier X. 

Definition 2.11. For any sample space X , we denote by '.D(X) the set of all 

probability distributions on X. 

So far, we have not assumed any structure on the set of outcomes X. The 

most straightforward way to obtain structure is to use the available structures 

on IR by assigning real numbers to outcomes, thereby transforming the set of 

outcomes into a subset of JR. 

Definition 2.12. A function X : X -t IR is called a random variable. We say 

that X is finite, countable or uncountable if its range is . 
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Sometimes, it is useful to translate the set of outcomes into some set different 

from JR. We call such transformations pseudo random variables. 

As was just stated, a random variable transforms outcomes into real num­

bers. Via this transformation, we can forget about the original distribution, and 

consider the induced distribution on JR. 

Notation 2.13. If a random variable X is distributed according to P , we write 

X '""P. 

Definition 2.14. Let X be a random variable defined on the sample space X 

with distribution P. We define the expected value or expectation of X by 

E[X] :=ix XdP 

Definition 2.15. Let X be a random variable on the sample space X. We say 

that X is constant if 3c\ix EX: X(x) =c. We call X almost surely constant if 

:Jc : P(X = c) = 1. This implies P(X = E [X]) = 1. 

Remark 2.16. A random variable X on X is almost surely constant if all measure 

of P is assigned to a region where X is constant. This can be solely due to X, 

namely when X is constant, or solely due to P, namely when P puts all measure 

on a single point, or partially due to both. 

Theorem 2.17 (Jensen's Inequality [Wil91, Theorem, p. 61]). Let X be a 

convex set, P a probability distribution on X. Then for any convex function 

f : x -+ JR, 
Ep [f(X)] 2: f (Ep [XJ) (2.1) 

Moreover, if f is strictly convex, then equality in (2.1) implies that X is an 

almost surely constant random variable. 

One level of abstraction higher, we work with a meta-distribution on sets of 

probability distributions. We can interpret such a meta-distribution as a prior 

probability; one first samples a distribution according to this meta-distribution, 

and then generates an outcome according to the sampled distribution. For more 

detail, see [GD04, Section 9.2]. Such a meta-distribution can be collapsed into 

a single distribution on outcomes as follows. 

Definition 2.18. Let X be a set, Q a convex set of distributions on X , and IQ 
a distribution on Q. We define EQ [Q], the expected distribution of IQ on X, by 

EQ [QJ (A):= EQ [Q(A)] = l Q(A) dlQ 

where Q = lQ is a pseudo random variable, and A any event of X. 

Definition 2.19. Let X, Y be pseudo random variables with ranges X and y, 
The distribution P that gives the distribution of the pair (X, Y) is called the 

joint distribution of X and Y. The marginal distributions of X, Y are given by 

Px(Ex) := P(Ex x Y) 

Py(Ey) := P(X x Ey ), 
(2.2) 

for events Ex and Ey over X and Y . We write P(Ex) for Px(Ex) and P(Ey) 

for Py (Ey) whenever convenient. 
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Definition 2.20. Let n be the number of outcomes, and let P be a probability 

distribution on a countable space. Then-fold product distribution of P, denoted 

pn, is given by 
n 

pn(Yi, · · ·, Yn) := II P(yi ) 
i= l 

2. 6 Information theory 

Information theory exploits the relationship between probability distributions 

and codes. In this section, we restrict attention to probability distributions on 

a finite or countable set. The proofs of the theorems that we merely state below 

can be found in [CT90] . 

2.6.1 Quantifying information 

Bits and codes 

A bit is a variable that ranges over two values. These values can have many 

interpretations, for example: on/off, high/low, 0/1 and true/false. In general, 

a single bit allows one to distinguish between two arbitrary possibilities. To 

distinguish between more than two possibilities, one uses a code: a collection of 

code words, sequences of bits, with an interpretation for each code word. We 

restrict attention to codes with the following properties: 

• Prefix-free. A code is prefix free if no codeword is a prefix of another. A 

non-prefix-free code has two code words a, b such that b extends a. Such 

a code uses both the content and the length of code words to convey 

information. Such a code is ambiguous; upon receiving, bit by bit, code 

word a, one cannot tell whether the message has ended and is a, or whether 

it will continue, actually being b. 

• Irredundant. A code is irredundant if no two code words have the same 

interpretation. A code that has two code words with the same interpreta­

tion is obviously inefficient, because code words can only be used one at 

a time. 

• Complete. A code is complete if addition of any new code word renders it 

non-prefix-free. A code that remains prefix-free when a new code word is 

added does not use its full potential. 

We will henceforth simply use the word code for an irredundant complete prefix­

free code. 
Codes are used to quantify the information content of objects: the amount 

of information a certain object contains, with respect to a given code, is given 

by the length of the shortest code word that is interpreted as this object. 

Idealised bits and probability distributions 

There is a strong correspondence between codes and certain probability distri­

butions, as shown by the following theorem. 
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Theorem 2.21 (Kraft Inequality [LV93, p.74]). Let f 1 , f 2 , •.. be a finite or infi­

nite sequence of natural numbers. There is a prefix-free code with this sequence 

as lengths of its binary code words iff 

Moreover, a code is complete iff this holds with equality. 

Consequently, a code on X with code words w1 for x1, w2 for x2, etc. cor­

responds to a probability distribution P with P(xi) = 2-e; , where ei = lwil is 

the length, in bits, of code word wi. Note that this correspondence does not use 

the content of code words, only their lengths. 

The inverse of this transformation transforms an arbitrary probability dis­

tribution on X into a list of code word lengths as follows 

These code word lengths can be non-integral. We call such numbers idealised 

code lengths, and their unit idealised bits. 1 

This mathematical generalisation gives us a much more fine-grained way to 

measure the information content of objects: the amount of information that a 

certain object x contains, with respect to a probability distribution P, is given 

by - log P( x). Conversely, we say that this is the amount of information that 

P lacks about x. 

2. 6. 2 Basic coding 

In the following definitions we use the convention, based on continuity argu­

ments, that Olog~ = 0 and plogfj = oo for p > 0 and all q, see [CT90]. It 

follows that plog ~ = plogp- plogq even when q = 0. 

Entropy 

Definition 2.22. Let X ""P. The entropy of X is defined by 

'H(X) := Ep [-logP(X)] (2.3) 

The entropy of X equals the expected codelength, when the outcome X is 

encoded using its source distribution P as the code. When P is a distribution 

on X, we abbreviate 'H(lx) to 'H(P). 

Definition 2.23. The conditional entropy of Y given X = x is defined by 

'H(YIX=x):= E [-logP(YIX=x)]. 
Y~P(·IX=x) 

(2 .4) 

The expected conditional entropy of Y given X 2 is given by 

Ex [1i(YIX)] = Ex,Y [- logP(YIX)]. (2.5) 

1 An important technique in information theory called the Shannon-Fano code allows us to find 

code words w1,w2, . .. such that fe;l, e; rounded up, equals jw;j. A second technique, called 

arithmetic coding, a llows us to actually achieve these idealised code lengths when we code a 

sequence of objects, even when a different probability distribution is used for each object. 
2 In [CT90], the expected conditional entropy is abbreviated to H(YIX). We cannot adopt this 

shorthand, as it would cause ambiguity in the sequel. 
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Theorem 2.24 (Chain Rule of Entropy). 

H(X, Y) = 'H(X) +Ex (H(YIX)] . (2.6) 

KL-divergence 

Definition 2.25. For distributions P, Q, we define the Kullback-Leibler diver­

gence of Q from P by 

[ 
P(X)] 

V (PllQ) := Ep log Q(X) (2.7) 

= Ep (-logQ(X)] - 'H(P). (2.8) 

The Kullback-Leibler divergence of Q from P is the number of additional bits 

one expects to use when coding an outcome from P using Q instead of P. 

Note that V is not symmetric in P and Q, so it is not a distance. It does 

however have the following important property. 

Theorem 2.26 (Information Inequality). Let P, Q be probability distributions. 

Then 
V (PllQ) 2: 0 (2.9) 

with equality iff P = Q. 

This means that, in expectation, the best code for outcomes that are gener­

ated from P, is P itself. 

Theorem 2.27. Let pn, Qn be product distributions. Then 

V(PnllQn) = nV(PllQ) and 'H(Pn) = n'H(P). 

Proof. It suffices to show 

E [logQn(Yn)] = E .. · E [logQ(Y1) + · .. + logQ(Yn)] (2.10) 
yn-pn Y,-P Yn-P 

= E (logQ(Y1)] + .. · + E (logQ(Yn)] (2.11) 
~-P ~-P 

= nY~P [logQ(Y)], (2.12) 

the rest is just definition chasing. D 

Theorem 2.28. V (PllQ) is convex in the pair (P, Q), that is, for all distribu­

tions P1, P2, Q1, Q2 and for all 0 ::; >. ::; 1 we have 

V (>.P1 + (1 - >.)P2ll>.Q1 + (1 - >.)Q2) :S: >.V (P1llQ1) + (1 - >.)V (P2llQ2) 

Mutual information 

Definition 2.29. For random variables X and Y with joint distribution P and 

marginal distributions Px and Py, we define the mutual information between 

X and Y by 

[ 
P(X, Y) ] 

I(X; Y) := Ep log Px(X)Py(Y) 

= V(PllPxPy) 

= 'H(X) + H(Y) - 'H(X, Y) 

Note that this quantity is symmetric in X and Y. 
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2.6.3 Advanced coding 

We analyse three somewhat advanced coding scenarios. 

Conditional coding 

The following theorem is a generalisation of the information inequality. Suppose 

that a pair of outcomes X, Y is generated from P, and we are first told X = x, 

and then need to encode Y. Then the best code for this, again in expectation, is 

the conditional distribution P(YIX = x). Of course, this conditional probability 

is not defined when P(X = x) = 0, but then simultaneously, the probability 

that we observe x in the first place is zero. 

Theorem 2.30 (Generalized Information Inequality). Let X and Y be sample 

spaces, and let P, Q be probability distributions over X x Y. Then 

Ep [-logP(YIX)) :S Ep (-logQ(YIX)) (2.16) 

with equality if and only if P(YIX) = Q(YIX) almost surely. Here, almost 

surely means whenever P(X) > 0. 

Proof. For all x s.t . P(x) > 0, we have, by the Information Inequality, 

EYlx (-logP(Ylx)) :S EYlx [-logQ(Ylx)), (2.17) 

with equality iff Q(Ylx) = P(Ylx). Taking the expectation over P(X) in (2 .17) 

yields (2.16), observing that the x where P(x) = 0 do not contribute to the 

expectation at all. This immediately shows that equality holds iff P(YIX) = 

Q(YIX) almost surely. 0 

Meta-coding 

Suppose we have a meta-distribution on codes, that we want to use to encode an 

outcome from P. We can either sample a code from our meta-distribution, and 

then use that to encode the outcome, or we can encode the outcome with the 

expected code. The following theorem proves that, in expectation, the latter is 

better. 

Theorem 2.31. Let X be a set, and Q a convex set of distributions on X. 

Then for all distributions IQ on Q and P on X: 

EQ [V(PllQ)] ~ V(Pll EQ [Q]). (2.18) 

Proof. First, observe that (2.18) holds iff 

[ 
P(X)] [ P(X) l 

EQ Ep log Q(X) ~ Ep log EQ [Q(X)) (2.19) 

iff EpEQ [- logQ(X)) ~ Ep [-logEQ [Q(X)J] (2.20) 

Second, note that fx : Q -> [O, oo] defined by fx(Q) := - log Q(x) is a convex 

function (of Q) for all x E X. Application of Jensen's Inequality (2.1) yields: 

EQ [fx(Q)] ~ fx(EQ[Q]) so EQ [-logQ(x)) ~ -logEQ [Q(x)] 

As this holds for all x, it also holds in expectation, which proves (2.20). 0 
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Conditional meta-coding 

The next theorem generalises the previous theorem to the case where P is a 

joint distribution on X, Y , and we need to encode Y given that X = x. 

Theorem 2.32. Let X, Y be sets, and Q a convex set of conditional distribu­

tions on Y given X. Then for all distributions Q on Q and Pon X x Y: 

EpEQ (-logQ(YjX)J 2 Ep [- logEQ (Q(YJX)J]. (2.21) 

Proof. The proof is analogous to that of Theorem 2.31 , using the convex function 

fx ,y(Q) := -logQ(yJx) instead. D 

2. 7 Game theory 

Definition 2.33. A triple g = (SA, SB, 7r) is called a matrix game if 7r : SA x 

SB ___, R A matrix game is a two-player zero-sum game in strategic form. We 

call the elements of SA and SB pure strategies for players A and B, and 7r the 

pay off 

Definition 2.34. We define the minimax value V and maximin value Y by 

v := inf sup 7r(SA, SB) 
8 BESB SAESA 

y_ := sup inf 7r(SA, SB) 
SAESA SBESB 

(2.22) 

(2.23) 

These value can be interpreted as follows. The maximin value (supposing that 

the supremum is attained) is the highest payoff that player A can guarantee, 

when player B chooses her move after learning the move of player A. Similarly, 

the minimax value is the least payoff that player B can guarantee when her 

move is reported to player A before he has to choose his move. 

If V = y_, we call this quantity the value of g and denote it by just V. If a 

game has a value, then playing second provides no advantage. 

Remark 2.35. Always Y:::; V, but not necessarily Y = V. 

Definition 2.36. We call (sA, SB) a saddle-point of 7r if for all SA, SB 

The existence of a saddle-point guarantees that 9 has a value. On the other 

hand, Q may have a value but no saddle point. This occurs when the infimum 

is not a minimum in (2.22), or the supremum is not a maximum in (2.23) . 

Definition 2.37. Let g be a matrix game. We call EA := '.D(SA) and E8 .­

'.D(SB) the mixed strategies for players A and B. We lift the pure strategy payoff 

7r to the mixed strategy payoff II: EA x EB ___, lR by 

J 7r(SA,SB)daAdaB. 

SAX SB 
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We call Q := (~A, ~B, II) the mixed matrix game generated by g. Its minimax 

value V and maximin value Y are given by 

(2.24) 

(2.25) 

Theorem 2.38 (Minimax Theorem [Bin91, Theorem 6.4.4]). If 9 = (SA, SB, 7r) 

is a matrix $ame with compact sets SA and SB and continuous payoff 7r, then 

Y = V for 9. 

Corollary 2.39. Let 9 = (SA, SB, 7r) be a matrix game, with SA and SB finite, 

then Y = V for Q. 

Definition 2.40. A pair (T, <) is a tree if 

• < is a strict partial order on T, i.e. irreflexive, antisymmetric, transitive, 

• there is a unique <-least element, and 

• for each x ET, {y ET I y < x} is well-ordered by <. 

As usual, we shall use T to refer to (T, <). The <-maximal elements are called 

terminals or leaves of T, the other elements are called non-terminals. The sets 

of leaves and non-terminals are denoted lf(T) and nt(T). The unique <-least 

element of T is called the root of T. 

Definition 2.41. A game tree is a sextuple 

(T, <,A,m, (Mt)tET' (/a)aEA, (7ra)aEA) 

where the following conditions hold: 

• (T, <) is a finite tree. We call the elements of T positions. 

• A is a set. We refer to the elements of A as players. 

• For each position t ET, Mt is a set of moves. We say that a move m E Mt 

can be performed at t. We define M := UtET Mt. 

• m : nt(T) ---> A. We call m the move function. It specifies which player 

has to move at each position. 

