
SIAM J. COMPUT. 
Vol. 21, No. 4, pp. 697-712, August 1992 

© 1992 Society for Industrial and Applied Mathematics 
005 

mE POWER OF THE QUEUE* 

MING Lit, LUC LONGPREi, AND PAUL VITANYI§ 

Abstract. Queues, stacks, and tapes are basic concepts that have direct applications in compiler design 
and the general design of algorithms. Whereas stacks (pushdown store or last-in-first-out storage) have been 
thoroughly investigated and are well understood, this is much less the case for queues (first-in-first-out stor­
age). In this paper a comprehensive study comparing queues to stacks and tapes (off-line and with a one-way 
input tape) is presented. The techniques used rely on Kolmogorov complexity. In particular, one queue and 
one tape (or stack) are incomparable: 

(1) Simulating one stack (and hence one tape) by one queue requires fl(n4/ 3 / logn) time in both the 
deterministic and the nondeterministic cases. A corollary of this lower bound states that for this model of 
one-queue machines, nondeterministic linear time is not closed under complement. 

(2) Simulating one queue by one tape requires fl(n2 ) time in the deterministic case and requires 
fl(n4/3 /(logn)2/3) in the nondeterministiccase. 

The paper further compares the relative power between different numbers of queues: 
(3) Simulating two queues (or two tapes) by one queue requires fl(n2 ) time in the deterministic case, and 

n( n 2 / (Iog2 n log log n)) in the nondeterministic case. The deterministic bound is tight. The nondeterminis­
tic one is almost tight. The upper bounds for queues are also obtained. 

Key words. abstract storage unit, multi-queue machines, multi-tape machines, on-line simulation, lower 
bounds, upper bounds, Kolmogorov complexity 
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1. Introduction. It has been known for over 20 years that all multi-tape Turing ma­
chines can be simulated on line by two-tape Turing machines in time 0( n log n) [HS66] 
and by one-tape Turing machines in time O(n2). Since then, many other models of 
computation have been introduced and compared [Aan74), [DGPR84], [HS65], [HS66], 
[HU79], [KOS79], [LS81], [MSS87], [PSS81), [Pau82], [Vit85]. In addition to different 
storage mechanisms, real-time, on-line, and off-line machines have been studied. An on­
line simulation essentially simulates step-by-step each move of the simulated machine. 
In this paper we consider off-line machines, for which an answer is given only after the 
entire input has been read. There is no need to simulate the moves of the machine; it 
only matters that the right answer is given. We also use the one-way input convention, 
which states that the machine has a one-way input tape. As usual, the machines have a 
finite control and access to some storage. 

The relative power of stacks and tapes is more or less well known.1 For example, 
for the nondeterministic case, we know that 1 stack < 1 tape < 2 stacks < 3 stacks = k 
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stacks = k tapes, where A < B means that B can simulate A in linear time, but A cannot 
simulate B in linear time. In most of the cases, close lower and upper bounds are known 
for the simulation [Maa85], [Li85b], [Li88], [LV88], [Vit84b]. 

In this paper we give a complete characterization of (off-line, one-way input) queue 
machines. The main theorems show that one-queue machines are incomparable to one­
stack or one-tape machines, both deterministically and nondeterministically. One corol­
lary of our nondeterministic lower bound is that for our model of one-queue machines, 
nondeterministic linear time is not closed under complement. We also compare the rel­
ative power of machines having different numbers of queues. The current knowledge of 
upper and lower bounds for the simulation between queues and tapes is roughly sum­
marized in Figs. 1, 2, and 3. Figure 1 contains results that were previously known. The 
results of Fig. 2 are covered in §2. Notice that all the bounds in Fig. 2 are valid also for 
simulating one stack or two stacks. The results of Fig. 3 are covered in §3. 

deterministic nondeterministic 

upper bound 
O(n2 ) O(n312 .Jlogn) 

(in [HS65]) (in [Li88]) 

lower bound 
n(n2 ) n( n4/3 I log2;3 n) 

(in [LV88]) (in [LV88] or [Li85a]) 

FIG. 1. Simulating one queue by one tape. 

deterministic nondeterministic 

upper bound O(n2 ) 

lowerbound O(n413/logn) O(n413 /logn) 

FIG. 2. Simulating one tape, one stack, or two stacks, by one queue. 

deterministic nondeterministic 

upper bound 

lower bound D(n2 / log2 nloglog n) 

Fro. 3. Simulating two queues by one queue. 

We use Kolmogorov complexity techniques [Sol64), [Kol65], [Cha77], together with 
some new techniques to enable us to deal with queues to prove the theorems. The Kol­
mogorov complexity K(x) of a string x is the length of the shortest program printing the 
string x. By a simple counting argument, we know that for at least half of the strings x of 
each length, K(x) :2: lxl. These strings are called incompressible or K random. For com­
pleteness, we recall the notions of Kolmogorov complexity of binary strings and those of 
self-delimiting descriptions (see, e.g., [PSS81], [LV88]). Fix an effective coding C of all 
Turing machines as binary strings, such that no code is a prefix of any other code. Denote 
the code of Turing machine M by C(M). The Kolmogorov complexity with respect to 
C of a binary string x, denoted Kc(x), is the length of the smallest binary string C(T)y 
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such that T started on input y halts with output x. The crucial fact one uses is that for 
any fixed effective enumerations C and D, for all x IKc(x) - Kn(x)I < c, with c a con­
stant depending only on C and D (but not on x ). Thus, up to an additive constant, the 
Kolmogorov complexity is independent of the particular effective enumeration chosen, 
which allows us to drop the subscript. With some abuse of notation, the sequel equal­
ities and inequalities involving Kolmogorov complexity will always be assumed to hold 
up to an additive constant only. To be able to differentiate between parts of y such that 
T is able to use different parts for different purposes (can compute an r-a:ry function), 
we need the notion of self-delimiting descriptions. If a = a1a2 ···an is a string of O's 
and l's, then a10a20 · · · Oanl is a self-delimiting description of twice the original length. 
More efficiently, if b = b1 · · · bm is the length of a in bina:ry, then the self-delimiting de­
scription of b concatenated with a is also a self-delimiting description of a, this time of 
length n + 2 log n instead of 2n. For example, 1000011101 is the self-delimiting version 
of 1101. 

