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1. Prelude: A low dimensional representation of 
the population dynamics of generalized ectotherms 

Suppose we want to model a population of ectothermic animals, e.g. the wa­
ter flea Daphnia magna. Experimentally it appears that reproduction depends 
on the size of the individual animals and this observation motivated KOOIJMAN 

& METZ (1984) to introduce a size structured model. As the biological assump­
tions underlying the model are described already in some detail, in METZ & 
DIEKMANN (1986; I.3), METZ et al. (1988), DE Roos et al. (preprint) and 
DE Roos & METZ (preprint), we restrict ourselves here to its mathematical 
formulation: 

a a 
atn(t,£) + ae(v(s,£)n(t,£)) = -µ(s,R)n(t,£), 

fmax 

v(s,fb)n(t,£b) = j {J(s,R)n(t,£)d£. 
( 1.1) 

lb 

Here .e denotes length and s substrate (more precisely: concentration of algae). 
The individual growth, death and reproduction rates are denoted by, respec­
tively, z;, µand fJ. The density n describes the concentration of Daphnia as well 
as their distribution with respect to length. All individuals are born with length 
eb and .emax is the maximal attainable length under abundant food conditions. 
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270 Mode ls for physiologically struci'ured populations 

To describe some experiments one should consider s as a given function of 

time but to describe others one has to specify the dynamics of s as well. In the 

latter case we take 

ds l/max 
- = h(s)- 1(s,£(n(t,£)d£, 
dt 

(1.2) 

lb 

where h corresponds to the rate of change of the algae concentration in the 
absence of daphnids and 1 is the per capita consumption rate. Under appropriate 

assumptions on the ingredients v, µ, (3, 1 and h, (1.1) and ( 1.2) together generate 
an infinite dimensional nonlinear dynamical system. 

Since daphnids are filters feeders it is reasonable to assume that the consump­
tion rate 1 is proportional to the surface area which in turn is proportional to 
£2. So we put 

1(s,£) = f(s)£2 . (1.3) 

If a constant fraction of the ingested energy is allotted to reproduction we may 
put 

/3(s,£) = af(s)£2 ( 1.4) 

(at this point we deliberately ignore the experimental fact that daphnids don't 

reproduce if they are still too small; see METZ & DIEKMANN, METZ et al. DE 
Roos et al. and DE Roos & METZ (op. cit.) for a formulation which does 

take into account a juvenile period characterized by£ < £1). If the remainder 
of the ingested energy is allotted to individual growth and maintenance and if 

maintenance is proportional to weight, which in tum is propertional to £3 , we 
may take 

and therefore 
d 

v(s,£) = d/ = 8f(s) - d. (1.5) 

Finally we take 

µ(s,£) = µ, a constant. (1.6) 

To anyalze (1.1) together with (1.2) for the special constitutive relations (1.3) 
to ( 1.6) we introduce 

fmax 

Ni(t) = J p_in(t, £)dt, i = 0, 1, 2, (1. 7) 
lb 

and find, using (1.1) - (1. 7) and some straightforward integrations (by parts), 
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that (N, s) satisfies the closed system of ODE's 

dNo 
dt = af(s)N2 - µNo, 

dN1 dt = f.baf(s)N2 - 6f(s)No - (µ + c)N1 , 

dN2 2 dt = f.baf(s)N2 + 26f(s)N1 - (µ + 2c)N2 , 

( 1.8) 

ds 
dt = h(s) - f(s)N2 . 

The powerful qualitative theory of finite dimensional dynamical systems now 
can be brought to bear on (1.8). Moreover one can choose from a multitude 
of well established schemes to study (1.8) numerically. As one example of the 
exploitation of these facts we point to DE Roos (1988), who uses the relationship 
between ( 1.8) and ( 1.1) to investigate the accuracy of the 'escalator boxcar train', 
a new, efficient method developed by him for the numerical solution of the usual 
combinations of first order PDE's and non-local side conditions appearing in 
the theory of physiologically structured populations. 

Of course neglecting the juvenile period has consequences, the main difference 
between the present model and the full one being that the latter not only allows 
the occurrence of predator prey oscillations due to the lag in recovery of the 
food population, but in addition oscillations related to the development lag (see 
METZ et al. 1988; DE Roos et al. 1988; DE Roos et al. preprint, and DE 
Roos & METZ, preprint). 

2. Introduction 

The Daphnia example shows that it is sometimes possible to faithfully rep­
resent a full physiologically structured population model in a low dimensional 
manner, provided an appropriate choice of the constitutive relations, viz. the 
velocity and mortality functions and birth kernel, is made. The idea to search 
specifically for modelling approximations allowing such low dimensional repre­
sentations is affectionately called 'linear chain tickery' by its practitioners. The 
name arose in the context of delay differential equations, where particular dis­
tributed delays can be represented as linear, i.e. unbranched, chains of coupled 
single ODE's (see e.g. MAC DONALD, 1978). 