• For each player a E A, la is a partition of m- 1(a). The elements of la 

are called the information sets for player a. We use la as an equivalence 

relation on the positions where player a has to move. Positions that are 

related by la, i.e. that are in the same information set, are called indis­

tinguishable to player a. 

• For each player a EA, 'Ira : lf(T) --->JR. 7ra is called the payoff function for 

player a. 

• \:la E A\:/i E la \ft E i\:/t' E i (Mt= Mt'). That is, for each player, the 

same moves are available at indistinguishable positions. We lift the move 

function to information sets by defining Mi .- { m I m E Mt/\ t E i} for 

each i Ela. 
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Definition 2.42. Given a game tree T, a function 

s: la--... M 

is called a strategy for player a if for each i E la, s(i) E Mi . That is, a strat­
egy prescribes a move for player a, selected from the moves that are available, 

under the constraint that the move only depends on what player a can actually 

distinguish. 
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Chapter 3 

Truth finding 

In this chapter, we discuss truth finding: obtaining information about the true 

model from data. The setting of truth finding is the following. We possess a list 

of candidate explanations for reality, and assume that reality is on this list. The 

candidate explanations on the list are grouped into models. We suppose that 

the effects of our actions depend on reality only indirectly; they only depend 

on the model that contains reality. Hence it is important to know which model 

is true. We approach this learning task with a blank slate. The only available 

information is the outcome of a fixed experiment. This leads to the truth-finding 

problem: how to use data to obtain as much information about the true model 

as possible, in the worst case. The worst case is taken over all possible choices 

for the state of nature. 

A related problem which , using our terminology, could be called true world 

finding or hypotheses selection, is covered in great detail in [Fer67]. Our setup 

is quite similar, allowing us to reuse several of the general theorems. Of course, 

some work is needed to prove that the preconditions hold in our setup. The 

subtle difference of focusing on finding the true model instead of true world 

admits a new decomposition of strategies, using the convex hulls of the models. 

In §3.1 we formally state the truth-finding problem. The analysis of the 

truth-finding problem is performed in terms of the Nature vs Learner truth­

finding game in §3.2. We give a representation of the strategies in §3.3. We 

subsequently prove that the truth-finding game has a value, and that there is 

a minimax strategy for Learner in §3.4. We then turn to the computation of 

the minimax strategy in §3.5. We show that it equals the best response to the 

optimal mixed strategy for Nature. We show that the latter strategy itself is 

easy to compute. At the end of this chapter, in §3.7, we relate truth finding 

to two other interpretations of learning from data: prediction and compression. 

We conclude and summarise in §3.8. All theorems given without proof are not 

original to this thesis, and are referenced accordingly. 

3 .1 Formalisation 

We first formalise the setting described in the introduction to this chapter. Then 

we give the formal statement of the truth-finding problem. 
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Notational conventions 

We typographically distinguish sets, elements and random variables. We use 

Roman and Greek lowercase symbols (y) for elements, and the corresponding 

uppercase symbols (Y) for random variables. We use calligraphic script (Y) 

for sets, and the blackboard bold font (MI) for sets of sets. We use lowercase 

boldface symbols (m), to denote probability mass functions. We have chosen 

symbols that are mnemonics for the underlying sample space. 

For sets we write yn for then-fold Cartesian product. For elements (and for 

random variables ranging over elements) we use the following convention: we 

use yn as a shorthand for (y1, ... , Yn). Hence the typical element of yn is yn. 

3.1.1 Truth-finding frames 

Definition 3.1. A quadruple 

J = (Y, T,M, (PB)oa) 

is called a truth-finding frame, or frame for short, if the following conditions 

hold: 

• Y is a sample space, called the outcome space. We refer to the elements 

of Y as outcomes. 

• T is a sample space, called the possible-world space. We refer to the 

elements of T as possible worlds. 

• M is a partition of T, called the set of models. The function M : T --+ M 

assigns to each (J E T the unique M E M that contains it. 

• PB is a probability distribution on Y for each B E T. We write p(ylB) for 

PB(y) . We use the term mechanics to refer collectively to (PB)BET· 

A truth-finding frame incorporates both the available information about re­

ality, and the objective of the learning task. The available information about 

reality is represented by a set of options, the possible worlds, and a conditional 

distribution that specifies how each possible world works. The objective of the 

learning task is given by the partition, which divides the possible worlds into 

models, clusters of similar worlds. The set of models M can be regarded as a 

discretisation of the set of possible worlds T. Figure 3.1 depicts a typical par­

tition of possible worlds into models. We want to obtain as much information 

as possible about the true model , i.e. the model that contains the true state of 

nature. 

3.1.2 Examples 

Throughout this chapter we use three running examples as an illustration. Let 

Y = {H, T} be the sample space of outcomes of a coin flip. We denote by PB 

the distribution that assigns probability B to H, and hence 1 - (J to T. We use 

the following three variants of the biased coin scenario: 

• Biased Coin (BC). As in the introduction to this thesis, we use models the 

coin is fair and the coin favours heads. 
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Figure 3.1 Partition of possible worlds 

T 

• Reduced Biased Coin (RBC). In this simplified version, we replace the 

second model of BC by the coin favours heads considerably. 

• Binary Biased Coin. (BBC). In this even more simplified version, we use 

two singleton models: the coin mildly favours tails and the coin favours 

heads a lot. 

The models for each of the variants are formally specified in Table 3.1. In each 

case, we have models M = {M 1 , M 2 }, possible worlds T = LJM, and truth­

finding frame 

3.1.3 Truth-finding problem 

Now we can formally state the worst-case truth-finding problem. Let J' be a 

frame. The unknown actual world B* E T must be classified according to M, 

based on data generated from Po· . Ideally, we would like to identify the true 

model M* := M(B*), but in our probabilistic framework we cannot do this with 

certainty. Instead we use the data to construct a probability distribution m on 

models, where m(M) represents our degree of belief that M* = M. 
An outsider knowing M* can evaluate m by computing the log loss, which 

is given by L(M*, m), where 

L(M , m) := - logm(M). 

Recall that this is the amount of information that we, using m, lack about the 

true model. Namely, it is the number of bits that the outsider has to transmit 

Table 3.1 Biased coin example models 

BC {1 /2 } 
RBC {1/2} 
BBC {1/3} 
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to us to allow us to identify M* with certainty. For convenience, we define 

L(B, m) := L(M(B), m). 

We do not know M*, so we cannot evaluate the performance of m. This 

impasse can be overcome by considering strategies. A strategy f is a function 

that assigns a distribution on models to each outcome, i.e. a conditional distri­

bution on models given outcomes. A strategy f can be pitted against a possible 

world e, yielding the following expected loss, or risk 

R(B,f):= E [1(8,f(Y))]. 
Y~po 

(3.1) 

Hence the problem becomes this: find a strategy f that minimises the worst-

case risk, i.e. attains 
V = inf sup R(B, f). 

f OET 

We will show in §3 .4.2 that there is always an f that attains V. 

3.1.4 Assumptions 

We must assume that /MI/ ?: 2 for there to be a truth-finding problem, and we 

must assume IYI ?: 2 for there to be a basis for a solution. To simplify analysis, 

we make the following additional assumptions. 

Assumption 3.2. The set of outcomes Y is finite. 

Assumption 3.3. The set of models Ml is finite. 

These assumptions, albeit restricting, capture many practically interesting 

cases, for instance the biased coin example. In the anvil drop example, the 

outcomes are time measurements. The set of time measurements is in prin­

ciple uncountable, but it is naturally discretised by contemporary stopwatch 

manufacturers, who supply a fixed number of decimal digits. 

These assumptions allow us to identify distributions on Y and Ml with points 

in the unit IYI- and /M!/-simplices. Recall from Definition 2.6 that the unit n­

simplex is given by 

~n := {PE JR.~ I pTl = 1} . 
This identification allows us to regard each model M E Ml as a subset of ~IYI. 

We do not have to place any restrictions on the set of possible worlds, nor on 

the mechanics. 1 We see this as a passed sanity check; these are the two places 

where the complexity of real-world applications will be reflected. 

3.2 Truth-finding game 

Worst-case expected-value optimisation problems like the truth-finding prob­

lem are naturally thought of as two-player games with chance moves, and this 

viewpoint proves fruitful in our case. The players in the truth-finding game are 

1 Of course, there are the standard measurability conditions. We list all the conditions in 

Appendix A. 
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called Learner, Nature, and Chance. A run of the truth-finding game consists of 

three steps. First, Nature, the antagonist, chooses the actual world from the list 

of possible worlds. Second, Chance, an independent and impartial player, gener­

ates data from the actual world. Third, Learner, the protagonist, uses these data 

to update his information about the label of reality, and express his beliefs about 

the label of the actual world in terms of a probability distribution. Learner's 

loss is given by the log loss. The complete game is shown in Protocol 3.1. 

Protocol 3.1 The truth-finding game 

Arena: Truth-finding frame J' = (Y, T,M, (pe)0ET). 
1: Nature covertly chooses a hypothesis()* ET. Say M(()*) = M*. 

2: Chance generates an outcome y according to Po·. 

3: Learner expresses his belief about the true model as a distribution m on 

models. 
Loss: Learner suffers - logm(M*). 

3.2.1 Many outcomes 

Protocol 3.1 states that Chance generates a single outcome Y from Y. If the 

outcome space is "small" compared to the possible world space, then a single 

outcome is not very informative. We can of course have Chance repeat the 

data-generating process n times. The n outcomes are then, by construction, 

independent identically distributed (i.i.d.). Sequences of n i.i.d. outcomes can 

be modelled by a single outcome in a product frame. 

Definition 3.4. Let J' = (Y, T,M, (pe)9E7 ) be a frame, and let n be a given 

number of repetitions. Then the n-fold product frame is given by 

(3.2) 

where 
n 

p;}(yn) := IJ Po(Yi) · 
i=l 

With this reduction in place, it suffices to consider only single-outcome truth­

finding games. 

3.2.2 Extensive form game 

Protocol 3 .1 specifies a two-player game of imperfect information with chance 

moves. The extensive form representation of the Binary Biased Coin example is 

shown in Figure 3.2. This particular example has been chosen for simplicity, but 

it is typical. The game tree always has the same structure. For different frames, 

only the probabilities along the edges and the fanout at each level of the game 

tree change. Nature's move is performed covertly, i.e., Learner is not informed 

of her choice of world. Hence Learner cannot distinguish the situations after 

Nature's move. A collection of indistinguishable situations for a particular player 

is called an information set for that player. Information sets are properties of 

game trees. The information set for Learner after Nature's move is indicated 
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in Figure 3.2 by a dotted line. After Chance's move, which is made publicly, 
Learner generally remains uninformed about the exact position in the game tree. 
This is indicated by the two lower dotted lines in Figure 3.2, which connect 
indistinguishable states for Learner, i.e. positions in which Chance has selected 
the same outcome. 

The truth-finding game in Protocol 3.1 and its extensive form are essentially 
sequential. First Nature chooses the world. Second, Chance generates an out­
come, according to a distribution that depends on the world chosen by Nature 's. 
Third, Learner chooses a distribution on models, which depends on the outcome 
that Chance generated. Games with such dependencies are complicated to anal­
yse. We can remove these dependencies by transforming the game into normal 
form, at the cost of increasing the complexity of the moves. 

3.2.3 Normal form game 

Each extensive form game has an associated normal form game. The former 
is represented by a game tree, whereas the latter is a game in the sense of 
Definition 2.33. In the normal form game, the moves for a player are given by 
his strategies in the extensive form game. Recall from Definition 2.42 that a 
strategy for a player in an extensive form game is a function that specifies what 
that player will do at each position in the game tree she can encounter. A game 
in normal form is parallel instead of sequential. Both players can choose their 
moves independently, as all dependencies are now captured by the moves, which 
internalise the strategies. 

We first consider pure strategies, that is, strategies that deterministically 
choose moves in the extensive form game. Then we turn to mixed strategies: 
probability distributions over pure strategies. 

3.2.4 Pure strategies 

A pure strategy for a player assigns a legal move to each information set for that 
player where it is this player's turn. Nature makes a single move, at the start of 
a run of the game, hence a pure strategy for Nature is a choice of reality from 
the possible worlds. Strategies of Nature are identified with elements of T. 

When it is Learner's turn, the data have already been generated. A move 
for Learner consists of choosing a distribution on models. A pure strategy for 
Learner assigns such a distribution to each possible realisation of the data. So 
Learner's strategies are elements of F := [Y -> '.D(MI)). Note that Fis not finite, 
although by our assumptions Y and MI are. 

Definition 3.5. When Nature plays B E T and Learner plays f E F, then the 
risk of Learner is given by 

R(B, f) := E [1 (B, f(Y))]. 
Y~p6 

(3.3) 

The expected loss eliminates Chance by taking an expectation over outcomes. 

Definition 3.6. Given a truth-finding frame J, the triple ®;y := (T, F, R) is 
called the normal form of the truth-finding game. It is a game in the sense of 
Definition 2.33. 
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Figure 3.2 Truth-finding game tree for the BBC example. The information 

sets of Learner after Nature 's and Chance 's moves are indicated by dotted lines. 

We denote the possible worlds by w1; 3 and w5; 6 to disambiguate world names 

and probabilities. 

Nature 

Chance 

Learner 

3.2.5 Mixed strategies 

We now consider mixed strategies in the game <B;r. Recall (Definition 2.37) 

that a mixed strategy is a probability distribution on pure strategies. In some 

situations, playing a mixed strategy can, in expectation, yield strictly lower 

risk worst-case risk than playing any single pure strategy. As a fortunate side 

effect, mixed strategies are also easier to analyse. The set of mixed strategies 

for Nature is 'JJ(T). The set of mixed strategies for Learner is 'JJ(F) . 'JJ(F) 

is a set of distributions on a set of conditional distributions, which may seem 

excessively complicated. Luckily, we can restrict attention to a much simpler 

set. The following is included for completeness. 

Definition 3.7. When Nature plays Pe E 'JJ(T) and Learner plays Pp E 'JJ(F), 

then the expected risk of Learner is given by 

(3.4) 

We use 8, F and Y as random variables ranging over the possible worlds T, 

Learner 's pure strategies F and the observations Y. Application of the risk func­

tion to a probability distribution on either argument will always be interpreted 

as an expected value, and we will refer to it as just risk. 

Theorem 2.32 shows that it is never strictly beneficial for Learner to use 

a mixed strategy. For any mixed strategy of Nature Pe, and for all mixed 

strategies of Learner P F: 
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Pure strategies for Learner already encompass the full power of randomisation. 

We will not consider mixed strategies for Learner any further. Summarising, 

Definition 3.8. When Nature plays Pe E '.D(T) and Learner plays f E F, then 

the expected risk of Learner is given by 

R(Pe,f)= E E [1(8,f(Y))]. 
e~Pe Y~pe 

(3.5) 

We emphasise that mixed strategies cannot be disregarded for Nature. In 

particular, in later analysis, we will require Nature to disclose her strategy to 

Learner before Learner chooses his. Now, if Nature plays a pure strategy, then 

Learner can always achieve zero loss. (Knowing the actual world, Learner can 

place all probability on the true model.) On the other hand, when Nature uses 

a randomised strategy in this scenario, then Learner cannot do this anymore. 

