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An elaborate version is given of Kantor's construction of the known generalized hexagons of 
order (q, q3) and of order (q, q) for q a power of 2. 

1. Introduction 

Nearly all of van Lint's lectures at the Combinatorial Theory Seminar on 
Wednesday afternoons in Eindhoven were extremely well presented and quite 
entertaining. The single exception the first author recalls has been van Lint's 
presentation of the generalized hexagon of order (2, 2). The purpose was an 
elementary construction, generalizing to the known generalized hexagons of 
higher order. The present paper outlines a way in which van Lint might have 
wanted to progress from that 'exceptionaJ' lecture on, especially since ovoids and 
spreads are among the ingredients. 

2. The method 

We describe how to construct generalized polygons a la Kantor. In 1959, Tits 
introduced the notion of generalized polygons (cf. [4)). In [3], Kantor presented a 
construction of the generalized polygons which we treat here in greater detail 
(with proofs). We restrict to the case where q is even, because then there is an 
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interesting correspondence with ovoids and spreads. It suffices for the purpose of 
this paper to define a generalized n-gon of order (s, t) as a bipartite graph I' with 
parts P and L such that 
• the vertices from P have valency t + 1 while those from L have valency s + 1; 
• the diameter of r is n ; 
• I' contains no cycles of length less than 2n. 
As usual the set of vertices at distance i from v in I' is denoted by I;( v ). Let I be 
an index set of size t + l. Given Q and a collection of subgroups {QYl};.,1,0.,.;<n' 

we define the graph I'= I'(Q, {Q?lh;) by the following rules. 
Vertices: distinguished vertices oo and ( for i E /; for each i EI and 1 ~j ~ 

n - 2, all right cosets of Q over the subgroups Qj'l; all elements of Q. 
Adjacency: the vertex oo is adjacent to the vertices f; for i E /; besides oo the 

vertex f; is adjacent to all cosets of Q over Q~~2 ; for each i E J, j E {2, ... , n - 2} 
and g, he Q the coset gQJi) is adjacent to the coset hQ}~ 1 if it contains the latter, 
that is, if g- 1h e Q}i)Q}~ 1 ; for each i, the elements of Qare adjacent to the cosets 
of Q~i) they belong to. 

We shall express the axioms of a generalized n-gon in terms of the system 
{Qfil};.;- First the orders of the subgroups involved and their inclusions are 
specified. 

(0) For each i EI and 1 ~ j ~ n - 1, the group QJ~ 1 is a subgroup of Q?> with 
index IQ}i):Q}Qil equal tot ors depending on whether n -j is even or odd; 
moreover, QW! = 1 and Q~~ 1 = Q for all i. 

The second condition concerns the absence in I' of cycles of length less than 2n. 
(C) For any natural h, for any indices i 1, i2 , .•. , ih such that im * im+i for 

1 ~m ~h-1 and i 1 i:'ih, and for any I ,,,;.j1 , h_, ... , jh ~n -1 such that f,..,,jm = 
n - 1 we have 1 d:. Q(i,)#Q('z)# · · · Q(i.)# 

) 'f- ,, 12 l• . 

Here, as usual, H# for a group H stands for H - {l}. The proposition below 
generalizes Kantor's generalized quadrangle construction to arbitrary generalized 
polygons and is probably folklore. 

Proposition 2.1. Suppose Q is a group admitting a system {Q?l};,j of subgroups 
satisfying the conditions (0) and (C). Then I'(Q, {Q?>b) is a generalized n-gon 
of order (s, t). 

Proof. Set I'= I'(Q, {Qy>};.j). It is readily checked that 

{oo} ifj == 0, 

{fiiie/} ifj=l, 

fj(oo)= UQ/Q~~; if2~j~n-l, 
iel 

Q ifj = n, 

and that I' is bipartite with parts P = U 1 J;i(oo) and L = U; I':u+1(00). Condition 
(0) implies that the number of vertices in I' coincides with the number of vertices 
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of a generalized n-gon of order (s, t) and that the valency of a vertex of I'is equal 
to t + 1 or s + 1 depending on whether it lies in part P or L of I'. 