2. The queue machine model. We will first describe more formally the model and 
the notation we use for queue machines. 

A queue machine has a one-way input tape with the input head initially positioned 
at the beginning of the input string. For storage it uses a queue. The rear of the queue 
contains the first symbols pushed (and not popped). The front contains the last symbols 
pushed. The machine can access only one symbol at the rear of the queue. 

One step of the queue machine consists of all the following. According to the old 
state and the contents of the cells scanned on the input and on the queue, the machine 

1. reads an empty or nonempty symbol from the input, 
2. pops an empty or nonempty symbol from the queue, 
3. pushes an empty or nonempty symbol on the queue, 
4. changes state. 

Let hin be the read-only head on the one-way input tape. We identify the queue 
with a tape with two heads hr and hw. The queue machine is implemented as follows 
on the tape representation. The initial state and the state transitions are the same. The 
head hr is a read-only, one-way head on the tape. The head hw is a write-only, one-way 
head on the tape. One step of the queue machine is implemented as follows: 

1. the input head hin behaves the same way as on the original queue machine; 
2. if a nonempty symbol is written (pushed) on the queue, then hw writes the sym­

bol in the currently scanned cell and moves to the right adjacent cell (if an empty 
symbol is written, then hw does not move); 

3. if a nonempty symbol is read (popped) from the queue, then hr moves to the 
right adjacent cell (if an empty symbol is read, then hr does not move); 

4. the change of state occurs as in the original machine. 
Without loss of generality, we assume that the machine uses a bina:ry alphabet on 

the queue and accepts by empty queue. 
Let hk(t) denote the position of head k E {in, r, w} at time ton its respective tape. 

Let c1, c2, ···,en be the individual cells on the input tape. Let d1, d2 , ···be the individual 
cells on the queue. We sometimes use hk ( t) to denote the cell at that position. 

The contents of the tape from hr(t) through hw(t) - 1 inclusive is called the actual 
queue at time t, or Queue( t). The length of Queue( t), denoted I Queue( t) j, is hw ( t )-hr ( t). 
We say that cells di and dj are contiguous on Queue( t) if hr ( t) < j < hw ( t) and j = i + 1, 
or if i + 1 = hw ( t) and j = hr ( t) (that is, the cells at opposite ends of the queue are also 
considered contiguous). 
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3. Simulating one tape by one queue. 

3.1. Upper bound. Our upper bound is straightforward. It is for simulating any 
fixed number of stacks, but since two stacks can simulate one tape in real time, our upper 
bound applies to tapes as well. 

THEOREM 3.1. For any fixed k, one queue can simulate k stacks in 0( n2 ) time for both 
detenninistic and nondetemzinistic machines. 

Proof. Simulate the k stacks by coding them sequentially onto the queue such that 
the top of each stack comes first. In front of each stack top, put a marker to indicate the 
separation between the stacks. 

Each operation (push or pop on one stack) can be done in O(n) time by scanning 
the entire queue and performing the local transformation after the appropriate marker. 
Scanning is done by successively transferring the symbols from one end of the queue 
to the other end. The total time is then in O(n2 ). This simulation can be made for 
deterministic or nondeterministic machines. 0 

3.2. Lower bound. In this section, we show that it takes O(n413 /logn) time for 
a nondeterministic one-queue machine with a one-way input to recognize the language 
L = {w#wR: w E {O, 1}*}. The proof also provides the same lower bound for the set 
of palindromes. 

Because L can be recognized in linear time by a deterministic one-stack machine (a 
deterministic pushdown automaton), we can conclude that it takes n(n413 /log n) time 
for a nondeterministic one-queue machine to simulate a deterministic one-stack ma­
chine. 

The intuition behind the proof is that while the queue machine reads w, it has to 
store all the information in some sequential way on the queue. It turns out to be impos­
sible to check the stored form of w for correspondence with wR while the latter string is 
read from the input tape, so wR must be stored in some sequential way as well. Using 
crossing sequence arguments, we show that whatever way the information is stored, the 
machine is forced to scan the queue many times. This repeated scanning then implies 
the lower bound on simulation time. 

THEOREM 3.2. A nondeterministic one-queue machine with a one-way input tape re­
quires !1(n413 /logn) time to accept the language L = {w#wR: w E {0, l}*}.2 

Remark. This holds both for the worst-case time and the average time, when the 
average is taken over all strings in L. Notice that the straightforward algorithm to accept 
L with a queue has a linear average time when the average is taken over all strings, since 
most strings can be discovered not to be in the language quickly. 

Proof Let Q be a one-queue machine that accepts L. We show that Q will make 
n( n413 /log n) steps before accepting any string x#xR for incompressible strings x of 
size n. Since the size of the input is 2n + 1, this will provide the wanted lower bound for 
L. Since at least half the strings of each length are incompressible, this also provides the 
claimed average time lower bound. 