The earliest references to a systematic use of linear chain tricks that we are 
aware of are by VOGEL and by REPIN (1965) who applied them in the context of 
respectively Volterra integral and delay differential equations. The first analysis 
of necessary and sufficient conditions for linear chain trickability in the context 
of systems with hereditary action seems to have been given by FARGUE (1973, 
1974). Good general references in this context with a slant towards biological 
applications are MAC DONALD (1978,1979). GURTIN & MAC CAMY (1974, 
1979) were the first to use linear chain trickery for well specified age structured 
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population model. GURNEY et al. (1986) provided the extension to physiological 

age, and MURPHY (1983) and EDELSTEIN & RADAR (1983), to size, 
Another, practically very useful, extension of the idea of linear chain trickery, 

which, however, is less amenable to an abstract characterization, is provided by 

the stage structured models pioneered by the University of Strathclyde group of 

ecological modellers. Basically these are physiologically structured population 

models which can be represented in a fairly straightforward manner as systems 

of delay differential equations with a few, though possibly variable, discrete de­

lays, and hence allow a rapid exploration of their dynamics using only slight 

extensions of the standard numerical techniques for ODE's. The advantage of 

aiming at using delay instead of ordinary differential equations in one's mod­

elling approximations is the greater flexibility allowed, in particular if one wishes 

to keep the number of differential equations involved fairly small. A good in­

troduction to the biological assumptions underlying the stage structure concept 

can be found in NISBET & GURNEY (1986). The first papers on the subject are 

GURNEY et al. (1983), which treats the case of fixed delay only, and NISBET & 
GURNEY (1983) which deals with the variable delay case (the symposium paper 
GURNEY & NISBET (1983) provides a nice summary). Various useful further 

extensions can be found in BLYTHE et al. (1984), GURNEY et al. (1986), and 
NtSBET et al. (1985). 

In the present contribution we report our attempts at elucidating for gen­

eral population models the structural properties underlying the machinery of 

deriving faithful finite dimensional representations. This work forms part of an 

ongoing program, started in METZ & DIEKMANN (1986), aimed at clarifying 

the abstract mathematical structure inherent in our ways of thinking about the 

mechanistic basis of population dynamics. Some of the results reported in the 

present paper, in particular the characterization results form subsection 5, 1.2, 

already appeared in DIEKMANN & METZ (1988,89). 

3. An abstract formulation of physiologically structured 
population models 

Let the individuals of a population be characterized by finitely many variables, 

which together we call the i-state. So the set of feasible i--states n is a nice subset 
of IRn, for some n. At the individual level a model amounts to a specification of 

(i) the rate of i-state change, v, (ii) the death rate,µ, (iii) the birth rate, fj, and 

in particular how (i ), (ii) and (iii) depend on the i-state x and the prevailing 

environmental conditions. The latter a,re described by a (possibly even infinite 
dimensional) variable E. In the case of the birth rate we have to specify the 
( distribution of the) state at birth as well. 

Once we have a model at the individual level we can immediately derive 

balance laws doing the necessary bookkeeping. These balance laws generate the 

time evolution at the population level. There are two types of balance laws, 

related to each other by duality. We can use duality since for E a given function 

of time the equations <Uc linear as a result of our previous assumption that 
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for a given course of E individuals are fully state-determined. The Kolrnogorov 
backward equation is concerned with the clan mean of a continuous function on D 

(see below). The Kolmogorov forward equation describes infinitesimal changes in 

the measure which assigns to every measurable subset of n the concentration of 
individuals which have at that instant an i-state which belongs to that particular 

subset. This measure is called the p--state (p for population) and the space M(n) 
of regular Borel measures on D is called the p--state space. Frequently (but not 

always) we can restrict our attention to densities, as we did in the case of the 
Daphnia example, and formulate the Kolmogorov forward equation for Li(D). 

Let for a particular course of E the population state at t deriving from an ini­
tial condition at to corresponding to a unit mass at x 0 be denoted as n( t, t0 , lx 0 ). 

Then the clan mean of 1f; : D ____, IR is defined as 

v(to,t,1/;)(xo) := j 1f;(x)n(t,to,lx 0 )({dx}). 

rl 

The Kolmogorov backward equation of a general physiologically structured pop­
ulation model is 

with 'final' condition 

where 

with 

d 
--d v(to, t, 1/;) = A(E(to))v(t0 , t, 1/J) 

to 

v(t, t, 'ljJ) = 1/;, 

A(E) = Ao(E) + B(E) 

#> 
(A0 (E)'lj; )(x) = dx v(x, E) - µ(:r, E)lf;(x) 

the i-state movement cum death operators, and 

(B(E)'ljJ)(x) = J 1f;(y)/3(a,E;{dy}) 

rl 

(3.1) 

(3.2) 

(3.3) 

( 3.4) 

(3.5) 

with birth operator. To derive this equation from first principles one only has 

to consider what will and/or may befall an individual who at time to - dt has 

i--·state x 0 , during the next short time interval to to, and then perform the usual 

averaging at t of 1/J, first within and then over the clans generated by (i) what 
by t 0 has become of her and (ii) her offspring present at to. 

