
SIAM J. COMPUT.
Vol. 21, No. 4, pp. 697-712, August 1992

© 1992 Society for Industrial and Applied Mathematics
005

mE POWER OF THE QUEUE*

MING Lit, LUC LONGPREi, AND PAUL VITANYI§

Abstract. Queues, stacks, and tapes are basic concepts that have direct applications in compiler design
and the general design of algorithms. Whereas stacks (pushdown store or last-in-first-out storage) have been
thoroughly investigated and are well understood, this is much less the case for queues (first-in-first-out stor
age). In this paper a comprehensive study comparing queues to stacks and tapes (off-line and with a one-way
input tape) is presented. The techniques used rely on Kolmogorov complexity. In particular, one queue and
one tape (or stack) are incomparable:

(1) Simulating one stack (and hence one tape) by one queue requires fl(n4/ 3 / logn) time in both the
deterministic and the nondeterministic cases. A corollary of this lower bound states that for this model of
one-queue machines, nondeterministic linear time is not closed under complement.

(2) Simulating one queue by one tape requires fl(n2) time in the deterministic case and requires
fl(n4/3 /(logn)2/3) in the nondeterministiccase.

The paper further compares the relative power between different numbers of queues:
(3) Simulating two queues (or two tapes) by one queue requires fl(n2) time in the deterministic case, and

n(n 2 / (Iog2 n log log n)) in the nondeterministic case. The deterministic bound is tight. The nondeterminis
tic one is almost tight. The upper bounds for queues are also obtained.

Key words. abstract storage unit, multi-queue machines, multi-tape machines, on-line simulation, lower
bounds, upper bounds, Kolmogorov complexity

AMS(MOS) subject classifications. 68005, 68030

1. Introduction. It has been known for over 20 years that all multi-tape Turing ma
chines can be simulated on line by two-tape Turing machines in time 0(n log n) [HS66]
and by one-tape Turing machines in time O(n2). Since then, many other models of
computation have been introduced and compared [Aan74), [DGPR84], [HS65], [HS66],
[HU79], [KOS79], [LS81], [MSS87], [PSS81), [Pau82], [Vit85]. In addition to different
storage mechanisms, real-time, on-line, and off-line machines have been studied. An on
line simulation essentially simulates step-by-step each move of the simulated machine.
In this paper we consider off-line machines, for which an answer is given only after the
entire input has been read. There is no need to simulate the moves of the machine; it
only matters that the right answer is given. We also use the one-way input convention,
which states that the machine has a one-way input tape. As usual, the machines have a
finite control and access to some storage.

The relative power of stacks and tapes is more or less well known.1 For example,
for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks = k

"Received by the editors July 7, 1989; accepted for publication (in revised form) July 24, 1991. Part of this
paper appeared in a preliminary version in (LL V86].

tPresent address, Department of Computer Science, University of Waterloo, Ontario, Canada N2L 361.
Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3. This research was
performed while the author was at Ohio State University and Harvard University. This work was supported
by the National Science Foundation under grant DCR-8606366 by the Office of Naval Research under grant
N00014-85-K-0445.

*College of Computer Science, Northeastem University, Boston, Massachusetts 02115. Part of this re
search was performed while the author was a visiting faculty member in the Computer Science Department at
the University of Washington.

§ Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands. The work
was performed in part at the Laboratory for Computer Science, Massachusetts Institute of Technology, and
supported in part by the Office of Naval Research under contract N00014-85-K-0168, by the U.S. Army Re
search Office under contract DAAG29-84-K-0058, by the National Science Foundation under grant DCR-83-
02391, and by the Defense Advanced Research Projects Agency under contract N00014-83-K-0125.

1Throughout the paper, stack and pushdown store are used synonymously. The basic operations are push
and pop, and only the top of the store is accessible to the machine.

697

698 MING LI, LUC LONGPRE, AND PAUL VITANYI

stacks = k tapes, where A < B means that B can simulate A in linear time, but A cannot
simulate B in linear time. In most of the cases, close lower and upper bounds are known
for the simulation [Maa85], [Li85b], [Li88], [LV88], [Vit84b].

In this paper we give a complete characterization of (off-line, one-way input) queue
machines. The main theorems show that one-queue machines are incomparable to one
stack or one-tape machines, both deterministically and nondeterministically. One corol
lary of our nondeterministic lower bound is that for our model of one-queue machines,
nondeterministic linear time is not closed under complement. We also compare the rel
ative power of machines having different numbers of queues. The current knowledge of
upper and lower bounds for the simulation between queues and tapes is roughly sum
marized in Figs. 1, 2, and 3. Figure 1 contains results that were previously known. The
results of Fig. 2 are covered in §2. Notice that all the bounds in Fig. 2 are valid also for
simulating one stack or two stacks. The results of Fig. 3 are covered in §3.

deterministic nondeterministic

upper bound
O(n2) O(n312 .Jlogn)

(in [HS65]) (in [Li88])

lower bound
n(n2) n(n4/3 I log2;3 n)

(in [LV88]) (in [LV88] or [Li85a])

FIG. 1. Simulating one queue by one tape.

deterministic nondeterministic

upper bound O(n2)

lowerbound O(n413/logn) O(n413 /logn)

FIG. 2. Simulating one tape, one stack, or two stacks, by one queue.

deterministic nondeterministic

upper bound

lower bound D(n2 / log2 nloglog n)

Fro. 3. Simulating two queues by one queue.

