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Asymptotic normality of M- or maximum likelihood type estimators was esta­
blished in a classic paper by HUBER (1967). REEDS (1976) argued that this 
could have been obtained simply as an application of the delta-method, using 
the tool of compactly differentiating von Mises functionals with respect to the 
empirical distribution function Fn. His proof however contains some errors and 
has been largely ignored. A corrected version of the proof is given. 
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1. INTRODUCTION 

165 

Maximum likelihood type estimators, 'M-estimators', were first introduced by 
HUBER (1964); a statistic Tn is called an M-estimator of a parameter 
B0 EE> <:;!RP if Tn is a solution to a set of estimating equations: 

n 

<l>n(Tn) = Ep,if(X;Tn)=n- 1 2:if(X;;Tn)=O. (1) 
i=l 

Here, E F, denotes expectation over the sample space ~ with respect to the 
empirical probability measure Fn on 3 the empirical distribution function 
based on n independent and identically distributed copies X 1,. .• ,Xn of a ran­
dom variable X taking values in ~ distributed according to the unknown dis­
tribution function F. In order for Tn to be a sensible estimator of B0 , the 
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function lf;:'XX 0 - (RP should be chosen such that 

<I>(Oo)= EF..P(X;00 ) =O. 

As a matter of fact, Huber relaxed the definition (I) somewhat to 

<PnCTn) = Op(n - ~;), as n - oo. 

(2) 

( l ') 

Let us ignore measurability problems, and suppose that both <Pn and Tn are 
indeed random elements in some appropriate measurable space. 

Now REEDS (1976) proved two central limit theorems for M-estimators using 
the von Mises method (also called the functional or generalized delta-method). 
The first theorem has stronger conditions and a simpler proof; the second has 
quite weak conditions and a more elaborate proof, to which this paper is 
devoted. Both theorems are close to other results in the literature but the 
method of proof, in a sense simply an application of the delta-method, is of 
interest, especially in view of recent work on this method (GILL, 1989, 1991; 
SHEEHY and WELLNER, 1990, 1991; and others). In particular the method gives 
not only a central limit theorem but with no extra work also gives results on 
the consistency of the bootstrap, the law of the iterated logarithm, and so on. 

However Reeds' work is hard to obtain and also contains some errors which 
have caused many researchers to ignore it. Therefore it seems useful and timely 
to present a correct proof of his second (stronger) theorem. (The forthcoming 
book by RIEDER (1992) will also contain a complete treatment of these 
theorems). 

First a brief introduction to Reeds' approach is in order: he observed that 
Tn may be treated as a von Mises functional T ~ of Fn: 

where 

and T is a functional that assigns to any !RP -valued function on e a zero of 
this function (if a zero exists; cf. CLARKE (1986) on how to avoid ambiguity if 
there is more than one zero). 

Now, the idea of the von Mises approach is to transfer a central limit 
theorem for Fn into a central limit theorem for Tn simply by approximating 
Tn by the first two terms of a Taylor expansion of Tir(Fn) at F. This pro­
cedure is called a von Mises or generalised delta-method calculation, and 
requires a definition of differentiation. While some functionals are actually 
differentiable in the strong sense of Frechet differentiation (see CLARKE, 1983), 
it turns out that for functionals that are only Hadamard differentiable (also 
called compactly differentiable), the central limit theorem for Fn may still be 
transferred to Tn. Since more functionals are compactly differentiable the con­
dition of Frechet differentiability is unnecessarily strong. 

There is however one point of discussion in Reeds' approach: treating Tn as 
a composite functional Tir = T0 !J,j, of Fn causes unnecessary technical complica­
tions, whereas one might just as well restrict attention to the ~P -valued 



M-estimators and the von Mises method 167 

functional T and consider 

Tn = T(<l>n) 

instead, since the information in Fn is only used through <I>n. Equivalently one 
represents the empirical distribution of the data by the 'function indexed 
empirical process' <l>n, rather than by the ordinary empirical distribution func­
tion Fn- From this point of view the change is purely cosmetic. However insist­
ing on Fn caused Reeds to choose a much more elaborate metric on the space 
of distribution functions than necessary, leading to an avoidable error in his 
proof. (Our choice will only be a pseudo-metric but this is of no importance 
whatsoever). 

