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A Note on Weighted Distributed Match-Making* 

Evangelos Kranakis** and Paul M. B. Vitanyi 

CWI, Kruislaan 413, 1098SJ Amsterdam, The Netherlands 

Abstract. In many distributed computing environments, processes are con­
currently executed by nodes in a store-and-forward network. Distributed 
control issues as diverse as name-server, mutual exclusion, and replicated data 
management, involve making matches between processes. The generic para­
digm is a formal problem called "distributed match-making." We define 
multidimensional and weighted versions, and the relations between the two, 
and develop a very general method to prove lower bounds on the complexity 
as a tradeoffbetween number of messages and "distributedness." The resulting 
lower bounds are tight in all cases we have examined. We present a success­
stop version of distributed match-making that is analysed in terms of a weight 
distribution that in all cases results in approximately halving the (expected) 
number of messages required in the corresponding strategy that does not use 
these weights. 

1. Introduction 

A distributed system consists of computers (nodes) connected by a communication 
network. Nodes can communicate with each other through the network. There is 
no other communication between nodes. Distributed computation entails the 
concurrent execution of more than one process, each process being identified with 
the execution of a program on a computing node. Communication networks come 
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in two types: broadcast networks and store-and-forward networks. In a broadcast 
network a message by the sender is broadcasted and received by all nodes, 
including the addressee. In such networks the communication medium is usually 
suited for this (like Ethernet). Here we are primarily interested in store-and-forward 
networks, where a message is routed from node to node to its destination. Such 
networks occur in the form of wide-area networks like Arpanet, but also as the 
communication network of a single multicomputer. The necessary coordination 
of the separate processes in various ways constitutes distributed control. The 
situation gets more complicated by assuming that processes can migrate from host 
to host, for instance, to balance the load in the system. We focus on a common 
aspect of seemingly unrelated issues in this area, such as name-server, mutual 
exclusion, and replicated data management. 

Processes residing in different nodes may need to find each other, without 
knowing the host addresses of each other in advance. For example, in a name­
server a client process wants to know the host address of a server process providing 
a particular service; in distributed mutual exclusion a process that wants to enter 
the critical section needs to know whether some other process wants to do so as 
well [6]. The common aspect of these problems is formalized in [4] as the 
paradigm "distributed match-making." That is, associate with each node a in the 
network two sets of network nodes, P(a) and Q(a), such that the intersection 
P(a) n Q(b) is nonempty for each ordered node pair (a, b). Such a pair P, Q is 
called a strategy. We want to minimize the average of jP(a)I +I Q(b)j, the average 
taken over all pairs (a, b) of nodes. (IXI denotes the number of elements in a finite 
set X.) This average is related to the amount of communication (number of 
messages) involved in implementations of the distributed control issues mentioned. 
In terms of the name-server, a is a server that posts its whereabouts in all nodes 
of P(a), and b is a client that looks for a particular service (as provided by a) in 
all nodes of the query set Q(b). Nodes in P(a) n Q(b) can establish contact between 
a and b by sending a message to a with the address of b. In distributed mutual 
exclusion the interpretation is about the same, except that there is no difference 
between client and server, P(a) = Q(a), see [3], and [4]. For application to 
replicated data management, see [4]. We make the simplifying assumption that 
hosts do not crash, and the involved processes do not migrate from host to host, 
during execution of a match-making instance. The question of how to determine 
P and Q, and how they are to be set, is not addressed here. 

Example. A match-making strategy P, Q: N-> 2N can be represented by an 
INI x INI matrix {ra,b}, called the rendezvous matrix in [4], where each entry r0 ,b 
is the set of nodes P(a) n Q(b) at which node a posts and node b queries. Since 
we are interested in lower bounds, we can assume the entries to be singleton sets. 
For example, we have a network with a set of nodes N = {1, 2, 3}, and with 
rendezvous matrix: 

2 3 
2 1 

2 
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A server at node I and a client at node 2 have node 3 as a rendezvous node. To 
make a match between node 1 and node 3 takes five messages (node 1 posts its 
address at nodes 1, 2, and 3; node 3 queries nodes 1 and 2), while to make a match 
between a server at node 2 and a client at node I is cheaper at four messages. 
One and the same strategy can have a pair which costs a lot of messages to match 
and a pair which is very cheap. It seems therefore meaningful to measure the 
communication complexity of a strategy as the average number of messages to 
match a pair of nodes. In this example the average is 4~ messages. 

I. I. The Problem in the Two-Dimensional Case 

We recall the basic definitions and relevant results of [4] to make this article 
self-contained. If N is a set, then INI denotes the number of elements, and 2N 
denotes the set of all subsets of N. We are given a set of elements N = { 1, 2, ... , n} 
and total functions 

P, Q: N ->2N, 

such that IP(a) n Q(b)I = 1 for all a, b, 1 :Sa, b :Sn. 

Problem 1. Find a lower bound on the average of IP(a)I + IQ(b)I, the average 
taken over all ordered pairs (a, b) e N 2. Investigate this lower bound when IP(a)I 
and IQ(b)I can be chosen freely, and when either one of IP(a)I or IQ(b)I has a 
prescribed value. 