We use Kolmogorov complexity techniques [Sol64), [Kol65], [Cha77], together with
some new techniques to enable us to deal with queues to prove the theorems. The Kol
mogorov complexity K(x) of a string x is the length of the shortest program printing the
string x. By a simple counting argument, we know that for at least half of the strings x of
each length, K(x) :2: lxl. These strings are called incompressible or K random. For com
pleteness, we recall the notions of Kolmogorov complexity of binary strings and those of
self-delimiting descriptions (see, e.g., [PSS81], [LV88]). Fix an effective coding C of all
Turing machines as binary strings, such that no code is a prefix of any other code. Denote
the code of Turing machine M by C(M). The Kolmogorov complexity with respect to
C of a binary string x, denoted Kc(x), is the length of the smallest binary string C(T)y

THE POWER OF THE QUEUE 699

such that T started on input y halts with output x. The crucial fact one uses is that for
any fixed effective enumerations C and D, for all x IKc(x) - Kn(x)I < c, with c a con
stant depending only on C and D (but not on x). Thus, up to an additive constant, the
Kolmogorov complexity is independent of the particular effective enumeration chosen,
which allows us to drop the subscript. With some abuse of notation, the sequel equal
ities and inequalities involving Kolmogorov complexity will always be assumed to hold
up to an additive constant only. To be able to differentiate between parts of y such that
T is able to use different parts for different purposes (can compute an r-a:ry function),
we need the notion of self-delimiting descriptions. If a = a1a2 ···an is a string of O's
and l's, then a10a20 · · · Oanl is a self-delimiting description of twice the original length.
More efficiently, if b = b1 · · · bm is the length of a in bina:ry, then the self-delimiting de
scription of b concatenated with a is also a self-delimiting description of a, this time of
length n + 2 log n instead of 2n. For example, 1000011101 is the self-delimiting version
of 1101.

2. The queue machine model. We will first describe more formally the model and
the notation we use for queue machines.

A queue machine has a one-way input tape with the input head initially positioned
at the beginning of the input string. For storage it uses a queue. The rear of the queue
contains the first symbols pushed (and not popped). The front contains the last symbols
pushed. The machine can access only one symbol at the rear of the queue.

One step of the queue machine consists of all the following. According to the old
state and the contents of the cells scanned on the input and on the queue, the machine

1. reads an empty or nonempty symbol from the input,
2. pops an empty or nonempty symbol from the queue,
3. pushes an empty or nonempty symbol on the queue,
4. changes state.

Let hin be the read-only head on the one-way input tape. We identify the queue
with a tape with two heads hr and hw. The queue machine is implemented as follows
on the tape representation. The initial state and the state transitions are the same. The
head hr is a read-only, one-way head on the tape. The head hw is a write-only, one-way
head on the tape. One step of the queue machine is implemented as follows:

1. the input head hin behaves the same way as on the original queue machine;
2. if a nonempty symbol is written (pushed) on the queue, then hw writes the sym

bol in the currently scanned cell and moves to the right adjacent cell (if an empty
symbol is written, then hw does not move);

3. if a nonempty symbol is read (popped) from the queue, then hr moves to the
right adjacent cell (if an empty symbol is read, then hr does not move);

4. the change of state occurs as in the original machine.
Without loss of generality, we assume that the machine uses a bina:ry alphabet on

the queue and accepts by empty queue.
Let hk(t) denote the position of head k E {in, r, w} at time ton its respective tape.

Let c1, c2, ···,en be the individual cells on the input tape. Let d1, d2 , ···be the individual
cells on the queue. We sometimes use hk (t) to denote the cell at that position.

The contents of the tape from hr(t) through hw(t) - 1 inclusive is called the actual
queue at time t, or Queue(t). The length of Queue(t), denoted I Queue(t) j, is hw (t)-hr (t).
We say that cells di and dj are contiguous on Queue(t) if hr (t) < j < hw (t) and j = i + 1,
or if i + 1 = hw (t) and j = hr (t) (that is, the cells at opposite ends of the queue are also
considered contiguous).

700 MING LI, LUC LONGPRE, AND PAUL VITANYI

3. Simulating one tape by one queue.

3.1. Upper bound. Our upper bound is straightforward. It is for simulating any
fixed number of stacks, but since two stacks can simulate one tape in real time, our upper
bound applies to tapes as well.

THEOREM 3.1. For any fixed k, one queue can simulate k stacks in 0(n2) time for both
detenninistic and nondetemzinistic machines.

Proof. Simulate the k stacks by coding them sequentially onto the queue such that
the top of each stack comes first. In front of each stack top, put a marker to indicate the
separation between the stacks.

Each operation (push or pop on one stack) can be done in O(n) time by scanning
the entire queue and performing the local transformation after the appropriate marker.
Scanning is done by successively transferring the symbols from one end of the queue
to the other end. The total time is then in O(n2). This simulation can be made for
deterministic or nondeterministic machines. 0

3.2. Lower bound. In this section, we show that it takes O(n413 /logn) time for
a nondeterministic one-queue machine with a one-way input to recognize the language
L = {w#wR: w E {O, 1}*}. The proof also provides the same lower bound for the set
of palindromes.

Because L can be recognized in linear time by a deterministic one-stack machine (a
deterministic pushdown automaton), we can conclude that it takes n(n413 /log n) time
for a nondeterministic one-queue machine to simulate a deterministic one-stack ma
chine.

The intuition behind the proof is that while the queue machine reads w, it has to
store all the information in some sequential way on the queue. It turns out to be impos
sible to check the stored form of w for correspondence with wR while the latter string is
read from the input tape, so wR must be stored in some sequential way as well. Using
crossing sequence arguments, we show that whatever way the information is stored, the
machine is forced to scan the queue many times. This repeated scanning then implies
the lower bound on simulation time.

THEOREM 3.2. A nondeterministic one-queue machine with a one-way input tape re
quires !1(n413 /logn) time to accept the language L = {w#wR: w E {0, l}*}.2

Remark. This holds both for the worst-case time and the average time, when the
average is taken over all strings in L. Notice that the straightforward algorithm to accept
L with a queue has a linear average time when the average is taken over all strings, since
most strings can be discovered not to be in the language quickly.

Proof Let Q be a one-queue machine that accepts L. We show that Q will make
n(n413 /log n) steps before accepting any string x#xR for incompressible strings x of
size n. Since the size of the input is 2n + 1, this will provide the wanted lower bound for
L. Since at least half the strings of each length are incompressible, this also provides the
claimed average time lower bound.

Let x be an incompressible string of length n. We separate x into two blocks: x =
xox,withlxol = Ln/2j.Letm= Ln113 /4J andp= Ln/2mj. Wefurtherseparatexinto
m blocks of size p or p + 1: x = x1x2 · · · Xm.

2Here we use the strongerversion ofO where T(n) E Sl(f (n)) if there are J?OSitive constants c and no such
that for all n?: no, T(n)?: cf(n). Notice that there is no string of even length m the language. Tu be strict, we
show that the time is inO(n4/ 3 /logn : n is odd). With a slightly modified language, {x#xR} u {x##xR},
we could prove it for all n.