In the next section, a heuristic approach and the basic steps of a von Mises 
calculation are given as well as some preliminary results. Hadamard or com­
pact differentiation is defined and justified as a choice of differentiation to be 
used in a von Mises calculation in section 3. Section 4 then contains a 
corrected version of the proof for RErns' ( 1976) second central limit theorem 
for M-estimators. Finally, in the last section the assumptions of Reeds' second 
theorem and some alternative approaches are briefly discussed. 

2. PRELIMINARIES AND HEURISTICS 

Let ('X,,ft,P) be a probability space. Let Xi, ... ,Xn be n independent and identi­
cally distributed copies of a random variable X E'X,, with distribution function 
F (corresponding to P). Fn is the empirical distribution function that assigns 
mass n - I to each of the observation points. Consider estimation of the 
unknown parameter 00 EE> CIRP that satisfies (2), i.e., <1>(00 )=EF1f;(X;80 )=0 for 
some function lf;:'X.X 0 __.,. (RP. Assume 0 may be chosen to be a compact sub­
set in fRP. Let BP(E>) denote the space of bounded !RP-valued functions one, 
let B 1 ('X.) denote the space of real-valued functions on 'X,, and let C(E>) denote 
the space of continuous !RP-valued functions on e. So C(E>)CBP(E>) since e is 
compact. 

Now as Reeds observed, any estimator Tn that solves the estimating equa­
tions (1) may be represented as a functional T if-: B 1< 'X.) __.,. [RP 

(3) 

In the previous section it was already mentioned that for practical purposes 
the representation of Tn as a non-composite functional T:BP(E>) __.,. !RP is more 
useful 

(3') 

It is tacitly assumed that ij;(X;.) is almost surely bounded in E>. Unless men­
tioned otherwise, the space C(E>) will be endowed with the convenient (though 
sometimes naive) choice of the supremum norm. Thus, C(E>) will be complete 
and separable. Hence, weak convergence of a sequence of random variables 
Zn in C(E>) implies tightness of this sequence in C(E>) (see BILLINGSLEY, 
1968): for all t:>O, there exists a compact K< CC(8), such that 
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corresponds to Frechet or bounded differentiation. 
Obviously, ~. C~b' so whenever a functional is Frechet differentiable, it is also 
Gateaux differentiable, and the two derivatives coincide. Also note that if B 1 

and B 2 are normed vector spaces, then Frechet differentiability of the func­
tional T at x is equivalent to the existence of a continuous and linear mapping 
dT(x;.):B 1 __,.. B2 such that 

llT(x+h) - T(x) - dT(x;h)llB, = o(llhllBJ as llhllB1 -7 0. (7") 

Furthermore, let BI be BI ('!.t), endowed with sup-norm, B 2 =e. Then Fre~het 
differentiability of Tat F implies asymptotic normality. Indeed, by (7") it fol­
lows that 

(8) 

since 

llFn.- F\\ 00 = Op(n -'12). 

Moreover, the process n 11:,(Fn - F) converges weakly to the Brownian bridge 
process composed with F, hence asymptotic normality follows by Slutsky's 
theorem. Notice that the choice of topology is indeed crucial! 

Unfortunately, not all important functionals do have a Frechet derivative, 
although CLARKE ( 1983) actually claims that most popular functionals in fact 
are boundedly differentiable. In that paper he gives some general conditions 
for Frechet differentiability to hold, one of which is continuity and bounded­
ness of the function lf; on '!.tXO. Since the boundedness condition is necessary, 
"those nonrobust estimators such as the maximum likelihood estimator in nor­
mal parametric models are excluded' as Clarke rightly admits; see BEDNARSKI, 

CLARKE and KOLKIEWICZ (1991) for further results in this direction. Also the 
median and other sample quantiles, however simple they are, are not Frechet 
differentiable. 

By ~c denote the class of all compact sets in B 1• Hence the inclusion 
iDs C~c C:~b holds. 