Thus I' is a generalized n-gon precisely when it contains no cycles of length less 
than 2n. It follows from th.e construction and the absence of inclusions other than 
those specified that I' has no cycles of length less than 2n passing through oc. It 
follows from (C) that r has no cycles of length less than 2n not passing through 
oo. 0 

There is a converse to the proposition to the effect that any generalized n·gon I' 
of order (s, t) affording a subgroup Q that, for some x e r, stabilizes {x} U Ii(x) 
vertex-wise, and is transitive on I',.(x), is isomorphic to a I'(Q, {Q};)};) for 
certain subgroups Q)') of Q. But we do not need it here. 

3. The construction 

We set k = lF q and f =IF ql- For x e (, we denote by T(x) aod N(x) the trace 
and norm, respectively, of x over k. Viewing t as a 3-dimensional vector space 
over k, the following set V has a natural structure of an 8-dimensional vector 
space over k: 

v = k x ext x k ={(a, b, c, ())I a, <5 Ek; b, c Ee}. 

We shall work with the bilinear forrn g: V x V - IF q given by 

g((a, b, c, 6), (a', b', c', c5')} = ac5' + T(bc'). 

We use it to define the quadratic form f: v- IFq by f(x) = g(x, x) so that 

f(a, b, c, o) = a-o + T(bc). 

Thus, the bilinear form associated with/ is (x, x')~g(x, x') + g(x', x). 
From now on, q is even. Thus (V, f) is an Q+(8, k) space. Using the formj, we 

extend V by k to a group on the set 

Q=Vxk, 

the elements of which we denote by (a, b, c, c5; ~) with a, {J, 'e k and b, c e e, 
or just (x, ~) with x representing (il', b, c, 15). It becomes a group of order q9 by 
means of the following multiplication rule: 

(x; C') • (x'; ~') = (x + x'; g(x, x') + {; + {;') (x, x' e V; {;, ~' e k). 

The center Z = {(O; ~)I~ e k} of Q coincides with its commutator subgroup, and 
Q/Z ==i V. Such a group is sometimes called a 'special' group. 
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We let SL(2, q 3) act on Q as determined by the action of its generators 

via 

w = (~ ~) and {t] = (~ D (t e l) 

w(a, b, c, c5; ~) = (6, c, b, a;f(cx, b, c, <5) + ~), 
[t](cr, b, c, 6; ~) 

=(a, at+ b, atq+qi + bqtq2 + bq'tq + c, 

aN(t) + T(bfl+q') + T(ct) + o; t + aT(btq'+q) + T(bq+itq2) + <i2N(t)). 

We are now ready to construct the groups QY>. Since Q~> = 1 and Q~;> = Q, we 
only need to work for j = l, 2, 3, 4. In the respective cases, the orders are q, q4 , 

q5, q 8• In [1] we find an ovoid in (V, f) left invariant by SL(2, t). We lift each of 
its elements to a subgroup Q~i) defined as follows: 

Q\'°> == {(O, 0, 0, b; 0) j b Ek}, 

Q~') = [tJ . w . Q}""l 

== [t]{(a, 0, 0, O; 0) I a e k} 

== {(«, at, atq+q2, a-11+q+q2; a2N(t)) I a e k}. 

According to [2} a spread in (V, f) can be constructed as follows: 

.l'(oo) = {(O, 0, c, b) I b Ek; c E f}, 

I(i) == [iJ · w · I(oo), 

where i E e. Then {I( i) I i E e u { 00}} is a spread of (V, f) stabilized by SL(2, l). 
We lift the spread to Qin order to find the groups Qf>. We start with 

Q~"°) = {(0, 0, c, b; 0) j 6 Ek; c E f}. 

Then, by SL(2, f)-invariance, we must have, for t e l, 

Q~)= [t}. w. Q~'"') 

== [t) ·{(a, b, 0, O; 0) I a Ek; b El} 

={(a, cXt + b, at'1+q2 + bqtq2 + bq2tq, T(btq+q2); 

aT(btq2+q) + T(bq+ltq 2
) + a 2N(t)) I a Ek; b E f}. 

We set Q~> = ZQ!{l and let Q~) be the index q subgroup of Q containing Z 
whose preimage in V is the hyperplane perpendicular (with respect to !) to 
Qf>z;z. 

