
Perturbation Theory for Dual Semigroups V. 
Variation of Constants Formulas 

0. DIEKMANN Centre for Mathematics and Computer Science, Amsterdam, The 
Netherlands, and Institute for Theoretical Biology, Leiden, The Netherlands 

M. GYLLENBERG Institute for Applied Mathematics, Lulea University of Technol­
ogy, Lulea, Sweden 

H. R. THIEME* Department of Mathematics, Arizona State University, Tempe, Arizona 

1. INTRODUCTION 

If Ao is the infinitesimal generator of a strongly continuous semigroup 

To(t), t ~ O, on a Banach space X, the dual A0 of Ao is the weak* genera­

tor of the dual sernigroup T0(t) = (To(t))*, t 2: 0, on X* in the following 

sense: 

* Supported by a Heisenberg scholarship from Deutsche 
Forschungsgemeinschaft 

107 



108 Diekmann et al. 

x* E D(A0) and A0x* = y* (l.l) 

iff 

! (x, T0(t)x*) = (x, T0(t)y*), x EX, t ~ 0. 

Forany x*EX*,t~O we have fotT0 (r)x*drED(A~) (1.2) 

and 

A~ (t To(r)x* dr) = T0(t)x* - x*. 

Here JJ To" (r )x* dr has to be interpreted as the weak* integral 

(x ft T0(r)x*dr) = ft(To(r)x,x*)dr. 'lo lo (1.3) 

In Clement et al. (1989b) it is shown that the perturbed operator 
Ax = A.0 + C, where C : D(A0) -+ X* is bounded and linear, generates 
a weakly* continuous semigroup Tx on X* in the sense of (1.1) and (1.2). 
Note that in general x0 := D(A0) '/; X*. In Clement et al. (1989b) the 
restriction T0 of Tx on XG is constructed first via a variation of constants 
formula and then extended to the space X*. In Clement et al. (1989c) a 
general Hille-Yosida type characterization is derived for the weak* generators 
of weakly* continuous semigroups (in the sense of (1.1) and (1.2)). 

In this paper we derive variation of constants formulas for the semi­
group rx (rather than for its restriction T0 to x0). The construction pre­
sented here - which is independent of the approach in Clement et al. (1987, 
1989a,b,c) - relies on the observation that Ax generates an 'integrated 
semigroup' 5x on X* such that sx(t) is locally Lipschitz in the operator 
norm. 5x can also be described by a variation of constants formula. See 
Arendt (1987), Kellermann (thesis), Kellermann&Hieber (1989), Neubran­
der (1988), Thieme (to appear) for some background material concerning 
'integrated semigroups.' 

An alternative approach, which does not take the operator Casa 
starting point but considers 'multiplied integrals' of the dual semigroup T0 
instead, is presented by Diekmann, Gyllenberg&Thieme (preprint). 
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The formulas derived in this paper will allow easy derivation of cer­

tain properties of Tx. We expect that they will play a crucial role in ex­

tending the perturbation theory from dual semigroups to dual evolutionary 

systems and in handling quasilinear Cauchy problems on non-reflexive dual 

Banach spaces. Such problems arise from physiologically structured popula­

tion models - see Metz&Diekmann (1986) for reference - in which popula­

tion growth couples back to individual development. 

2. BASIC IDEAS AND RESULTS 

In Clement et al. ( l 989b) a strongly continuous semigroup T 8 is constructed 

on X0 = D(A0) via the variation of constants formula 

T 8 (t)x 8 = T(f(t)x 8 + l T0(t- r)CT8 (1)x8 d1, x8 E X 8 (2.1) 

with T(f denoting the restriction of TO to x0. Then r 0 is extended to X* 

by the so-called intertwining formula 

A variation of constants formula of type (2.1) is not possible for yx because 

C is assumed to be defined on X0 only. In order to overcome this difficulty 

we shall justify the following formula in section 6: 

Tx (t)x* 

= T0(t)x* + w* - lim rt T0(t - 1)C.\(,\ - A0)-1Tx(1)x* d1 (2.2) 
>.-oo Jo 

= T0(t)x* + w* - Jim rt Tx(t- 1)C.\(,\ - A0)-1T0(1)x* dr. 
>.-oo Jo 

Tx(t) can be represented by a 'generation' expansion 

00 

rx (t) = L Tnx (t) 
n=O 

with T0x =Tc) and 

(2.3) 

T11\ 1(t)x* = w* - lim rt T0(t - 1)C>.(>.-A0)-1Tnx(t)x* dr. (2.4) 
>.-oo Jo 
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The series (2.3) converges in the operator norm. We shall see in section 6 

that the w• - lirn>.-+oo in (2.2) and (2.4) holds uniformly for t in bounded 

intervals, JJx* JJ :'.S: 1 and that TX*(t)x is a continuous X*"' valued function of 

t for any x E X. 