1HE POWER OF THE QUEUE 701

We look at any fixed accepting computation of the machine on input x#xR. Let tj
be the time step when hin enters the block Xj. Let tj be the time step when hin enters
the block;;jR. If z is a substring of x, then z' denotes the corresponding substring of xR
(= x').

CLAIM3.3. lft1 :5 t :5 tQ, then JQueue(t)J;?: n/2-0(logn).
Proof. Let t1 :5 t :5 t0. Let JQueue(t)J = s. The string x can be reconstructed by

using the following information: a description of this discussion and of Qin 0(1) bits,
the string Queue(t) of lengths, the string x oflength r n/21, the state q(t) of the machine
in 0(1) bits, and hin(t) in :5 logn + 2 bits. All items are encoded as self-delimiting
strings. The total number of bits required for this description is s + n/2 + O(logn).

To reconstruct x from this information, run Q with all possible candidate strings
y substituted for xo. Single out the strings y for which there is a time step for which
Queue(t), hin(t), and q(t) correspond. Among those y, the machine should accept only
if y = x0; otherwise, it would accept the string x0x#xRyR tj. L by behaving like the
computation on x#xR up to time t and like the computation on yx#xRyR after time t.

Because x is incompressible, we know that K (x) ;:::: n, so it must be that our program
reconstructing x has size;:::: n. Thus, we haves+ n/2 + O(logn) ;:::: n, from which the
claim follows. D

The machine Q needs to remember what it reads on the input and code it in some
way on the queue or compare it with what is already on the queue. What can be written
on the queue is determined by the current state, the input, and the rear of the queue.
The input can be compared with the rear of the queue. These intuitive ideas motivate
the following definitions of influence.

DEFINITION 3.4. An input cell Ci directly influences a cell dj if hin scans ci while hw
writes in dj (that is, hw(t) = j, hw(t + 1) = j + 1, and hin(t) = i).

DEFINITION 3.5. A cell di backward influences a cell di if hw is or moves onto di
when hr moves onto di (that is, hr(t - 1) = j - 1, hr(t) = j and hw(t) = i).

DEFINITION 3.6. A cell di forward influences a cell di if hr scans di while hw writes
in dj (that is, hw(t) = j, hw(t + 1) = j + 1 and hr(t) = i).

(See Fig. 4 for an example of direct influence and Fig. 5 for an example of backward
and forward influence.)

Input tape and osition of hin at various times.

9 10

5 6

Queue tape and position of hw at various times.

FIG. 4. Direct influence relation.

702 MING LI, LUC LONGPRE, AND PAUL VITANYI

5-8 14

Queue tape and position of hw at various times.

FIG. 5. Forward (--+) and backward (- - -->) influence relation.

DEFINITION 3.7. The influence relation among the tape cells is the transitive closure
of the fmward influence relation union the transitive closure of the backward influence
relation. In other words, a cell di influences a cell di if there is a chain of forward influ
ences or a chain of backward influences from ~ to di.

An input cell <; influences a cell di if c.; directly influences a tape cell that influences
dj.

A block of cells influences a cell if and only if at least one of the cells in the block
influences it. A block of cells is influenced by a block of cells if at least one cell of the first
block is influenced by the second block. Figure 6 illustrates the concept. The influence
relation will allow us to talk about where information can be stored on the queue or
which information from the queue can be compared with the input.

Block of cells on input tape.

Queue tape and influenced blocks of cells.

Flo. 6. Blocks on the queue influenced by a block on the input.

It is worth stating a few facts about the influence relations. Each tape cell is directly
influenced by exactly one input cell. It is also forward and backward influenced by exactly
one tape cell. The cells directly influenced by a contiguous block of input cells form a
contiguous block. This holds also for forward and backward influence.

The sequence of blocks influenced by a block of input cells will be used with the
crossing sequence around the blocks. Crossing sequences for queue machines need a
special definition.

THEPOWEROFTHEQUEUE 703

DEFINITION 3.8. A partial configuration of the machine at some time t is the state
of the machine at that time, the position of all the heads on their respective tape, the
contents of the cells hr(t), hin(t), and the contents of the cells immediately preceding
those two cells.

DEFINITION 3.9. The crossing sequence (c.s.) associated with a cell di is the partial
configuration at the time t when hr goes from cell di to cell di+l (that is, hr(t - 1) =di
and hr(t) = di+i) plus the partial configuration at the time when hw goes from di to
di+l· Since using more than n2 tape cells would take too much time, we may assume
that each head position can be described in O(log n) bits.

The crossing sequence around a region di··· dJ is the c.s. associated with di-l con
catenated with the one associated with di.

The crossing sequence around a list of regions is the concatenation of the c.s. around
each of the regions.

Intuitively, for a deterministic computation, changing a block of input will change
only the influenced regions, provided that the change does not alter the crossing se
quence around the influenced regions. For a nondeterministic computation, the situa
tion is a little more delicate, but the idea is the same. We need the backward influence
to be able to deal with nondeterministic computations. A nondeterministic machine can
guess the input on the queue and start the computation before the input head even moves
once. A change in an input block will have "backward effects" on that computation.

For every computation path, there is a backward computation path consisting of all
the configurations in reverse order. Moreover, there is a queue machine Q' that has
as accepting computation paths all the backward accepting computations of Q. Just ex
change the role of the read and write heads: h~(t) = hr(t) and h~(t) = hw(t). For
the computation, the time and the heads go backwards. The influence definition was
designed such that the forward influence on the tape for Q corresponds to the backward
influence for Q' and vice versa. The region influenced by a block of tape cells will be
the same for Q and Q'. The blocks of cells influenced by a block of input cells will dif
fer slightly, because the direct influence will be directed at a different part of the tape.
However, this does not affect the proof.

In the following, a cycle u(t) is a half-open interval (of time) [t, £) such that hr (i) =
hw (t) if i > t or such that hr (t) = hw (i) if i < t (backward cycle). Given a time T1, we
will be interested in nonoverlapping contiguous cycles 0"1 (r 1), CJ2(T2), · · · starting at time
Ti, such that 0"1(T1) = [7i,T2), D'2(T2) = h,T3), and so on. In what follows, whenever
we count cycles, the start time T1 either will be specified or will be clear from context
and we will count the successive nonoverlapping contiguous cycles, as induced by the
computation of Q. Backward cycles could alternatively be defined by using backward
computations. Notice that the blocks of cells influenced by a block of input cells form a
sequence of blocks, one block for each cycle.