Example 3.9 (BBC ctd.). A mixed strategy for Nature is a distribution on 

T = {1/3, 5/6}. Assume Nature chooses Pe to be the uniform distribution on 

the two possible worlds. A pure strategy for Learner is a distribution on M for 

each outcome. Learner could for example play the strategy f, given by 

f M1 M2 

T 3/4 1/4 
H 1/4 3/4 

The expected risk of Learner is given by 

1 (2 3 1 1) 1 (1 1 5 3) 
R(Pe, !) = -2 · 3 ·log 4 + 3 ·log 4 - 2 · 6 ·log 4 + 6 ·log 4 (3.6) 

::::::: 0.8113 

This strategy attains quite a respectable risk in this particular case. We will 

show in Example 3.20 that the optimal strategy always attains risk 0.8044. 

3.2.6 The joint space 

A truth finding frame J, and a mixed strategy Pe for Nature together induce a 

joint distribution Pon possible worlds and outcomes. Pe gives a distribution on 

worlds, and for each world B, Po gives a conditional distribution on outcomes. 

If the set of worlds is countable, then this distribution is specified by 

P(B, y) = Pe(B)po(y). 

For general distributions on worlds, we have the following. The sample space 

of P is T x Y. Its events are given by the product of the partaking u-algebras. 

The joint distribution P is given by 

P(ET x Ey) := { p(EyJB)Pe(dB) . 
}Er 

We use the following random variables on the joint space: 

8 : (T x Y) _, T 

Y: (T x Y) _, Y 
M: (T x Y) _, M 
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These random variables should technically be called pseudo random variables, 

as they map into sample spaces that are not (IR, B) . We will only use them as 

building blocks to construct proper random variables. 

These definitions allow us to write the risk as 

R(Pe, f) = Ep [1 (M, J(Y))] . (3.9) 

We will henceforth omit P whenever it is clear from the context. 

3.3 Representing strategies 

In this section, we provide representations for strategies of both Learner and 

Nature. The representation of Learner 's strategies is quite straightforward: his 

strategies correspond to stochastic matrices. For Nature, we reap the benefits 

of focusing on finding the true model, instead of finding the true world. In our 

framework, Nature 's strategies admit a simple representation. We show that a 

strategy for Nature can be decomposed into a distribution on models, and, for 

each model, a distribution on outcomes, which must be chosen from the convex 

hull of that model. 

3.3.1 Learner's strategies 

We showed that Learner does not need mixed strategies, and this simplifies 

representation considerably. Let n = IYI and k = IMI. A pure strategy f for 

Learner corresponds to a n x k matrix A, defined by 

Ay,M = f(Mly) . 

The matrix A is a stochastic matrix, i.e. all entries are from [O, lj, and rows sum 

to one. This perspective allows a clear visualisation of Learner 's strategies. 

Definition 3.10. An equaliser strategy for Learner is a strategy f, such that 

R(-, f) is constant. That is, no matter what Nature does , the risk is always the 

same. 

As the set of models is finite, there is an equaliser strategy for Learner, 

namely the strategy just guessing. This strategy assigns the uniform probability 

distribution on M to each outcome. It is easily seen that the risk of this strategy 

is given by log IMI. 

3.3.2 Nature's strategies 

A mixed strategy for Nature is a distribution Pe on possible worlds. Such a 

distribution induces the distribution P on the joint space T x Y. Observe, for 

example in (3.9), that Learner 's risk depends on the actual world that Nature 

chooses only via the true model and the generated outcome. Therefore it is 

useful to characterise the distributions on M x Y that Nature can realise. 

For ease of exposition, we pretend that T is countable, to be able to write 

sums instead of integrals. The reader may check that the reasoning extends to 

the uncountable case. We have 

P(M, y) = P(ylM)P(M) , where P(ylM) = L p(ylB)P(BIM). (3.10) 
OEM 
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In this formula, p is fixed by the truth-finding frame. Both P(BIM) and P(M) 

are determined by Nature's strategy, from the joint 

P(B, M) = { ~(B) if BE M, 
otherwise. 

We give names to three important quantities in (3.10): 

• The distribution P(M) on models is called the prior on models. We use 

the fact that models are events over T. 

• For each model M, the distribution P(8IM = M) on the worlds in M is 

called the within-model prior of M. 

• The term .Z:::oEM p(yjB)P(BIM), which we will subsequently abbreviate to 

P(yjM) is called the within-model marginal. 

In (3.10), we separate P(B) into a prior distribution P(M) and a within-model 

prior distribution P(BIM), but we can also reverse this process, and obtain any 

distribution on T from a prior and a within-model prior. 

The within-model marginal is a distribution on outcomes for each model M. 

It is obtained by weighing the distributions P[MJ := (po)oEM according to the 

within-model prior weights. It is an expected distribution, where the partaking 

distributions are fixed (they are specified by the truth-finding frame), while the 

relative contribution of each possible world in the model is controlled by Nature. 

The set of all distributions that can be obtained in this way is, by definition, 

equal to the convex hull of P[M]. 
For each model, Nature can choose the within-model prior independently of 

the other within-model priors. So, by varying her strategy, Nature can achieve 

each combination of within-model marginals from the convex hull of each of the 

models. Finally, by choosing the prior on models, Nature fixes P(M, y) in (3.10). 

The prior can also be chosen arbitrarily, independent of the within-model priors. 

This leads to the following characterisation: 

Each possible strategy for Nature can, for the purpose of truth 

finding, be equivalently represented by 

• a distribution Pe on possible worlds; or 

• a prior on models P(M), and a within-model prior on pos­

sible worlds P(8IM = M) for each model M; or 

• a prior on models, P(M), and, for each model M, a dis­

tribution PM on outcomes, chosen from the convex hull of 

P[M]· 

The third representation is important enough to receive a name. 

Definition 3.11. A pair (P, (PM)MEMI) is called a collapsed strategy for Na­

ture if P is a probability distribution on MI, and PM E conv(PrMJ) for each 

ME MI. 
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Example 3.12. Consider the instance of the truth-finding problem given in 

Figure 3.3. In this case IYI = 3, ITI = 23 and IMI = 2. Finiteness of T implies 

that each model is also finite, thus each model corresponds to a finite set of 

points in JR3 . The convex hull of a finite set is a polyhedron, and in ~3 these 

are polygons. 

3.4 Solution of the truth-finding game 

The previous sections introduced the truth-finding game. Now we show that it 

can be solved. We first prove that the truth-finding game has a value, and that 

Learner always has a minimax strategy. Then we provide an algorithm to find 

the value. We start by eliminating a pathological case, in which the value can 

be obtained immediately. 

3.4.1 Triviality 

We showed in the previous section that a strategy for Nature can be decom­

posed into a probability distribution on models, and, per model, a within-model 

distribution on possible worlds in that model. The per-model distribution on 

possible worlds can be summarised (by taking the expectation) into a per-model 

distribution on outcomes, that is, a single distribution. This distribution nec­

essarily lies in the convex hull of the model. A strategy for Nature can thus be 

reduced to a finite mixture of distributions on outcomes. 

When the convex hulls of all models share a common world B, we call the 

truth-finding problem trivial. This is because the best strategy for nature is 

to choose the prior over models uniform, and all within-model priors such that 

they put all probability on B. Then no outcome provides information that helps 

differentiating the models, and Learner can perform no better than just guessing, 

suffering loss equal to log IMI. 

3.4.2 Value 

The truth-finding game has a value (Definition 2.34) if 

supinfR(Pe,f) = infsupR(Pe ,f) . 
Pe I I Pe 

The right hand expression is the lowest risk that Learner can guarantee in the 

game where he moves first, and Nature, after learning Learner's choice, moves 

second. Analogously, the left hand expression is the highest risk that Nature 

can guarantee when she has to play first, and Learner chooses his move after 

learning her move. We will show that the truth-finding game has a value, hence 

there is no advantage to playing second. We denote by V(;J) the value of the 

truth-finding frame on the arena ;J. 

Note that in general it is not necessarily the case that strategies exist that 

witness this value. A distribution Pe that attains the left hand side is called 

least favourabl e. A strategy f that attains the right hand side is called minimax. 

We will show that a minimax strategy always exists in the truth-finding game. 
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Figure 3.3 Convex hull of models. The triangle shows the projection of .0.3 

onto the plane. Each model is a set of points in JR3 . The shaded areas are the 

convex hulls of the models. 

Definition 3.13. A set C ~ '.D(.F) is essentially complete [Fer67] if given any 

P F E '.D(.F), there is a Pf. E C such that 

W : R(B, Pf.) :S: R(P F, B). 

Exposing an essentially complete class simplifies matters, for there is no 

reason to consider strategies outside of that class anymore. One can always 

find strategies within the class that are just as good. In our case, the set of 

pure strategies for Learner is essentially complete. In the following theorems, we 

interpret each pure strategy f E .F as a mixed strategy that puts all probability 

on f. 
Theorem 3.14 . .Fis essentially complete. 

Proof. Theorem 2.30. 0 

The following theorem will allow us to conclude that the truth-finding game 

has a value and that a minimax strategy exists. The remainder of this section 

is spent verifying the preconditions of this theorem for the truth-finding game. 

Theorem 3.15 ([Fer67, Theorem 2.9.2]). Let C be essentially complete for the 

game (T, :F, R) . Assume there is a topology on C such that 

• C is compact and 

• R is lower semi-continuous in f E C for all B E T. 

Then the game has a value, i.e., 

supinfR(Pe,f) = infsupR(Pe,f). 
Pe f f Pe 

Moreover, a minimax f attaining inf1 supp
8 

R(Pe, f) exists in C. 
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Theorem 3.16. Fis compact. 

Proof. Using Assumption 3.2 and Assumption 3.3, let n = IYI and k = IMI. 
Then 

(3.11) 

is closed and bounded, hence compact, in JRnk. D 

Definition 3.17. The extended logarithm function log(x) : lR ---+ iR is defined 

by 

log(x) = { ~~x) 

Lemma 3.18. log is continuous. 

if x > 0, 

otherwise. 

Proof. We need to show that log is both upper and lower semi-continuous. The 

intervals of type [-oo, r) and (r, +oo], with r E JR, are a sub basis for the order 

topology on iR. We need to show that the following sets are open for all r E lR 

(lower) 

(upper) 

log- 1 ((r,+ool) = {x E lR I log(x) > r} = (2r,+oo) 

log- 1 ([-oo,r)) = {x E lR I log(x) < r} = (-oo,2r) 

(3.12) 

(3.13) 

Both sets are open intervals , hence open sets in the order topology on JR, for 

each r E JR. We conclude that log is continuous. D 

Theorem 3.19. R(B, f) is continuous in f for all BET. 

Proof. Fix B. We have 

R(B,f) = Ev~p9 [-logj(M(B)ly)J 

= - L Po(y) log f(M(B)ly) 
y 

(3.14) 

(3.15) 

A weighted sum of finitely many continuous functions is continuous. It remains 

to show that for given y, M, the function f f--> log f(Mly) is continuous. We 

already proved that the (extended) logarithm function is continuous on lR in 

a single argument, so it is also continuous on the subspace topology on [O, l]. 

Continuous functions are closed under composition, hence it suffices to show 

that the function f f--> J(MIB) is continuous. The preimage of a basic open set 

[O, r) or (r, l] under this function is the intersection of F with an open half-space, 

~n~it~o~n. D 

We have now achieved the central result of this chapter. We proved in 

Theorems 3.16 and 3.19 that the preconditions of Theorem 3.15 hold for the 

truth-finding game, hence we can conclude: 

The truth-finding game has a value, and furthermore, Learner 
has a minimax strategy. 

Example 3.20 (BBC ctd.). The following tables show the minimax strategies 

for Learner in the binary biased coin model, for n = 1, 2, 3 outcomes. 
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n = 1, V = 0.8044 n = 2, V = 0.6565 n = 3, V = 0.5399 

#H m (M1) m(M2) #H m(M1) m(M2) #H m(M1) m(M2) 

0 0.8038 0.1962 0 0.9427 0.0573 0 0.9852 0.0148 

0.2906 0.7094 1 0.6220 0.3780 1 0.8690 0.1310 
2 0.1413 0.8587 2 0.3988 0.6012 

3 0.0622 0.9378 

As expected, the more heads Learner observes, the more he should prefer the 

model saying that the coin favours heads. Also, the more outcomes, the more 

information is achieved in expectation. 

3.5 Computing the minimax strategy 

We have established that the truth-finding game ('.D(T), F, R) has a value, and 

a minimax strategy for Learner exists. More precisely, 

supinfR(Pe,f) = V = infsupR(Pe,f), 
Pa I I Pa 

where the right-hand side is attained for some strategy f. We now consider the 

problem of computing that strategy f. This is important, because a straight­

forward numerical approach, even for a moderate number of outcomes, quickly 

becomes infeasible. 
In this section, we will first show in §3.5.1 that we can find a minimax 

strategy for Learner in a quite restricted set, namely in the set of strategies 

that are the optimal response to a strategy of Nature. This is very helpful, as 

strategies for Nature have far lower complexity than strategies for Learner. 

Subsequently, we will show in §3.5.2 that we can directly optimise the left­

hand side of the preceding equation. This yields the least favourable distri­

bution, if it exists. Then we apply an important insight from Game The­

ory, namely, that the minimax strategy is the optimal response to the least 

favourable distribution. This leads to the somewhat surprising conclusion that 

Learner, to play optimally, must assume that Nature will play according to the 

least favourable distribution. 
If the least favourable distribution does not exist, then there is a chain of 

less and less favourable distributions, whose limit is not a strategy for Nature. 

In this case, we can apply the same reasoning. We will conjecture that the limit 

of the corresponding chain of optimal response strategies is always a strategy 

for Learner , and that this strategy is minimax. 

3.5.1 Extended Bayes 

We have shown that the pure strategies for Learner form an essentially complete 

class. The following allows us to restrict attention even further, namely, to 

the class of strategies that are an optimal response to some mixed strategy 

for Nature. The notion of optimal response is formalised by the following two 

definitions. 

Definition 3.21. A strategy f E F is called E-Bayes with respect to a distri­

bution Pe on T if 
R(Pe, J) -::; inf R(Pe, J) +f.. 

fE:F 
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We abbreviate 0-Bayes to just Bayes. 

A Bayes strategy for Learner is the optimal response to a particular strategy 

for Nature. When dealing with chains of less and less favourable distributions, 

we need the following extension. 

Definition 3.22. A strategy f E F is called extended Bayes for a collection 

D of distributions on T if f is E-Bayes with respect to some Pe E D for each 

E > 0. 

Theorem 3.23 (Complete Class Theorem, [Fer67, Theorem 2.10.3]). Let C 

be essentially complete for the game (T, F, R) satisfying the preconditions of 

Theorem 3.15. Then the set of extended Bayes strategies in C is essentially 

complete. 

So we have that (a) there is a minimax strategy for Learner in the truth­

finding game, and (b) if there is a minimax strategy, then there is an extended 

Bayes minimax strategy. So we only need to consider extended Bayes strategies 

to find a minimax strategy. 

Example 3.24 (BC ctd.). We can now formalise the intuition that the Biased 

Coin problem is trivial. Recall that in the Biased Coin problem, we have 

T = [ ~, 1) , M 1 = { D , and M 2 = ( ~, 1) 

Now consider a distribution Pe on possible worlds. By §3.3.2, we can represent 

Pe by a distribution P(M) on models, and for each model, a distribution on 

outcomes from within the convex hull of that model. In our example, the models 

equal their convex hulls. We can find two numbers a E [O, l] and f3 E M 2 , such 

that upon defining 

P(M1) =a PM 1 (H) = ~ PM 2 (H) = /3 

P(M2) = 1 -a: PM 1 (T) = ~ PM 2 (T) = 1-/3 
(3.16) 

we have 
P(y, M i)= P(Mi)PM; (y). 