Problem 2. If S(i) = {j: i e P(j)}, then find tradeoffs between the lower bound of 
Problem 1, and the average number of elements (or worst-case number of elements) 
in S(i), the average taken over all i in N. 

If the elements of P(a) and Q(b) are randomly chosen, then the probability for 
any one element of N to be an element of P(a) (or Q(b)) is IP(a)l/n (or IQ(b)l/n). 
If P(a) and Q(b) are chosen independently, then the probability for any one element 
of N to be an element in both P(a) and Q(b) is IP(a)l IQ(b)l/n2 • Since there are n 
elements in N, the expected size of P(a) n Q(b) is given by 

E(IP(a) n Q(b)I) = IP(a)l IQ(b)I. 
n 

Therefore, to expect precisely one element in P(a) n Q(b), we must have IP(a)I + 
IQ(b)I ~ 2Jn. The above analysis holds for each ordered pair (a, b) of elements of 
N, since all nodes are interchangeable. Consequently, the minimal average value 

of IP(a)I + IQ(b)I over all ordered pairs (a, b) in N2 is 2Jn. 
By a deliberate choice of the sets P(a) and Q(b), as opposed to a random 

choice, the result may improve in two ways: 

(1) The intersection of P(a) and Q(b) with certainty contains one element, as 
opposed to an expectation of one element. 

(2) IP(a)I + IQ(b)I < 2Jn suffices, for selected pairs, or even on the average. 
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Option (2) is suggested by the fact that the elements of N need not be treated 
as symmetric. For instance, with one distinguished element in N we can get by 
with IP(a)I + IQ(b)I = 2 on the average. 

1.1.J. Complexity. Denote the singleton set P(a) n Q(b) by r0 ,b, and call ra,b the 
rendezvous element. (For convenience, identify a singleton set with the element it 
contains.) 

Definition. Then x n matrix, R, with entries ra,b (1 ::; a, b s n) is the rendezvous 
matrix. Note that 

n n 

U ra,b £ P(a) and U r a,b £ Q(b). (Ml) 
b=l a=l 

By choice of P(a)'s and Q(b)'s we can always replace the inclusions in (Ml) by 
equalities. We also say that R represents a match-making strategy between each 
ordered pair (a, b) of nodes in N. The interpretation is that a sends messages to 
all elements in P(a), and b sends messages to all elements in Q(b), to effect a match 
of the ordered pair (a, b) at ra,b· In many applications we can assume that a node 
needs to send no messages to itself, which corresponds to empty elements ra,a on 
the main diagonal. This gives minor changes in the results below. For simplicity 
we do not make this assumption. Examples of rendezvous matrices for different 
strategies, ranging from centralized via hierarchical to distributed, are given in the 
Appendix of [4]. We give two examples in our Appendix. The reader may find it 
useful to look at the examples before continuing. 

1.1.2. Lower Bound. The number of messages m(a, b) involved m the match­
making instance associated with (a, b) is 

m(a, b) = IP(a)I + IQ(b)I. (M2) 

We can determine the quality and complexity of a match-making strategy by 
the minimum of m(a, b) or the maximum of m(a, b). The most significant measure 
appears to be the average of m(a, b) for a, b ranging from 1 to n. 

Definition. The average number of messages m of a match-making strategy (as 
determined by the rendezvous matrix R) is 

1 n n 

m = 2 I L m(a, b). 
n a=l b=l 

(M3) 

We call m the communication complexity of R. We denote by m(n) the optimal 
communication complexity, i.e., m(n) equals the minimum value of m associated 
with R, where R ranges over all n x n rendezvous matrices. Distributed methods 
are preferable since they can tolerate failures and distribute the message load better 
than centralized ones. A question is how to express the tradeoff between communi­
cation efficiency and distributedness of these algorithms? It appears that communi­
cation efficiency is intimately tied up with the frequencies with which the respective 
nodes occur in the rendezvous matrix. 
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Define the frequency k; of i in R as the number of times element i occurs as 
an entry in R, i.e., how often i is used as rendezvous for an ordered pair (a, b) of 
elements (1 :::;: a, b ::::;; n). Clearly, 

n 

L k; = n2 . 

i= 1 
(M4) 

We call the n-tuple (k 1 , ... , kn) the distribution vector of R, and we consider it 
as a measure for the distributedness of strategy R. Looking at two extremes we 
see that this makes sense. If there is an i such that k; = n2 and kj = 0 for j f= i, 
then the strategy is centralized. If k; = n for all i, then we call the strategy 
distributed. Intuitively, the statistical variation of the k/s measures the distributed­
ness of a strategy in a single figure. We derive a lower bound (Proposition 2) on 
m(n) expressed in terms of the k;'s. We show that this lower bound is optimal for 
distribution vectors (n, ... , n) and (0, ... , 0, n2 , 0, ... , 0) by exhibiting strategies R 
which achieve it. We conjecture that the lower bound is optimal for all distribution 
vectors. To prove Proposition 2, it is useful to proceed by way of Proposition 1. 
Not only is Proposition 1 combinatorially more interesting than Proposition 2, 
which is an easy corollary, but it also quantifies the optimal tradeoff between the 
sizes of the P-sets and the Q-sets. We generalize this in this paper to obtain results 
on many-dimensional and weighted versions of distributed match-making. 