Strangely enough we have not been able to prove these results di­

rectly. So we take a detour which is of its own interest. It is well known that 

Ax = A;j + C satisfies the resolvent estimates and therefore generates an 

'integrated semigroup' sx (t), t ~ 0, on X* which is locally Lipschitz in t 

with respect to the opera.tor norm. See Arendt (1987), Kellermann (thesis), 

Kellermann&Hieber (1989). Actually it is possible to write down a variation 

of constants formula for sx, namely 

Sx(t) = s;(t) + l s;(t - r)dr(CSx(r)) 

= s;(t) +lot sx(t - r)dr(cs;(r)) 
(2.5) 

with 

being the 'integrated sernigroup' generated by A0. The Stieltjes integrals in 

(2.5) hold in the operator norm. From the first formula in (2.5) we realize 

that sx (t)x* can be differentiated in the weak* sense yielding 

Tx(t)x* := ~:sx(t)x* 

= Ti)(t)x* + l TQ'(t - r)dr(CSx(r)x*) 

= T0(t)x* + l Tx(t - r)dr(CS;(r)x*). 

(2.6) 

The first integral in (2.6) is a weak* Stieltjes integral. The second equal­

ity in (2.6) will reveal that X** 3 Tx*(t)x is a continuous function oft for 

x E X. This will imply that the second integral in (2.6) makes sense as a 

weak* Stieltjes integral. As we will see in section 6 the second equality in 

(2.6) also shows that(..\ - A0)-1Tx(t) is locally Lipschitz in t with respect 

to the operator norm because(>. - A0)-1T0(t) has this property. (2.6) will 
then imply (2.2). 

The generation expansion (2.3), (2.4) is derived similarly using a 

generation expansion for sx. The following formula is particularly help­

ful in studying the dependence of Tx on C and T0. Set V00 (t) = C 5x (t ), 
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V0 (t) = cs;(t) and consider the second equality in (2.6) and (2.5): 

Tx(t)x* = T~(t)x* + l T~(t - T)d,.(V00 (r)x*) 

V00 (t) = Vo(t) +Jo' Vo(t - T)d,. V00 (r) (2.7) 

= Vo(t) + l V00(t- r)d,.Vo(r) 

In the next section a convolution calculus for locally Lipschitz operator ker­

nels will be developed in which V00 plays the role of a resolvent kernel for 

Vo. 

3. A CONVOLUTION CALCULUS FOR LOCALLY LIPSCHITZ 
CONTINUOUS OPERATOR KERNELS 

3.1. LIPSCHITZ KERNELS AND THEIR CONVOLUTION 

By a kernel (of operators) we mean a family U ( t), t 2:: 0, of linear bounded 

operators on a Banach space Y which satisfies 

U(O) = O (3.1) 

and is locally Lipschitz in t (with respect to the operator norm), i.e. for any 

t > 0 there exists a At > 0 such that 

llU(r) - U(s)JI :S Atlr - sl, 0 :Sr, s :St. (3.2) 

The kernels form a vector space in an obvious way. We define seminorms 

11 · llt by 

llUllt := sup 
os;r;<os:::;t 

By (3.1 ), U(O) = 0, we have 

llU(r) - U(s)JI 
lr - sl 

sup llU(r)ll :S tllUJlt · 
os;rs;t 

t > 0. (3.3) 

(3.4) 

With these seminorms the kernels form a Frechet space which becomes an 

algebra in the following way: For two kernels U, V we define the convolution 

*by 

(U * V)(t) = l U(t - r)drV(r). (3.5) 
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The integral in (3.5) is a Stieltjes integral in the operator norm, i.e. it is the 

limit of sums 
n 
E U(t - Sj )(V(r;+1) - V(r; )) , s; E [rj, rj+iJ 
j=O 

with O = ro < ... < rn+l = t, when the partition ro, ... , rn+I gets finer. By 

reordering the sums one easily checks that 

(U * V)(t) =lot drU(r)V(t - r) (3.6) 

with the integral being the limit of sums 

n 

L(U(r;+i - U(rj))V(t - s;), Sj E [r;,r;+1], 
j=O 

0 = ro < ... < rn+l = t. It is convenient to extend the kernels to R by 

setting 

U(t)=O, t~O. (3.7) 

Then they are locally Lipschitz on R and 

(3.8) 