Let x be an incompressible string of length n. We separate x into two blocks: x = 
xox,withlxol = Ln/2j.Letm= Ln113 /4J andp= Ln/2mj. Wefurtherseparatexinto 
m blocks of size p or p + 1: x = x1x2 · · · Xm. 

2Here we use the strongerversion ofO where T(n) E Sl(f (n)) if there are J?OSitive constants c and no such 
that for all n?: no, T(n)?: cf(n). Notice that there is no string of even length m the language. Tu be strict, we 
show that the time is inO(n4/ 3 /logn : n is odd). With a slightly modified language, {x#xR} u {x##xR}, 
we could prove it for all n. 
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We look at any fixed accepting computation of the machine on input x#xR. Let tj 
be the time step when hin enters the block Xj. Let tj be the time step when hin enters 
the block;;jR. If z is a substring of x, then z' denotes the corresponding substring of xR 
(= x'). 

CLAIM3.3. lft1 :5 t :5 tQ, then JQueue(t)J;?: n/2-0(logn). 
Proof. Let t1 :5 t :5 t0. Let JQueue(t)J = s. The string x can be reconstructed by 

using the following information: a description of this discussion and of Qin 0(1) bits, 
the string Queue(t) of lengths, the string x oflength r n/21, the state q(t) of the machine 
in 0(1) bits, and hin(t) in :5 logn + 2 bits. All items are encoded as self-delimiting 
strings. The total number of bits required for this description is s + n/2 + O(logn). 

To reconstruct x from this information, run Q with all possible candidate strings 
y substituted for xo. Single out the strings y for which there is a time step for which 
Queue(t), hin(t), and q(t) correspond. Among those y, the machine should accept only 
if y = x0; otherwise, it would accept the string x0x#xRyR tj. L by behaving like the 
computation on x#xR up to time t and like the computation on yx#xRyR after time t. 

Because x is incompressible, we know that K ( x) ;:::: n, so it must be that our program 
reconstructing x has size;:::: n. Thus, we haves+ n/2 + O(logn) ;:::: n, from which the 
claim follows. D 

The machine Q needs to remember what it reads on the input and code it in some 
way on the queue or compare it with what is already on the queue. What can be written 
on the queue is determined by the current state, the input, and the rear of the queue. 
The input can be compared with the rear of the queue. These intuitive ideas motivate 
the following definitions of influence. 

DEFINITION 3.4. An input cell Ci directly influences a cell dj if hin scans ci while hw 
writes in dj (that is, hw(t) = j, hw(t + 1) = j + 1, and hin(t) = i). 

DEFINITION 3.5. A cell di backward influences a cell di if hw is or moves onto di 
when hr moves onto di (that is, hr(t - 1) = j - 1, hr(t) = j and hw(t) = i). 

DEFINITION 3.6. A cell di forward influences a cell di if hr scans di while hw writes 
in dj (that is, hw(t) = j, hw(t + 1) = j + 1 and hr(t) = i). 

(See Fig. 4 for an example of direct influence and Fig. 5 for an example of backward 
and forward influence.) 

Input tape and osition of hin at various times. 

9 10 

5 6 

Queue tape and position of hw at various times. 

FIG. 4. Direct influence relation. 
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5-8 14 

Queue tape and position of hw at various times. 

FIG. 5. Forward (--+) and backward (- - -->) influence relation. 

DEFINITION 3.7. The influence relation among the tape cells is the transitive closure 
of the fmward influence relation union the transitive closure of the backward influence 
relation. In other words, a cell di influences a cell di if there is a chain of forward influ­
ences or a chain of backward influences from ~ to di. 

An input cell <; influences a cell di if c.; directly influences a tape cell that influences 
dj. 

A block of cells influences a cell if and only if at least one of the cells in the block 
influences it. A block of cells is influenced by a block of cells if at least one cell of the first 
block is influenced by the second block. Figure 6 illustrates the concept. The influence 
relation will allow us to talk about where information can be stored on the queue or 
which information from the queue can be compared with the input. 

Block of cells on input tape. 

Queue tape and influenced blocks of cells. 

Flo. 6. Blocks on the queue influenced by a block on the input. 

It is worth stating a few facts about the influence relations. Each tape cell is directly 
influenced by exactly one input cell. It is also forward and backward influenced by exactly 
one tape cell. The cells directly influenced by a contiguous block of input cells form a 
contiguous block. This holds also for forward and backward influence. 

The sequence of blocks influenced by a block of input cells will be used with the 
crossing sequence around the blocks. Crossing sequences for queue machines need a 
special definition. 
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DEFINITION 3.8. A partial configuration of the machine at some time t is the state 
of the machine at that time, the position of all the heads on their respective tape, the 
contents of the cells hr(t), hin(t), and the contents of the cells immediately preceding 
those two cells. 

DEFINITION 3.9. The crossing sequence (c.s.) associated with a cell di is the partial 
configuration at the time t when hr goes from cell di to cell di+l (that is, hr(t - 1) =di 
and hr(t) = di+i) plus the partial configuration at the time when hw goes from di to 
di+l· Since using more than n2 tape cells would take too much time, we may assume 
that each head position can be described in O(log n) bits. 

The crossing sequence around a region di··· dJ is the c.s. associated with di-l con­
catenated with the one associated with di. 

The crossing sequence around a list of regions is the concatenation of the c.s. around 
each of the regions. 