Proposition I. Consider the rendezvous matrix R as defined above. Then 

Proposition 2. 

2 n 

m(n) 2 - L jk;. 
n i= 1 

(M5) 

For the proofs see [ 4] or below: these results are the special case of Theorem 
1 with s = 2 and n1 = n2 = n. It is not difficult to see that Propositions I and 2 
hold mutatis mutandis for nonsquare matrices R. For totally distributed strategies 
they specialize to: 

Corollary. Let R be a rendezvous matrix such that k1 = k2 = · · · = kn = n. Then 

n n 

L L JP(a)l IQ(b)I 2 n3 and m(n) 2 2Jn. 
a=l b=1 

The second inequality is the same lower bound we saw in the probabilistic 
analysis. Note that in the latter case the elements were also symmetric in the sense 
of interchangeability. These lower bounds are matched precisely by arranging the 
rendezvous matrix Ras a checker board consisting of Jn x Jn squares of n entries 
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each. Each square contains n copies of a single element of N, a different one for 
each square. 

Singling out one element gives centralized match-making as follows: 

Corollary. Let R be a rendezvous matrix such that k2 = k3 = · · · =kn= 0 and 
k 1 = n2, that is, 1 is the central element. Then 

n n 

L L IP(a)l IQ(b)I 2 n2 and m 2 2. 
a= 1 b= I 

These lower bounds can be matched by upper bounds. 

1.2. The Question of Weighted Match-Making 

The constraints (M1HM5) and Proposition 1 give a tradeoff between the P(a)'s 
and Q(b)'s, which is much stronger than the one implied by Proposition 2. We 
can illustrate this by a simple example. If P(a) = p and Q(b) = q for l ::;; a, b s n, 
then by Proposition 1 we have pq 2 n. If we set p = n114, then it follows that 
q ;;:::: n314, which gives p + q 2 n314 + n 114. Proposition 2 gives, for p = n114, only 
q ;;:::: 2n 112 - n114 , while p + q 2 2n112 does not change. As suggested by this 
example, we can use the tradeoff in Proposition 1 to adjust distributed match­
making strategies so as to minimize the weighted overall number of messages. 

In a name-server the average call for a service a by a client b occurs more 
often than the average posting of a service available at a. Or, in a match-making 
instance (a, b) the server a may be allowed to post o:(a, b)-many times to the nodes 
in P(a) and the client b is allowed to query {J(a, b)-many times the nodes in Q(b) 
(increasing availability /reliability of the network). Therefore, in many applications 
such as name-server, mutual exclusion, replicated version management, we may 
actually be interested in minimizing m with (M2) replaced by (M2'): 

m(a, b) = o:(a, b)IP(a)I + f3(a, b)IQ(b)I. (M2') 

This question was the incentive for the present article and is resolved in 
Theorem 2. It turns out that it is advantageous to solve an s-dimensional 
generalization of distributed match-making first. 

1.3. Generalization of the (Unweighted) Problem to the s-Dimensional Case 

Let P = (P 1, .. ., P.) be a communication strategy in a given network, on a set of 
nodes N, be defined as follows. For each j = 1, ... , s, let P/ N--> 2N be a total 
function, such that, for each s-tuple (a, b, ... , c) of nodes, 

P1(a) n P2(b) n ... n P.(c) =ft 0. 
For any s-tuple (a, b, ... , c) of nodes let 

m(a, b,. . ., c) = IP1(a)I + IP2(b)i + ··· + IP.(c)I 

be the number of messages required for the match-making instance (a, b, ... , c) 
following strategy P. The average number M of point-to-point messages necessary 
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for match-making is: 

1 
M =IN ls L m(a, b, ... , c), (l) 

with the sum taken over (a, b, ... , c) E W. 
Let us interpret the case s = 2 in terms of the name-server, in order to give 

the intuitive background for considering weighted versions. Since a server a posts 
its whereabouts at all the nodes in P(a) by sending messages to all these nodes, 
and a client b queries each node in Q(b), we have P = (P, Q). The number m(a, b) 
of point-to-point messages in the match-making instance (a,b) must be at least 1 

jP(a)I + IQ(b)j. In contrast to the postquery case (s = 2), which is best visualized 
in two dimensions, the more general case (s > 2) is best visualized in s dimensions. 
(Each axis is marked with a node from N and the vertex (a, b, ... , c) is the location 
of P 1(a) n · · · n P.(c).) It turns out that to analyse the weighted version of the 
problem, we have to solve the multidimensional versions first. 

