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In this paper, we analyze parallel, diagonally implicit iteration of Rungc-Kutta methods (PDIRK methods) for 
solving large systems of stiff equations on parallel computers. Like Newton-iterated backward differentiation 
formulas (BDFs), these PD IRK methods are such that in each step the (sequential) costs consist of solving a 
number of linear systems with the same matrix of coefficients and with the same dimension as the system of 
differential equations. Although for PDIRK methods the number of linear systems is usually higher than for 
Newton iteration of BDFs, the more computationally intensive work of computing the matrix of coefficients 
and its LU-decomposition arc identical. The advantage of PDIRK methods over Newton-iterated BDFs is 
their unconditional stability (A-stability for Gauss-based methods and L-stability for Radau-based methods) 
for any order of accuracy. 

Special characteristics of the PD IRK methods will be studied, such as the rate of convergence, the influence 
of particular predictors on the resulting stability properties, and the stiff error constants in the global error. 

Keywords. Diagonally implicit Runge-Kutta methods: parallelism. 

l. Introduction 

Consider the initial value problem for systems of ordinary differential equations (ODEs) m 
dimension d 

y'(t) =f(t, y(t)), 
( 1.1) 

In this paper, we analyze integration methods based on iteration of implicit Runge-Kutta lRK) 
methods of collocation type. Such RK methods possess both a large step-point order and a 
large stage order. Furthermore, by a suitable choice of the collocation parameters, these RK 
methods are unconditionally stable for any order of accuracy. 

We shall employ the diagonally implicit iteration-type methods proposed in [11,12]. These 
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methods are designed in such a way that a large number of the implicit systems to be solved can 
be processed in parallel, so that the number of systems that have to be solved sequentially is 
substantially reduced when implemented on multi-processor computers. As a reference method, 
we take the method based on the backward differentiation formulas (BDFs), which is consid­
ered as one of the best methods for sequential computers. The sequential computations (i.e., 
the computations that cannot be performed in parallel on a multi-processor system) of the 
parallel diagonally implicitly iterated RK (PD IRK) methods are of the same nature as those of 
Newton-iterated BDFs, that is, in each step, both types of methods require the sequential 
solution of a number of linear systems with the same matrix of coefficients and with the same 
dimension as the system of differential equations. Although, this number of linear systems is 
usually higher for PDIRK methods than for Newton iteration of BDFs, the effort required for 
computing the Jacobian and the LU-decomposition of the matrix of coefficients is identical. 
For large systems of equations, these computations' are the more computationally intensive 
work, so that the overall computation time is primarily determined by the number of Jacobian 
updates and LU-decompositions. The advantage of PDIRK methods over Newton-iterated 
BDFs is their A-stability (Gauss correctors [2]), strong A-stability (Lagrange correctors derived 
in [11]) or even L-stability (e.g. Radau IIA correctors) for high orders of accuracy. The property 
that unconditional stability can be combined with high orders reduces the number of integra­
tion steps (and therefore the number of Jacobian updates and LU-decompositions) consider­
ably. 

In Section 2, we define the PDIRK iteration scheme and discuss some favourable properties 
of the underlying implicit RK method (the corrector). We analyze the influence of the initial 
iterate (the predictor) with respect to the stability of the final result. Both implicit and explicit 
>redictors of one-step and multistep type are discussed. Furthermore, several options for the 
.teration parameters are considered. Section 3 describes the convergence and stability for 
several predictor-corrector (PC) combinations. An expression for the global error for the linear 
inhomogeneous test equation y'(t) =Ay(t) +g(t) will be derived in Section 4. For various PC 
combinations and several one-step predictors, the principal stiff error constants in the global 
error expansion are calculated for several iteration strategies. Finally, in Section 5 the results 
are compared and some recommendations are formulated. 

2. PDIRK methods 

In this section we define PDIRK methods by specifying the RK corrector, the iteration 
scheme for solving the stage vector equation, the predictor formula, and the formula for the 
step-point values. The various families of PDIRK methods are determined by special choices of 
the iteration parameters occurring in the iteration scheme. In order to simplify the notations, 
the formulas are given for scalar ODEs. The extension to systems of ODEs is straightforward. 

2.1. The corrector 

We consider RK methods of the form 

Y-Mf(etn+ch, Y)=eyn+haf(tn, Yn), 

Yn+! =yn +hbof(tn, Yn) +hbTJ(etn +eh, Y), c :=a +Ae, 
(2.1) 
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where b0 is a scalar parameter, e is the vector with unit entries, a= (a), b = (b), and c = (c) 
are k-dimensional vectors, and A = (ai) is a k X k matrix. In (2.1) we used the convention that 
for any given vectors v = (v) and t = (t), f(t, v) denotes the vector with entries f(tj, u). We 
alw~ys assume that the matrix A is nonsingular. If the vector a or the parameter b0 does not 
vamsh, then (2.1) presents an ( s = k + 1)-stage RK method requiring k implicit stages and one 
explicit stage. If a = 0 and b0 = 0, then (2.1) reduces to the general (s = k )-stage RK method 

with s implicit stages. For a discussion of the order of accuracy and the stage order of RK 
methods, we refer to e.g. [4] and [3]. In the sequel, the method (2.1) will be called the corrector. 