The Kolmogorov forward equation can best be introduced as the formal ad­
joint of the backward equation: 

dn (t, t 0 , no)= A(E(t))*n(t, to, no)­
dt 

(3.6) 
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The main use of the general decomposition (3.3) derives from the fact that for 
B = 0 we can write down explicit solutions to either (3.1) or (3.6) by the simple 
expedient of integration along characteristics. Biologically this is equivalent to 
the following of cohorts. 

The description of our population is completed by specifying any outputs, 
such as total population size, total biomass, or total resources consumption, to 
be derived from it: 

y(t,to,no) = C(E(t))n(t,to,no). (3.7) 

When the range of y is finite dimensional, as is usually, but not always, the case, 
we can write 

C(E)m = (r(E),m) = J r(E)(x)m({dx}) (3.8) 

!1 

with r(E) : D _, JRh. Given any specific initial condition, to, no, the previous 
description should be such as to enable us in principle to calculate y as a function 
oft> t 0 for any sufficiently well behaved environmental input E. 

From an applied point of view the main usefulness as well as interest of the 
previous considerations derives from the fact that many environmental variables, 
like food, are in turn influenced by the population, e.g. through consumption. 
Thus nonlinear evolution problems arise in a natural manner through the spec­
ification of the feedbacks through the environment. 

The mathematical theory of provide a rigorous justification and interpretation 
of the general framework embodied in equation ( 3.1) to ( 3.8) is still in its infancy. 
Some first steps towards a functional analytic underpinning have been made in 
CLEMENT et al. (1987, 1988, 1989a, 1989b; see DIEKMANN, 1989, for a survey), 
but much work remains to be done. In the present contribution we restrict 
ourselves to formal manipulations, ignoring all problems related to the existence 
and uniqueness of solutions and to the precise interpretation of the differential 
equations (3.1) and (3.6). 

4. An abstract formulation of linear chain trickery 

From now on we shall always assume that the required output from the popu­
lation model is finite (possible zero) dimensional, and that E itself is the output 
from a dynamical system allowing a finite dimensional state representation. 

4.1. The most general case. 
Since our population equations (3.6) and (3. 7) are linear in the state we 

do not loose any generality by assuming that any potential finite dimensional 
representation of them is linear in the state as well, and that the full model and 
its finite dimensional representation are related by a linear map P : M ( D) _, IR k. 

In order that 

N(t) = Pn(t) ( 4.1) 
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provides us with a fully selfcontained description of the dynamical relationship 
between population input E and output y 

dN 
- =K(E)N dt , (4.2) 

y = Q(E)N, (4.3) 

we should have 
C(E) = Q(E)P (4.4) 

and 
PA(E)* = K(E)P (4.5) 

for some family of h x k matrices Q and some family of k x k matrices K. 

Remark. It is not possible to attain greater generality by letting P depend on 
E as this will lead to a additional term [d~P(E)~~]n in (4.2). D 

If and only if ( 4.4) and ( 4.5) are fulfilled the dynamics of E and N can be de­
scribed by a coupled finite dimensional system of ODE's. Once Eis determined 
by solving this reduced system we can treat 

dn = A(E)*n 
dt 

(4.6) 

as a non-autonomous (i.e. time dependent) but linear equation. If for example 
one can conclude from the (N,E)-system that E approaches a limit (or a peri­
odic solution) fort --t oo, the linear equation for n is asymptotically autonomous 
(periodic) and one can base further conclusions on the known asymptotic be­
haviour for these special cases. 

If we are willing to assume that 

Pm= (<},m) (4.7) 

for some vector cI> with components which are continuous functions of n we can 
reformulate ( 4.5) as 

A(E)cI> = K(E)cI>, 

provided cI> E 'D(A(E)) for all E. 

( 4.8) 

Remark. Actually nEV(A(E)) may be empty. However, within the context of 
dual semigroups one can extend A(E) to an operator A(E)8 * which has its range 
in a larger space X0* and therefore has larger domain as well (see CLEMENT et 
a.l. 1987, 1988, 1989a, 1989b, or DIEKMANN, 1989). One can then replace (4.8) 
by 
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In the following we shall not go into the distinction between this formulation 
and ( 4.8) (in fact we shall omit the precise definition of domains of unbounded 
operators). D 

Furthermore we can use (3.8), to replace ( 4.4) by 

f(E) = Q(E)if?. (4.9) 

( 4.8) and ( 4.9) together provide us with an easy practical recipe for checking 
whether a particular combination of v' µ, /3 and r allows a finite dimensional rep­
resentation. First of all it should be possible to write f(E)(x) as Q1(E)<P1(x) for 
some vector if? 1 = ( tp 1 , ... , '-Pki )T of linearly independent functions </J; and some 
h x k matrix family Q1 • If this is the case our problem is linear chain trickable 
if and only if the space spanned by all possible combinations A( Ep) ... A( E 1 )</J; 
for i = 1, ... , k1 , p = 0, 1, ... , is finite dimensional. 