Intuitively, for a deterministic computation, changing a block of input will change 
only the influenced regions, provided that the change does not alter the crossing se­
quence around the influenced regions. For a nondeterministic computation, the situa­
tion is a little more delicate, but the idea is the same. We need the backward influence 
to be able to deal with nondeterministic computations. A nondeterministic machine can 
guess the input on the queue and start the computation before the input head even moves 
once. A change in an input block will have "backward effects" on that computation. 

For every computation path, there is a backward computation path consisting of all 
the configurations in reverse order. Moreover, there is a queue machine Q' that has 
as accepting computation paths all the backward accepting computations of Q. Just ex­
change the role of the read and write heads: h~(t) = hr(t) and h~(t) = hw(t). For 
the computation, the time and the heads go backwards. The influence definition was 
designed such that the forward influence on the tape for Q corresponds to the backward 
influence for Q' and vice versa. The region influenced by a block of tape cells will be 
the same for Q and Q'. The blocks of cells influenced by a block of input cells will dif­
fer slightly, because the direct influence will be directed at a different part of the tape. 
However, this does not affect the proof. 

In the following, a cycle u( t) is a half-open interval (of time) [ t, £) such that hr ( i) = 
hw ( t) if i > t or such that hr ( t) = hw ( i) if i < t (backward cycle). Given a time T1, we 
will be interested in nonoverlapping contiguous cycles 0"1 ( r 1), CJ2( T2), · · · starting at time 
Ti, such that 0"1(T1 ) = [7i,T2), D'2(T2) = h,T3), and so on. In what follows, whenever 
we count cycles, the start time T1 either will be specified or will be clear from context 
and we will count the successive nonoverlapping contiguous cycles, as induced by the 
computation of Q. Backward cycles could alternatively be defined by using backward 
computations. Notice that the blocks of cells influenced by a block of input cells form a 
sequence of blocks, one block for each cycle. 

CLAIM 3.10. For any t, if i > t is fewer than s cycles away from t, then each cell in 
Queue(£) is influenced by at most s input cells in x#xR. 

Proof. Let the chain of cycles starting from T1 = t be CJ1 ( T1 ), 0"2 ( 72), · · ·• The proof 
is by induction on the indices s. No cell in Queue( r 1) is influenced by any input cell in 
x#xR. During O'i, each cell written is influenced by exactly one input cell. Suppose the 
claim is true for cycles a 1 through CJ s- l. During the cycle CJ s ( T8 ), each cell written is 
influenced by one new input cell (possibly) and by each input cell that influences the cell 
scanned by hr. This adds up to at most s input cells. D 

DEFINITION 3.11. For each i, we say that xi is a valid block if Queue(t~) contains a 
cell that is influenced by neither Xi nor x/. 
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Informally, Xi is valid if each of x; and x/ is read within one cycle. Indeed, if Xi is not 
read within one cycle, then Xi directly influences all of Queue(ti) and hence influences 
every cell of the tape by transitivity, including every cell of Queue(t0), where t0 is the 
time when hin leaves x~. 

Next, we need to show that valid blocks exist. We need the existence of only one 
valid block, but, in fact, the majority of blocks are valid. 

CLAIM 3.12. If there is no valid block, then Q takes !l(n413 ) time. 
Proof. Pick a cell don Queue(t0). Suppose there is no valid block. This means that 

for all i, d is influenced by either xi or xiR. It means that d is influenced by at least m 
different cells. By Claim 3.10, we know that then the machine makes at least m -1 cycles 
from t 1 to t 0. By Claim 3.3, the queue has length at least n/2 - O(log n) for each cycle, 
so the algorithm will take at least (m - l)(n/2 - O(logn)) E f!(n413). D 

In the following, we may assume there is at least one valid block. The next two claims 
explain why a valid block is a part of the input that has been coded sequentially on the 
queue. 

CLAIM 3.13. For each valid block Xj, any two cells in Xj influence disjoint sets of cells 
on the queue. Moreover, cells in xj also influence disjoint sets of cells on the queue. However, 
some cells on the queue can be influenced by both a cell of Xj and a cell of xj. 

Proof. If Xi is a valid block, each of xi and x~ must be read within one cycle. Within 
one cycle, each cell written into is influenced by at most one cell of Xi. This property will 
be preserved by transitivity throughout the successive cycles, either backward or forward. 
The same situation arises for x~. D 

CLAIM 3.14. For any time t, the regions influenced by the sequence of cells of a valid 
block Xj form a contiguous ordered sequence on Queue(t). (The same statement holds for 
xj.) 

Proof. This can be seen with a similar argument as in the previous claim. D 
For our valid block xi, both xi and x/ have been coded sequentially on the queue. 

Now we have to show that it takes O(n413 /log n) time to check x/ = xiR· Intuitively, 
we can check only a constant number of bits of x/ at each cycle. Each cycle takes as 
much time as the size of the queue at that time. The strategy is to show that the size of 
the queue cannot decrease too much at each cycle, for each of the forward and back­
ward computations. Then, showing that many cycles are required will provide the lower 
bound. 

CLAIM 3.15. If£> t;_ 1 is fewer than s cycles away from t;_1 and t < t; is fewer than 
s cycles before t;, then I Queue( t) I + I Queue(£) I 2:: n 213 - O( slog n ). 

Proof. Let xi be a valid block, i > 0. Let xi = uv, where u and v are strings of equal 
size (±1). 

If there is a time r such that hin ( T) E v' and hr ( r) is influenced by v, then choose 
y = u, otherwise, choose y = v. In both cases, for all t, if hin(t) E y', hr(t) is not 
influenced by y. This is immediate from Claim 3.14 for the case y = v. For the case 
y = u, let T be such that hin ( T) E v' and hr ( r) is influenced by v. Let d be a cell on 
Queue(r) not influenced by Xi or x;. By Claim 3.14, the region influenced by y = u is 
after d and the region influenced by y' = u' is before d (refer to Figs. 7 and 8). The 
regions cannot intersect. 