The distribution in the previous line is explicitly spelled out below, together 

with the best response for Learner. 

P(y , M i) P(MilY) 

M1 M2 M1 M2 

H a:/2 (1 - a)/3 H a/2 (1-a)/3 
0t/2+(l-0t)/3 a/2+(1-a)/3 

T a:/2 (1 - a:)(l - /3) T aL2 
a/2+( !-a)( l -/3) 

(1-a)(!-/3) 
a/2+ ( 1- a)( 1-/3) 

Now consider what happens when a = 1/2 while f3 -> 1/2. Then all entries 

of the above right table tend to 1/ 2. This means that Nature has strategies to 

which the best response for Learner lies arbitrarily close to just guessing. The 

actual value /3 = 1/ 2 is not a valid choice for Nature, as it is not present in M 2 . 

Let D be the collection of distributions that Nature can achieve with a = 1/2 

and /3 E (1/2, 1 J. Learner's strategy of just guessing is extended Bayes with 

respect to D, while it is not Bayes with respect to any mixed strategy for 

Nature. The following section will allow us to conclude that just guessing is the 

minimax strategy for Learner. 
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3.5.2 Generalised entropy 

To find the minimax strategy for Learner, we look at the best-response-value 

function, or generalised entropy [GD04], which is given by 

fJ(Pe) := infR(Pe, f) 
f 

=inf E [-log/(MIY)). 
f M,Y~P 

(3.17) 

Recall that here P depends on Nature's strategy Pe. The generalised entropy 

function yields the risk as a function of Nature's strategy, when the optimal 

response for Learner is used. We will show that it is concave, hence it has no 

local maxima. The maximum can hence easily be found, at least numerically, 

using methods from [BV04]. The maximum is achieved for the least favourable 

distribution (the maximin strategy for Nature). This in turn will help us find 

the minimax strategy for Learner. 
Application of Theorem 2.30 yields that the Bayes response f is given by 

f(Mly) = P(M = MIY = y) 

From this, one can easily derive 

fJ(Pe) = Ey [H(MIY)) 

= 'H(Y, M) - 'H(Y) 

= 'H(M) -I(M; Y). 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

This last line is particularly telling. If Nature's mixed strategy is publicly an­

nounced before Learner has to choose his strategy, then Nature must try to min­

imise the amount of information I(M; Y) that the outcome contains about the 

generating model, while on the other hand maximising the uncertainty H(M) 
about the generative model inherent in her strategy. 

Theorem 3.25 ([Fer67, p.90]). If Pe attains maximum generalised entropy, 
then f, defined in (3.18) as the best response to Pe, is a minimax strategy for 

Learner. 

Theorem 3.26. The generalised entropy is bounded. More specifically, 

0::; fJ(Pe) ::; log IMII. 

Proof. We obtain non-negativity by (3.19), using the facts that entropies of 

finite random variables are nonnegative, and that expectations preserve this. 

For the upper bound, consider the (equaliser) strategy of Learner that assigns 

the uniform distribution on models to each outcome. This strategy has risk 

log IMII irrespective of Nature's move. Now observe that this strategy partakes 

in the infimum of (3.17). D 

Theorem 3.27. Sj(Pe) is concave. 

Proof. Given in Appendix B. The proof is analogous to the proof of the con­

cavity of the normal entropy, which can be found in [CT90]. D 
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Corollary 3.28. If the convex hull of each model is closed, then there is a least 

favourable distribution Pe for Nature, i.e. a distribution for which 

..fj(P(3) = sup..fj(Pe). 
Pe 

We note that if the models are closed to begin with, then their convex hull is 

closed too. 

Proof. The generalised entropy function SJ is concave on '.D(T). A concave 

function obtains its supremum on a closed set. Closedness of the convex hull 

of each model implies closedness of their finite union, T, which in turn implies 

closedness of '.D(T). D 

Putting together Theorems 3.25, 3.27 and Corollary 3.28, we obtain the main 

result of this section: 

If the convex hulls of the models are closed, then a least 

favourable distribution exists. Moreover, this distribution can 

easily be found by maximising the concave generalised entropy 

function. The minimax strategy for Learner is the optimal re­

sponse to it. 

Example 3.29 (BBC ctd.). We analyse the behaviour of the binary biased coin 

model for arbitrary biases . Let 

(3.22) 

A strategy for Nature specifies the mixing weights w over P1 and P2. To compute 

the optimal mixing weights, we consider the generalised entropy function . For 

n outcomes, we have 

SJ(w) = Eyn ['H(MIYn)] (3.23) 

Define ntt(Yn) := /{i I Yi= H}/ and nT(Yn) := /{i I Yi= T}/. When clear 

from the context, we will omit the argument yn and just write ntt, nT. Clearly 

ntt + nT = n. For n i.i.d. outcomes, we have 

P1(Yn) = fi(ntt) := anH(l - arT, 

P2(Yn) = h(ntt) := ,BnH(l -,B)nT, 

P(yn,j) = f(ntt,J) := fj(ntt)w(j). 

(3.24) 

(3.25) 

(3.26) 

We expand the generalised entropy, and then combine all terms with the same 

number of heads. 

c; ( ) "'~ P( n .) 1 P(yn,j) 
-'Jn W = - L.,L., Y ,] og P( n I)+P( n 2) 

yn j=l Y ' Y ' 
(3.27) 

n ( ) 2 JC .) 
= - ~ 7 {;f(i,j)log f(i,l)~Jf(i,2) (3.28) 

In Figure 3.4a, we have plotted argmaxwSJn(w) as a function ofn for a = 1/3 

and ,B = 5/6, i.e. the BBC example. Figure 3.4b shows the same function for 

a = 1/ 2 and ,B = 0.6, i.e. the RBC example. Both graphs have been obtained 

by applying the Newton method to the concave function SJn(w). We cannot 

explain the small-scale fluctuations in Figure 3.4a. They are most probably due 

to machine precision issues. 
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Figure 3.4 Least favourable distribution. Both plots show the least favourable 

prior weight of P 1 as a function of n. 

(a) BBC (b) RBC 
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It is strongly suggested by the results of this section that our main result can be 

extended to the case where the convex hulls of the models are not closed. The 

convex hull of a set is not necessarily closed, e.g. in the BC example, the convex 

hull of the second model, the fair coin model, is a half-open interval. There is, 

however, a standard way to obtain closed convex hulls. 

Definition 3.30. Let C ~ !Rn be a set. The closed convex hull of C is defined 

as the intersection of all closed convex sets containing C. The closed convex 

hull of C is the closure of the convex hull of C. 

The current state of research only licenses a conjecture. 

Conjecture 3.31. The minimax strategy f is the Bayes response to the least 

favourable distribution for Nature over the closed convex hulls of the models. In 

particular, when the closed convex hulls have a common intersection, then the 

truth-finding problem is trivial and Learner can do no better than just guessing. 

Regarding Theorem 3.27, one might wonder whether the generalised entropy 

is strictly concave. In general, this is unfortunately not true. For example, take 

some truth-finding problem with finite models, and take some possible world B 

that is in the support of the least favourable distribution. Now duplicate this 

world, i.e. add a fresh world B' to the model M(B), and set PO' := PO· It is easy 

to see that in the truth-finding problem on this new frame, the original least 

favourable distribution is still least favourable . By transferring all probability 

from B to B' we obtain a different least favourable distribution. Any mixture 

of these is least favourable too. We have a continuum of distributions with 

identical generalised entrcpy. 

We believe that the representation of §3.3.2 circumvents this problem. The 

distributions on worlds that are used in the above construction have identical 

associated collapsed strategies. 

Conjecture 3.32. Sj, regarded as a function of collapsed strategies for Nature, 

is strictly concave. 
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3.6 Similarity 

By §3.3.2, each mixed strategy for Nature corresponds to a set of distributions 

on outcomes, one from the convex hull of each model, with associated mixing 

weights. Intuitively, for the least favourable distribution, these partaking dis­

tributions must be similar. Indeed, the more similar they are, the harder it will 

be for Learner to tell them apart on the basis of an outcome. The truth-finding 

problem defines a similarity measure, which we develop in this section. We have 

formulated our notion of similarity in general terms, as we believe that it is of 

independent interest. 
The central question is the following: given an outcome, drawn from a mix­

ture over probability distributions, what do we know about its origin? In other 

words, how hard is it to tell which probability distribution in the mixture was 

used to generated that outcome? 

Definition 3.33. Let Y be a sample space, P = (P1 )JE.:T a family of distribu­

tions on Y, and Q a distribution on .:J. Let P denote the joint distribution on 

.:J x Y defined by P(j, y) := Q(j) · P1(y). We define the Q-similarity of P by 

S(P,Q) = E [-logP(J/Y)) 
(J,Y)~ P 

= E [H(J/Y)] 
Y~P 

(3.29) 

(3.30) 

This definition has the following interpretation. If nature generates an out­

come (Y, J) from P, but only discloses Y, then our uncertainty about J, the 

actual distribution that generated Y, is measured by H(J/Y) . Hence, S(P,Q) 

is the average amount of information we obtain about J from an outcome gen­

erated according to Q. 

Lemma 3.34. For all P ,Q, 

o ::::; S(P, Q) ::::; log /.:JI. 

Proof. For all y, we have 0 ::::; H(J/Y = y) ::::; log /..7/. S is defined as an 

expectation of such entropies, and expectations preserve bounds. 0 

Lemma 3.35. If Q is a point-distribution then 

S(P, Q) = 0. 

Proof. If Q is a point-distribution, then the random variable J is a constant. 

The entropy of a constant is zero, and the expectation of zero is zero. 0 

In the definition of Q-similarity, the mixing weights over the codes are given 

by Q. To obtain a general measure of similarity, we take the worst-case Q­

similarity. That is, we maximise the similarity over all possible mixing weights. 

Definition 3.36. Let P = ( P1) jE.:T be as before. We define the similarity of P 

by 

S(P) = maxS(P,Q) 
Q 
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We believe that there is a connection to the information channel capacity 

(see [CT90, p.184]), defined by 

C := max I(J; Y) 
Q on :r 

= max (H(J) - Ey ['H(JIY)J) 
Q on :r 

(3.32) 

(3.33) 

Intuitively, the distribution Q that attains the maximum in (3.31) minimises the 

average amount of information that the outcome Y transmits about its origin 

J. The exact relation is a matter for future research. 

3.6.1 Koolen distance 

We obtain a binary measure of similarity by instantiating (3.31) with .J = {1, 2}. 

By Lemma 3.34, the binary similarity takes values between 0 and 1. We now 

consider its opposite, which we baptise the K oolen distance, and abbreviate to 

K-distance. It is given by 

dK(P1 , P2) := 1 - S ({Pi,P2}) 

= 1 - max Ey ['H(JJY)] . 
Q on {1,2} 

(3.34) 

This definition raises two natural questions. First: is dK a metric? We will 

show that it satisfies minimality and symmetry, but that it violates the triangle 

inequality. Second: how does the K-distance relate to the Kullback-Leibler 

divergence (Definition 2.25), a well-known distance on probability distributions? 

We provide a partial answer in the form of graphical examples. 

3.6.2 Metric 

Definition 3.37. A function d : X x X --> lR+ is called a metric if for all 

x, y, z E X the following conditions hold: 

d(x, y) = 0 iff x = y 

d(x , y) = d(y, x) 

d(x ,z):::; d(x,y) +d(y,z) 

(minimality) 

(symmetry) 

(triangle inequality) 

(3.35) 

(3.36) 

(3.37) 

We show that dK satisfies minimality and symmetry, but violates the triangle 

inequality. 

Theorem 3.38. By definition, dK is symmetric. 

Theorem 3.39. dK(P1,P2) = 0 iff P1 = P2. 

Proof. Suppose dK(P1,P2) = 0. Then maxQEY ['H(JIY)] = 1. Let Q be a dis­

tribution on {1, 2} that achieves Q-similarity one. By Lemma 3.35, Q(l), Q(2) > 
0. One is the maximum achievable entropy on a 2 element set, hence for each 

y in the support of either P1 or P2, we have 'H(JJY = y) = 1. Only the 

uniform distribution on {1, 2} has entropy 1, hence Q(l)P1(y) = Q(2)P2(y). 

As this holds for all y in the support of P1 or P2, we conclude P1 = P2 and 

Q(l) = Q(2) = 1/2. D 
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Theorem 3.40. dK(P1, P2) violates the triangle inequality. 

Proof. Consider the following counterexample. Let Y be a two-element set. Let 

P 1 place all probability on the first element, P2 be uniform, and P3 place all 

probability on the second element. Then we have 

P1 = (1, 0) 

P2 = (!, ~ ) 
P3 = (0,1) 

dK(P1,P2);:::::: 0.3058 

dK(P2, P3) ;:::::: 0.3058 

dK(P1, P3) = 1 

(3.38) 

(3.39) 

(3.40) 

0 

As an illustration, Figure 3.5 shows the iso-similarity curves for some dis­

tributions on three outcomes. Obtaining the least favourable distribution now 

is equivalent to finding the distributions within the convex hulls of the models 

that are most similar. Of course, for truth finding, the distribution Q that at­

tains the maximum similarity is also of importance, as it is used as the prior on 

models. 

3.6.3 K-distance and KL-divergence 

The Kullback-Leibler divergence, V, is also not a metric. It violates both sym­

metry and the triangle inequality. The asymmetry of the KL-divergence can be 

extreme. When P2 is a point-distribution while P1 is not, then V(P1 llP2) = oo, 

while 0 < D(P2llP1) < 1. 
We show two graphical examples, Figure 3.6 and Figure 3.7. In both we use 

the Bernoulli model, because specification of a Bernoulli distribution requires 

a single parameter. In Figure 3.6, we show a contour plot of the K-distance 

and the KL-divergence. The asymmetry of the KL-divergence is clearly visible. 

Then, in Figure 3.7, we show both K-distance and KL-divergence in a single 

graph, for several P1 , as a function of P2. 

3. 7 Discussion 

This section collects various observations about the truth-finding problem. 

3. 7.1 Equaliser strategies 

Consider the case when T is finite . Then the convex hull of each model is 

closed. We have shown that there is a minimax strategy f for Learner, and a 

least favourable distribution Pe for Nature. Let V be the value of the truth­

finding game. Then for all B we have 

R(B,f) ~ V, 

with equality if Bis in the support of Pe. Hence f is almost an equaliser strategy. 

It guarantees risk exactly V for the possible worlds that Nature uses in the least 

favourable distribution, and at most V for all other worlds. 
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Figure 3.5 !so-similarity graphs 

Figure 3.6 K-distance vs KL-divergence I. Contour lines of both loss measures 

on the Bernoulli model. The vertical axis shows P1 (H), the horizontal axis 

P2(H). 
(a) K-distancedK(P1,P2) (b) KL-divergence 'D(P1 llP2) 
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Figure 3.7 K-distance vs KL-divergence II. Graphs of dK(P1 ,P2) (solid) and 

V(P1 llP2) (dotted) as a function of P2(H). 
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3.7.2 Log loss non-decomposability 

We have used the log loss as an integral part of our exposition. In particular, 

we have regarded the probability distribution that Learner plays at the end of 

the truth-finding game as part of a pure strategy. It may seem that equivalently, 

we can use a loss function that is defined directly on models, and let Learner 

choose models instead of distributions, and then play a mixed strategy. This is 

not the case. Recall that the log loss is defined by 

L(M, m) := - log m(M). 