4.2. Two examples. 

Example 1. Consider a cell population with size structure and assume that a 
mother cell divides into two parts without any mass loss, (see HEIJMANS, 1984 
and METZ & DIEKMANN, 1986 (sub)section 1.4, III.3.3.1, and VI.5, and the 
references given there). Then 

l 

(B(E)'lf;)(x) = d(x,E)[-'lf;(x) + 2 J 'l/;(8x)p(x, {dB})], 
0 

where dis the division rate and p(x, ·)is the probability distribution of the sizes 
of the daughters relative to the size of their mother. The assumption of no mass 
loss implies that p(x, ·) is symmetrical about () = 1/2. Now assume that the 
uptake of nutrient E by a cell is proportional to its biomass. In that case 

C(E) = g(E)(~, ·), 

with <fJ(x) = x, i.e. (</>,·)is the total biomass functional. Next we observe that 
necessarily 

B(E)~ = 0 

in accordance with the initial assumption that biomass is conserved in the divi­
sion process. Finally we observe that we get 

A(E)</J = Ao(E)</> = ((f - (E) - µ(E))</J 

if we make in additional assumptions that 

v(x, E) = f(E)x and µ(x, E) = µ(E). 
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The first condition is i.a. fulfulled when basal metabolism is proportional to 
biomass, and cell growth is proportional to nutrient uptake minus loss through 
basal metabolism: 

J(E) = a:(g(E) - m). 

The second condition is i.a. fulfulled when the only cause of cell loss is washout. 
If finally we assume chemostat dynamics, so that µ(E) = D, the dilution rate, 
we arrive at 

dN 
dt = a:(g(E)- m)N - DN, 

dE . 
dt = D(E' - E)- g(E)N, 

where Ei is the concentration of the limiting substrate in the inflowing nutri­
ent both. Under appropriate conditions on g the resulting ODE system has a 
globally stable steady state. D 

Example 2. This example is more contrived. Assume again that individuals 
acquire food at a rate g(E)x where E is the surrounding food concentration 
and x is their size. Assume moreover that the acquired food is partitioned 
into a fraction K( x) which is spent on reproduction and a fraction 1 - /'\:( x) 
spent on basal metabolism and growth, and that the cost of producing offspring 
biomass equals that of producing parent biomass. Finally assume agin that basal 
metabolism is proportional to size and that the death rate is size independent. 
In that case 

(A 0 (E)?ji)(x) = (g(E)(l - /'\:(x)) - m)xij;'(x) - µ(E)?fi(x) 

and 

where Xb is the size of the young. If we choose again <f;(x) to be equal to x we 
find 

A(E)</> = (g(E) - m - µ(E))<f>. D 

4.3. 'Ordinary' LCT. 
Usually the term linear chain trickery if reserved for a special subclass of the 

general class of tricks discussed in the previous subsections, the restriction being 
that it should also be possible to calculate the birth rate into the population 
from the resulting finite-dimensional representation. The reason for the special 
importance of this smaller class of problems is that once we know the birth rate 
as a function of time we can easily construct the full population trajectory by 
using a variation of constants formula involving the explicit solution ii of 

dii(t, to, no) = Ao(E(t))*ii(t, t0 , n 0 ) with ii( to, to, no)= no. 
dt 
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The 'ordinary' LCT problem is characterized by the conditions that there exist 
a map P : M(O) -+ JRk, a family of maps R(E) : JRk -+ M(O), and families of 
k x k matrices H and h x k matrices Q such that 

B(E)* = R(E)P, 

PAo(E)* = H(E)P, 

C(E) = Q(E)P. 

The resulting system of ODE's is 

dN = H(E)N + P R(E)N. 
dt 

(4.10) 

( 4.11) 

(4.12) 

(4.13) 

If we may in addition make the special assumption (4.7), i.e P = (<l'>, ·), (4.10) 
to ( 4.12) may be replaced by 

for all x. 