CLAIM 3.10. For any t, if i > t is fewer than s cycles away from t, then each cell in
Queue(£) is influenced by at most s input cells in x#xR.

Proof. Let the chain of cycles starting from T1 = t be CJ1 (T1), 0"2 (72), · · ·• The proof
is by induction on the indices s. No cell in Queue(r 1) is influenced by any input cell in
x#xR. During O'i, each cell written is influenced by exactly one input cell. Suppose the
claim is true for cycles a 1 through CJ s- l. During the cycle CJ s (T8), each cell written is
influenced by one new input cell (possibly) and by each input cell that influences the cell
scanned by hr. This adds up to at most s input cells. D

DEFINITION 3.11. For each i, we say that xi is a valid block if Queue(t~) contains a
cell that is influenced by neither Xi nor x/.

704 MING LI, LUC LONGPRE, AND PAUL VITANYI

Informally, Xi is valid if each of x; and x/ is read within one cycle. Indeed, if Xi is not
read within one cycle, then Xi directly influences all of Queue(ti) and hence influences
every cell of the tape by transitivity, including every cell of Queue(t0), where t0 is the
time when hin leaves x~.

Next, we need to show that valid blocks exist. We need the existence of only one
valid block, but, in fact, the majority of blocks are valid.

CLAIM 3.12. If there is no valid block, then Q takes !l(n413) time.
Proof. Pick a cell don Queue(t0). Suppose there is no valid block. This means that

for all i, d is influenced by either xi or xiR. It means that d is influenced by at least m
different cells. By Claim 3.10, we know that then the machine makes at least m -1 cycles
from t 1 to t 0. By Claim 3.3, the queue has length at least n/2 - O(log n) for each cycle,
so the algorithm will take at least (m - l)(n/2 - O(logn)) E f!(n413). D

In the following, we may assume there is at least one valid block. The next two claims
explain why a valid block is a part of the input that has been coded sequentially on the
queue.

CLAIM 3.13. For each valid block Xj, any two cells in Xj influence disjoint sets of cells
on the queue. Moreover, cells in xj also influence disjoint sets of cells on the queue. However,
some cells on the queue can be influenced by both a cell of Xj and a cell of xj.

Proof. If Xi is a valid block, each of xi and x~ must be read within one cycle. Within
one cycle, each cell written into is influenced by at most one cell of Xi. This property will
be preserved by transitivity throughout the successive cycles, either backward or forward.
The same situation arises for x~. D

CLAIM 3.14. For any time t, the regions influenced by the sequence of cells of a valid
block Xj form a contiguous ordered sequence on Queue(t). (The same statement holds for
xj.)

Proof. This can be seen with a similar argument as in the previous claim. D
For our valid block xi, both xi and x/ have been coded sequentially on the queue.

Now we have to show that it takes O(n413 /log n) time to check x/ = xiR· Intuitively,
we can check only a constant number of bits of x/ at each cycle. Each cycle takes as
much time as the size of the queue at that time. The strategy is to show that the size of
the queue cannot decrease too much at each cycle, for each of the forward and back
ward computations. Then, showing that many cycles are required will provide the lower
bound.

CLAIM 3.15. If£> t;_ 1 is fewer than s cycles away from t;_1 and t < t; is fewer than
s cycles before t;, then I Queue(t) I + I Queue(£) I 2:: n 213 - O(slog n).

Proof. Let xi be a valid block, i > 0. Let xi = uv, where u and v are strings of equal
size (±1).

If there is a time r such that hin (T) E v' and hr (r) is influenced by v, then choose
y = u, otherwise, choose y = v. In both cases, for all t, if hin(t) E y', hr(t) is not
influenced by y. This is immediate from Claim 3.14 for the case y = v. For the case
y = u, let T be such that hin (T) E v' and hr (r) is influenced by v. Let d be a cell on
Queue(r) not influenced by Xi or x;. By Claim 3.14, the region influenced by y = u is
after d and the region influenced by y' = u' is before d (refer to Figs. 7 and 8). The
regions cannot intersect.

As a consequence of our choice of y, we have that the regions influenced by y and
by y' are disjoint.

THEPOWEROFTHEQUEUE 705

I
v u v

I
t t

hr hw

FIG. 7. Influence of Xi = uv on Queue(r).

I v' u' v' I
t t

hr hw

FIG. 8. Infiuenceofx~ = v'u' on Queue(r).

Let t and i be as in the statement of the claim. Let x be the string x for which y is
deleted. The size of y is about n213 :

l2lnl~3/4JJ IYI 2 p/2 -1 = Ln/2mJ/2 -1 = 2 - 1 E n213 - 0(1).

The size of x = n - IYI E n - n213 + 0(1).
Let S be the set of cells influenced by y. We show below that x can be computed

from x, t, i, the position of y in x, the crossing sequence around S from time t to time
i, Queue(t), and Queue(i). If each item is encoded as self-delimiting, this description

takes n - n 213 + O(s log(n)) +I Queue(t)I +I Queue(i)I bits. Because K(x) 2 n, it then
follows that I Queue(t) I + I Queue(£) I 2 n 213 - 0(slog(n)).

We compute y with the information provided in the following way. For all binary
strings z of equal length as y, let Xz be the string x for which z has been substituted for
y. Run Q on all strings xz#xzR until one that matches the description is found. By
construction, z = y matches the description. Leading to a contradiction, suppose z =I- y
matches the description as well. Let Cy be the accepting computation on x#xR and Cz

the accepting computation on xz#x1; that matches the description. Then, by cutting
and pasting the two computations we can construct a legal computation of Q on xz#xR.
Let Bz be the set of cells influenced by z in Cz. Because the crossing sequence includes
the position of all heads, the regions in Sand in Bz occupy the same absolute positions
on the queue. Let ty be the time when hin leaves y. We can compose the accepting
computation as follows. Use any of the two computations up to time t. At this time, we
will have Queue(t).