We claim that there is no loss function d : M x M --> lR such that 

Vm'<IM : L(M, m) = EM~m [d(M, M)]. 

Consider the following two simplified belief games on a finite set M: 

Q1 = (M, '.D(M) , L) and Q2 = (M,M,d). 

In both games, Nature picks an element M EM, which we call the truth. 

1. Learner picks, as a pure strategy, a distribution m E '.D(M) . We say that 

Learner puts his belief on the table. The loss for Learner is given by the log 

loss. 

2. Learner picks, as a pure strategy, a model M E M. We say that Learner 

makes a guess. The loss for Learner is given by d(M, M'). Of course, 

Learner can also play a mixed strategy, that is, a distribution m E '.D(M). 

His risk is then given by 

R(M,m) = EM~m [d(M,M)]. 

Theorem 3.41. There is no function d such that game 1 is identical to game 2. 

Formally, for every function d : M x M --> JR, and for every strategy M E M for 

Nature, there is a strategy m 1 for Learner in game 1 such that for all strategies 

m2 for Learner in game 2 we have L(M, m1) I= R(M, m 2). 
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Proof Let d be a function as above, and pick an arbitrary strategy M E .MI for 

Nature. Let m = maxM' d(M, M') and m' = max(O, m). Then define 

{

2 -m'-l 

m1(M') = I-rm' - 1 

/M/-1 

ifM'=M, 

otherwise. 
(3.41) 

It is clear that for all m2 E '.D(.MI), R(M, m2) s; m', but on the other hand our 

definition ofm1 ensuresL(M,m1) = -log m(M) = -log2-m' - 1 = m'+l. 0 

3.7.3 Truth-finding in context 

In this chapter, we have introduced truth finding as a framework of learning. 

Two other important frameworks for learning are prediction and compression. 

As an important first step toward understanding the relations between these 

three frameworks, we provide an exposition of assumptions and performance 

criteria of each. 
Let X be a finite alphabet. We write xw for the set of infinite sequences 

over X. Let let P* be a probability measure on xw, called the truth. Let 

(Xi)i<w be discrete random variables, X; giving the i-th outcome. We will be 

concerned with prefixes of outcomes. We define the random variable xn by 

xn(x) := (X;(x))i<n and abbreviate xn := (xi)i<n· We assume for simplicity 

that n is fixed. The above three frameworks are formalised as follows. 

Prediction Given xn = xn, produce a probability measure P on the next 

outcome Xn+ 1 . Then observe Xn+I, the next outcome. The loss of P is given by 

- log P(Xn+I = Xn+I ). The risk of P, after observing xn but before observing 

Xn+I, is given by Ep· [-log P(Xn+I) I xn = xn] . More generally, let P(-IXn = 

xn), with abuse of notation, be a function that assigns a probability measure 

on X to each n-sequence. Then the overall risk of P is given by 

Compression Produce a probability measure P on infinite sequences, then, 

given xn = xn, the loss of p is given by the compressed length of xn, that is, 

- log P( xn = xn) . The risk of P is given by 

Truth finding Assume that T is a measurable space, with P* E T. Let 

(M i)i<m be a family of disjoint events that cover T, and let M* be the unique 

such event that contains P*. Given xn = xn, produce a probability measure 

P on T. The loss of P is given by - log P(M*). Again more general, let 

P( ·IXn = xn) be a function that assigns a probability measure on T to each 

n-sequence. Then the overall risk of P is given by 
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Figure 3.8 Three types of learning 

Goal Type 

Prediction 

Compression 
Truth finding 

P : ;r --+ '.D(X) 
P E '.D(Xn) 
P : xn --+ '.D(T) 

3. 7. Discussion 

llisk 

Ep· [-logP(Xn+1/Xn)] 
Ep. [-logP(Xn)] 

Ep· [- log P(M*/Xn)] 

Comparison Note that each framework expresses losses and risks in idealised 

bits, the unit of uncertainty. This is to be expected from a statistical learn­

ing framework. Prediction and compression are most easily related; prediction 

equals compression of the next outcome, with complete knowledge of the past. 

In other words, the loss of prediction is the discrete derivative of the loss of 

compression. Prediction can be based on a probability measure P' on xw by 

using P(X = xlXn = xn) = P'(Xn+l = x!Xn = xn), where the latter is a 

proper conditional probability. The best compressors are not necessarily the 

best predictors and vice versa, as is shown in [vE06]. 

In practice, prediction and compression are often based on Bayesian universal 

models. The following section discusses the relation between truth finding and 

Bayes. 

3. 7.4 Truth-finding and Bayes 

Procedurally, a Bayesian approach to any inference (i.e. learning) problem con­

sists of three steps. 

1. Obtaining a prior distribution on possible states of nature. In the case of 

truth finding, these are the possible worlds. 

2. Updating the prior distribution using data, obtaining the so-called poste­

rior distribution. 

3. Using the posterior distribution to make the required inferences. In truth 

finding, this means producing a distribution on models. 

Our solution to the worst-case truth-finding problem is Bayesian, according to 

this definition. This is surprising, as we perform a worst-case analysis, which ex­

plicitly disregards any prior belief. Of course, philosophically, our truth-finding 

solution is not Bayesian. 
A Bayesian constructs a prior distribution that reflects his prior belief about 

the actual world . Consequently, his choice will not depend on the number of 

outcomes that he is going to observe. Moreover, in the absence of specific prior 

knowledge, one would consider most worlds possible, and would not have any 

strong preference for one world over another, which a Bayesian would reflect in 

a smooth, fairly uniform prior. 

The prior distribution on possible worlds that we obtain for truth finding is 

the least favourable distribution. This distribution is a mixed strategy for Na­

ture . We use this prior distribution, because the minimax strategy for Learner 

happens to coincide with the optimal response to the least favourable distribu­

tion. The least favourable distribution depends on all components of the truth­

finding frame, and, in particular on the number of observations that Learner will 
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receive from Chance. Furthermore, the least-favourable distribution is particu­

larly non-uniform and non-smooth. For closed convex models, we have shown 

that its support contains exactly one (!) point per model, the most similar 

points of §3.6. 
Our worst-case analysis of the truth-finding problem provides ample motiva­

tion for using the least favourable distribution. In particular, it provides the best 

guaranteed bounds on loss, even when it is not true. Our method constructs a 

distribution on models from data, using the least-favourable distribution as a 

prior. The probabilities that we assign to models can always be interpreted as 

code lengths, expressing our uncertainty about the true model. If Nature does 

play worst-case optimal, i.e. using the least favourable distribution, then the 

probability that we assign to each model is its conditional probability given the 

data. Only if the least favourable distribution corresponds to the prior belief 

of a true Bayesian can our distribution on models be regarded as the Bayesian 

posterior distribution. 

3.8 Conclusion 

In this chapter, we introduced truth finding. We formalised it as the truth­

finding problem: given a list of models, use data sampled from reality to obtain 

as much information as possible about the true model in the worst case. We re­

formulated the truth-finding problem as a game between Nature and Learner. We 

first gave the extensive form of this game, and then transformed it into normal 

form. We showed how strategies for both players can be represented. Strategies 

for Learner equal stochastic matrices. Strategies for Nature can be identified 

with distributions from the convex hull of the models, weighted according to a 

prior on models. We proved that the truth-finding game has a value, and that 

Learner has a minimax strategy. Then we showed that this minimax strategy 

can be obtained from the least favourable distribution for Nature, which can be 

obtained by optimising the generalised entropy function. We proved that this 

function is concave, hence the optimisation problem is easy. To find the least 

favourable distribution for Nature, we need to find similar distributions, one 

from the convex hull of each model. We extracted a formal definition of simi­

larity from the truth finding setting, which seems very natural. We formulated 

it in general terms for future research. We related truth finding to prediction 

and compression, regarded truth finding from a Bayesian perspective. Although 

conforming to Bayesian practice, we showed that truth finding violates Bayesian 

philosophy in several ways. 

3.8.1 Open questions 

• Can a distribution on models, obtained by truth finding, be used for pre­

diction? If so, how, and is it any good? 

• What is the exact relation between the closed convex hull and extended 

Bayes distributions? 

• What happens when there is no common world in all models, but a subset 

of the models does intersect? How trivial is that problem? 
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• We have analysed truth finding with the log loss. Are there other natural 

loss measures for truth finding, and if so, how do the obtained distributions 

on models differ? 

• How exactly is similarity related to channel capacity? 
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Chapter 4 

Experiment design 

The previous chapter introduced truth finding. In truth finding, the data are 

considered given. This chapter discusses the extension of truth finding with 

experiments, called experiment design. Here, the data are obtained as outcomes 

of experiments, and the learner can select which experiment is performed. 

We show that, once the selection of experiments has been fixed, the re­

maining problem is an instance of the truth-finding problem. We covered the 

truth-finding problem in Chapter 3. In this chapter, we will be concerned with 

the selection of experiments. For simplicity, we first cover the case where only 

a single experiment can be performed. We will show that performing many 

experiments in parallel is covered by this case. Then we will turn to the more 

interesting case of truly sequential experiment design. 

The structure of this chapter parallels the development of Chapter 3. In 

§4.1, we introduce the two examples that motivated this research: polynomial 

regression and the balance scale. Then, in §4.2 we formalise the arena of the 

experiment-design problem as the experimentation frame. We introduce the 

experimentation game in §4.4. We solve the experiment-design problem, i.e. 

obtain the minimax strategy for Experimenter, in two stages. First, in §4.5 we 

consider pure and mixed single-experiment strategies. Then, in §4.6 we turn to 

pure and mixed sequential strategies. In each of these four cases, we show that 

an experimentation strategy for Experimenter induces a truth-finding subgame, 

and explicitly extract its arena, the induced truth-finding frame. We conclude 

and summarise in §4.8, and give directions for future research. 

4.1 Examples 

We start by introducing two examples. These examples will be revisited in §4.7. 

Each example contains the following components. 

• A set of outcomes 

• A set of possible worlds 

• A classification of possible worlds into models . 

• A set of experiments 
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• Experimental mechanics, conveniently represented here by 

- A regression function 

- Noise 

The first three are also used in truth finding. The set of experiments is the 

new ingredient for experiment design, and the experimental mechanics replace 

the (ordinary) mechanics of truth finding. Experimental mechanics specify the 

distributions of outcomes given experiments. 

4.1.1 Polynomials 

We are given an interval, say [-1, l], and a (possibly infinite) set of polynomials. 

We assume that a certain polynomial from this list is the true (but unknown) 

polynomial, and that it is our task to learn the answer to a specific question 

about this polynomial. We consider the following natural questions. 

• Identity: which polynomial is it? 

• Degree: what is the highest exponent occurring with non-zero coefficient? 

• Parity: is the degree even or odd? 

Each question induces an equivalence relation on the set of polynomials, relating 

the polynomials with identical answers. The equivalence classes form a partition 

of the set of polynomials; in our setting we call them models. Hence answering 

such a question amounts to finding the true model. 

To be able to discover the answer to one of these questions, we can perform 

experiments thus: first we pick a point ~ in the given interval, and then we 

receive the value y of the polynomial e at the given point, perturbed by nor­

mally distributed noise. This statement is formalised by the following regression 

relation: 
( 4.1) 

Here N(µ, CT 2 ) is the standard normal distribution with meanµ and variance CT 2 . 

Note that under this noise function - whichever polynomial is the truth - any 

outcome is possible, though large deviations from the mean are very unlikely. 

This means that there will always be uncertainty in our inferences. 

4.1.2 Balance scale 

This example is based on a well-known riddle, where, using a balance scale, one 

has to find the odd ball among twelve indistinguishable balls. We are given 12 

numbered balls and a classical balance scale, like the one shown in Figure 4.1. 

We are given for a fact that exactly one of the balls is heavier or lighter than 

all the others. We are to the answer to one of the following questions through 

experiment: 

• Index: which ball is the odd ball? 

• Weight: is the odd ball heavier or lighter? 

• Both: which ball is odd, and is it heavier or lighter? 
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An experiment is performed by placing some balls in the left scale pan, and 

placing equally many different balls in the right scale pan. The observed outcome 

is one of LEFT, EVEN and RIGHT. For example, LEFT means that the scale 

indicates that the content of the left scale pan is heavier than that of the right 

scale pan. 
Let L, R be disjoint equinumerous sets of balls, and let i and w be the index 

and the weight of the odd ball. Then the true outcome of the balance scale, 

when the balls in L and R are placed in the left and right scale pan, is given by 

the following regression function: 

LEFT if i EL and w =HEAVY, 

LEFT if i E R and w = LIGHT, 

Ti,w(L, R) := RIGHT if i E R and w = HEAVY, ( 4.2) 

RIGHT if i E L and w = LIGHT, 

EVEN otherwise. 

It is a classical puzzle problem to find both the index and the weight of the 

odd ball using three sequential experiments. 1 To make the problem harder, we 

assume that the observations are noisy. This might be caused, for example, 

by wind. We assume that the probability of observing each outcome is related 

to the truth by an error matrix, a 3 x 3 matrix that specifies a probabilistic 

function from true outcomes to observed outcomes. Examples of error matrices 

are shown in Figure 4. 2. 

4.2 Formalisation 

We formalise the setting described in the introduction to this chapter. Then we 

give the formal statement of the experiment-design problem. 

4.2.1 Frames 

Definition 4.1. A quintuple 

J = ( Y , T , MI,::::, (Po,E) OET,EES) 

is called an experimentation frame, or frame for short, if the following conditions 

hold: 

Figure 4.1 Balance scale 

1 An online statment of and solution to this puzzle is given http://www . iwriteiam.nl/ 

Ha12coins. html. 
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Figure 4.2 Two error matrix examples 

(a) Uniform error (b) Neighbour error 

..c: _.., 
::l ..... _.., 

outcome outcome 

LEFT EVEN RIGHT LEFT EVEN RIGHT 

LEFT 0.8 0.1 0.1 ..c: LEFT 0.9 0.1 0 _.., 
EVEN 0.1 0.8 0.1 ::l EVEN 0.1 0.8 0.1 ..... 

0.1 0.1 0.8 
_.., 

0 0.1 0.9 RIGHT RIGHT 

• Y is a sample space, called the outcome space. We refer to the elements 

of Y as outcomes. 

• T is a sample space, called the possible world space.. We refer to the 

elements of T as possible worlds. 

• M is a partition of T, called the set of models. 

• :::: is a set. We refer to the elements of :::: as experiments. 

• Pe.E is a probability distribution on Y for each possible world e and ex­

periment~· We write p (y!B,0 for Pe,€(y). We call (Pe,E)eET,EEB the 

experimental mechanics. 

The requirements on the first three components are exactly the same as for 

truth-finding frames , which are defined in §3.1.1. The set of possible worlds 

contains all the different states of nature that we consider. We do not know 

what reality is, but we assume that we can always perform any of the given ex­

periments. When performing an experiment, the outcome depends on chance, 

but moreover, the generating distribution depends on the actual world through 

the experimental mechanics. This dependence, which is modelled by the exper­

imental mechanics PO,E , is key to discovery. 