DEFINITION 3.2. A mapping T:B 1 -7 B 2 is called Hadamard differentiable (or 
compactly differentiable) at x EB 1 if (7) holds for all K E~c· 

By the inclusion above, compact differentiability is a weaker condition on 
the functional T; this will have to be paid for by the stochastic part of Tn: the 
requirement of boundedness in probability will have to be replaced by tightness. 

THEOREM 3.3. (delta-method: Reeds, 1976). Suppose T:B 1 __,.. B 2 is Hadamard 
differentiable at x EB 1 with derivative dT(x;.). Suppose furthermore that 
{ Yn} ;:'= 1 is a sequence of random elements in B 1 that satisfies 

•D 
(i) n'li(Yn-x) '"°' Zin B 1 as n '"°' oo 

(ii) the sequence{n'li(Yn-x)}~=I is tight in B 1 (9) 

Then 
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qi 

nl1(T(Yn)-T(x)) ~ dT(x;Z) in B 2 as n ~ oo. 

In words, weak convergence of the sequence { n "'( Yn - x)} ~= 1 may be 
transferred to the sequence {n°(T(Yn)-T(x))}:'=l· 

PROOF. Write Z,, =n 11(Y11 -x); by compact differentiability of Tat x and (9) 
(ii) approximate n 11(T(Y,,)-T(x)) by dT(x;Zn)· The remainder term will be 
op(l) as n ~ oo. 

First the analytic part. Since T is compactly differentiable at x, 

n°(T(Y,,)-T(x)) = dT(x;Z,,) + n°Rr(x;n-i;,Z,,), 

where, for all K E'i>c 

n'hRr(x;n-'hh) = o(l)asn ~ oo, uniformlyinhEK. (10) 

Then the stochastic part. Choose £, 11>0. By (9) (ii) there exists a compact K( 
such that 

P(Z,,EK,)>1-£, n=l,2, ... (11) 

Furthermore, since 

P(lln°Rr(x;n-l1Zn)11>11)..;; P(llnl1Rr(x;n- 0 Z 11 )ll>11, Z,,EK,) + P(Z,,'iiK(), 

(10) and (11) together imply ni;,Rr(x;nl1Z11 )=op(l) as n ~ oo. Hence, as 
dT(x;·) is linear and continuous, the theorem follows by (9) (i) via Slutsky's 
theorem. D 

REMARK: The topology on B 1 will have to be chosen such that the analytic 
properties of T and the stochastic properties of Z 11 (both depend on the topol­
ogy) are attuned to each other with respect to the delta-method. 

4. ASYMPTOTIC NORMALITY 

In his first central limit theorem for M-estimators REEDS (1976) assumes con­
tinuous differentiability of the function if;: 'XX E> ~ RP in E>; then the implicit 
function theorem is used to show that a central limit theorem for (<l>,,(8),0EE>) 
carries over to Tn = T (<I> 11 ), where <I> 11 = E F, t/I( X; · ), if indeed the sequence 
{n°(<1>11 - <l>)}:'=i is weakly convergent and tight in some appropriate topo-
logical vector space. Here, as in (2), <l>=Epif;(X;-). In fact in C(E>), sufficient 
conditions for weak convergence and hence tightness to hold are given by the 
following lemma, which is a direct consequence of Theorem 2.4 by Gms 
(1974). 

LEMMA 4.1. Let Z I> ... , Zn be independent and identically distributed copies of a 
random variable Z in C (E>) with zero expectation. If 

(i) Ep I z I~ < 00, 

IZ (01 )- 2(82)12 

(ii) Ep sup A. <oo,for some A>O (12) 
0,11, !81-821 
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then the sequence n -*~7= 1 Z;, n = 1,2, ... is weakly convergent in C(0). 

Lemma 4.1 does not characterize weak convergence in function spaces; if the 
conditions of the lemma are not fulfilled, for instance if cl>n i.eC(0), then tight­
ness and weak convergence of the sequence { n 11 (<1>n -cl>)} in some suitable 
space may be established by any other convenient means. 