1.4. Outline of the Paper 

In the next section we derive the lower bound tradeoff (Theorem 1) on the 
multidimensional case. We then show that the lower bound is tight for the 
multidimensional mesh, binary n-cube, and finite projective space, by exhibiting 
distributed algorithms that match the lower bound. In the penultimate section, 
we derive the promised lower bound on the weighted version of distributed 
match-making (Theorem 2). In the last section we analyse one weight distribu­
tion in particular, that can be naturally interpreted as expressing a modified form 
of distributed match-making in terms of the standard definition. This is related 
to the least expected number of messages to make the match in a "success-stop" 

strategy as follows. Namely, b accesses first the node in Q(b) where most hosts a 
make a rendezvous, second the next most frequently used node in Q(b), etc., until 
it exhausts all the nodes in Q(b). Hence, to find a the expected number of messages 
is usually less than IQ(b)I, and b can stop once it has reached the rendezvous node. 
Similarly, a accessing nodes in P(a) can often use less than IP(a)I messages to reach 
the rendezvous node for node b. We show that the "success-stop" version of a 
match-making algorithm has expected average number of messages that improves 
the average number of messages required by the corresponding plain version by a 
factor of about i (Theorem 3). 

2. The s-Dimensional Lower Bounds 

To be able to prove the most general results possible it will be necessary to 
formulate the required concepts with a higher level of abstraction than in the 

1 It does not cost anything to have a machine send a message to itself. Thus, if P(a) contains a 

and Q(b) contains b, then we could have set m(a. b) = !P(a)i + !Q(b)I - 2. This modification results in 
approximately the same theory. 
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Introduction. The motivation however is derived from the previous section, and 
the results are necessary to resolve weighted match-making in the next section. 

Let N, N 1 ••. , N, be nonempty sets of positive integers (node i.d.'s), and 
n = IN I, n 1 = IN 1 I, ... , n, = IN s I. It is important to note that, in this setting, the 
N;'s are arbitrary finite sets, in particular, they can have more elements than N. 
A strategy is defined as 

P = {P1(a), Pz(b), ... , P.(c): (a, b, ... ,c)EN 1 x N 2 x ··· x N,}, 

where the P;: N; _,. 2N are total mappings. For 1 s; is; s and a EN;, let P;(a) = 
IP;(a)J. Let kd, dEN, be the number of s-tuples (a,b, ... ,c) such that dEP 1(a)n 
P2(b) n · ·· n P,(c). (If each of these intersections is nonempty, then LdeN kd?: 
n1 · · · n,, with equality for all intersections are singleton sets.) For the given 
strategy P define the product n and the sum M by 

1 n = I P1(a)p2(b)· .. Ps(c), 
n1n2 ... ns 

1 
M = L[P 1(a) + p2(b) · · · + p.(c)], 

n1n2 ... ns 

with the sums taken over all (a, b, ... , c)EN 1 x N 2 x ··· x N,. For i = 1, 2, ... , s 
define 

1 
Mi= - I P;(a) 

ni 

(with summation over a E Ni) so that 

D=M 1M 2 ···M, and M=M 1 +M2 +···+Ms. (2) 

The main result of the section is the following lower bound on the number of 
messages for match-making. We first state the theorem and its proof, and then 
discuss what it means. 

Theorem 1. For any strategy P the following inequalities hold: 

1 ( )s n?: I kl1s , 
n1n2 . .. ns ieN 

S (°" 1/s) M ?: . . . t/s L, k; . 
(n1n2 ns) ieN 

Proof of Theorem 1. The following inequality, also known as inequality of the 
arithmetic and geometric means, holds for s-many nonnegative real numbers 
a, ... ' r;: 

a+ · · · + u;;:.:: s(a · · · cr) 1 i'. (3) 

Equality holds when all the summands are equal [2]. Thus, the inequality in the 
theorem concerning the sum M follows immediately from the inequality concern-
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ing the product n, identities (2), and inequality (3). It is only left to prove the 
inequality concerning n. For each i e { 1, 2, ... , s} and each j e N, define Hi.is;; N; 
as the set of nodes d such that some s-tuple (a, b, ... , d, ... , c), where d is the ith 
coordinate, satisfies 

je P 1(a) n P2(b) n ··· n P;(d) n ... n P,(c). 

Denote the cardinality I Hi.ii by h;,j· Then, for all j = 1, ... , n, 

h1,jh2,j"'hs,j = IH1,j X H 2,j X ... X H.J 

~ l{(a, b, .. ., c):je P 1(a) n P2(b) ... n P.(c)}I 

= kj. 