U * V is a kernel again; actually we have the following inequalities in terms 

of the seminorms II · lit-

Lemma 3.1. 

llU * VIit $ l J!Ullt-r IJVllrdr $ tl!UlltllVllt · 

Proof. Let 0 $ r, s ~ t. Then (U * V)(s) - (U * V)(r) is approximated by 

sums 
n 

E(U(s - O'j+1) - U(r - O"j+1))(V(Cij+i) - V(aj)) (3.9) 
j=O 

with 

0 = O'O < · · · < O'n+l = t. 
The norm of the sum (3.9) can be estimated by 

n 

L l!Ullt-ui+1 Js - rl l!V!luH1(0-j+1 - 0-1). 
j=O 
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Taking the limit by refining the partitions we obtain 

ll(U * V)(s) - (U * V)(r)ll ~ Is - rl (lot llUllt-crl!Vllu dO') · 

This implies the first estimate. The second is trivial. 

We can integrate (U * V)(t) and obtain a more familiar convolution. 

Lemma 3.2. JJ(U * V)(r)dr = JJ U(t - r)V(r)dr =: (U * V)(t). In other 

words, 
d 

(U * V)(t) = dt (U * V)(t) 

with the differentiation holding in the operator norm. 

Proof. 

lo\u * V)(r)dr =lot lot U(r - s )ds V(s) dr =lot (l U(r - s)dr) d8 V(s) 

= l (fo1-s U(r)dr) ds V(s) = - lot d3 (lot-s U(r)dr )v(s) =lot U(t-s )V(s) ds. 

The second, fourth and fifth equality follow by approximating the integrals 

by sums and rearranging these, the first equality holds by definition, the 

third by standard integral calculus. Remember (3.7): U(O) = V(O) = 0. 

Noting that 
d ( ) I I dt u * v = u * v = u * v , 

provided the respective derivatives exist, we find that 

d2 
U*(V*W)= dt2 (U*(V*W)) 

d2 
(U * V) * W = dt 2 ((U * V) * W). 

As the associativity of* is well-known and easily checked by standard inte­

gration theory, we have 

Lemma 3.3. *is associative, i.e. the Frechet space of kernels is an alge­

bra. 

In view of Lemma 3.1, the Frechet space of kernels deserves the name 

Frechet algebra. 
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3.2 RESOLVENT KERNELS 

The resolvent kernel V00 of a kernel Vo is determined by the relation 

V00 =Vo+ Vo* Voo =Vo+ Voo *Vo. (3.10) 

If it exists the resolvent kernel is unique by its algebraic properties. See 

Gripenberg et al. (1990), Section 9.3, Lemma 3.3. 

Remark. Often the resolvent kernel of a kernel Wo is defined by 

IV 00 = W 0 - W0 * Woo = Wo - Woo* Wo. (3.11) 

See Gripenberg et al. (1990), Section 9.3. Note that (3.10) translates into 

(3.11) by setting W00 = -V00 , Wo = -Vo. The concept of (3.11) seems 

to be more natural when 'frequency domain methods' are used whereas the 

concept of (3.10) is more convenient when exploiting order relations in case 

that Y is an ordered Banach space. 

The standard construction of the resolvent kernel is the series of mul­

tiple convolutions: 

(3.12) 

with 

V*1 =Vo, V*(n+1) = V*n *Vo. ( 3.13) 

The main point is showing the convergence of the series. (3.10) then follows 

from 

Lemma 3.4. V*n *Vo= Vo* V*n 

which is immediate by induction. From Lemma 3.1 we obtain by induction 

Lemma 3.5. llV*(n+l)llt S £-llVoll~+l, n 2:: l. 

So I.::~=1 llV*nllt::; llVoll1exp(tlJVollt) and the series (3.12) converges 

in the seminorms II · IJt. By (3.4), I.::~=l V*n(t) converges in the operator 

norm uniformly for t in bounded intervals. 

As a corollary we have the estimate 

Lemma 3.6. llVoollt ::; llVollt exp(tl!Vo lit). 
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The importance of resolvent kernels consists in solving convolution 

equations. 

Lemma 3.7. ( Gripenberg et al. (1990), Section 9.3, Lemma 3.5) 

The convolution equation 

U = Uo +Vo *U 

is uniquely solved by 

U=Uo+Voo*Uo, 

whereas 

W = Wo+ W*Vo 

is uniquely solved by 

W = Wo + Wo * V oo . 

Before we estimate the solutions of convolution equations we make 

the following simple observation which follows from Lemma 3.6. 