As a consequence of our choice of y, we have that the regions influenced by y and 
by y' are disjoint. 
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I 
v u v 

I 
t t 

hr hw 

FIG. 7. Influence of Xi = uv on Queue( r ). 

I v' u' v' I 
t t 

hr hw 

FIG. 8. Infiuenceofx~ = v'u' on Queue(r). 

Let t and i be as in the statement of the claim. Let x be the string x for which y is 
deleted. The size of y is about n213 : 

l2lnl~3/4JJ IYI 2 p/2 -1 = Ln/2mJ/2 -1 = 2 - 1 E n213 - 0(1). 

The size of x = n - IYI E n - n213 + 0(1). 
Let S be the set of cells influenced by y. We show below that x can be computed 

from x, t, i, the position of y in x, the crossing sequence around S from time t to time 
i, Queue(t), and Queue(i). If each item is encoded as self-delimiting, this description 

takes n - n 213 + O(s log(n)) +I Queue(t)I +I Queue(i)I bits. Because K(x) 2 n, it then 
follows that I Queue( t) I + I Queue(£) I 2 n 213 - 0( slog( n)). 

We compute y with the information provided in the following way. For all binary 
strings z of equal length as y, let Xz be the string x for which z has been substituted for 
y. Run Q on all strings xz#xzR until one that matches the description is found. By 
construction, z = y matches the description. Leading to a contradiction, suppose z =I- y 
matches the description as well. Let Cy be the accepting computation on x#xR and Cz 

the accepting computation on xz#x1; that matches the description. Then, by cutting 
and pasting the two computations we can construct a legal computation of Q on xz#xR. 
Let Bz be the set of cells influenced by z in Cz. Because the crossing sequence includes 
the position of all heads, the regions in Sand in Bz occupy the same absolute positions 
on the queue. Let ty be the time when hin leaves y. We can compose the accepting 
computation as follows. Use any of the two computations up to time t. At this time, we 
will have Queue( t). 

From time t to ty, we are dealing with backward influence. If hw is scanning a cell of 
S, then hr is scanning either a cell of Sor a cell immediately before it. If hw is scanning 
a cell not in S, then hr is also scanning a cell not in Sor immediately before it. Since 
the cell before the region has been included in the c.s., it is possible to follow Cy when 
hw is in Sand Cz when hw is out of S. Notice that hin cannot scan a cell of y while hw 

is writing a cell out of S because of the direct influence. Moreover, hin cannot scan a 
cell of z while hw writes a cell of S because that cell would be influenced by both y and 
z, which cannot happen by our choice of y. 

From time ty to time £,we are dealing with forward influence. Follow Cz when hr is 

not in S and follow Cy when hr is in S. 
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At time t, the queue will correspond with the queue in both computations. Just com­
plete the computation following any of Cy or Cz. This gives an accepting computation 
for a string fj. L, which is a contradiction. 0 

CLAIM 3.16. The machine makes n(n413 / logn) steps before ti or after t~_ 1. 
Proof. Let T be the time Q accepts. Both Queue(O) and Queue(T) are of length 0. 

By the previous claim, IQueue(O)I + JQueue(T)I '?:. n213 -O(slogn). Let IQueue(O)I + 
I Queue(T) I ;::: n2/3 - cs log n. This means Q makes at least n213 / (clog n) cycles for some 
constant c. At least n2/ 3 /(2clogn) of those cycles will have a queue of size n(n213), by 
the previous claim. This makes a totalofn(n413 /logn) steps. 0 

COROLIARY 3.17. For off-line one-way-input one-queue machines, nondeterministic 
linear time is not closed under complement. 

Proof. The complement of the palindrome language used in the proof of Theorem 
3.2 can be accepted in nondeterministic linear time. This can be seen as follows. If 
the string is of the form w1 #w2, where Jw1 I = lw2I, nondeterministically go and read 
position i of w1 for which there is a discrepancy. While doing that, push i symbols on the 
queue. Then nondeterministically go and read the corresponding position of w2. Verify 
the position by using the number of symbols pushed on the queue. 

Other cases can be checked in deterministic linear time. Finding which case applies 
can be made by a nondeterministic initial move. This concludes the proof of Theorem 
3.2. D 

4. More queues versus fewer queues. In this section we study the power of queue 
machines with different numbers of queues. We first provide some straightforward up­
per bounds: 1Wo queues work as well as k queues in the nondetenninistic case. This 
motivates our research focusing on small numbers of queues. One queue can simulate 
k queues in quadratic time, deterministically or nondeterministically. We then provide 
tight, or almost tight, lower bounds for our simulations mentioned above. 

4.1. Upper bounds. 
THEOREM 4.1. Two stacks can simulate one queue in linear time, for both deterministic 

and nondeterministic machines. 
Proof. We design a machine P with two stacks pdl, pd2. To simulate a queue, every 

time a symbol is pushed into the queue, P pushes the same symbol into pdl. If a symbol 
is taken from the queue, then P pops a symbol from pd2 if pd2 is not empty. If pd2 is 
empty, then P first unloads the entire contents of pdl into pd2 and then pops the top 
symbol from pd2. At the end of the input, P accepts if and only if the one-queue machine 
accepts. 0 

THEOREM 4.2. Two queues can nondeterministically simulate k queues for any fixed k 
in linear time. 