Also, for all i E { 1, .. ., s}, 

L hi.i :$I l{a:jEP;(a)}I 
jeN jeN 

= L L l{U, a):jEP;(a)}I 
jeN aeN, 

= L I {j: j e P;(a)} I 
aeN, 

= L P;(a) = n;M;. 
aeN, 

To obtain the lower bound on n, proceed as follows: 

n = M 1M 2 • .. M, (by (2)) 

~ 1 (I h1.j)· .. (I h •. j) 
n1n2"·n. jeN jeN 

(by (5)) 

(4) 

(5) 

(6) 

where S(j1, ... ,j.) = h1 .i, · · · hs,j,· By interchanging the order of summations and 
then renumbering the dummy indices, we can rewrite this last quantity as the sum 

for any permutation n of the numbers from 1 through s. For our purposes it is 
convenient to rewrite with n equal, in turn, to each of the cyclic permutations of 
I to s, and then to consider the average of the s resulting equal quantities. This 
average is given by a sum of the same form with the summand 

S(j 1,. • .,j,) + S(jz, .. .,j.,j1) + · · · + S(j.,j1, ... ,j._ tl 
s 

Using inequalities (3) and (4), it is easy to see that this summand must be at least 
(kj, ... k1J1 1•. From this the claimed lower bound on n follows, and hence the proof 
of the theorem is complete. O 
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Corollary. Both Propositions 1 and 2 of [ 4] are immediate consequences of 
Theorem 1. 

Remark 1. For simplicity in the following discussion let N = {l, 2, ... , n}. As in 
the two-dimensional case, the n-dimensional vector (k 1, k2 , ••• , kn) can be viewed 
as a measure of the "distributedness" of the strategy P. Namely, it tells us how 
evenly the load of making matches is distributed among the different nodes in N. 
One extreme is if k1 = n• and k 2 = · · · =kn= 0. Then the algorithm is centralized 
since, for each match-making instance (a, b, ... , c), node 1 is the only node to which 
nodes a, b, and c send messages. As another extreme we can view the case 
k1 = · · · =kn= n•- 1• Then the algorithm may be called "truly distributed," since 
each node i (1 ::::;; i::::;; n) functions as the rendezvous node (the node where the 
match is made) for an equal number n•- 1 of match-making instances (a, b, ... , c). 
In other words, in this case the load of match-making is distributed evenly over 
all nodes in the network. Therefore, the lower bounds in Theorem 1 can be 
interpreted as tradeoffs between the average message cost and the measure of 
distributedness of a match-making strategy. 

Remark 2. If n1 = · · · = n. = n, and for simplicity N = { 1, 2, ... , n }, then 

( 1 n )s s ( n ) n 2 - L kl1s and M 2 - L kf 1• . 
n i=I n i=I 

Additionally, consider the symmetric case where all k/s are equal, namely k; = n•- i, 
i = 1, ... , n. Then Theorem 1 specializes to the "truly distributed" case n ;;:::; n•- 1 

and M ;;:: sn<•- OI•, for which we establish matching upper bounds in the following. 

Remark 3. The lower bound on n gives more information than the lower bound 
on M (which it implies). As a (simple) example consider the truly distributed case 
of Remark 2 with s = 2. We have M = M 1 + M 2 . Suppose we know M 1 = n114 

but we do not know M 2 • The lower bound M;;:::; 2n 1' 2 allows us to conclude that 
M2 2 2n 112 - n114• However, the lower bound n;;:::; n shows M 2 ;;:::; n314, which 
implies in turn that M;;:: n3' 4 + n1' 4 ~ 2n 1' 2 • 

Remark 4. M equals the right-hand side of the inequality in which it occurs, 
exactly when M 1 = · · · = M., which means that the strategy P is optimal exactly 
when the average number of messages is equally balanced in all directions. 

3. Optimality 

We show that Theorem 1 is optimal in some special cases (which are of sufficient 
generality) by exhibiting matching strategies. (We only consider the number of 
messages needed for the match-making part of an algorithm.) For more examples 
the reader is referred to [ 4]. 

Manhattan Network. Consider the s-dimensional grid of nodes that is n11• nodes 
long in each dimension: the s-dimensional Manhattan network. Each query 
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transmits to all nodes in the hyperplane through the querying node that is 
perpendicular to that query's axis. This uses sn1•- 111• messages, which is optimal 
by Theorem 1. 

Cube Network. Let the number of nodes be n = 2d and suppose that sis a divisor 
of d. Addresses of nodes consist of d bits, like u 1u 2 · · · ud. Nodes are connected by 
an edge exactly when they differ by a single bit. Let P = (P 1, ••• , P.) be a strategy, 
and, for each r E { 1, ... , s}, let P,(u 1 · · · ud) be the set 

{x I ••• x,,-1.d/su(r- I •dts+ I .•• urd/sXrd/s+ I .•• xd: xi E {O, I}}. 

Clearly, each of the above sets has size 21s- IJd/s and ki = 2••- 1..i = n•- 1• Thus, we 
easily obtain that M :$; sn••- 01<, that is, the average number of point-to-point 
message transmissions is at most sn1•- nis. By Theorem 1 this strategy is also 
optimal. 