/3(x, E, ·) = .L>i(E; ·)ef>i(x ), 

Ao(E)<l'>(x) = H(E)"P(x), 

r(E)(x) = Q(E)<l'>(x) 

(4.14) 

(4.15) 

(4.16) 

Remark. In the case of generalized LCT nothing can be said about the com­
ponent of the p-state in the kernel of the map P. This is unfortunate as a slight 
perturbation of the model usually brings it out of the LCT class. If unpleasant 
things happen in the kernel of P this would result is an extreme non-robustness 
of the conclusions derived from the LCT variants. It is clear from the discussion 
at the start of this subsection that the situation is much better for ordinary 
LCT as usually it is quite easy to prove that ii(t,t0 ,no)-+ 0 for all n0 in a 
very fast manner. As a consequence for example the local linearisation about an 
equilibrium of a model in the ordinary LCT class always leads to a polynomial 
characteristic equation, corresponding to a decomposition of the p-state space 
into a finite number of (generalized) eigenvectors and a remaining component 
consisting entirely of 'fast descenders'. 0 

5. Necessary and sufficient conditions for linear chain trickery 

We shall in this section proceed from (4.14) - (4.16) on the assumption that 
1.1, µ, f3 and "( are sufficiently smooth in x. Moreover, we shall only consider 
minimal representations, in the sense that k is as small as possible. 

5.1. One dimensional i-state spaces. 
Assume that the i-state space is one dimensional. Then (3.4) reduces to 

((Ao(E))?f;(x) = 1.1(x,E)?j;1(x) - µ(x,E)?j;(x). (5.1) 
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5.1.1. The case of but one single resulting ODE. We first restrict our­
selves to the special case where P has one-dimensional range, i.e. our population 
model can be represented by just a single ODE. The question then is 'Under 
which conditions on v and µ can we find a (continuous) function ef>( x) and a 
function >.(E) such that 

v(x, E)ef>'(x) - µ(x, E)<f>(x) = >.(E)ef>(x)?' (5.2) 

If we rewrite (5.2) in the form µ(x~f;"!E:~(E) = ~((;f we see that a necessary as 

well as sufficient condition for the family A 0 (E) to allow linear chain trickery 
population models is that there exists a function >.(E) such that 

µ(x,E) + >.(E) = f(x) 
v(x, E) 

(5.3) 

independent of E. For the full population model to be linear chain trickable 
moreover (4.14) and (4.16) should apply with 

x 

ef>(x) =exp[/ f(~)d~]. (5.4) 

Example 1. Let v(x, E) = v(E), i.e. x is physiological age. In the case Ao 
allows linear chain trickable population models iff 

µ(x,E) = v(E)µ1(x) + µ2(E). (5.5) 

Moreover </; should be of the form 

x 

rf;(x) =exp[; µi(Odx] · exp[-ax] (5.6) 

where a still is a free parameter which can be chosen to comply with the condi­
tions on the birth and output operators. 0 

Example 2. Let µ(x, E) = µ(E), i.e. the i-state of an individual does not 
influence its chances of dying. In that case Ao(E) allows linear chain trickable 
population models iff 

v(x,E) = v1(x)v2(E), (5.7) 

which after a rescaling of x brings us back to the previous example, or 

ef>(x) = 1 and >.(E) = -µ(E). (5.8) 

Note that in the latter case the conditions (4.14) and (4.16) imply that both 
the per capita birth rate and the 'per capita resource consumption rate' are 
independent of the i-state, i.e. the classification of individuals by x is population 
dynamically irrelevant. 0 
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5.1.2. Physiological age models. Let us now make the special assumption 
that v(x, E) = v1(x)v2(x)E. Without loss of generality we may set v2(Eo) = 1 
for some (arbitrarily chosen) E0 , and v1(x) = 1: Just rescale to physiological 
age 

x _ J de 
x := v1(e)" (5.9) 

In this new variable condition ( 4.15) becomes (from now on we drop the index 2 
and the tilda) 

v(E)<P'(x) - µ(x, E)<P(x) = H(E)<P(x), (5.10) 

from which we deduce that <P should take the form 

x 

ct>(x) = exp[j µ(e, Eo)de] · exp[H(Eo)x] · <P(O). (5.11) 

0 

Substitution of (5.11) and (5.10) gives 

[v(E)µ(x, E0 ) - µ(x, E)]<P(x) = [H(E) - v(E)H(Eo)]<P(x), (5.12) 

i.e. <P(x) is an eigenvector of H(E) - v(E)H(E0 ). For fixed E the eigenvalues 
of H(E)- v(E)H(E0 ) form a discrete set. On the other hand it is reasonable to 
assume that the map x t-t v(E)µ(x, E 0 ) - µ(x, E) is continuous. A continuous 
function taking values in a discrete set is constant. Therefore we can conclude 
that we should have 

µ(x, E) = v(E)µ(x, Ea) - >.(E), (5.13) 

where >.(E) is only subject to the consistency condition >.(E0 ) = 0, and 

H(E) = v(E)H(Eo) + >.(E)I, (5.14) 

where H(Eo) may still be chosen freely to comply with (4.14) and (4.16). 
As a final consideration we note that a function </>( x) can be written as 

qT exp[H(E0 )x]<P(O) if and only if it can be written as a weighted sum of poly­
nomials times (complex) exponentials. This tells us what freedom we have in 
choosing birth and output operators. 