Proof. This theorem follows from the method used by Book and Greibach [BG70] to 
nondeterministically simulate k tapes by two tapes in linear time. For the sake of com­
pleteness, we will describe the idea. The two-queue machine guesses the computation of 
the k-queue machine and puts this guess on one queue in the form 101 , ID2, ···,where 
!Di contains the state of the k queue machine and the k + 1 queue symbols scanned by 
the k queue heads and the input head at step i. First, check that the state in each ID 
is consistent with the previous ID and check the correctness of the guessed input sym­
bol in each IDi by scanning the !D's and moving the input head when necessary. Then, 
scan the !D's again k times, each time simulating one of the k queues of the simulated 
machine on the other queue. Th.is simulation takes O((k + l)n) = O(n) time. O 

'DIEOREM 4.3. Three stacks can nondeterministically simulate k queues in linear time. 
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Proof. Combine the ideas from the above two theorems; i.e., guess the computation 
of the k-queue machine as before, and put the guess into one stack. Save this guess 
also to another stack (but put a marker on the top). Then simulate a queue and check 
the correctness of the guess. (The simulation needs two stacks; one of the stacks has 
the guessed computation saved in the bottom.) After simulating one queue, retrieve the 
guessed contents; again put it into two stacks. Repeat this process for each queue. 0 

Remark It is a folklore fact, and easily verified, that one-queue machines accept 
precisely the r.e. languages. In contrast, one-stack machines accept only CFCs. Hence, 
one queue is better than one stack. However, when we have more stacks, more stacks 
seem to be better than queues because they are more efficient. It was proved in [HM81] 
that four stacks can simulate a queue in real time. 

TuEOREM 4.4. One queue can simulate k queues in quadratic time, both deterministi­
cally and nondeterministically. 

Proof. This is similar to the simulation of k tapes by one tape by Hartmanis and 
Stearns [HS65] (see [HU79, p. 292]). D 

This also relates to the interesting problem of whether two heads (on one tape) are 
better than two tapes (each with one single head). Vitanyi [Vit84a] showed that two 
tapes cannot simulate a queue in real time if at least one of the tape heads is within 0 ( n) 
cells from the start cell at all times. We saw that two stacks can simulate a queue in linear 
time and four stacks can do this in real time. It would be interesting to know whether 
two or three stacks can do this in real time. The question of how to deterministically 
simulate k queues by two queues in O(n2 ) time, like the Rennie-Stearns simulation in 
the tape case [HS66], remains open. 

4.2. Lower bounds. We now prove optimal lower bounds for the above simula­
tions. Let L be the following language. 

L = { a & bAb~ · · · bl#b~bgbyb~b~b~ · · · b~ibtb~i+l · · · bL1 bfk-l)/2 b~ 

b6bf k+1)/2bfb~bf k+3)/2b§ · · · b~imod(k+l)btb(2i+i)mod(k+l) · · · bL1 b~bt& a : 

b} = b~ = bt = b{ for i = 0, · · · , k 

all b{ have format $x$, where x E {O, 1}* 

k is odd, and a E {O, 1}* }. 

When we prove the lower bound, all the b{ will have the same length. The string 
between the first & and second & can be obtained by copying bob1 · · ·bk three times: 

bob1 · · ·bk #bob1 · · · bk bob1 · · ·bk, 

and then adding one more copy of b0b1 • · • bk by inserting block bi after 2i blocks, starting 
from #bo in above. The superscripts on the b/s are used only to facilitate later discus­
sions. L can be considered as a modified version of a language used in [Maa85]. We have 
added a string a on both ends. The purpose of a is to prevent the queue from shrinking, 
since if we choose a to be a long K-random string, then before the second a is read the 
size of the queue has to be at least about la!. We have to prevent the queue from shrink­
ing because otherwise the crossing sequence argument would not work. In addition to 
the techniques in [Maa85], and [LV88], we will need the techniques introduced in this 
paper to treat queues. 

An alternative way to describe the language Lis as follows. Let y and z be sequences 
of blocks in which each block is of form $u$, where u E { 0, 1} *. Define intermingle(y) = 
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z if (1) the blocks of z in positions i = 2 (mod 3) form the string y (z2z5zs · · · = 
Y1Y2Y3 · · ·) and (2) the remaining blocks of z form the string yy. 

Then, L = { a&y#intermingle(y )&a : y contains an even number of blocks}. 
THEOREM 4.5. Simulating a deterministic two-queue machine with a one-way input 

tape by a nondeterministic one-queue machine with a one-way input tape requires 
O(n2 /log2 nloglogn) time. 

Proof. We will show that the L just defined requires 0( n2 /log2n log log n) time on a 
nondeterministic one-queue machine. Since L can be trivially accepted by a determinis­
tic two-queue machine in linear time, the theorem will follow. 

Now, aiming at a contradiction, assume that a one-queue machine M accepts L in 
time T(n), which is not in O(n2 /log2nloglog n). Without loss of generality, we assume 
that M has a binary queue alphabet and that M accepts with a final state and an empty 
queue. We use the same notation and definitions as in the previous section, e.g., Queue, 
IQueue(t)J, hin, hr, hw, cycles, and crossing sequence. 