Lemma 3.8. 1 + JJ \IVoo\\rdr :=:; exp(tl\Vo\\t). 

ll5 

Note that l\Vo \It is a monotone non-decreasing function oft. The fol­

lowing is now easily derived from Lemma 3.7 and Lemma 3.1. 

Lemma 3.9. Let W solve W = Wo + W *Vo or W = Wo +Vo* W. Then 

11W\\t ::; l\Wo lit exp(tl!Vo \It). 

We use this lemma for studying the dependence of the resolvent ker­

nel V00 on Vo. Let 

Then 

Uoo = Uo + Uo * Uoo 

Voo =Vo+ Vo* Voo. 

Uoo - Voo = (Uo - Vo)+ (Uo - Vo)* Uoo +Vo* (Uoo - Voo). 

By Lemma 3.9 

\IUoo - Voo\lt :=:; llUo - Vo+ (Uo - Vo)* Uoollt exp(tl[Vollt). 
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By Lemma 3.1 

l\Uoo - Voo lit S l\Uo - Vo lit (1 +lot llUoo llrdr) exp(tilVollt). 

By Lemma 3.8, 

l\Uoo - Vc:ollt S l\Uo - Vollt exp(ti!Uollt) exp(t!IVollt). 

So we have 

Lemma 3.10. Let U00 , V00 be the resolvent kernels of Uo, Vo respectively. 

Then 

4. PERTURBATION OF LOCALLY LIPSCHITZ CONTINUOUS 
INTEGRATED SEMIGROUPS 

It is well-known that an operator A~ on a Banach space Y generates an 'in­

tegrated semigroup' St(t), t 2 O, on Y which is locally Lipschitz (with 

respect to the operator norm) iff >.. - A~ can be continuously inverted for 

)., > w and the resolvent estimates 

( 4.1) 

are satisfied. Actually 

(4.2) 

Moreover we recall that by definition 

St(t)St(r) = fo\st(r + r) - St (r))dr, St(O) = O. (4.3) 

See Arendt (1987), Kellermann (thesis), Kellermann&Hieber (1989). The 

following relations hold between Ax and sx: 

Lemma 4.1 a) Let x, y E Y. Then x E D(An and A~x = y iff fi.St(t)x = 

x + St(t)y for all t 2 0. 

b) (>.. - A~)- 1 =>..ff;° e->-ts;(t)dt = f000 e->.tdtSt(t). 

c) For any y E Y, t 2:: 0, Jd St(r)ydr E D(A~) and A~ Jd St(r)ydr = 

s;(t)y - ty. 
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See, e.g., Thieme (to appear). 

If C : D(A.~) -+ Y is a bounded linear operator, the operator 

Ax = A~ + C also satisfies the estimates ( 4.1) (with different w ). See the 

proof of Theorem 1.1 in P azy ( 1983), Section 3 .1. So Ax generates a locally 

Lipschitz continuous integrated semigroup 5x. Compare Proposition 3.3 in 

Kellermann&Hieber (1989). Actually it is possible to find 5x as the solu­

tion of the variation of constants formula 

Sx(t) = S0(t) + l Sx(t - r)dr(CS0(r)) 

=So (t) + l 50(t - r)dr(C5x(r)). 

Taking Laplace transforms one realizes that 

>.loco e->.t5x(t)dt = (>. -Ax)-1. 

( 4.4) 

Applying C to ( 4.4) we realize that C 5x (t) coincides with the resolvent ker­

mel V00 of Vo, Vo(t) = CS0(t). Hence 

Sx(t) = 50(t) + l S0(t- r)drVco(r). (4.5) 

In other words, 

( 4.6) 

In turn, we can first construct V00 as the resolvent kernel of Vo and define 

sx by ( 4.6). If we multiply ( 4.6) by C and compare with (3.10) we find that 

V00 = csx. Using the expansion (3.12), (3.13) we obtain the generation 

expansion 

n=O 

S~ 1 (t) = l s-:;(t- r)dr(CS0(r)) = l S0(t- r)dr(CS;(r)). 

In fact the definition 

yields CS";;+1 = V*(n+l) - see (4.7) and Lemma 3.4 - and so 

s:+1 = s0 *(CS";;), 

s:+ 1 = S0 * (V*n *Vo)= (S0 * V*n) *Vo= s-:; *(CS;). 

(4.7) 



l18 Diekmann et al. 