Finite Projective Space. Consider generalized mutual exclusion in a distributed 
setting, where s - I processors are allowed to be in the critical section simulta­
neously, but not s or more processors. For background and nondistributed 
solutions we refer to [1]. In [3] Maekawa considers the distributed version of 
mutal exclusion for s = 2, the commonly studied variant. In our terminology. for 
mutal exclusion with s = 2 we can set P 1 (i) = P 2(i), which is some sort of symmetry 
condition. Each instance of mutual exclusion contains a match-making instance 
[4]. For the truly distributed case, with k1 =···=kn= n and s = 2 we find that 

on the average each match-making instance takes at least 2Jn messages [4]. 
Maekawa obtains a similar lower bound, and exhibits an algorithm that achieves 

sJn [3]. Theorem 1 gives a lower bound of sn<•- nis for the generalized version. 
The optimal solution there is achieved by the finite projective space PG(s, k) (k a 
prime power), where the network has ks + ks- i + · · · + 1 = n nodes, each node is 
incident to all ks- 1 + k5- 2 + · · · + 1 hyperplanes, and each hyperplane contains 

ks-l+k•-2+···+1 

nodes. Each family of s hyperplanes intersects in precisely one node. Therefore, 
each query set S(i) = P 1(i) = · · · = P5(i) of a node i consists of the set of 
k•- 1 + ks- 2 + · · · + 1 nodes incident on some hyperplane containing node i. It 
does not matter which hyperplane we pick, because any s hyperplanes intersect 
in a single node. The average cost M of point-to-point messages associated with 
a particular mutual exclusion instance is therefore O(s(k'- 1 + k5- 2 + · · · + 1)) ~ 
O(sn<•- lll•) (generalizing Maekawa's method to s ~ 2 [3]). By Theorem I this 
strategy is also optimal. 

4. Weighted Distributed Match-Making 

We now examine weighted distributed match-making. Given a strategy P = 
(P 1, •.. , P.), with all parameters as before, we define a weighted version of the 
number of messages required for match-making. For each match-making instance 
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S =(a, b, ... , c), let (1 1(S), l2(S), ... , /5(S)) be an s-dimensional vector of positive 
integer weights. The weighted cost of match-making instance S is 

m(S) = / 1(S)p 1(a) + l2(S)p2(b) + ··· + /.(S)p.(c). 

The weighted cost M of strategy P is 

1 
M = -- L 11(S)p 1(a) + · · · + /5(S)p.(c), 

n1 ... ns 

the sum taken over all SEN 1 x · · · x N •. Then 

n1···115 M = L ( L l1{S))P1U1l + · · · + .L (.L /.(S))p.{j.) 
j1eN1 SeS1 }.-eN., SeS, 

= L Nl.j,P1U1)+···+ L Ns,J,PsUsJ, (7) 
j1EN1 f~EN.1-

where, for i = 1, 2, ... , s, 

Ni,j, = L l;(S), 
SeS, 

Consider the following related strategy Q for the sets N, and, for i = 1, 2, ... , s, 
N;=N; x {1,2, .. .,Ni): 

Q={Q 1(a),Q 2(b), ... ,Q5(c):(a,b, ... ,c)EN1
1 xN~ x ··· x N~}. 

For 1 sis s andj EN;, let q;(j) = I Qi(j)I. Note that we have chosen the definitions 
in such a way that 

L q;(j) = L Ni,jpi(j) (8) 
jeNi jeNi 

for all i from 1 through s. In the following we use primed identifiers for the variables 
associated with Q to distinguish them from the corresponding unprimed variables 
associated with P. We relate M with TI' as follows: 

= _s __ (N'1 ... N~)l/sffl/s 
111 .. 'ns 

{by definition) 

> __ s_ '\ k'.1/s 
- L,, I {by Theorem 1 ). 

n1 ..• 11s ieN 

It remains to compare the quantities k; and k;. This is easy. Namely, for each 
s-tuple (j 1 , ••• ,j5 ) such that iEP 1(ji)n .. ·nPsUsl we have choosen the N; 
such that there are at least N 1,j, ... N •. 1,-many s-tuples (j'1, .. .,j~) such that 
i E Q1(j'i) n · · · n Qs(j~). In other words, to each match-making instance (a, b, ... , c) 
with rendezvous node i in P, there correspond at least NI.a··· Ns.c distinct 
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match-making instances (a', b', ... , c') with rendezvous node i in Q. Hence, we 
conclude that 

s 
M ?.-- L (,L{N1,aN 2 ,b·· ·Ns,c: (a, b, ... , c) matches at i in P}) 1fs. (9) 

n1 · · · ns ieN 

With some computation we can specialize the general result (9) to "instance­
independent" weights, to obtain the more pleasant looking theorem below. 

Theorem 2. For any strategy P, if there are positive integers A.1, ... , A.5 such that 
for each (a, b, ... , c) in N 1 x N 2 x · · · x Ns we have that 

m(a, b, ... , c) = A1P1 (a) + A2P2(b) + · · · + AsPs(c), 

then 

s(A. ···A.)l/s 
M ?. l s I kf 1•. 

n 
(10) 

ieN 

The quantity M equals the right-hand side of the inequality above, exactly when 
A1M1 = ... = A.SMS. 

Corollary. Theorem 2 also holds for rational A.'s. 

Hint. Let .Ai= Pi/q;, i E {a,. .. , s}, and denote the corresponding M-quantity 
by M ,_. Let µi = CA.i with C = q 1 · · · q., i E {a, ... , s }, and denote the corresponding 
M-quantity by M,,. Since all µ-weights are C times the .A-weights, Mµ =CM,_. 
Substituting the integer µ's in (10) gives 

s(C• A ... A. )ifs 
CM;.=Mµ?. l s I kfl•. 

n ieN 

Dividing both sides by C yields the corollary. 