Theorem. For Q and Q)i> as above, the graph I'(Q, {Qrh;) is a generalized 
hexagon of order (q, q3). 

Proof. Condition (0) is readily verified. The subscript sequences ii, ... , jh of 
condition (C) that need to be checked in order to verify that we have a 
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generalized hexagon, are: 

11111 

1112 

122 

113 

23 

14 

143 

We check the condition (C) for each of these sequences individually, working 
from bottom to top. 

14. The membership 0 e Q~o)#Q~b)# for a* b contradicts the geometrically 
evident fact that any two points of the ovoid in (V, f) are nonperpendicular. 

23. If 0 e Q~0>#Q~b)# then, without loss of generality, a= oo, so, computing 
modZ, we have, for b *a: 

(a, trb + x, abq+q' + xqbq' + xq'bq, T(xbq+q')) e {(O, 0, e, <>) I !J e k; e e t}, 

leading to the contradiction a = x = 0. A geometric way of expressing the relation 
mod Z is that the incidence relation between the ovoid and the spread is a 
bijective correspondence. 

113. Suppose 0 e Q~a)#Q~b)#Q~c)# with a, b, c distinct (so that the points 
Q~0lZ/Z and Qib>z;z of the ovoid do not lie in the spread element Q~c>;z). 
Looking mod Z, this implies the existence of a 2-space l'£ in (V, f) having two 
points in the ovoid and a third point in a member of the spread. Thus ir must be a 
singular space, contradicting the fact that the two points of :re from the ovoid are 
nonperpendicular. 

122. Suppose a, b, c are distinct and 0 e Q\0>#Q~b)#Q~c>#. By 3-transitivity of 
S, we may take a= 1, b = 0, and c =co. Thus there are /J3 e k, e3 e t, with lJ3 =F 0 
or e3 =F 0, and a3 e k - { O} and a 2 e k and b2 e t, not both 0, such that 

0 = ( a 1, a 1 , 0:11 a 1; o:i)( a 2 , b 2 , 0, 0; 0)(0, 0, c3 , 63 ; 0). 

Computing mod Z, we see that a 1 = a 2 = b2 = 63 = c3 • This yields 

0= (au a-1 , ai. a 1; ai}(a1, a 1, 0, O; 0)(0, 0, a 1 , a 1 ; 0) 

= (0, 0, 0, O; o:i), 

which contradicts c3 * 0. 
1112. Suppose again Oe Q~a)#Q~b)#Q\c)#Q~d)#. Without loss of generality we 

take d = oo and a = 0. Now there are four cases to distinguish: according to 
be= ooO, ooe (with e =F 0), 10, le (with c =I= 0, 1, oo). We treat them separately. 

abcd = ()oo()oo. 

The above condition leads to the equation 

0 = (a1, 0, 0, O; 0)(0, 0, 0, <r2 ; O)(a3 , 0, 0, O; 0)(0, 0, e4, 64; 0). 
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Now, mod Z considerations give c = 0, a 1 = a 3 , and a2 = <54 • Thus, the right­
hand side becomes (a-i, 0, 0, a 2 ; a 1a 2 ) 2 = (0, 0, 0, O; a 1a 2). Equating this to the 
left-hand side, we see that at least one of a-1, a2 must be zero, and we are done. 

abcd = ()ooloo. 
The equation mod Z now reads: 

This gives mod Z that a 3 = 0, done. 
abcd = Ol<)oo. 
The equation mod Z reads 

0 = (crIJ 0, 0, O)(a2 , a 2 , CXz, a 2)(a3, 0, 0, 0)(0, 0, c4 , 64), 

giving a2 = 0 from the third coordinate, done. 
abcd = Oltco. 

Now 

0 = ( «1 , 0, 0, 0; 0)( IXz, «z, IXz, a2; ~) 

(a3, a3t, a3tq+q2, a 3t 1+q+11'; ~N(t))(O, 0, c4, 64; 0). 