As a byproduct, we obtain the estimate 

00 

L 11s:+illt < oo, for any t > 0. (4.8) 
n=O 

5. PERTURBATION OF DUAL SEMIGROUPS 

If T0(t) is the dual semigroup on X* associated with a strongly continuous 

sem.igroup To on X - the infinitesimal generator of which is Ao -, then 

(5.1) 

defines the locally Lipschitz continuous 'integrated semigroup' S~ (t) on X* 

which is generated by A0. Let C : D(A0) -+ X* be a bounded linear op­

erator. Then the perturbed operator A>< = A(i + C with D(Ax) = D(A0) 
generates the integrated semigroup given by (4.4). From the second equation 

in (4.4) we realize that S><(t)x* can be differentiated in the weak* sense and 

that 

(5.2) 

The integral on the right hand side has to be interpreted in the weak* 

sense. We note that X** 3 Tx*(t)x is a continuous function oft for x EX. 

Taking this into account we obtain from the first equation in ( 4.4) that 

where the integral on the right hand side has to be interpreted in a weak* 

sense: 

(x, l Tx(t - T)dr(CS0 (T)x*)} 

is the limit of the sums 

n 

2:(( CS0(Tj+1) - CS0(Tj))x*, Tx*(t - O"j)x}, 
j=O 

0 =To<···< Tn+l = t,aj E [tj,ij+iJ, when the partition To,··· ,Tn+i.n E 
N, gets finer. 
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From (1.2) and the second equality in (4.4) we realize that sx(t)x* 

E D(A0) and 

In other words 

119 

(5.4) 

This is property (1.2) for Tx, Ax. Using ( 4.3), (5.4) and Lemma 4.lc) we 

can verify that Tx(t) is a semigroup. From Lemma 4.la) we obtain that 

This is equivalent to (1.1) for Tx,Ax. Hence we have shown that the weakly* 

continuous semigroup Tx generated by Ax in the sense of (1.1), (1.2) is ob­

tained by the formulas (2.6). 

It is now easy to obtain a generation expansion for Tx. Proceeding 

as before we can differentiate ( 4. 7) in the weak* sense obtaining 

T x ( ) * d* sx ( ) * 
n+l t X : = dt n+l t X 

= l T0(t - r)dr(CS:(r)) =lot T:(t - r)dr(CS0(r)). 
(5.5) 

It follows from ( 4.8) that 

n=O 

converges in the operator norm uniformly on bounded intervals, hence the 

series in ( 4. 7) can be differentiated in the weak* sense such that 

d* 00 d* 00 

Tx(t)x* = dtSx(t)x* = L dts:(t)x* = L Tnx(t)x*. (5.6) 
n=O n=O 

6. THE VARIATION OF CONSTANTS FORMULA (2.2) 

In order to give a meaning to the integrals in (2.2) we prove 

Lemma 6.1. a) (>.-A0)-1T0(t) is locally Lipschitz in t with respect to the 

operator norm. 
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Proof: a) 

(>. -Ao)-1Tci(t) = To(t)(>. - Ao)-1 

=lot T0(s)A0(>. - A0)-1ds + (,\ - A(j)-1 

Diekmann et al. 

= - l Tii(s)ds +lot T0(s)>.(>. - A0)-1ds + (>.- A(j)-1 . 

b) By (5.2) 

(>, -A0)-1Tx(t) = (>.-A0)-1T0(t) +lot(). -A0)-1To(t - r)dr(CSx(r)). 

Part a) and Lemma 3.1 now imply the assertion. 

In order to show the first equality in formula (2.2) we use formula 

( 5.2) and prove that 

w*- lim rt T0(t-r)C>.(>.-A0)-1Tx(r)x*ds = rt T0(t-r)dr(CSx(r)x*). 
A-oolo Jo 

Note that the integrals on the left hand side can be approximated in the 

weak* sense by sums 

:E T0(t - Tj)C>.(>. -A0)-1(sx(r;+1) - sx (r;))x* 
j 

uniformly for large >. and uniformly for llx* II ::; 1, t in bounded intervals. 

The integral on the right hand side can be approximated in the weak* 

sense by sums 

j 

uniformly for large >. and uniformly for llx* II ::; 1, t in bounded intervals. 

So we only need to show that 

uniformly for r in bounded intervals. But 

>.(>. -A0)-1Sx(r) - Sx(r) = (>. -A0)-1 A0Sx(r) 

= (,\ - A0)-1(Tx(r) - I - CSx(r)) 

- see (5.4) - and 
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The second equality in (2.2) is shown similarly using (5.3). Note that Tx*(t)x, x E 

X, is a continuous X** valued function oft ;::: 0. (2.4) is derived from (5.5) 

in the same way. Note from (4.7) and (1.2) that s:+1(t)x* E D(A0) and 
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