Choose a large n and a large enough C such that C >> IMI + c and all the sub­
sequent formulas make sense, where IMI is the number of bits needed to describe M 
and c is a constant given in Claim 4.9, which follows. Choose an incompressible string 
X E {O, 1}2n, K(X) ;:::: JXI. Let X = X' X", where IX'I = JX"I = n. Divide X" into 
k + 1 = n/ (Clog log n) equal parts, X" = x 0x 1 • · · xk, where each xi is Clog log n long. 
Consider a word w E L, where a = X', b{ = xi for 1 ~ j ~ 4, and 0 ~ i ~ k. Fix a 
shortest accepting path P of Mon w. We will show that M takes O(n2 /log2n log logn) 
time on P. Since n is linearly related to the size of the input, this will provide the lower 
bound in the theorem.3 

Consider only the path P. Let g ( n) = C 5 log2 n log log n. Let t& be the time when 
hin reaches the first &, t'.~, be the time hin reaches the second&, and t# be the time when 
hin reaches #. 

CLAIM 4.6. IQueue(t)I;:::: n - O(logn)forevery t& ~ t::.; t8c 
Proof. The proof of this claim is the same as that of Claim 3.3 and is omitted. D 
CLAIM 4. 7. The number of cycles from time t& to t& is less than n / g ( n ). 
Proof. This follows directly from the previous claim. Each cycle is of length O(n) 

and hence takes O(n) time. If M requires at least n/g(n) cycles from t& tot&, then M 
used O(n2 /log2n log log n) time, which is a contradiction. D 

For each time t, we say that a substring s of the input w is mapped into a set S of 
cells on Queue(t) if all the cells influenced bys on Queue(t) are in S. 

CLAIM 4.8. Let k' = k/2-n/g(n). At time t#, Queue(t#) can be partitioned into two 
segments, Si (t#) and S2(t#), such that k' bf's, say b}1 , • • ·, b}k'' are mapped into 81 (t#) 
and k' other b} 's, say b} 1 , • • • , bL, are mapped into 82 ( t# ). 

Proof. Consider any cell ea on the Queue( t#). By the nature of the queue and Claim 
4.7, at most m = n/g(n) b}'s can influence ea at t# because M made no more than m 
cycles on the queue from t& tot#. Hence, for any partition of Queue(t#) into two parts, 
81 (t#) and S2(t#), there can be at most 2m b} blocks, each influencing both S1 (t#) and 
S2(t#)· Each of the rest of the k + 1 - 2m b} blocks either influences only S1 (t#) or 
influences only S2(t#)· It is now trivial to build 8 1 and S2 by moving the border cell by 
cell until the claim is satisfied. 0 

Now, let S1(t#) and S2(t#) be as specified in the previous claim. At any time t, let 

. 3Here, as in the previous.section, the Jangu!lge does not have a string of each length. The proof provides 
an mput that causes the machme to take a Jong time for each length that has at least one string in the language. 
To produce a hard string for each length, just add a finite padding in the definition of the language; for example, 
allow markers to repeat up to four or five times. 
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81 (t) be the part of Queue(t) influenced by S1 (t#) and let S 2 (t) be the complementary 
region on Queue( t). Let S1 be the set of all cells on the tape influenced by 81 ( t#) and 
82 be the other cells. 

The next claim is a simple generalization of a theorem proved in [Maa85, Thm. 3.1]. 
The proof of the claim is a simple reworking of the Maass proof and is hence omitted. 

ClAIM 4.9. Let 8 be a sequence of numbers from 0, · · · , k, where k = 21 for some 
l. Assume that every number b E {O, ... , k} is somewhere in S adjacent to the numbers 
2b (mod k + 1) and 2b (mod k + 1) + 1. Then, for every partition of {O, · · ·, k} into 
two sets G and R such that I GI, I RI > k / 4, there are at least k / (clog k) (for some fixed c) 
elements of G that occur somewhere in 8 adjacent to a number from R. D 

A k / Jlog k upper bound corresponding to the lower bound in this claim is contained 
in [Li88]. A more general, but weaker, upper bound can be found in [Kla84]. 

Remark 4.1. For each word w E L, the sequence of the subscripts of the substrings 
(in the order they appear) in w between the # sign and the second & satisfies the re­
quirements in Claim 4.9. For example, given k, such a sequence is formed by inserting i 
after 2ith number, i = 0, 1, · · ·, k, in the following sequence: 

0, 1, 2, ... 'k, 0, 1, 2, ... 'k. 

Therefore, each number i is adjacent to 2i (mod k + 1), and 2i + 1 (mod k + 1). In 
what follows we will also say that a pair of bi blocks are adjacent if their subscripts are 
adjacent in the above sequence. 

CLAIM 4.10. At time t&_, the b/s between #and the second & are mapped into Queue( t&) 
in the fallowing way: either 

1. a set, [Ji, of k/(3clog k) b/s, which belong to {b}1 , • • ·, bL}, are mapped into 
81 (t'&); or 

2. a set, S2, of k/(3clog k) b;'s, which belong to {bf1 , • • ·, b}k, }, are mapped into S2(t'&), 
where c < < C is the small constant in Claim 4.9. 

Proof. By Claim 4.7, from time t# tot&, M makes fewer than n/g(n) cycles. Hence, 
hw can alternate between S1 and 8 2 fewer than 2n/g(n) times. Each time hw alternates 
between 8 1 and 8 2, hw can map at most one adjacent pair of b1, blocks into both 8 1 (t&_) 
and S2(t&). All other pairs are each mapped totally into S1(t8.J or totally into S2(t&_). 
There are B(k) such pairs in L. 