The first four coordinates give 

£1'3= £1'1 + «z, 

t = 11'2/ Ct'3, 

C4 = «2 + a3~+q2 = «2 + cri/cr3, 

64 = a'z + a3N(t) = ct'z + <fj/ a1. 
Now the Z coordinate of the above product can be computed to be: 

~ + aW(t) + «1«2 + a364 + T(a3tc4) + a1cr2 + ~ + ~ 
_3 a1 + ~ a'zaf 

= a'3ct'2 + a2/ «3 = Cl'z -- · 
£¥3 !1'3 

11111. Finally, suppose, 0 e Q~0>#Q\b)#Q\c>#Q{s>#Q{1>#. Since there must be at 
least three different values of a, b, c, ... involved, we may assume, without loss 
of generality, a = 0, b = 1, and c = oo. Of course, s +. t * 0. Writing out the 
membership assumption on 0, we have 

0 = ( a11 0, 0, O; 0)( «z, a2, az, a2; a~)(O, 0, 0, a3; 0) 

(a4 , 0:4S, a4sq+q2 , 0:4N(s); a~(s))(as, «st, astq+q', asN(t); ~N(t)) 

for certain «t> ... , as e k. Now (ab 0, 0, O; O)(c:r2, «2, O:z, a2; ai) = («1 + a2, 
a 2 , «2, «2; a 1a 2 + ai), so the product of the first three is 

(«1 + «2, «z, ct'2, cr2 + a3; cr1'1'3 + <l:'20:3 + <1'1«2 + ~). 
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Moreover, the product of the fourth and the fifth is: 

(a4 + et5, a4s + ast, a4N(s) + a5N(t), Ct4si+q+q' + a 5t1+q+q'; 

a4a 5N(t) + T(a4a-5st"+q) + o?~(s) + a;N(t)). 

Thus the product of all five is 

( a1 + a2 + a4 + as. a2 + a4s + a5 t, 

a2 + a4sq+qz + ast"+q2
, ll'z + a3 + a4N(s) + asN(t); 

(a1 + a2)(a4N(s) + asN(t)) + T(a2(a4sq+q> + a 5tq+q2
)) 

+ «1<¥3 + a2a3 + a1cr2 + ~ + a4asN(t) + T(a4a5st"+q) 

+ a3N(s) + ~N(t)). 
Substituting the first four into the Z component we obtain: 

(a1 + «2)(a2 + a3) + T(ai) + a1'1"3 + c:r2a3 + <1'1«2 + ~ 
+ a4asN(t) + T(a4assf1+q2

) + fl'~N(s) + ~N(t)) 
=:::a~+ a4asN(t) + T(a4a5stq+q2

) + ~N(s) + ~N(t). 

145 

Multiplying the second and third component of the product element and 
subtracting the result of multiplying their sum by a 2 , we obtain 

~ + i¥~N(s) + ~N(t) + lt'4a5(stq+q' + sq+q't). 

This should be zero, so it may be added to the Z component of the product, 
yielding: 

a4asN(t) + T( £r41l'5st"+q') + a-4as(stq+q' + sq+q't). 

Since cr4a5 =I= 0, equating the Z component to zero, gives 

N(t) + T(s~+qz) + stq+q> + sq+q2t = 0, 

which, upon dividing by N(t) (recall that t =/= 0 by assumption), can be rewritten as 

1 + T(s/t) +sit+ (s/t)q+qz = 0. 

Writing out the trace, we obtain 

1 + (s/t)q + (s/t)q' + (s/t)q+q> = 0, 

which factors as 

(1 + (s/t)q)(l + (s/t)q') = 0. 

All solutions of this equation haves= t, contradicting the above assumptions. 
Thus, conditions (0) and (C) hold for {Qji))i,j• so the theorem follows from the 

proposition. D 

Remarks. The generalized hexagons of the theorem are the well-known ones 
related to 3D4 (q) (q a power of 2). 

The G2(q) generalized hexagons are obtained by replacing f with k throughout. 
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The first three cases in the proof of the theorem all follow from the orthogonal 
geometry (V, f) and properties of spreads and ovoids. Thus the construction of a 
generalized hexagon from the same group Q with possibly distinct ovoids and 
spreads impinges on the existence of a lift from V to Q such that condition (C) 
holds for the subscript sequences 122, 1112, 11111. 
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