In his second central limit theorem for M-estimators Reeds drops the 
assumption of continuous differentiability of i[J in 0. In fact the set of condi­
tions in this second theorem is actually weaker than the set of conditions in 
the first one. As a consequence the implicit function theorem cannot be 
invoked, and the proof will be rather more difficult. This second theorem will 
now be reformulated and, after we have made some remarks on it and proved 
two Lemmas, a corrected version of the proof will be given. 

THEOREM 4.2. Let .p satisfj the conditions of Lemma 2.2 and in addition assume 
that the conclusion of Lemma 4.1 holds for n - !1L7 = 1 Zi = 
n- 0 L7: 1(i[J(Xi;·)-cl>(")). If the function <1>:0 ~ fRP, cl>(O)= EFifi(X;O), has the 
following properties: 

(i) <I> has a unique zero at 00 

(ii) cl> is a local homeomorphism at Oo 

(iii) cl> is differentiable at 00 with nonsingular derivative A : fRP ~ fRP, 

then there exists an estimator Tn = T(cl>n) such that 

(i) P(if>n(Tn) = 0) ~ 1 as n ~ oo 
"i) 

(ii) n 11(Tn-Oo) ~ N(O,L) as n ~ oo. 

The covariance matrix L is given by 

~ = A - I f(A - 1) T, and also 

•D 
n 11 (if>n-cl>)(Oo) ~ N(O,f) as n ~ oo. 

(13) 

(14) 

(15) 

Reeds represents the estimator Tn by the composite functional T ,p = T 0 JL,p, 
i.e., Tn = T ,p(Fn)· Now, consider the relatively easy situation that the true dis­
tribution function is the uniform distribution function on the unit interval in IR 
so ~=[O, l] and F= U say. By Un denote the empirical distribution function 
based on n independent and identically distributed observations from U. (If 
F=/=U, but ~=IR then Fn and Un°F are identically distributed). It is a well 
known fact that Un is not a random element in D [O, I] equiped with the 
supremum norm; on the other hand, while Un is indeed a random element in 
D [O, l] equiped with the Skorokhod topology this is not a vector space. These 
two arguments illustrate the fact that the choice of B 1 is not at all trivial ( cf. 
for instance GILL (1989) or FERNHOLZ (1979) in case ~=IR and 00 is a loca­
tion parameter). In the general case, that is 0EfRP and ~ is a separable 
metrizeable space, Reeds constructs the topological vector space B 1 to be 
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isomorphic with a subspace of B1 =L 2(P)XC(0) equipped with the norm 
ll(x,y)lls=llxllL, +l[yll 00 via the 1-1 mapping a(g)=(g,Egl[J(X;·)). Since by a 
theorem of Prohorov for the first coordinate and Lemma 4.1 for the second 
coordinate {li(n°(Fn-F))}:=I is random and tight in B1, Reeds concludes 
that the sequence of arguments {n~'(Fn-F)}:=i itself is random and tight in 
B 1 with the topology induced by the norm 11·11 8 = llli(-)118. 

I I -

Two remarks are in order now: firstly, properties of a(n "(Fn - F)) in B 1 

cannot as trivially as Reeds suggests be translated into the same properties_ of 
the argument in B], since a is not onto; it maps BI into a proper subset of B,, 
depending on if;. Fortunately this mistake can be repaired though (VLOT, 1987). 
But, this is the second remark, if tightness of the sequence n "(<l>n -<I>) is 
needed anyhow, why not apply the delta-method to the functional T(<l>n) 
straightaway and forget all about the n v,(Fn - F)-part? Indeed, the functional 
T t/J is Hadamard differentiable if and only if T is Hadamard differentiable, 
since JJ't/; is linear and continuous and compact differentiation follows the chain 
rule. So there is really less work in establishing the validity of the conditions in 
Theorem 3.3 if Yn is taken to be <I>n instead of Fn. Equivalently { F,,} may be 
endowed with the pseudonorm llFnll = llEF, i/J(X;-)11 00 instead of the clumsy but 
proper norm introduced by Reeds. 