4.2.2 Experiment-design problem 

The experiment-design problem can now be succinctly stated thus: given an 

experimentation frame J, choose experiments intelligently, to obtain as much 

information about the true model as possible. In more detail, the actual world 

B* E T must be classified according to M. We assume no prior knowledge about 

reality, but, by performing an experiment and observing its outcome, we can 

obtain information about the true model. The experiment-design problem then 

consists of two subproblems: 

1. Choosing the experiment to perform. 

2. Obtaining information about the true model from the observed outcome. 

The second subproblem is solved in Chapter 3. Recall that to measure the 

amount of information that the learner has about the true model, we use the 

log loss. The first subproblem is the central problem of this chapter. 
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4.2.3 Formalisation of the examples 

A concise summary of the examples is given in Table 4.1. We explicitly list all 

the components of the experimentation frames for the polynomial example, and 

for the balance scale example. In §4.7.1 we describe how an experimentation 

frame is obtained from a regression function and noise. 

4.3 Assumptions 

The assumptions that are relevant to truth finding, as given in §3.1.4, remain 

relevant for experiment design. In addition, we must assume 131 2: 2 for there to 

be an experiment-design problem. We add the following assumption to simplify 

analysis. 

Assumption 4.2. The set of experiments 3 is finite. 

This assumption is satisfied by Example 1.2, the anvil drop, from the in­

troduction. Here the number of experiments is six, the number of floors of the 

Tower of Pisa. The balance scale example also has a finite number of experi-

ments, namely 
6 

( 12 ) 2:: .. 12 - 2 · = 73789. 
i=O i, i, i 

In the case of polynomials, the number of experiments is uncountable. There, 

we need to approximate the interval [-1, 1 J using finitely many points to satisfy 

the above assumption. 

4.4 Experimentation game 

The experiment-design problem is a worst-case optimisation task. To analyse 

it, we model it as a game, which we call the experimentation game. This al­

lows us to find the solution in terms of a worst-case-optimal learning strategy. 

The players in the experimentation game are called Experimenter, Nature and 

Chance. Nature initially chooses the actual world, thereby fixing the true model. 

Then Experimenter tries to find out as much as possible about t he true model 

by intelligently selecting experiments. We use the impartial player Chance to 

model the generation of an outcome for each experiments. Experimenter per­

forms several experiments sequentially. This means that his choice of the next 

Table 4.1 Overview of examples 

Polynomials Balance scale 

Outcomes 
Possible worlds 
Models 

Experiments 
Regression fn. 
Noise 

y = IR 
T ~ IR* 
identity, order 
parity 
3 = [O, l] 
8 ET 
N(O, u 2 ) 

Y ={LEFT, EVEN, RIGHT} 

T = [l . .. 12] X {HEAVY, LIGHT} 

identity, index, weight, colour 

:::: = { (L, R) I L n R = 0 A ILi = IRI} 
ri,w 

error matrix 
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experiment may depend on all previous data: experiments and outcomes. After 

all experiments have been performed, we measure the amount of information 

that Experimenter lacks about the true model using the log loss. 

The protocol of the experimentation game is shown in Protocol 4.1. Its 

extensive form is illustrated in Figure 4.3, where we show the game tree for the 

case where a single experiment is performed. Note that Experimenter makes a 

move twice. On the second level of the tree, Experimenter chooses an experiment. 

On the fourth level, he expresses his belief about the true model as a distribution 

on models. Information sets, i.e. clusters of positions thar are indistinguishable 

to Experimenter, are indicated by dotted lines. 

To solve for the worst-case-optimal strategy for Experimenter, we transform 

the experimentation game into normal form. We first discuss the pure strategies 

that both players have at their disposition. Our approach is similar to that 

of [GD04] and [Fer67], although our games have much richer internal structure. 

We proceed as follows. In §4.5 we cover the simple case n = 1, where 

Experimenter performs a single experiment. We then turn to truly sequential 

experimentation in §4.6. In each case, a strategy for Experimenter consists of two 

parts. We call the first part the experimentation strategy, and the second part 

the learning strategy. The experimentation strategy dictates which experiments 

will be performed in each execution of step 3 of Protocol 4.1. 

We will show that, once the experimentation strategy has been fixed, the 

remaining subgame is an instance of the truth-finding game. Experimenter's 

learning strategy is the strategy that he wields on this subgame, and his loss 

on the expermentation game as a whole coincides with his loss on the induced 

truth-finding subgame. In §3.4.2 we proved that the truth-finding game has 

a value, and showed how to compute a minimax strategy. This perspective 

allows us to choose the optimal learning strategy for Experimenter, once the 

experimentation strategy has been fixed. 

Protocol 4.1 The experimentation game 

Arena: Experimentation frame J = ( Y , T, Ml, 3, (Po.~ )ilET.~E:=::)· 
Require: Number of experiments n. 

1: Nature covertly chooses a hypothesise*. Say M(e*) = M* . 

2: for n turns do 
3: Experimenter chooses an experiment~· 

4: Chance generates an outcome y according to Po·,€ · 

5: end for 
6: Experimenter expresses his belief as a probability distribution m on models. 

Loss: Experimenter suffers - log m(M*). 

4.5 Single experiment 

The basis of game-theoretic analysis is the pure strategy. The strategies for 

Nature in the experimentation game are the same as those in the truth-finding 

game: Nature plays a possible world. In this section, we analyse the experimen­

tation game in case only a single experiment is allowed. We first describe pure 

strategies for Experimenter, and provide a method to find the minimax strat-
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Figure 4.3 Experimentation game tree for n = 1 

Nature 

Experimenter 

Chance 

Experimenter 

egy. We then show that Experimenter must consider mixed strategies, by giving 

an example where Experimenter can, using mixed strategies, obtain substantially 

lower risk than when using pure strategies. Finally, we describe mixed strategies 

for Experimenter, and give references to known methods to obtain the minimax 

mixed strategy. 

4.5.1 Pure strategies for Experimenter 

In the experimentation game, Experimenter moves twice. In his first turn, he 

chooses an experiment. Then, for each possible outcome, he must produce a 

distribution on models in his second turn. 

Definition 4.3. A pair (~, !) is called a pure strategy for Experimenter if 

• ~ E 3 . We call ~ the experimentation strategy. 

• f : Y --> '.D (M). We call f the Leaming strategy. 

The pure strategy (~, !) instructs Experimenter to perform experiment~' and to 

subsequently, on observing outcome y, report the distribution f(y) on models. 

We can now define Experimenter 's risk for the play() vs (~, !) . 

Definition 4.4. Let() and (~,!) be pure strategies for Nature and Experimenter. 

The risk of the play B, (~, !) is given by 

( 4.3) 

This risk has a clear interpretation: it is the expected amount of information 

about the true model, expressed in bits, that Experimenter still lacks after ob­

serving the outcome of experiment ~ -

The difference between the truth-finding risk (3.3) and the experiment-design 

risk ( 4.3) is the presence of the experiment parameter in the distribution over 

which the expectation is taken. If we fix ~, then this difference disappears. 
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Definition 4.5. Let J be an experimentation frame, and fix~ E 3. Then the 

~-subframe of J is given by 

( 4.4) 

Obviously, JE is a truth-finding frame, where the outcome that the learner 

obtains is actually the outcome of experiment~· 

Recall from §3.4.2 that the truth-finding game on J has a value, which we 

denote by V(J) . This means the following (using R.r for the truth-finding risk) 

sup inf R.r(Pe, f) = V(J) = inf sup R.r(Pe, f). 
Pe I I Pe 

The following theorem reduces the experiment-design problem to a number of 

truth-finding problems on subframes. Note that we allow Nature to play mixed 

strategies, and we use the convention that the risk function, when applied to a 

probability distribution, is interpreted as the expected risk. 

Theorem 4.6. For all ~ E 3, 

inf sup R(Pe, (~, f)) = V(Je)· 
I Pe 

Proof. By definition. D 

For each experiment ~ E 3 we can, using Chapter 3, compute the corre­

sponding minimax strategy fE in the truth-finding game on Je. Hence the 

experiment-design problem with pure strategies for Experimenter is a finite op­

timisation problem. Experimenter is faced with 131 many choices, each choice 

leading to an essentially unrelated2 instance of the truth-finding game on a sub­

frame. To find the overall minimax strategy, Experimenter computes the value of 

the truth-finding game on each subframe, and chooses an experiment for which 

the resulting truth-finding risk is least . 
The algorithm that is sketched in the previous paragraph computes the mini­

max pure strategy for Experimenter, thereby solving the experiment-design prob­

lem restricted to pure strategies. Unfortunately, this is of little use, as playing 

mixed strategies can be significantly better for Experimenter. 

4.5.2 The necessity of mixed strategies 

The following example illustrates that Experimenter can reduce the worst-case 

risk by using mixed strategies, even when only a single experiment is performed. 

Mixed strategies will be worked out in detail in the next section. 

Example 4. 7 (Bribed jury). Consider a judge - our Experimenter - that 

wants to know whether the jury has been bribed. There are two shady members 

within the jury, call them A and B. To fix the jury's verdict, it suffices to bribe 

a single member. The judge has the power to command a search on one of 

them. A search can either yield incriminating evidence, say a lot of cash, or no 

2 In theory, the experimental mechanics can be completely unrelated for all possible worlds and 

all experiments . In practical applications, however, the experimental mechanics are often not 

arbitrary, and relations between different subframes abound. 
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such evidence. We set Y = {CASH, NOTHING}. The possible worlds are given by 

T = {A, B, 0}, where we use 0 for no bribe. The models are given by 

M1 = {A, B} bribed jury 

M2 = {0} fair jury 

(4.5) 

(4.6) 

We call the experiments A, and 13. The experimental mechanics are given by 

p CASH NOTHING 

A A 1 0 
13 0 1 

B A 0 1 
13 1 0 

0 A 0 1 
13 0 1 

Now say the judge commits herself to A, that is, she will have jury member 

A searched. Now the worst that can happen is that Nature plays the uniform 

distribution on {B, 0}. The judge's experiment will yield no information, and 

the best she can do is just guess blindly between M1 (bribed jury) and M2 
(fair jury), incurring loss 1. Analogously, if she commits to performing 13, she 

will obtain no information in the worst case. 
On the other hand, if the judge uses the uniform distribution on {A, 13}, then 

the risk of her minimax truth-finding strategy is only 0.6942. By symmetry of 

the experimental mechanics, the uniform distribution on experiments must be 

optimal for Experimenter. The least favourable distribution for Nature, and 

Experimenter's best response are shown in Figure 4.4. Figure 4.5 shows the 

shape of the generalised entropy surface, which will be explained in the next 

section. 

4.5.3 Mixed strategies for Experimenter 

A mixed strategy is a probability distribution on pure strategies. Let P F be 

a mixed strategy for Experimenter. Such a strategy has the following interpre­

tation. Take (~, f) from the support of P F· Then with probability P F( (~,f) ), 

Figure 4.4 Bribed jury example optimal strategies. (a) shows Nature's worst­

case-optimal distribution on possible worlds. Note that both the prior on worlds 

and the derived prior on models are non-uniform. (b) shows the optimal exper­

imentation strategy for Experimenter. ( c) shows the optimal learning strategy 

for Experimenter. 
(a) Nature (b) Experimenter (c) Experimenter 

() Pe ( B) ~ e(~) ~ y m(Mi) m(M2) 

A 0.2765 A 1/2 A CASH 1 0 
B 0.2765 13 1/2 A NOTHING 0.3822 0.6178 

0 0.4470 13 CASH 1 0 
13 NOTHING 0.3822 0.6178 
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Figure 4.5 Generalised entropy for Bribed Jury. To reduce dimensionality, we 

fixed Pe(M 1) = Pe(M2) = 1/2. Both (a) and (b) show SJ(Pe,e) as a function 

of Pe(AIM 1) and e(A) . Linearity of SJ(Pe , e) in e for fixed Pe can be seen in 

(a), because for each Pe, the graph is a straight line. It can also be seen in (b) 

where the intersection of the contour lines with any horizontal line yields a set 

of equidistant points. ( c) shows the point-wise maximum for Nature (solid) and 

minimum for Experimenter (dotted) . 
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Experimenter will perform experiment ~' and subsequently use f in the truth­

finding problem on Je . The risk for mixed strategies is obtained by taking 

expectations over (4.3). 

Definition 4.8. Let Pe, P F be mixed strategies for Nature and Experimenter. 

The risk of the play Pe, P F is given by 

R(Pe,PF):= E E E (L(8,F(Y))) 
e~Pe (X,F)~Pp Y~pe,x 

(4.7) 

Here, (X, F) is a random variable, ranging over strategies for Experimenter, that 

is distributed according to Experimenter's mixed strategy P F· By Definition 4.3, 

X is an experiment, and F is a learning strategy, i.e. a function that, given data, 

produces a distribution on models. 8 , the actual world, is distributed according 

to Nature's mixed strategy Pe. 

In §3.2.5, we showed that it is never beneficial for Learner to use a mixed 

strategy in the truth-finding game. So without loss of generality, we can restrict 

attention to mixed strategies P F that have functional support. A mixed strat­

egy P F has functional support if for each experiment ~ with positive marginal 

probability, the conditional distribution P F(FIX = 0 assigns all its probabil­

ity to a single learning strategy. We call the unique such learning strategy fe 

(When~ has zero marginal probability, we can choose any fe)· Using this, the 

risk simplifies to 

R(Pe,PF)= E E E (L(8,fx(Y))). 
e~Pe X~Pp Y~pe,x 

We have decomposed a mixed strategy in a probabilistic component, the 

generation of the experiment, and a deterministic component, the selection of 

the distribution on models. The distribution on models is chosen as a function 

of both the experiment and the outcome. The following definition makes this 

decomposition explicit. 

Definition 4.9. A mixed strategy for Experimenter in simple form is a pair 

(e, f), where e E '.D(3), and f: 3 x Y-> '.D(M) . 

A mixed strategy P F can be simplified thus: 

e(o := PF(O , 

!(~ , y) := fe(y). 

Our final simplification of the loss can now be given. 

(4.8) 

(4.9) 

Definition 4.10. When Pe is a mixed strategy for Nature, and (e, f) is a mixed 

strategy for Experimenter in simple form, then the risk of the play Pe, (e, f) is 

given by 

R(Pe, (e, f)) = E E E [L(e, f (X, Y))] . 
e~Pe x~e Y~pe,x 

( 4.10) 

For fixed e, we arrive at the following crucial observation: the experiment­

design risk (4.10) is equal to the truth-finding risk (3.5), when we regard the 

experiment as part of the data. The innermost two expectations of ( 4.10) specify 

that Chance draws a pair (X, Y), and this pair is subsequently provided to f 
to determine the distribution on models. The following definition integrates the 

experiment into the data. 
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Definition 4.11. Let J be an experimentation frame, and e a distribution on 

~ . Then the e-reduct of J is given by 

Je := ( Y x ::::, T, MI, (p~)oET), (4.11) 

where for each possible world e, the distribution p~ on y x :::: is defined by 

P~(y, O := Pe.o(y)e(o. 

Again, Je is a truth-finding frame. This definition generalises Definition 4.5 in 

the following way. If we take a distribution e that concentrates all probability on 

a single experiment~, then for all BET and y E Y we have Po,e(Y) = p~(~, y). 

The data in the e-reduct Je are experiment/outcome pairs, while the data in the 

~-subframe Je are just outcomes. Other than that, their behaviour is identical 

for point distributions. 

We put this definition to use in the following generalisation of Theorem 4.6. 