5.1.3. Death rate independent of the i-state. If we try to generalize the 
approach from the previous subsection to i-states moving in a less restricted 
manner we end up with 

[ v(x, E) v(x E) 
( E )µ(x,Eo)- µ(x,E)]<P(x) = [H(E)- ( 'E )H(Eo)]<P(x) 

v x, 0 v x, 0 
(5.15) 
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as the analogue of (5.10), and our argument breaks down since the matrix on the 
right hand side is no longer independent on x. The case of one resulting ODE 
discussed in the previous subsection and the Daphnia example from section 1 
make clear that this indeed makes an essential difference. 

The results from subsection 5.1.1 indicate that there will always exist a pos­
sibility for a trade off between the rate of i-state change v and the death rateµ, 
mucking up any attempt at getting nice clean result. Except in certain special 
cases, like the one of physiological age, it is difficult to see which biological mech­
anisms could ever cause in general precisely the required relationships. Therefore 
we shall make our lives easy and stick here to the case whereµ does not depend 
on x. 

Result. If µ(x, E) = µ(E) the combinations 

v(x, E) = v(E) with 

«P(x) = (e>.,x xe>.,x xki-le>.,x e>.,x xkr-Ie>.,x)'T ' , ... ' ' ... ' , ... , 
(5.16) 

and 

v(x, E) = f(E) + g(E)x with «P(x) = (1, x, ... , xk-l )T ( 5.17) 

are, up to a scale change for x and a change of basis for the range of P (or 
rather a linear equivalence of the triples (P, R(E), Q(E)), the only one satisfying 
condition (4.15), with respectively 

H(E) = v(E)A - µ(E)I (5.18) 

with 
>-1 
1 >-1 

0 
A= k1 - 1 >-1 (5.19) 

0 >-2 

0 
kr -1 >-r 

and 

( 0 

0 
f(E) g(E) 

)- µ(E)I. 0 (5.20) H(E) ~ 
0 

(k - l)f(E) (k - l)g(E) 

Note that (5.16) corresponds to the physiological age case with which we 
dealt in the previous subsection, and that ( 5.17) is but a slight extension of 
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the Daphnia example from section 1. Note also that ( 5.20) definitely does not 
belong to the family (5.18), in accordance with the remark made at the start of 
this subsection. 

To prove our result we first choose a environment value E 0 and rescale x so 
that v(x, E0 ) = 1 (we assume that a value of Eo exists such that v(x, Eo) > 0 
on the whole interior of n). Next we rearrange (5.15) into 

H(E)ib(x) = v(x, E)H(Eo)ib(x) (5.21) 

with 
H(E) = H(E) + µ(E)I. (5.22) 

Moreover 
ib(x) = exp[H(Eo)x]Cb(O). (5.23) 

As a next step we observe that our choice of <Pi is to a large extent arbitrary 
as long as the set of <Pi 's spans one and the same subspace of the continuous 
functions on n. Therefore we may without loss of generality write 

""'(x) = ( >.,x xe>-,x xki-le>.,x e>-2,x xkr-le>.,x)T 
':l' e ' ' ... ' ' , ... ' ' (5.24) 

where the .A; are the eigenvalues of H(E0 ). Note that (5.24) corresponds to the 
particular choice H(Eo) =A. Note also that all possible H(E0 ) can be obtained 
from this particular choice by a change of basis for N = Pn. Restriction of our 
attention to minimal representations moreover guarantees that all the >.; are 
different. 

Substitution of (5.24) into (5.21) yields 

r k;-1 

v(x,E)(qxq-l +xg>.p)e>.Px = L L h(p,q)(i,j)(E)xie>-•x, 
i=l j=O 

(5.25) 

where the symbols (p, q) and ( i, j) relate in an obvious manner to the indices 
characterizing the components of 'b. To proceed further we need several lemmas. 

Lemma la. Let Ai E C for i = 1, ... , r be all different and let Up := {>.p-.A; Ii = 
1, ... , r} then n~=lUP = {0}. 

Proof. n;=l U0 i= {O} iff there exists a complex number a # 0 common to all 
Up. Assume that such an a exists. This allows us to define a relation - on 
Er := {1, ... , r} by i --> p :{::? A;-Ap = a. Under - every element of Er connects 
in the forward and backward direction to at most one other element of Er since 
(i) A; - >.P' = a>.; ->.P" => >.P' = >.P" and (ii) >.;, -Ap = a = >.;,, -Ap => .\;, = .\;,,. 
Since we haver sets UP we should have at least r connections under -· As Er 
has but r elements this would mean that there has to exist as least one cycle. 
But this is inconsistent with the geometrical interpretation (in C) of the relation 
-->. (Note that the existence of a nonzero common element to only r - 1 of the 
Up implies that the>.; lie at fixed distance on a straight line in C.) D 

Exactly the same argument yields 
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Lemma lb. Let Ai EC fori = 1, ... , r be all different and Jet Up:= {.Ap-Aili = 
1, ... , r }. Assume A1 = 0. Then either 

r n Up= {O} 
p=2 

or, possibly after renumbering the Ai 's, 

r 

Ai= (i - l)a and n Up{O, +a} 
p=2 

for some a E C. 