Remark 5. Hence we have demonstrated a very general lower bound on weighted 
distributed match-making. Let us illustrate its use in a very simple case. Consider 
the "truly distributed" case for s = 2, n 1 = n2 = n, and k; =.n for all i EN. We 
interpret this for the name-server with strategy P = (P, Q). Assume that each 
posted service gets 100 queries in its lifetime. Then each match-making instance 
(a, b) carries a cost ofm(a, b) = IP(a)l/100 + IQ(b)I. That is, A. 1 = 1/100 and A.2 = 1. 
By (10), therefore, the weighted match-making cost M is bounded below by 

2·Jl/100· 1 " 1/2 2 1/2 
M?. L.. n =-n . 

n ieN 10 

5. Success-Stop Strategies 

The above investigations establish the number of messages necessary for dis­
tributed match-making, while the examples given here and in [4] suggest that this 
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is sufficient as well for the current problem formulation. While it thus appears 
that the lower bound provided cannot be improved any further, Paris Kanellakis 
has drawn our attention to the fact that the lower bound is with respect to the 
assumption that the querying node sends messages to all nodes to be queried at 
once. We may hope to improve the performance when we develop strategies that 
query the nodes one node at a time and stop when the queried node is the one 
looked for. For any given strategy P we will construct a new "success-stop" 
strategy. The "expected" number of messages for this new strategy will be shown 
to be ::s;(1)· M, with Mas in (1). 

5.1. The Two-Dimensional Case 

By way of illustration we first formulate such a strategy for the unweighted, 
two-dimensional case of the distributed match-making problem. 

Let P = (P, Q) with P, Q: N--+ 2N. The rendezvous matrix is the matrix whose 
(a, b)-entry is the (nonempty) set P(a) n Q(b). The modification we look at may be 
called success-stop. The idea is the following. Let us take the name-server 
interpretation again. Each server a posts at a set P(b). Each client b queries the 
elements of a set of nodes Q( b) = Q 1 (b) v · · · v Qn( b) as follows. First it queries the 
elements of Q,(b), then Q2(b), up to Qn(b). All sets Qk(b) are disjoint, and may be 
empty from k = m, for some m, onward. In our earlier set-up, the cost to make a 
match between a server located at a and a client located at b is 

In our new set-up, the client stops querying after it has found the server. That is, 
if m is the least index such that P(a) n Qm(b) -:f. 0, then the client does not need 
to query Qm+ 1(b), ... , Qn(b). The new cost to make the match is P(a) + Q1(b) + 
· · · + Qm(b). This cost is minimized for a particular rendezvous matrix, if in column 
b we choose as Q1(b) the singleton set with the node occurring most often in that 
column, as Q2(b) the singleton set with the node occurring next most often, and 
so on. (With such a method we may also address questions of fault-tolerance by 
setting Q,(b) v ·· · v Qn(b) = {1,. . ., n}, or anyway a large subset of N for all b.) 

Example. Consider the rendezvous matrix of a three-node network: 

2 3 1 
2 1 1 

1 2 

We add some information to the rendezvous matrix to represent the success­
stop strategy: 

(1, 2) (2, 3) (1, 1) 
{1, 2) (1, 1) (1, 1) 
(2, 1) (1, 1) (2, 2) 

Now each element consists of a pair (try number, rendezvous node)· the first 
coordinate specifies the sequence number of the try, and the second c~ordinate 
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specifies the rendezvous node which is used in that try. Since rows are associated 
with servers and columns with clients, the cost for matching server one with client 
two at rendezvous node 3 is now 2 + 3 = 5. That is, client two queries both 
nodes 1 and 3, and server one posts at nodes I, 2, and 3. However, the cost of 
making a match between client two and server three is only 2 + 1 = 3. Namely, 
client two is successful in the first query for server three since the node at the third 
row is queried already in the first try, and server three posts at both nodes l and 
2. Similarly, to match server three with client three takes 2 + 2 = 4 messages. 

A similar idea applies for the case of posting. For a match between a server 
at node a and a client at node b, we only count the repeated number of postings 
the server has to do to reach the proper rendezvous node. For each process a the 
set P(a) is split into singletons P 1 (a), ... , Pn(a), where all Pk(b) are disjoint and may 
be empty from some k onward. As before, P 1 (a) is the singleton with the most 
frequently "occurring" node in the ath row of the rendezvous matrix, P 2(a) is the 
singleton with the second most frequently "occurring" node in the ath row, etc. 
The above modification of posting is called repeated posting. 