From time t to ty, we are dealing with backward influence. If hw is scanning a cell of
S, then hr is scanning either a cell of Sor a cell immediately before it. If hw is scanning
a cell not in S, then hr is also scanning a cell not in Sor immediately before it. Since
the cell before the region has been included in the c.s., it is possible to follow Cy when
hw is in Sand Cz when hw is out of S. Notice that hin cannot scan a cell of y while hw

is writing a cell out of S because of the direct influence. Moreover, hin cannot scan a
cell of z while hw writes a cell of S because that cell would be influenced by both y and
z, which cannot happen by our choice of y.

From time ty to time £,we are dealing with forward influence. Follow Cz when hr is

not in S and follow Cy when hr is in S.

706 MING LI, LUC LONGPRE, AND PAUL VITANYI

At time t, the queue will correspond with the queue in both computations. Just com
plete the computation following any of Cy or Cz. This gives an accepting computation
for a string fj. L, which is a contradiction. 0

CLAIM 3.16. The machine makes n(n413 / logn) steps before ti or after t~_ 1.
Proof. Let T be the time Q accepts. Both Queue(O) and Queue(T) are of length 0.

By the previous claim, IQueue(O)I + JQueue(T)I '?:. n213 -O(slogn). Let IQueue(O)I +
I Queue(T) I ;::: n2/3 - cs log n. This means Q makes at least n213 / (clog n) cycles for some
constant c. At least n2/ 3 /(2clogn) of those cycles will have a queue of size n(n213), by
the previous claim. This makes a totalofn(n413 /logn) steps. 0

COROLIARY 3.17. For off-line one-way-input one-queue machines, nondeterministic
linear time is not closed under complement.

Proof. The complement of the palindrome language used in the proof of Theorem
3.2 can be accepted in nondeterministic linear time. This can be seen as follows. If
the string is of the form w1 #w2, where Jw1 I = lw2I, nondeterministically go and read
position i of w1 for which there is a discrepancy. While doing that, push i symbols on the
queue. Then nondeterministically go and read the corresponding position of w2. Verify
the position by using the number of symbols pushed on the queue.

Other cases can be checked in deterministic linear time. Finding which case applies
can be made by a nondeterministic initial move. This concludes the proof of Theorem
3.2. D

4. More queues versus fewer queues. In this section we study the power of queue
machines with different numbers of queues. We first provide some straightforward up
per bounds: 1Wo queues work as well as k queues in the nondetenninistic case. This
motivates our research focusing on small numbers of queues. One queue can simulate
k queues in quadratic time, deterministically or nondeterministically. We then provide
tight, or almost tight, lower bounds for our simulations mentioned above.

4.1. Upper bounds.
THEOREM 4.1. Two stacks can simulate one queue in linear time, for both deterministic

and nondeterministic machines.
Proof. We design a machine P with two stacks pdl, pd2. To simulate a queue, every

time a symbol is pushed into the queue, P pushes the same symbol into pdl. If a symbol
is taken from the queue, then P pops a symbol from pd2 if pd2 is not empty. If pd2 is
empty, then P first unloads the entire contents of pdl into pd2 and then pops the top
symbol from pd2. At the end of the input, P accepts if and only if the one-queue machine
accepts. 0

THEOREM 4.2. Two queues can nondeterministically simulate k queues for any fixed k
in linear time.

Proof. This theorem follows from the method used by Book and Greibach [BG70] to
nondeterministically simulate k tapes by two tapes in linear time. For the sake of com
pleteness, we will describe the idea. The two-queue machine guesses the computation of
the k-queue machine and puts this guess on one queue in the form 101 , ID2, ···,where
!Di contains the state of the k queue machine and the k + 1 queue symbols scanned by
the k queue heads and the input head at step i. First, check that the state in each ID
is consistent with the previous ID and check the correctness of the guessed input sym
bol in each IDi by scanning the !D's and moving the input head when necessary. Then,
scan the !D's again k times, each time simulating one of the k queues of the simulated
machine on the other queue. Th.is simulation takes O((k + l)n) = O(n) time. O

'DIEOREM 4.3. Three stacks can nondeterministically simulate k queues in linear time.

THEPOWEROFTHEQUEUE 707

Proof. Combine the ideas from the above two theorems; i.e., guess the computation
of the k-queue machine as before, and put the guess into one stack. Save this guess
also to another stack (but put a marker on the top). Then simulate a queue and check
the correctness of the guess. (The simulation needs two stacks; one of the stacks has
the guessed computation saved in the bottom.) After simulating one queue, retrieve the
guessed contents; again put it into two stacks. Repeat this process for each queue. 0

Remark It is a folklore fact, and easily verified, that one-queue machines accept
precisely the r.e. languages. In contrast, one-stack machines accept only CFCs. Hence,
one queue is better than one stack. However, when we have more stacks, more stacks
seem to be better than queues because they are more efficient. It was proved in [HM81]
that four stacks can simulate a queue in real time.

TuEOREM 4.4. One queue can simulate k queues in quadratic time, both deterministi
cally and nondeterministically.

Proof. This is similar to the simulation of k tapes by one tape by Hartmanis and
Stearns [HS65] (see [HU79, p. 292]). D

This also relates to the interesting problem of whether two heads (on one tape) are
better than two tapes (each with one single head). Vitanyi [Vit84a] showed that two
tapes cannot simulate a queue in real time if at least one of the tape heads is within 0 (n)
cells from the start cell at all times. We saw that two stacks can simulate a queue in linear
time and four stacks can do this in real time. It would be interesting to know whether
two or three stacks can do this in real time. The question of how to deterministically
simulate k queues by two queues in O(n2) time, like the Rennie-Stearns simulation in
the tape case [HS66], remains open.

4.2. Lower bounds. We now prove optimal lower bounds for the above simula
tions. Let L be the following language.

L = { a & bAb~ · · · bl#b~bgbyb~b~b~ · · · b~ibtb~i+l · · · bL1 bfk-l)/2 b~

b6bf k+1)/2bfb~bf k+3)/2b§ · · · b~imod(k+l)btb(2i+i)mod(k+l) · · · bL1 b~bt& a :

b} = b~ = bt = b{ for i = 0, · · · , k

all b{ have format x, where x E {O, 1}*

k is odd, and a E {O, 1}* }.