Lemma 2a. Let k 2'.: 1 be a given integer. Suppose there exist complex numbers 
>.. ::/= 0 and Oljq, j,q E {O, ... ,k-1} such that 

k-1 . 
R( ~ CJl.jqXJ 

q, x) = ~ qxq-1 + Axq' 
1=0 

q = 0, ... 'k -1, 

is independent of q. Then R is independent of x as well. 

Proof. By taking q = 0 we find that Risa polynomial in x of degree :::; k - 1. 
By taking q = k-1 we obtain that ((k- l)xk- 2 +Axk-l )R(q, x) is a polynomial 
degree :::; k - 1. Therefore the degree of R is necessarily zero. 0 

Lemma 2b. Let k 2'.: 2 be a given integer. Suppose there exist complex numbers 
CJl.jq, j, q E {1, ... , k - l} such that 

k-1 . 
a· xJ 

R(q,x) = L q~!-i, q = 1, ... ,k -1, 
j=O 

is independent of q. Then R is necessarily of the form a+ bx. 

Proof. By taking q = 1 we find that R is a polynomial in x of degree :::; k - 1. 
By taking q = k - 1 we obtain that (k- l)xk-2R(q, x) is a polynomial of degree 
:::; k - 1. Therefore the degree of R is necessarily :::; 1. 0 
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Lemma 3. Let for j,q EN, BE C 

j 
x ex 

U(j,q,(3,8) := 1 (3 e qxq- + xq 

then a necessary condition for U (j 0 , q0 , (30 , 80 ) to be m the linear span of 

{ U(j;, q;, ,8;, ei)li = 1, ... 'k - 1} is that Bo E { 8; Ii = 1, ... ' k - 1}. 

Proof. Suppose that U(jo,qo,/30,80) = 2=7,:} ~iU(ji,qi,/3i,Bi)- Multiply both 
sides with rr::c: (qiXq;-l + /3;xqi ). At the left and right hand side we now only 
have polynomials times exponentials in x. Any collection of functions xm; e8; 

for which the pairs (m;, 8;) are all different are linearly independent. Therefore 
the factor e80 x has to appear on both sides of the equal sign. 0 

If either Ap i= 0 or q i- 0 we can rewrite (5.25) in the form 

r k;-1 j 

( E) "'"' "' - .E) x (>.. ->.. Jx v x, = ~ ~ h(p,q)(i,j)( qxq-1 + xq>. e , v . 
·i=l j=O p 

(5.26) 

If for all p either Ap '/= 0 or kp > 1 we thus find at least r (in fact k = L:~=l ki) 
expressions for v. 

First assume that for all p either Ap '/= 0 or kp > 1. In that case (5.26), 
Lemma 3 and Lemma la together imply that 

h(p,q)(i,jJ(E) = 0 for i '/= p 

and therefore that 

k -1 . 
~ - xJ 

v(x, E) = ~ h(p,q)(p,j)(E) qxq-I + xq >. . 
j=O p 

( 5.27) 

We can now apply Lemma 2a to conclude that v is independent of x provided 0 
is not the only>.. We are then in the situation described by (5.16) and (5.19). 
When >. = 0 is the only eigenvalue we apply Lemma 2b to conclude that v is 
linear in x. This brings us to the situation described by (5.17) and (5.20). 

Next we assume that r 2:'. 2 and, say, >. 1 = 0, k1 = l. We still obtain (5.26) 
for p = 2, ... , r. When not >.; = ( i - 1 )a: for some a =f 0 Lemma 1 b tells us that 
we are in the first of the two situations encountered before. When, on the other 
hand, Ai= ('i - l)a: we deduce from Lemma 3 together with Lemma lb that 

kp-1 . 
- xJ 

v(x, E) = L h(p,q)(p,j)(E) qxq-1 + xnl' 
J=O 

kp-1-l j -c.x 

"' h . (E x e + ~ (p,q)(p-1,1) ) qxq-1 + >. xq 
j=O 1' 

(5.28) 
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for p ~ 2. Applying Lemma 2a to each of the sums we infer that 

1 
v(x,E) = -(g(E) + f(E)e-cn) 

a 
(5.29) 

(the reason for this particular 'pararneterization' with g, f and l/a will become 
clear below). We claim that in this situation necessarily kp = 1 for all p. We 
proceed by induction. Suppose kz > 1 then we can take p = 2, q = 1 in (5.28) 
to obtain 

k2-1 j -en 
) ""- x - e v(x, E = f;:o h(2,i)(2,j)(E) 1 + Azx + h(2,1)(1,o)(E)-1-+-.A.-2-x · 

Since .A.2 =f 0 this is incompatible with (5.29). We conclude that k2 = l. We 
then use the same argument for p = 3 etc. 