Theorem 4.12. For all e, 
infsupR(Pe , (e,f)) = V(Je) · 
f Pe 

Proof. As the reader may check, this is purely a matter of definition. D 

We are interested in finding the minimax experimentation strategy for Ex­

perimenter. Using the above simplification, we need to find the e that attains 

inf V(Je) = inf inf sup R(Pe, (e, f)) 
e e f Pe 

(4.12) 

We now apply the two results of Chapter 3: the minimax theorem for truth­

finding (see §3.4.2), and the derivation of the game value in terms of the gener­

alised entropy function (see §3.5.2). We obtain: 

infV(Je) = infsupSJ(Pe,e), 
e e Pe 

( 4.13) 

where we denote by SJ ( p e, e) the doubly generalised entropy, which, for each e, is 

defined as the generalised entropy in the truth-finding game on the e-reduct Je. 
One can easily adapt the formula that we obtained for the generalised entropy 

(3.19) to: 

SJ(Pe, e) = E [H(M/X, Y)) 
X,Y 

= H(M) - I(M; X , Y), 

(4.14) 

(4.15) 

where the discrete random variables M, X and Y are jointly distributed accord­

ing to 

P(M, ~, y) = e(~) JM p(y/B, OPe(dB). 

The previous lines cannot be reduced further; the doubly generalised entropy 

function inextricably intertwines the mixed strategies for Nature and Experi­

menter. In Chapter 3 we used concavity of the generalised entropy function to 

obtain the minimax strategy for Learner. Unfortunately, the doubly generalised 

entropy function is not concave. Still, it is of a sufficiently manageable kind, as 

shown by the following theorem. 
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Theorem 4.13. The generalised entropy .fj is concave-linear, i.e. Sj(Pe, e) is 

1. a concave function of Pe for fixed e, and 

2. a linear function of e for fixed Pe. 

Proof. We cover each claim separately. 

1. Theorem 3.27. 

2. Rewrite the generalised entropy as 

[ 
P(Y,M/X)] 

Sj(Pe, e) = ~ M.~IX - log P(YIX) 

and observe that only the outermost expectation depends on e. 

(4.16) 

D 

A linear function is both concave and convex, so .fj is both concave-convex 

and concave-concave, the latter also being called separately concave. Theo­

rem 4.13 does not imply that .fj is concave. In all but the most trivial cases it 

is not; see Figure 4.5 for a counterexample. 
By ( 4.13), to find the minimax experimentation strategy we need to find 

the saddle-point of the doubly generalised entropy function. There is a re­

spectable amount of literature on concave-convex functions. An overview is 

given in [BV04]. This book contains conditions under which a concave-convex 

function has a saddle-point. The authors describe two classes of algorithms to 

find this saddle-point, called Newton methods and Barrier methods. The method 

that can be applied to our setting depends on the structure of the models. We 

did not explicitly try this; deeper research into this subject matter is planned 

for future work. 

4.5.4 Bayesian Maximum Entropy Selection 

By (4.14) , the minimax optimal experimentation strategy is the strategy e that 

attains 
infsup.fj(Pe,e) = infsup E ['H(MIX, Y)]. 
e Pe e Pe X,Y 

A Bayesian experimenter has her own means of establishing a prior distribution 

Pe for Nature. Fixing this distribution simplifies matters considerably. The 

doubly generalised entropy function is a linear function of e for fixed Pe by 

Theorem 4.13. This implies that the minimum will be achieved for a point­

distribution. Hence, a Bayesian can restrict attention to pure strategies, select­

ing an experiment (there could be more than one) that attains 

minEy ['H(MI~ , Y)]. 
€ 

This criterion for experiment selection is known in the literature on Bayesian 

experiment design by the name of Maximum Entropy Selection (MES). See for 

example [SWOOJ. The term MES stems from the following application of the 

chain rule of entropy (2.6) : 

'H(Y, Ml~) = 'H(YIO + Ey ['H(MIY, ~)] . 

Under the common assumption that 'H(Y, Ml~) does not depend on~' minimis­

ing Ey [H(M/Y,~)] is equivalent to maximising 'H(YI~) . 
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4.5.5 Multiple independent experiments 

The case where multiple experiments are performed independently can easily be 

reduced to the single experiment case using the following experimentation frame 

construction. In most general form, n outcomes are generated by n specified, 

possibly different experiments. 

Definition 4.14. Let J be an experimentation frame, and n a number of out­

comes . Then-fold product fram e is given by 

( 4.17) 

where 
n 

Pe,(n (yn) := IT P O,(; (Yi)· 
i=l 

A product frame models the situation where we perform n experiments si­

multaneously. Naturally, these experiments are all performed on the same world, 

as the state of nature is constant. The n outcomes are generated independently. 

A product frame models experimentation in parallel. We now turn to sequential 

experimentation. 

4.6 Sequential experimentation 

In the following, let n ~ 2 be the number of sequential experiments. In sequen­

tial experimentation, as specified by steps 3 and 4 of Protocol 4.1, Experimenter 

and Chance alternately choose an experiment and an outcome. We call the 

sequence of their combined choices the data. At each position in the experi­

mentation game where Experimenter is to move, we refer to the data that have 

been generated so far as the history. There is a one-to-one correspondence be­

tween histories and information sets for Experimenter in the extensive form of 

the experimentation game. 

4.6.1 Pure strategies for Experimenter 

A pure strategy for Experimenter assigns a move - an experiment - to each non­

terminal history. Taking this literally, we obtain a viable but slightly baroque 

definition of strategy, because such a strategy must assign experiments to his­

tories that can never be reached. For example, if the strategy dictates perfor­

mance of .;1 in the empty history (), then any history that commences with 

6 is unreachable. Without loss of generality, we use the following compact 

representation of strategies instead . 

Definition 4.15. A pair (s, f) is called a pure strategy for Experimenter if 

• s : y <n ___, 3. We call s the experimentation strategy. 

• f : yn ___, '.D (M). We call f the learning strategy. 

Substituting n = 1, we obtain Definition 4.3. 
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In this definition of strategy we use only the outcomes that Chance generated, 

instead of full histories. This causes no ambiguity as, given an experimentation 

strategy s and Chance 's moves yn, one can reconstruct the conducted experi­

ments ~n E 3n and hence t he entire history hn E (3 x Y)n thus: 

( 4.18) 

Definition 4.16. When () and (s, J) are pure strategies for Nature and Experi­

menter, then the risk of the play (), (s, J) is given by 

R((), (s,J)) = E [L((),f(Yn))] 
yn""P8 

(4.19) 

where n 

Po(Yn) := IlP(Yi/e,~i)· 
i=l 

As in the single experiment case, a pure strategy for Experimenter induces a 

truth-finding frame. 

Definition 4.17. Let J be an experimentation frame, and s be a pure strategy 

for Experimenter. The s-subframe of J is given by 

Theorem 4.18. For all learning strategies s, 

Proof. By definition. 

infsupR(Pe, (s,J)) = V(J,). 
f Pe 

( 4.20) 

0 

Theoretically, to solve the sequential experiment-design problem with pure 

strategies for Experimenter, we simply solve the truth-finding game on Js for 

each learning strategy s. The set of learning strategies is given by [y<n -> 3], 
and consequently, the number of learning strategies is 

In practice, considering a doubly exponential number of strategies is infeasible, 

and we need to use (a) the tree structure of each strategy, (b) the independence 

of the outcomes given the experiments. We will not look into this further, as 

we already know that mixed strategies for Experimenter are more powerful. 

4.6.2 Mixed strategies for Experimenter 

A mixed strategy for Experimenter is a probability distribution on all his pure 

strategies. In the coming exposition, we prefer to use probabilistic strategies 

instead of mixed strategies. A probabilistic strategy probabilistically assigns 

an experiment to each history. It can easily be shown that, over finite sets, 

probabilistic strategies and mixed strategies generate the same behaviour. See 

for example [Fer67, p.26] . Probabilistic strategies are also called behavioural 

strategies. 
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Definition 4.19. A pair (s, f) is called a probabilistic strategy for Experimenter 

if 

• s: (3 x Y) <n ---+ '.D (3) . We calls the experimentation strategy. 

• f : (3 x Yr ---+ '.D(M) . We call f the learning strategy. 

Probabilistic strategies take the entire history (both experiments and outcomes) 

into account. This in contrast to sequential pure strategies (Definition 4.15), 

that use only the past outcomes. Here one can no longer reconstruct the exper­

iments from s and yn alone, because experiments are chosen probabilistically. 

Note that for n = 1 we obtain a strategy for Experimenter in simple form (Defi­

nition 4.9). 

Definition 4.20. When Pe is a mixed strategy for Nature , and (s, f) is a 

probabilistic strategy for Experimenter, then the risk of the play Pe, (s, J) is 

given by 

R(Pe , (s,J)) = E E [L(8,J(Hn))], 
e~Pe Hn~ Pe ( 4.21) 

n 

Po(hn) := IJP(Yile,~i) s (~ilhi- 1 ). 
i=l 

Analogously to Definitions 4.5, 4.11 and 4.17, a probabilistic strategy sin­

duces a truth-finding frame . 

Definition 4.21. Let J be an experimentation frame, and s be a probabilistic 

strategy for Experimenter. The s-reduct of J is given by 

( 4.22) 

Theorem 4.22. For all probabilistic strategies for Experimenter s, 

infsupR(Pe, (s, !)) = V(Js) · 
f Pe 

Proof. By definition. D 

4. 7 Examples revisited 

This section discusses the examples that were introduced in §4. l. We first discuss 

the polynomial example, then the balance scale example. 

4. 7.1 Polynomials 

In the polynomial example, we want to find the degree of the true polynomial 

from noisy outcomes of probes. Formulated like this, this problem might seem 

hard to formalise as an expermentation frame. In this section, we show how 

regression problems can be modelled in our framework in general. In regression 

problems (see e.g. [GCSR04]), experimental mechanics arise from a combination 

of two components: a regression function and noise. 
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Definition 4.23. A function r : 3--> Y is called a regression function. 

A regression function deterministically assigns a true outcome to each ex­

periment. To generate the observed outcome, the true outcome is perturbed in 

a way that is independent of the actual world. Formally, 

Definition 4.24. A function c: : 3 x Y --> '.D(Y) is called noise. We write 

c:(y'/~, y) for c:(~, y)(y'), that is, the probability that we observe y' while y was 

the true outcome of the experiment ~· 

From a collection of regression functions, grouped into models, and noise, 

we construct an experimentation frame thus: 

Definition 4.25. Let R ~ [3 --> Y] be a collection of regression functions, M 

a partition of R, and c: noise. The quintuple 

( 4.23) 

where 
Pr,€(Y) = t: (yj~,r(~)) 

is called the regression frame generated by R, c:. 

4. 7.2 Balance scale 

In the balance scale problem, for symmetrical error matrices, the experiment 

mechanics are entirely symmetrical. This suggests that the least favourable 

distribution is the uniform distribution on worlds. The minimax strategy for 

Experimenter is hard to compute. In this section, we take a Bayesian approach 

by assuming the uniform distribution as a prior, and compute the optimal ex­

perimentation strategy with respect to it. As explained in §4.5.4, fixing the 

strategy for Nature brings us within the framework of Bayesian Maximum En­

tropy Selection. Consequently, we can restrict attention to pure experimentation 

strategies. 
In order to reduce the size of the figures of strategies we restrict the problem 

to 6 balls. Hence, a world is an element of [l . .. 6] x {HEAVY, LIGHT}. We have 

analysed the balance scale problem for three different sets of models. First, the 

minimax strategy for learning the weight of the odd ball is shown in Figure 4.6. 

Second, the minimax strategy for learning the index of the odd ball is shown in 

Figure 4.7. Finally, the minimax strategy for learning both the weight and the 

index of the odd ball is shown in Figure 4.8. These figures depict an annotated 

subtree of the game tree, which should be read as follows: 

• Ellipses represent positions where Experimenter is to move. A number 

shown in an ellipse is the binary entropy of the distribution on models at 

that position, before any further experiments are performed. 

• Rectangles represent positions where Chance is to move. A number on the 

bottom line of a rectangle is the expected binary entropy of the distribution 

on models, after all future experiments will have been performed. 

• Experimenter's moves are labelled by experiments . For example {2, 4} -

{3, 5} indicates that balls 2 and 4 are placed in the left scale pan, whereas 

balls 3 and 5 are placed in the right scale pan. We only show the optimal 

move for Experimenter, to reduce the size of the figure. 
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• Chance's moves are labelled with an outcome and its conditional proba­

bility. We show all moves for Chance. 

• At the top of rectangles, we show a partition of the balls. Balls within the 

same equivalence class are indistinguishable to Experimenter, they have 

always played the same role within each past experiment (i.e. left, right 

or non-participating). This partition was used to prune the search tree 

during the computation of the optimal strategy, but it is also interesting 

by itself. 

As an example, consider Figure 4.6. Learner is trying to learn the weight of the 

odd ball. Before performing any experiments, Experimenter considers both the 

model "heavy" and the model "light" equally likely, hence the entropy of the true 

model is one. This is indicated within the topmost circle. The bold arrow going 

downward indicates that Experimenter will perform, as his first experiment, the 

weighing of balls 0 and 1 against balls 2 and 3. As indicated at the bottom of 

the topmost rectangle, Experimenter now expects to have entropy 0.245 at the 

end of the experimentation. The top line in the topmost rectangle indicates that 

learner can now distinguish certain balls, as they have assumed different roles 

in his first experiment. Below the topmost rectangle, there are three outgoing 

arrows: one for each possible outcome. The labels on these arrows give the 

conditional probability. In this case EVEN is the most likely outcome, with 

probability 0.367. The remaining subtree can be interpreted analogously. 

4.8 Conclusion 

We extended truth finding to experiment design by allowing the learner to choose 

experiments. We introduced experimentation frames to formalise the arena 

of experiment design. In experiment design, we face the experiment-design 

problem: given an experimentation frame J, choose experiments intelligently, 

to obtain as much information about the true model as possible. In order to 

solve the experiment-design problem, we formulated it as the experimentation 

game. A solution then takes the form of a minimax strategy for Experimenter 

in this game. 
We showed that strategies for Experimenter, both pure and mixed, can be 

decomposed into two parts. The first part, called the experimentation strat­

egy, tells Experimenter which experiments to perform. We showed that each 

experimentation strategy induces a truth-finding frame. For pure experimenta­

tion strategies, we call the induced truth-finding frame a subframe, because the 

truth-finding mechanics are a slice through the experimental mechanics. Mixed 

experimentation strategies, on the other hand, require inclusion of the randomly 

generated experiments in the data. We call the truth-finding frame induced by a 

mixed strategy a reduct. The second part of a strategy for Experimenter is called 

the learning strategy. The learning strategy is a strategy for the truth-finding 

game on the truth-finding frame induced by the experimentation strategy. 

Using the Bribed Jury example, we show that, for Experimenter, mixed 

strategies are more powerful than pure strategies. We concluded that this is 

due to the entanglement of strategies that takes place within the risk function. 

We introduced two approaches to solving the truth-finding game. Minimax 

pure strategies can be found by solving the induced truth-finding game for each 
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possible experimentation strategy. For a single experiment, this can be done in 

practice. Unfortunately, the number of experimentation strategies grows doubly 

exponential in the number of experiments. For sequential experimentation, this 

approach is infeasible. 
Minimax mixed strategies can be found, because the risk function is concave­

linear. General purpose convex optimisation methods, like the Newton method 

and the Barrier method can be applied under certain conditions on the structure 

models. This is a matter for future research. 

4.8.1 Open questions 

• We considered selecting experiments in worst-case-optimal fashion. One 

could also consider generating a sequence of experiments according to some 

product distribution, say uniformly at random. What is the relation be­

tween the minimax experiment-design risk, and the minimax truth-finding 

risk on the reduct where experiments are chosen uniformly at random? 

• We introduced the balance scale example in §4.1, and discussed it in §4.7. 