When we prove the lower bound, all the b{ will have the same length. The string
between the first & and second & can be obtained by copying bob1 · · ·bk three times:

bob1 · · ·bk #bob1 · · · bk bob1 · · ·bk,

and then adding one more copy of b0b1 • · • bk by inserting block bi after 2i blocks, starting
from #bo in above. The superscripts on the b/s are used only to facilitate later discus
sions. L can be considered as a modified version of a language used in [Maa85]. We have
added a string a on both ends. The purpose of a is to prevent the queue from shrinking,
since if we choose a to be a long K-random string, then before the second a is read the
size of the queue has to be at least about la!. We have to prevent the queue from shrink
ing because otherwise the crossing sequence argument would not work. In addition to
the techniques in [Maa85], and [LV88], we will need the techniques introduced in this
paper to treat queues.

An alternative way to describe the language Lis as follows. Let y and z be sequences
of blocks in which each block is of form u, where u E { 0, 1} *. Define intermingle(y) =

708 MING LI, LUC LONGPRE, AND PAUL VITANYI

z if (1) the blocks of z in positions i = 2 (mod 3) form the string y (z2z5zs · · · =
Y1Y2Y3 · · ·) and (2) the remaining blocks of z form the string yy.

Then, L = { a&y#intermingle(y)&a : y contains an even number of blocks}.
THEOREM 4.5. Simulating a deterministic two-queue machine with a one-way input

tape by a nondeterministic one-queue machine with a one-way input tape requires
O(n2 /log2 nloglogn) time.

Proof. We will show that the L just defined requires 0(n2 /log2n log log n) time on a
nondeterministic one-queue machine. Since L can be trivially accepted by a determinis
tic two-queue machine in linear time, the theorem will follow.

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in
time T(n), which is not in O(n2 /log2nloglog n). Without loss of generality, we assume
that M has a binary queue alphabet and that M accepts with a final state and an empty
queue. We use the same notation and definitions as in the previous section, e.g., Queue,
IQueue(t)J, hin, hr, hw, cycles, and crossing sequence.

Choose a large n and a large enough C such that C >> IMI + c and all the sub
sequent formulas make sense, where IMI is the number of bits needed to describe M
and c is a constant given in Claim 4.9, which follows. Choose an incompressible string
X E {O, 1}2n, K(X) ;:::: JXI. Let X = X' X", where IX'I = JX"I = n. Divide X" into
k + 1 = n/ (Clog log n) equal parts, X" = x 0x 1 • · · xk, where each xi is Clog log n long.
Consider a word w E L, where a = X', b{ = xi for 1 ~ j ~ 4, and 0 ~ i ~ k. Fix a
shortest accepting path P of Mon w. We will show that M takes O(n2 /log2n log logn)
time on P. Since n is linearly related to the size of the input, this will provide the lower
bound in the theorem.3

Consider only the path P. Let g (n) = C 5 log2 n log log n. Let t& be the time when
hin reaches the first &, t'.~, be the time hin reaches the second&, and t# be the time when
hin reaches #.

CLAIM 4.6. IQueue(t)I;:::: n - O(logn)forevery t& ~ t::.; t8c
Proof. The proof of this claim is the same as that of Claim 3.3 and is omitted. D
CLAIM 4. 7. The number of cycles from time t& to t& is less than n / g (n).
Proof. This follows directly from the previous claim. Each cycle is of length O(n)

and hence takes O(n) time. If M requires at least n/g(n) cycles from t& tot&, then M
used O(n2 /log2n log log n) time, which is a contradiction. D

For each time t, we say that a substring s of the input w is mapped into a set S of
cells on Queue(t) if all the cells influenced bys on Queue(t) are in S.

CLAIM 4.8. Let k' = k/2-n/g(n). At time t#, Queue(t#) can be partitioned into two
segments, Si (t#) and S2(t#), such that k' bf's, say b}1 , • • ·, b}k'' are mapped into 81 (t#)
and k' other b} 's, say b} 1 , • • • , bL, are mapped into 82 (t#).

Proof. Consider any cell ea on the Queue(t#). By the nature of the queue and Claim
4.7, at most m = n/g(n) b}'s can influence ea at t# because M made no more than m
cycles on the queue from t& tot#. Hence, for any partition of Queue(t#) into two parts,
81 (t#) and S2(t#), there can be at most 2m b} blocks, each influencing both S1 (t#) and
S2(t#)· Each of the rest of the k + 1 - 2m b} blocks either influences only S1 (t#) or
influences only S2(t#)· It is now trivial to build 8 1 and S2 by moving the border cell by
cell until the claim is satisfied. 0

Now, let S1(t#) and S2(t#) be as specified in the previous claim. At any time t, let

. 3Here, as in the previous.section, the Jangu!lge does not have a string of each length. The proof provides
an mput that causes the machme to take a Jong time for each length that has at least one string in the language.
To produce a hard string for each length, just add a finite padding in the definition of the language; for example,
allow markers to repeat up to four or five times.

THE POWER OF THE QUEUE 709

81 (t) be the part of Queue(t) influenced by S1 (t#) and let S 2 (t) be the complementary
region on Queue(t). Let S1 be the set of all cells on the tape influenced by 81 (t#) and
82 be the other cells.

The next claim is a simple generalization of a theorem proved in [Maa85, Thm. 3.1].
The proof of the claim is a simple reworking of the Maass proof and is hence omitted.

ClAIM 4.9. Let 8 be a sequence of numbers from 0, · · · , k, where k = 21 for some
l. Assume that every number b E {O, ... , k} is somewhere in S adjacent to the numbers
2b (mod k + 1) and 2b (mod k + 1) + 1. Then, for every partition of {O, · · ·, k} into
two sets G and R such that I GI, I RI > k / 4, there are at least k / (clog k) (for some fixed c)
elements of G that occur somewhere in 8 adjacent to a number from R. D

A k / Jlog k upper bound corresponding to the lower bound in this claim is contained
in [Li88]. A more general, but weaker, upper bound can be found in [Kla84].

Remark 4.1. For each word w E L, the sequence of the subscripts of the substrings
(in the order they appear) in w between the # sign and the second & satisfies the re
quirements in Claim 4.9. For example, given k, such a sequence is formed by inserting i
after 2ith number, i = 0, 1, · · ·, k, in the following sequence:

0, 1, 2, ... 'k, 0, 1, 2, ... 'k.