Finally we transform to x = e"'x. This yields zi(x, E) = f(E) + g(E)x and 
~(x) = (1, x, ... , :rr-l) which, modulo tilda's and r-+ k, is precisely (5.17). D 

Remark 1. When judging the generality of the linear growth low (5.17) one 
should keep in mind that one can still employ an E-independent change of 
i-state variable to bring a particular biological growth law in that form. For 
example, the growth laws most commonly encountered in the literature 
(i) van Bertalanffy: 1J; = ay213 - (3y 

(ii) logistic: ~ = ay - (3y2 

(iii) Gompertz: ¥t=ay-(3ylogy 

can all be linearized: 
(i) x = y113 => ~~ = t(a - (3x) 
(ii) x = l => dx - (3 - ax y dt -

(iii) x = logy => ~~ =a - (3x 

(we thank Y. Iwasa for reminding us to (ii) and (iii)). D 

Remark 2. If we set µ(x, E) = v(x, E)µ 1 (x) + µz(E) the combinations (5.16) 
x 

and ( 5.17) with the old cl>( x) replaced by w( x) = exp(f µi ( 0d0cl>( x) still satisfy 
(4.15) with the same H(E) as when µ 1 = 0. 0 

5.2. Higher dimensional i-state spaces. 
We do not have any general results for the case where n is higher dimensional. 

What we do have is a whole zoo of weird and wonderful examples. We just give 
three of them. 

Example 1. Let Q be two-dimensional and let v be given by 

( E) -[a(E)+b(E)x1] 
v x, - c(E) . 
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Define 
1 

X1 

cl>(x) = xi 
e-k:c2 

X1e-kx2 

x2e-k:c2 
1 

and 
0 0 0 0 0 
a b 0 0 0 

L(E) = 
0 2a 2b 0 0 
0 0 0 -kc 0 
0 0 0 a (b - kc) 
0 0 0 0 2a 

A straightforward calculation then shows that 

dcl> 
-(x) · v(x,E) = L(E)cl>(x) 
dx 

0 
0 
0 
0 
0 

2b- kc 

which is the required relation Ao(E)cl> = H(E)cl> for µ = 0. When µ is nonzero 
but still independent of x, L(E) has to be replaced by H(E) = L(E) - µ(E)I. 

The biological interest of this example is that we may interpret x 1 as size and 
x2 as physiological age. Moreover cl> is chosen in such a way that we can choose 

as an age and size dependent birth rate of individuals. D 

The next two examples do not allow immediate biological applications. They 
do show, however, that in the case of higher dimensional i-state spaces there 
exist also cases with nonlinear i-state dynamics which are yet linear chain trick­
able. 

Example 2. Let again n be two dimensional, and let 

( E) _ (a(E) + b(E)x1) 
v x, - c(E)xi ' 

L(E) = (~ 
0 0 
b 0 

2a 2b 
0 c 

D 
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Example 3. Let n be three dimensional and let 

e>-2x ( ,,.. ) 
~( X) = e>-ix~:>.2x2 ' 

er 0 0 

D L(E) = A.2a2 0 
D 

0 )q a1 + A.2a2 

C1 C2 C3 

6. Discussion 

Understanding the precise nature of the necessary and sufficient conditions for 
linear chain trickery to be possible is of interest of three reasons. First of all there 
is the intrinsic esthetic appeal of the problem. Secondly its solution amounts to a 
complete catalogue of cases for which a reduction of finite dimension is possible. 
No doubt this catalogue will contain useful cases which thus far escaped our 
attention (like the first example from section 5.2). Thirdly solving the general 
linear chain trickery problem will tell us which (classic) ODE models can be 
reinterpreted reduced structured models. (In our, admittedly somewhat biased, 
opinion the justification of any ODE population model should derive from the 
fact that such an interpretation is possible). 

In this paper we to a large extent have solved the ordinary, or special, linear 
chain trickery problem for the case of a one-dimensional i-state space. A full 
characterization of linear chain trickable models with higher dimensional i-state 
spaces is still lacking. And we have only scratched the surface of the general­
ized linear chain trickery problem. However, we plan to keep working on these 
problems. 

Acknowledgments. Hans Metz wishes to thank the Department of Physics 
and Applied Physics of the University of Strathclyde, Glasgow, for its hospitality 
during part of the research reported here. 

Note added in print. In the meantime we have also solved the 'ordinary' LCT 
characterization problem for one dimensional i-state spaces in a general manner, 
i.e., without assuming any restrictions on either the rate of i-state change v or 
the death rate µ. The result is bizarre. 
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