Now, represent the estimator Tn by T(<l>n)· Since by the assumptions of 
Theorem 4.2 the sequence { n "(et>,, -<I>)} i'= 1 is weakly convergent in C(0) and 
hence tight in C(0), the stochastic part of the delta-method applied to Tn is 
already settled. So it remains to prove existence and compact differentiability 
of a solution to the estimating equations ct>n =O. For this purpose two lemmas 
will now be given: 

LEMMA 4.3. Let <1>:0 ~ ~P satisfy the conditions ( 13) of Theorem 4.2. Then 
there exists a neighbourhood V of <I> in C(0) and a functional T: V ~ 0 such 
that f (T(j))=O 'rffE V (T may not be unique). 

PROOF. By condition (13) (ii) there is a positiver and a neighbourhood W of 
80 in E> such that <l>I w, i.e., the restriction of <I> to W c;;E>, defines a homeomor­
phism between W and the ball B0,,={tE~P:ltlo;;;;;r}. For such r define 
V,CC(E>): 

V, = {fEC(E>):llcI>-Jlloo<r}. (16) 

Then the function go<l>- 1, with g =<I> - f, maps the ball B o,r continuously into 
itself. Hence, by Brouwer's fixed point theorem, there exists for every f E V, at 
least one t1EB, such that g0 <1>- 1(t1)=t1. Thus, the functional T defined 
through 

(17) 

assigns to any /E V, a zero off, corresponding to the special fixed point t1, 
since by definition,j(T(f)=ct>(ct>- 1(t1))-g 0 <1>- 1(t1)· 0 
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COROLLARY 4.4. Let T be defined as in ( 17). Under the conditions of Theorem 
4.2 the M-estimator Tn = T(<I>n) satisfies 

P(<l>n(Tn)=O) ~ I as n~ oo. 

PROOF. Tightness of the sequence {nl1(<1>n-<I>)}:'=i in C(0), implies 

P(<I>n E V,) ~ 1 as n oo. (18) 

Hence, with probability tending to 1, Tn = T(<l>n) is a solution to the estimating 
equations <I>n =O. 0 

Let V, be defined as in (16), and let T be defined as in (17). By S denote 
some class of bounded subsets in C (E>). Choose h EKE§. Let k be a finite 
norm bound for K. Let tER be such that <I>+thEV,; so ltl~rk- 1 suffices. For 
ease of notation write 

T1 = T(<l>+th), 

thus suppressing the dependence of T1 on h EK. Also define the ~P-valued 
function f3h through 

T1=T0 - A- 1th(80 ) + t/3h(t). 

The second lemma that will be used in the proof of Theorem 4.2 is the follow­
ing: 

LEMMA 4.5. The functional T is §-differentiable at <I> with derivative 

dT(<l>;g)= -A -I g(Oo) 

if.! all elements K E1i> are equicontinuous. 

PROOF. Since by assumption A is non-singular, the functional T is S­
differentiable at <I> iff for all K ES 

A/3h(t) = o(l) as t ~ 0, uniformly in h eK. (19) 

Note that t1 and hence T may be chosen to satisfy necessary condition for 
bounded differentiability of Tat <I>: 

T1 - T 0 = O(t) as~ O,uniformly in llhll 00 ..;; k. (20) 

Indeed, since by definition <l>(T1)= -th(T1), it follows from assumption (13) 
(ii) (i.e., <I> is a local homeomorphism at 80 = T 0) that 

IT1 - Toi = o(l) as t ~ 0, uniformly in llhll 00 .;;;;;; k 

and also 

[ ]

-I 
<l>(T1)-<l>(To) . . 

IT1 - Toi = I I . O(t) as t ~ 0, uniformly m llhl! 00 ..;;k. 
IT1-Tol 

Hence, since If> is assumed to be differentiable at fJ0 with nonsingular 
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derivative, (20) is valid. 
Furthermore, by the same assumption, 

<I>(T1) - <I>(To)=A(T1-To) + IT1 -Tol-t:(t), 

where 

t:(t)=o(l) as 4 0, uniformly in llh 11 00 .;;;; k 

Now b;y some simple algebra, using the above formulas the following expres­
sion can be derived 

At f3h(t)= -t(h(T1)-h(To)) + O(t).o(l), as t ~ 0, uniformly in llhll 00 .;;;; k, 

hence, (19) holds iff K is equicontinuous (and of course bounded). D 

COROLLARY 4.6. The functional T defined in ( 17) is compactly differentiable at 
<I>. 