Due to the symmetry of the possible world space and the experimental 

mechanics, we suspect that the least favourable distribution for Nature is 

the uniform distribution. Can we introduce a slight asymmetry (preferably 

by introducing a different partition of the possible worlds into models) , 

such that the worst-case-optimal experiment and the optimal experiment 

with respect to the uniform distribution are different. 
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Figure 4.6 Balance scale: minimax strategy for learning weight 
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Figure 4. 7 Balance scale: minimax strategy for learning index 
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Figure 4.8 Balance scale: minimax strategy for learning both 
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Chapter 5 

Conclusion 

Research in the field of statistical machine learning is concerned with general 

methods for learning from data. Likewise, research in the field of experiment 

design is concerned with general methods for choosing experiments, with the 

goal of learning from their outcomes. In this thesis we focus on the following 

learning problem: how to obtain as much information as possible about the true 

model in the worst case? Here, the worst case is taken over all possible states of 

nature that the learner considers. We analysed this problem within the setting 

of statistical machine learning, and within the setting of experiment design. 

Setting 

In practice, statistical learning problems are often specified using models, col­

lections of similar hypotheses. In this thesis we call hypotheses possible worlds, 

and assume that one of the hypotheses is true. We call this hypothesis reality 

and the model that contains it the true model. Models are cognitive devices, 

introduced by the learner to structure the learning problem at hand. They typ­

ically arise by collecting all possible worlds in which the learner wants to take 

the same action. 
The amount of information that the learner lacks about the true model 

is given by the log loss of the distribution on models that expresses his un­

certainty about the true model. We desire worst-case-optimal procedures, to 

simultaneously obtain the best performance guarantees and circumvent the in­

herent circularity in the use of subjective priors for both decision-making and 

performance assessment. 

Truth finding 

In Chapter 3 we developed, solved and discussed the machine learning version of 

the above problem, which we coined the truth-finding problem. A natural way 

to regard the truth-finding problem is as the truth-finding game: a two-player 

strategic game with chance moves. We proved that the truth-finding game has 

a value, and that a minimax mixed strategy for the learner always exists. 

In the case that a maximin mixed strategy (a least favourable distribution) 

for nature exists, we showed that the learner 's minimax strategy is the optimal 

response to it. Hence this least favourable distribution may be thought of as 
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a prior. This result is surprising; we performed a worst-case analysis to factor 

out all prior knowledge, and yet we obtained a prior distribution on possible 

worlds. We proved that a least favourable distribution exists when the convex 

hull of the models is closed. We showed that the generalised entropy function is 

concave, which implies that we can easily find its optimum, the least favourable 

distribution, using convex optimisation methods. We showed that any mixed 

strategy for nature can be decomposed into a prior distribution on models and, 

for each model, a point from the convex hull of the distributions on outcomes 

within that model. We conjectured that, by choosing the points from the closed 

convex hull instead, a least favourable distribution for nature always exists. The 

distribution on models that the learner obtains using truth finding can always be 

interpreted as a code. When interpreted as a code, it is the code that minimises 

the expected message length for encoding the true model. Moreover, if nature 

plays worst-case-optimally then the learner's distribution on models coincides 

with the conditional probability distribution on models given the data. Only 

in this special case does the learner's distribution have a standard probabilistic 

interpretation. We gave several examples that show that the least favourable 

distribution is particularly non-uniform, and depends on the number of obser­

vations the learner will make. Hence, although the solution to the truth-finding 

problem is Bayesian in form, we conclude that it is essentially non-Bayesian in 

philosophy. 

The truth-finding problem gives rise to a natural notion of similarity between 

sequences of distributions. We provide a formal definition in general terms, and 

hint at its relation to the information channel capacity. We define the Koolen 

distance between two distributions as the opposite binary similarity, prove that 

it satisfies minimality and symmetry but violates the triangle inequality, and 

compare it graphically to the Kullback-Leibler divergence. 

Experiment design 

In Chapter 4 we turned to the experiment design version of the above problem. 

We extended truth-finding with experiments, obtaining the experiment-design 

problem. Again, this problem is naturally viewed as a game. We showed that 

strategies for the experimenter consist of two parts: an experimentation strat­

egy and a learning strategy. The experimentation strategy is used for exper­

iment selection. We showed that after fixing the experimentation strategy, a 

truth-finding subgame remains. The learning strategy is then a strategy for 

this subgame. We showed in Chapter 3 that the optimal learning strategy can 

easily be found. Hence only a simpler game remains, where the experimenter 

chooses an experimentation strategy, and nature chooses the actual world. We 

gave a simple example that showed that the experimenter must consider mixed 

strategies. The minimax mixed experimentation strategy can be obtained by 

finding the saddle point of the doubly generalised entropy function. We proved 

that this function is concave-linear. Concave-linear functions are of relatively 

low complexity. The saddle point can be found numerically using methods from 

the convex optimisation literature. There is still much interesting work to be 

done in this area. 
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Future work 

We return to the problem of learning polynomials. In this problem, the degree 

of an unknown polynomial has to be learned by sequential probing, where each 

probe returns the function value, perturbed by Gaussian noise. We feel that we 

have made an important first step towards a general solution. The following 

points must still be addressed: 

• The truth-finding and experiment-design problem are defined for finite 

outcome, model and experiment sets. Can these be generalised to un­

countable sample spaces? 

• The truth-finding problem is defined for finite sets of models. Can these 

be generalised to countable sets? 

• The minimax optimal pure strategy for experimenter in the sequential 

experiment-design problem can theoretically be obtained by solving a 

number of truth-finding instances that grows doubly exponential in n. 

Can we design smarter algorithms for this particular problem? 

• In our analysis of the experiment-design problem, we have assumed that 

the number of experiments n is fixed and known to the experimenter. 

What can be said in cases where n is not fixed? Can we, for example, 

fix the amount of information that must be obtained, and then try to 

minimise the number of experiments that need to be performed? 

Ultimately, solutions to these questions will allow us to solve sequential experiment­

design problems of the level of complexity of the polynomial degree selection 

problem. 
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Appendix A 

Measure theory 

A. 1 Preliminaries 

Probability theory deals with probabilities of events, sets of outcomes. Prob­

ability is inextricably intertwined with countability. To preclude paradox we 

use measure theory, which has the following formalisation of events and their 

probability. 

D efinition A.1. Let S be a set. A set E ~ ~(S) is called au-algebra over S 

if the following conditions hold: 

1. SE E. 

2. If A E E then S \ A E E. 

3. If (An )nEN is a sequence of elements of E then UnEN An E E. 

A structure M = (S , I:) is called a measurable space if E is a u-algebra over 

S. We call the elements of E events. An important measurable space is (JR, B), 

where Bis the Borel u-algebra on JR , i.e. the smallest u-algebra on lR containing 

all open sets. 

D efini t ion A.2 . Let M = (S, E) be a measurable space. A function µ : E ---+ 

[O, oo] is called a measure on M if it satisfies the properties 

1. µ(0) = o. 

2. If (An )nEN is a sequence of pairwise disjoint elements of E, then 

µ( LJnENAn) = LnEN µ(An)· (u-additivity) 

Additionally, µ is called a probability m easure if µ(S) = 1. 

D efinit ion A .3. A triple (S, E, µ ) is called a measure space (probability space) 

ifµ is a measure (probability measure) on (S, E ). 

An important measurable space is (JR, B, Leb) where the measure Leb (Lebesgue 

measure) is generated by closing the following function under countable addi­

tivity 
Leb([a, b]) := b - a. 

Lebesgue measure is the uniform measure on JR; t he measure of an event is given 

by its length. 
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Definition A.4. Let (S, E) and (S', E') be measurable spaces. A function 

f : S --+ S' is called E, E' -measurable if 

If the second measurable space is (IR, B, Leb), we say that f is E-measurable. 

Definition A.5. Let M = (S, E, µ) be a measure space. A function f: S--+ IR 

is called a probability density function on M if 

• f is E-measurable, 

• f is non-negative µ-almost everywhere, and 

• fs f(x) dµ = 1. 

A probability density function f on M generates a probability measure P on 

(S, E) defined by 

P(rl) :=In f(x) dµ. 

Definition A.6. For any measurable space M = (S, E), we denote by '.D(M) 

the set of all probability measures on M. If M is clear from the context, we 

write '.D(S) for '.D(M). 

Definition A. 7. We denote by Nn (µ, E) the normal distribution on !Rn with 

meanµ and n x n covariance matrix E. When n = 1, we write N(µ, cr2 ) instead. 

Definition A.8. Fix a probability space IP'= (S, E , P ). A measurable function 

X : S --+ IR is called a random variable. 

As stated before, a random variable transforms outcomes into real numbers. 

Via this transformation, we can forget about the original measure, and consider 

the induced measure on R We reserve the term probability distribution for a 

probability measure that specifies the measure of a random variable on R 

Sometimes, it is useful to translate the set of outcomes into some set different 

from R We call such transformations pseudo random variables if the obvious 

measurability condition obtains. 

Definition A.9. Let X be a random variable defined on a probability space 

IP' = (S, E, P). We define the expected value or expectation of X by 

E[X] :=ls XdP 

Definition A.10. Let X be a random variable on a probability space IP'. We 

say that X is constant if 3c\lx E S: X(x) =c. We call X almost surely constant 

if 3c: P(X = c) = 1. This implies P(X = E [X]) = 1. 

Remark A .11. A random variable X on IP' is almost surely constant if all measure 

of P is assigned to a region where X is constant. This can be solely due to X, 

namely when X is constant, or solely due to P, namely when P puts all measure 

on a single point, or due to both. 
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Theorem A.12 (Jensen's Inequality). [Wil9I, Theorem, p. 6I] Let X be a 

convex set, P a probability distribution on X. Then for any convex function 

f: X-; IR, 
Ep [f(X)] 2: f (Ep [Xl) (A.I) 

Moreover, if f is strictly convex, then equality in (A.I) implies that X is an 

almost surely constant random variable. 

One level of abstraction higher, we work with a meta-distribution on sets of 

probability distributions. We can interpret such a meta-distribution as a prior 

probability; one first samples a distribution according to this meta-distribution, 

and then generates an outcome according to the sampled distribution. For more 

detail, see [GD04, Section 9.2]. Such a meta-distribution can be collapsed into 

a single distribution on outcomes as follows . 

Definition A.13. Let X be a set, Q a convex set of distributions on X with 

CT-algebra Ex, and IQl a distribution on Q. We define EQ [Q] : Ex -; IR, the 

expected distribution of Q, by 

EQ [Q] (X) := EQ [Q(X)] = l Q(X) dlQl 

where Q = l Q is a pseudo random variable. 

Definition A.14. Let X, Y be pseudo random variables with range X and Y. 

The distribution P t hat gives the distribution of the pair (X, Y) is called the 

joint distribution of X and Y. The marginal distributions of X, Y are given by 

A.2 

Px (X = x) := l P(X = x, Y = y) dy 

Pv(Y=y):= LP(X=x,Y=y)dx 

Truth-finding frame 

Definition A.15. A quadruple 

J = (q:J, 'I', M, (p e)eET) 

(A.2) 

(A.3) 

is called a truth-finding frame , or frame for short, if the following conditions 

hold: 

• q:) = (Y, Ey) is a measurable space. We refer to q:) as the outcome space, 

and call the elements of Y outcomes. 

• 'I' = (T, E7 ) is a measurable space. We refer to 'I' as the possible-world 

space, and call the elements of T possible worlds. 

• M is a finite partition of T, with the additional demand that Mis a sub 

CT-algebra of Ey. 

• (p e)eET : Y x T-; IR+ is Ey x Ey-measurable, and PT is a probability 

density function on q:) for each () E T. 

When q:) and 'I' are clear from the context, we write J = (Y, T , M, (p e)eET) 

instead. 
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Appendix B 

Concavity of generalised 
entropy 

The generalised entropy function ..fj is concave. This important result will be 

shown after the following theorem, which is rather useful in proving convexity 

results in information theory. 

Theorem B.1 (Log sum inequality, [CT90, Theorem 2.7.1]). For non-negative 

a1, ... an and b1, ... bn 

Theorem B.2 . ..fj(Pe) is concave. 

Proof. Recall from Remark 3.2.6 that a measure Pe induces a measure on T x Y. 
This measure can be transformed using Minto a measure on MI x Y. We rewrite 

(3.19) to 

[ 
P(M, Y)] 

..fj(Pe) = EM,Y - log P(Y) . 

For arbitrary distributions P and Q on T, and a real number 0 ~A~ 1, define 

p>. := >-P + (1 - >-)Q. We need to show 

(B.1) 

For each y E Y and ME MI, we apply Theorem B.1 with substitutions 

n=2 a1 = >-P(y ,M) bi = >-P(y) 

a2 = (1 - >-)Q(y, M) b2 = (1 - >.)Q(y), 

obtaining 

>.P(M, y) (1 - >-)Q(M, y) 
>-P(M, y) log >-P(y) + (1 - >-)Q(M, y) log (l _ >-)Q(y) 

> (>-P(M y)+(l - >-)Q(M y))log>-P(M,y)+(l - >-)Q(M,y) (B .2) 
- ' ' >-P(y) + (1 - >-)Q(y) 
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which by observing 

>.P(y) + (1 - >.)Q(y) =).. L P(M, y) + (1 - >.) L Q(M, y) 
M M 

= L (>.P(M, y) + (1 - >.)Q(M, y)) 
M (B.3) 

= LP'\(M,y) 
M 

= p>.(y) 

reduces to 

>.P(M,y)logP(Mly) + (1- >.)Q(M,y)logQ(Mly) 

;::: P>.(M, y) log p>.(Mly). (B.4) 

Summation of the opposite of both sides over Mand Y yields 

(B.5) 

M ,y 

;::: - >. L P(M,y)logP(Mly) - (1- >.) L Q(M,y)logQ(Mly) 

M,y M ,y 

= >.YJ(P) + (1 - >.)YJ(Q) 

This proves (B.l), completing the proof. 

(B.6) 

(B.7) 

0 

We can decompose a joint distribution P on M x Y into PM and PYIM for 

each M EM, the latter jointly denoted by PYIM· 

Corollary B.3. S'J(P M, PYIM) := fJ(P) is concave in all its arguments. 

Proof. fJ (>.PM + (1 - >.)Q M, >.PYIM + (1 - >.)QYIM) = f)(>.P + (1 - >.)Q). 0 

Corollary B.4. By Theorem 2.9, noting that '.D(M) is convex, the function 

G(PYIM) := supYJ(PM, PYIM) 
PM 

is concave. 
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Appendix C 

Notation table 

Table C.1 Notation for sets, pseudo-random variables and elements 

Sort Set P.R.V. Element Distribution 

Possible world T e B Pe 
Experiment ~ x ~ e 
Outcome y y y p 

Model M M M m 

Learning strategy F F f PF 
History 1-{ H h 

Ball weight w w w 

Ball index I I 
Code index J J j Q 

Table C.2 Notation and type of important functions 

Function Sym Domain 

Learning strategy f yn 
Classification M T 
Mechanics p T 
Experimental mechanics p T x :::: 

Table C.3 Players 

Role 
Chooses the actual world 

Range 
__, '.D (M) 
__.. M 
__, '.D(Y) 
__, '.D(Y) 

Name 
Nature 
Chance 
Learner 
Experimenter 

Impartial player , used to sample outcomes 

Chooses a distribution on models (given outcomes) 

Sequentially chooses experiments , then chooses a distri­

bution on models 
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