Therefore, each number i is adjacent to 2i (mod k + 1), and 2i + 1 (mod k + 1). In
what follows we will also say that a pair of bi blocks are adjacent if their subscripts are
adjacent in the above sequence.

CLAIM 4.10. At time t&_, the b/s between #and the second & are mapped into Queue(t&)
in the fallowing way: either

1. a set, [Ji, of k/(3clog k) b/s, which belong to {b}1 , • • ·, bL}, are mapped into
81 (t'&); or

2. a set, S2, of k/(3clog k) b;'s, which belong to {bf1 , • • ·, b}k, }, are mapped into S2(t'&),
where c < < C is the small constant in Claim 4.9.

Proof. By Claim 4.7, from time t# tot&, M makes fewer than n/g(n) cycles. Hence,
hw can alternate between S1 and 8 2 fewer than 2n/g(n) times. Each time hw alternates
between 8 1 and 8 2, hw can map at most one adjacent pair of b1, blocks into both 8 1 (t&_)
and S2(t&). All other pairs are each mapped totally into S1(t8.J or totally into S2(t&_).
There are B(k) such pairs in L.

Combining Claim 4.8, Claim 4.9, and Remark 4.1, we know that there are at least
k/clog k-n/(C5 log2 n log logn) pairs of lif. blocks such that each of these pairs contains
a component belonging to G = { bt, · · · , bi,_,,} and another component belonging to R =
{ b} 1 , • • · , b} k' } • Most of these pairs, except n / g (n) of them by the previous paragraph,
are mapped either totally into S1 (t&_) or totally into S 2 (t'&). Hence, either (1) or (2)
must be true. D

Without loss of generality, assume that (1) of Claim 4.10 is true.
CLAIM 4.11. Let tend be the time M accepts. jQueue(tend)I = 0. Then there exists a

time t& s; t 1 :::; tend such that I Queue(t 1) I s; n/ (C 5 log n) and from t& to t 1 M made
fewer than n / (C5 log n log log n) cycles.

Proof. Otherwise M spends O(n2 /(log2 n log log n)) time, a contradiction. D
CLAIM 4.12. There also exists a time to s; t& such that IQueue(to)I :::; n/(C5 logn)

and from t 0 tot& M made fewer than n/ (C 5 log n log log n) cycles.
Proof. Note that by Claim 4.6 jQueue(t&)I 2: n - O(logn). Thus, we can choose t0

to be the last time step before t& such that I Queue(to) I s; n/(C5 log n). Hence, if the
claim is not true, M would spend n (n 2 / (log2 n log log n)) time, a contradiction. O

710 MING LI, LUC LONGPRE, AND PAUL VITANYl

By Claim 4.7 the number of cycles M made from t& tot& is less than n/g(n). By
Qaims 4.11and4.12 M made at most n/(C5 lognloglogn) cycles from time t& to t1

and from time to to t&. Hence, the length of the crossing sequence at the boundary of
81 and 8 2 from t& to t 1 is shorter than n/ C4 log n log log n. For every j, if a bj E S1 for
some k, then b} is mapped into 82 by Claim 4.10.

Now we describe a program that reconstructs X with less than IXI information.
The program uses Queue(t0), Queue(t1), the crossing sequence around Si, the string
X where the bj blocks have been deleted, and the relative position of those bj blocks.

Consider every Y such that IYI = IX! and Y =a Yo··· Yk for some Yo··· Yk·
1. Check if Y is the same as X at positions other than those places occupied by

k -
b; E 81.

2. If (1) is true, then construct the input wy the same way w was constructed except
with Xi replaced by Yi for i = 0, 1, · · ·, k.

3. Copy the contents of Queue(to) on the queue. Then simulate M from to to
t 1 such that hr never goes into 82 • Whenever hr reaches the border of 82 it
compares the current ID with the corresponding one in the crossing sequence.
If they match, then M jumps over 82 and, starting from the next ID on the other
side of 82, M continues until time t 1. At time ti. compare the actual queue with
what it is supposed to be. Accept Y if everything worked correctly.

4. This computation will accept if and only if Y = X. If it is not the case, we could
compose an accepting computation on M for the string where the b} blocks
correspond to those in Y and the other b; blocks correspond to those in X.
This can be done in a way very similar to what was done in Claim 3.15. The
details are omitted here.

The information we used in this program is only the following:
1. X - 81, plus the information to describe the relative locations of bj E S1 in X.

This would require at most

IXI - IS1JlbjJ + O(l81l log(k/IS11)) $ 2n - IB1ICloglogn + O(IB1l loglogn)

$ 2n - (IS1ICloglogn)/2

s 2n - n / c2 1og n,

where in the first line the second term is for the b/s in 81, the third term is for
the information to describe the relative positions of bi E S1: To represent IS1 I
elements of {O, 1, · · ·, k}, sort the elements, determine the sequence of their
differences, and use a self-delimiting encoding of the natural numbers to write
each difference. The final encoding has approximately O(IS1l log(k/IS1 1)) bits
(see, for example, [LV88], [Lou84], [Eli75]).

2. Description of the crossing sequence, of length less than n / (C4 log n log log n),
around 82• Again by the above efficient encoding method, this requires at most
n/(C3 logn) bits. The detail of this encoding can be found in [LV88]. The idea
is as follows: Each item in the c.s. is (state of M, hin 's position). Trivial encoding
of n/(C4 lognloglogn) long c.s. needs n/(C4 loglogn) bits. However, we can
use the above method and encode only the differences of hin's positions and
thus use fewer than n/(C3 logn) bits.

3. Description of the contents of 82 at times t0 and t 1. But, for i = 0, 1
jQueue{ti)I $ n/(C5 logn).

4. Extra O(logn) bits to describe the program discussed above.
The total is less than 2n - n/(Clogn). Therefore, K(X) < IX!, a contradiction. 0

THE POWER OF THE QUEUE 711

COROLLARY. Simulating two deterministic tapes by one nondeterministic queue re
quires n(n2 / Iog2 n log logn).

Proof. L can also be accepted by a two-tape Turing machine in linear time. D
THEOREM 4.13. To simulate two deterministic queues by one deterministic queue re

quires n(n2) time.
Proof idea. Define a language Li as follows (a, xi, Yi E {O, l}*).