Combining Claim 4.8, Claim 4.9, and Remark 4.1, we know that there are at least 
k/clog k-n/( C5 log2 n log logn) pairs of lif. blocks such that each of these pairs contains 
a component belonging to G = { bt, · · · , bi,_,,} and another component belonging to R = 
{ b} 1 , • • · , b} k' } • Most of these pairs, except n / g ( n) of them by the previous paragraph, 
are mapped either totally into S1 (t&_) or totally into S 2 (t'&). Hence, either (1) or (2) 
must be true. D 

Without loss of generality, assume that (1) of Claim 4.10 is true. 
CLAIM 4.11. Let tend be the time M accepts. jQueue(tend)I = 0. Then there exists a 

time t& s; t 1 :::; tend such that I Queue( t 1 ) I s; n/ ( C 5 log n) and from t& to t 1 M made 
fewer than n / ( C5 log n log log n) cycles. 

Proof. Otherwise M spends O(n2 /(log2 n log log n)) time, a contradiction. D 
CLAIM 4.12. There also exists a time to s; t& such that IQueue(to)I :::; n/(C5 logn) 

and from t 0 tot& M made fewer than n/ ( C 5 log n log log n) cycles. 
Proof. Note that by Claim 4.6 jQueue(t&)I 2: n - O(logn). Thus, we can choose t0 

to be the last time step before t& such that I Queue( to) I s; n/( C5 log n). Hence, if the 
claim is not true, M would spend n ( n 2 / (log2 n log log n)) time, a contradiction. O 
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By Claim 4.7 the number of cycles M made from t& tot& is less than n/g(n). By 
Qaims 4.11and4.12 M made at most n/(C5 lognloglogn) cycles from time t& to t1 

and from time to to t&. Hence, the length of the crossing sequence at the boundary of 
81 and 8 2 from t& to t 1 is shorter than n/ C4 log n log log n. For every j, if a bj E S1 for 
some k, then b} is mapped into 82 by Claim 4.10. 

Now we describe a program that reconstructs X with less than IXI information. 
The program uses Queue(t0 ), Queue(t1 ), the crossing sequence around Si, the string 
X where the bj blocks have been deleted, and the relative position of those bj blocks. 

Consider every Y such that IYI = IX! and Y =a Yo··· Yk for some Yo··· Yk· 
1. Check if Y is the same as X at positions other than those places occupied by 

k -
b; E 81. 

2. If (1) is true, then construct the input wy the same way w was constructed except 
with Xi replaced by Yi for i = 0, 1, · · ·, k. 

3. Copy the contents of Queue( to) on the queue. Then simulate M from to to 
t 1 such that hr never goes into 82 • Whenever hr reaches the border of 82 it 
compares the current ID with the corresponding one in the crossing sequence. 
If they match, then M jumps over 82 and, starting from the next ID on the other 
side of 82, M continues until time t 1. At time ti. compare the actual queue with 
what it is supposed to be. Accept Y if everything worked correctly. 

4. This computation will accept if and only if Y = X. If it is not the case, we could 
compose an accepting computation on M for the string where the b} blocks 
correspond to those in Y and the other b; blocks correspond to those in X. 
This can be done in a way very similar to what was done in Claim 3.15. The 
details are omitted here. 

The information we used in this program is only the following: 
1. X - 81, plus the information to describe the relative locations of bj E S1 in X. 

This would require at most 

IXI - IS1JlbjJ + O(l81l log(k/IS11)) $ 2n - IB1ICloglogn + O(IB1l loglogn) 

$ 2n - (IS1ICloglogn)/2 

s 2n - n / c2 1og n, 

where in the first line the second term is for the b/s in 81, the third term is for 
the information to describe the relative positions of bi E S1: To represent IS1 I 
elements of {O, 1, · · ·, k}, sort the elements, determine the sequence of their 
differences, and use a self-delimiting encoding of the natural numbers to write 
each difference. The final encoding has approximately O(IS1l log(k/IS1 1)) bits 
(see, for example, [LV88], [Lou84], [Eli75]). 

2. Description of the crossing sequence, of length less than n / ( C4 log n log log n), 
around 82• Again by the above efficient encoding method, this requires at most 
n/(C3 logn) bits. The detail of this encoding can be found in [LV88]. The idea 
is as follows: Each item in the c.s. is (state of M, hin 's position). Trivial encoding 
of n/(C4 lognloglogn) long c.s. needs n/(C4 loglogn) bits. However, we can 
use the above method and encode only the differences of hin's positions and 
thus use fewer than n/(C3 logn) bits. 

3. Description of the contents of 82 at times t0 and t 1. But, for i = 0, 1 
jQueue{ti)I $ n/(C5 logn). 

4. Extra O(logn) bits to describe the program discussed above. 
The total is less than 2n - n/(Clogn). Therefore, K(X) < IX!, a contradiction. 0 
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COROLLARY. Simulating two deterministic tapes by one nondeterministic queue re­
quires n(n2 / Iog2 n log logn). 

Proof. L can also be accepted by a two-tape Turing machine in linear time. D 
THEOREM 4.13. To simulate two deterministic queues by one deterministic queue re­

quires n(n2 ) time. 
Proof idea. Define a language Li as follows (a, xi, Yi E {O, l}*). 

Li {a & x1$x2$ · · ·$xk#Y1$ · · · $yi#(li1 , ti1 )(li2 , th) · · · (li•, ii•) & a I 
Xp yq; (p =ii+···+ it, q =ii+···+ it) and 1 ~ t ~ s}. 

Li can be accepted by a deterministic two-queue machine in linear time. Using the 
techniques in the above theorem and in [LV88], where it is proved that one deterministic 
Turing machine tape requires square time for this language, it can be shown that L1 

requires n(n2 ) for a one-queue deterministic machine. We omit the proof. D 
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