PROOF. See Proposition 2.1. 0 

PROOF OF THEOREM 4.2. See Corollary 4.4 for (14) (i). By Corollary 4.6, the 
delta-method may now be applied to obtain (14) (ii). Notice that (15) trivially 
holds since obviously EFl4i(X;Oo)l2 <oo. D 

5. CONCLUDING REMARKS 

A comparison of the conditions in Huber's central limit theorem for M­
estimators and those of Theorem 4.2, i.e., the conditions that are sufficient for 
the delta-method to be applicable, is in order now. In fact, Huber's conditions 
are all but one implied by those in Theorem 4.2. Only separability of the func­
tion iti(x ;8) in the sense of Doob (see HUBER (1983) for a precise definition of 
this concept) is somewhat difficult. If indeed 0 is compact and 1/i(x ;8) is con­
tinuous in (J for F-almost all x ex, then Huber's assumptions are actually 
weaker than those in REEDS' (1976) original theorem for M-estimators (the 
second one). However, since it is one of the main virtues of the delta-method, 
that any convenient set of conditions may be used in establishing the required 
properties of <I>n, the stochastic part of Tm a full comparison of Huber's 
approach and the delta-method cannot be carried out. 

Our original motivation for this study was to investigate whether Reeds' 
approach could be generalized to the non-parametric case, i.e., (J is a function 
and 0 is a metric function space. The obvious generalisation to the non­
parametric case is the following: Suppose XI>····Xn have a common distribu­
tion function F=F(x ;00), where 00 e0 is some unknown function. Further­
more, suppose that there exists a mapping <I>=<I>(·;F,ijJ):E> ~ B2, a function 
space, such that <I>(80)=0eB 2 • Let B 1 then be some collection of mappings 
from 0 into B 2 , such that <I>n=<I>(-;Fn,4')eB 1• Define now an M-estimator Tn 
of 80 as a solution to the generalised estimating equations <I>,, =OeB 2, if a 
solution exists. 
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The main difficulties in extending the delta-method to the non-parametric 
case are the following: first, it is not at all clear that a solution to the general­
ised estimating equations actually exists; whereas in the parametric case 
Brouwer's fixed point theorem may be invoked, some other device should now 
be investigated or may be invented to prove existence of a solution under gen­
eral conditions, not just in any ad hoe situation. Second, how should the 
analogue of tightness and weak convergence of the process n ""' (<I> n - <I>) in the 
parametric case be defined in the non-parametric case where n °(cf>n -cf>) is 
itself a function? Moreover, the choice of metric for B 1 will not be as easy as 
it was in the parametric case, where the structure of C(0) was such that even 
with the naive choice of uniform topology the conditions of the delta-method 
are fulfilled. Of course, the metric on B 1 should also be such that <I>n is a ran­
dom element in B 1• So it is clear that a lot of work remains to be done. 

Finally, a few words should be said about the possible applications of 
Theorem 4.2 in the parametric case. Reeds claims that his first theorem covers 
maximum likelihood estimation in most parametric families used in statistics. 
In fact, Reeds' conditions, and the conditions in Cramer's classical theorem for 
maximum likelihood estimators are incommensurable: Cramer has a stronger 
derivative condition, whereas Reeds requires stronger moment properties. Any­
way, since Theorem 4.2 in the present note is most general, i.e., the conditions 
in Theorem 4.2 are implied by the conditions in Reeds' second theorem, which 
are in turn implied by those in his first theorem, Theorem 4.2 also covers most 
maximum likelihood estimators in applied statistics. Furthermore, all M­
estimators in the Princeton robustness study are covered by Theorem 4.2. 
Again, this is argued in REEDS ( 197 6). 
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