Li {a & x1$x2$ · · ·$xk#Y1$ · · · $yi#(li1 , ti1)(li2 , th) · · · (li•, ii•) & a I
Xp yq; (p =ii+···+ it, q =ii+···+ it) and 1 ~ t ~ s}.

Li can be accepted by a deterministic two-queue machine in linear time. Using the
techniques in the above theorem and in [LV88], where it is proved that one deterministic
Turing machine tape requires square time for this language, it can be shown that L1

requires n(n2) for a one-queue deterministic machine. We omit the proof. D

Acknowledgment. We are grateful to the referee for his careful analysis and ex
tensive comments on the first version of this paper. We would also like to thank Andy
Klapper and Roy Rubinstein for their helpful comments.

(Aan74]

[BG70]

[BGW70]

(Cha77]
(DGPR84]

[Eli75]

[GKS86]

[HM81]

[HS65]

(HS66]

[HU79]

(Kla84]

[Kol65]

[Kos79]

[Li85a]

REFERENCES

S. 0. AANDERAA, On k-tape versus (k - 1)-tape real-time computations, in R. M. Karp, ed.,
Complexity of Computation, SIAM-AMS Proceedings, Vol. 7, American Mathematical
Society, Providence, Rl, 1974, pp. 75-96.

R. BooK AND S. GREIBACH, Quasi real-time languages, Math. Systems Theory, 4 (1970), pp.
97-111.

R. Borne, S. GREIBACH, AND B. WEGBREIT, Time- and tape-bound Turing acceptors and afi's, J.
Comput. System Sci., 4 (1970), pp. 606-621.

G. CHAITIN,Algorithmic information theory, IBM J. Res. Develop., 21 (1977), pp. 350-359.
P. DURIS, Z. GALIL, W. PAUL, AND R. REISCHUK, Two nonlinear lower bounds for on-line compu

tations, Inform. and Control, 60 (1984), pp. 159-173.
P. ELIAS, Universal codeword sets and representation of integers, IEEE Trans. Inform. Theory,

IT-21 (1975), pp. 194-203.
z. GALIL, R. KANNAN, AND E. SzEMEREDI, On nontrivial separators fork-page graphs and simula

tions by nondeterministic one-tape Turing machines, in Proc. 18th Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1986, pp.
39-49.

R. HOOD AND R. MELVILLE, Real-time queue operations in pure LISP, Inform. Process. Lett., 13
(1981), pp. 50-54.

J. HARTMAN1s AND R. STEARNS, On the computational complexity of algorithms, 'Trans. Amer.
Math. Soc., 117 (1965), pp. 285-306.

F. HENNIE AND R. STEARNS, Two tape simulation of multitape Turing machines, J. Assoc. Comput.
Mach., 13 (1966), pp. 533-546.

J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

M. KLAWE, Limitations on explicit construction of expanding graphs, SIAM J. Comput., 13 (1984),
pp. 156-166.

A KOLMOGOROV, Three approaches for defining the concept of information quantity, Problems
Inform. 'Transmission, 1 (1965), pp. 1-7.

S. KOSA.RA.JU, Real time simulation of concatenable double-ended queues by double-ended queues,
in Proc. 11 th ACM Symposium on Theory of Computing, Association for Computing Ma
chinery, New York, 1979, pp. 346-351.

M. LI, Lower bounds by Kolmogorov complexity, in 12th ICALP, Lecture Notes in Computer
Science, No. 194, Marcel Dekker, New York, 1985, pp. 383-393.

712

[Li85b]

[Li88)

[Lou84]

[LS81]

[LV88]

[LLV86]

[Maa85]

[MSS87]

[Pau82]

[PSS81]

[Sol64]

[Vit84a]

[Vit84b]

[Vit85]

MING Ll, LUC LONGPRE, AND PAUL VITANYI

--, Lower bounds in computational complexity, Ph.D. thesis, Tech. Report TR85-663, Com
puter Science Department, Cornell University, 1985.

--, Simulating two pushdowns by one tape in O(nl.5 (Iogn)0·5) time, in Proc. 26th IEEE
Symposium on the Foundations of Computer Science, IEEE Computer Society, Washing
ton, DC, 1985, pp. 56-64.

M. C. LoUI, The complexity of sorting on distributed systems, Inform. and Control, 60 (1984), pp.
70-85.

B. L. LEONG AND J. I. SEIFERAS, New real-time simulations of multihead tape units, J. Assoc.
Comput. Mach., 28 (1981), pp. 166-180.

M. LI AND P. M. B. VITANYI, Tape versus queue and stacks: the lower bounds, Inform. and Com
put., 78 (1988), pp. 56-85.

L. LoNGPRE, M. LI, AND P. M. B. VJTANYI, The power of the queue, in Structure in Complexity
Theory, Lecture Notes in Computer Science, Springer-Verlag, 223, 1986, pp. 219-233.

W MAAss, Combinatorial lower bound arguments for deterministic and nondeterministic Turing
machines, Trans. Amer. Math. Soc., 292 (1985), pp. 675-693.

W MAAss, G. SCHNJTGER. AND E. SZEMEREDI, Two tapes are better than one for off-line Turing
machines, in Proc. 19th Annual ACM Symposium on Theory of Computing, Association
for Computing Machinery, New York, 1987, pp. 94-100.

W PAUL, On-line simulation of k+ 1 tapes by k tapes requires nonlinear time, Inform. and Control,
53 (1982), pp. 1-8.

W PAUL, J. SEIFERAS, AND J. SIMON, An information-theoretic approach to time bounds for on-line
computation, J. Comput. System Sci., 23 (1981), pp. 108-126.

R. SOLOMONOFF,Afonnal theory of inductive inference, Part 1 and Part 2, Inform. and Control,
7 (1964), pp. 1-22, 224-254.

P. M. B. VITANYI, On two-tape real-time computation and queues, J. Comput. System Sci., 29
(1984), pp. 1303-1311.

--, One queue or two pushdown stores take square time on a one-head tape unit, Tech. Report
CS-R8406, Computer Science, CWI, Amsterdam, 1984.

--,An N**J.618 lowerbound on the time to simulate one queue or two pushdown stores by
one tape, Inform. Process. Lett., 21 (1985), pp. 147-152.