Remark 6. It clearly works to post everywhere first, and then query one site at 
a time, stopping as soon as the posted site is found. Conversely, it would also 
work to query everywhere and then post to one site at a time, stopping as soon 
as a queried site is found. But if posting and querying are happening one site at 
a time, in what order are they interleaved? The number of messages would, of 
course, depend on the interleaving. There is another issue that would also arise 
in the simultaneous case. Suppose that repeated posting and repeated querying 
are happening concurrently, and that the rendezvous node (which was posted some 
time ago, say) has just been queried. This successful rendezvous stops the querying 
process; but does it also stop the posting process? In this preliminary investigation 
we formulate the abstract problem below, and simply ignore these interpretational 
difficulties (left as open problems). The results could be interpreted as setting outer 
limits to the possible gain of using success-stop strategies. 

We modify the rendezvous matrix once more to represent this strategy: each 
entry is a triple (try number server, try number client, rendezvous node). For 
instance, continuing our example, 

(2, 1, 2) (1, 2, 3) (3, 1, 1) 
(2, 1, 2) (1, 1, 1) (1, 1, 1) 
(1, 2, 1) (1, 1, 1) (2, 2, 2) 

Now to match server one with client two costs 1 + 2 = 3 messages. and to match 
server three with client two costs only l + 1 = 2 messages. 

5.2. Analysis 

In this section we analyse a particular form of the problem. Here it is just important 
to us to point out that the analysis of this matter is not restricted to trivialities. 
We are given a communication strategy P = (P 1, ... , P 5 ) on a network with set of 
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nodes N = {1, 2, ... , n}. Let k1 be the number of s-tuples (a, b, ... , c) such that 
l E P 1(a)nP2(b) · · · n P5(c). (In general, we use the same notation as in the previous 
sections.) For each pair i, j, consider the nodes I occurring in the query set P ;U) 
and define 

k1(i,j) = I {(a, b, ... ,j, ... , c): I E P 1 (a) n · · · n P;{j) n · · · n P 5(c)} I. 
Clearly, if l is not in Pi(j), then k1(i,j) = 0. It is also immediate that, for any direction 
i and for any node /, 

s 

k1 = I I kh, j) s; n. (11) 
i=ljeN, 

Next arrange the nodes l in P 1(j) in order of decreasing ki(i,j)'s such that 

k1(i,j) ~ kz(i,j} :2:: • · · :2:: km(i,j), 

where m = IP1(j)J and we have renamed the nodes by the integers 1 through m. 
Finally consider the following new strategy: 

Success-Stop Strategy. Instead of sending messages to each element in P;(j), 
process j executes the following algorithm. We assume that j knows the order of 
the k1(i,j)'s. Moreover, we assume that a rendezvous node sends a message back 
to a querying node informing it whether nor not the intended match was 
successful. 

for / = 1, 2, ... , m do: 
send message to node I; 
if match successful then exit 

The expected number of messages required for match-making of node j using 
P;, ignoring the response messages of the rendezvous nodes, is defined as 

E( . . ) l·k 1(i,j) 2·k2(i,j) m·km(i,j) 
l,j = + + ... + . 

n n n 

After regrouping terms and simplifying, we obtain that the right-hand side of the 
above equality is 

m + 1 
s; ~·(k1(i,j) + kz(i,j) + ·· · + km(i, j)) 

m+l m+l 
s;---··n =--

2n 2 
(by (11)). 

Averaging out over jEN1 we conclude that the expected average number of 
messages sent by the j E Ni according to P1 in the success-stop strategy satisfies 

M; s; ]_.I IP;(j)I + 1. 
ni jENi 2 

The expected average number of messages M for the success-stop strategy is given 
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by 

lVt = L M;. 
i 

Using the definitions of M, M;, and identity (2), we obtain the following theorem. 

Theorem 3. For any s-dimensional match-making strategy P the expected at.'erage 
number of messages lW of the associated success-stop strate{/Y satisfies 

_ M s 
M<-+-. 

- 2 2 

Remark 7. Note that without the assumption that the nodes in the P-sets have 
a known order according to their frequency of occurrence as rendezvous node, 
the upper bound in Theorem 3 may increase. If we also include the messages sent 
back by the rendezvous nodes to inform a sender of success/failure of a desired 
match, then M doubles, so the upper bound on the expected value becomes slightly 
worse again than M. 
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Appendix. Examples 

1. Broadcasting: m = n + I 2. Nine nodes in a 3 x 3 
r 

Manhattan network: m = 2.Jn 

2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 

1 1 1 l 1 1 1 2 3 2 3 2 3 
2 2 2 2 2 2 2 2 2 2 2 1 2 3 2 3 2 3 
3 3 3 3 3 3 3 3 3 3 3 1 2 3 l 2 "3 2 3 
4 4 4 4 4 4 4 4 4 4 4 4 5 6 4 5 6 4 5 6 
5 5 5 5 5 5 5 5 5 5 5 4 5 6 4 5 6 4 5 6 
6 6 6 6 6 6 6 6 6 6 6 4 5 6 4 5 6 4 5 6 
7 7 7 7 7 7 7 7 7 7 7 7 8 9 7 8 9 7 8 9 
8 8 8 8 8 8 8 8 8 8 8 7 8 9 7 8 9 7 8 9 
9 9 9 9 9 9 9 9 9 9 9 7 8 9 7 8 9 7 8 9 
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