2.2. The iteration scheme 

The stage vector equation in (2.1) is solved by applying the diagonal iteration method studied 
in [11, 12]. Let y<J.t> denote the successive iterates, then we may define the (highly parallel) 
iteration process 

y<I> - hDf( et,,+ eh' y< 1>) 

=ey +ahf(t y) +Mf(et +e*h yc<JJ)-hD+(et +e*h y<0J) 
n n' n 11 ' J n ' ' 

y<JL> - hDf( et,,+ eh, y<JL>) 
(2.2) 

= ey,, + ahf( t,,, Yn) + Mf( et,, +eh, y<JL ·· 1>) - hDf( et"+ eh, yeµ - 1>), 

where µ, = 2, ... , m, and D is a diagonal matrix whose diagonal elements o; (i = 1, ... , k) are 
the iteration parameters which are assumed to be positive. The parameter vector c * depends 
on the predictor formula used for computing y<0 > and serves to make the arguments of f 
consistent in the first iteration (sec Section 2.4). The step-point formula defining Yn + 1 and the 
predictor formula will be discussed in the Sections 2.3 and 2.4, respectively. Together, the 
predictor formula, the iteration scheme (2.2), and the step-point formula determine the PDIRK 
method. 

Each iteration in (2.2) requires the solution of k nonlinear systems which can be obtained by 
applying modified Newton iteration. We shall call this last iteration the inner iteration method 
and the iteration (2.2) the outer iteration method. Notice that in each outer iteration the k 

nonlincar systems can be solved in parallel, provided that k processors are available. Thus, the 
sequential costs per step consist of computing y<0> and of solving m nonlinear systems of ODE 
dimension. 

For particular choices of the predictor formula (e.g., explicit RK formulas) and for step-point 
formulas as defined in Section 2.3, the PDIRK method as described above can be interpreted 
as a diagonally implicit RK (DIRK) method using mk diagonally implicit stages. Since the k 

stages in each outer iteration can be computed in parallel, we arrive at a DIRK method with m 
sequential diagonally implicit stages. These methods form a subclass of the much wider class of 
the PaRK methods investigated by Jackson and N0rsett [7,8]. 

In [11,12] the performance of PDIRK methods was studied in the case where in each of the 
m outer iterations the inner iteration method was continued until convergence before starting 
the next outer iteration (this iteration strategy is also used in conventional DIRK methods). 
However, this strategy may be rather expensive if many iterations arc needed to get the inner 
iteration converged. Moreover, it does not take into account the special structure of the 
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method. The essential difference with conventional DIRK methods lies in the fact that the ith 
component of each stage vector y<µl is an approximation to the exact solution at the point 
t n + c;h. This implies that y<µ - 1> furnishes an excellent initial approximation to the solution 
y<µ> to be obtained in the inner iteration process. As a consequence, each outer iteration needs 
only a few inner iterations. Furthermore, in first approximation, the convergence of the 
inner-outer iteration scheme and the stability of the PDIRK method does not depend on the 
number of inner iterations. This motivates our strategy to perform only one inner iteration per 
outer iteration, leading to the iteration process 

[I -hDJ]( y111) - y<ll) 

= y< 0> - hDf (et n +eh, yi<))) 

-[eyn +ahf(tn, y,,) +Mf(etn +c*h,_Y<0>)-hDf(etn +e*h, y<Ol)), (2.3a) 

[/-hDJ](Y<µ-ll _ y<µ>) 

= y<µ-l) - [ eyn + ahf(tn, Yn) + Mf(etn +eh, y<µ-ll)], µ. = 2, ... , m. 

Here. J denotes an approximation to the derivative of f at the point (tn, y,,). Evidently, if 
(2.3a) converges, then y<µ> converges to Y. In fact, one may interpret (2.3a) as a modified 
Newton iteration scheme for solving Y from the stage vector equation in (2.1) employing a 
diagonal approximation to the Jacobian of Y- Mf(et,, +eh, Y). 

It may be useful to consider (2.3a) in the case of systems of ODEs. Then, the k components 
r,<µl of the stage vector iterate y<µ> have to satisfy the equations 

[I -MJ I ( r,<0) - r,<ll) 

=fill) - lz8j(t + C h y<O)) 
l l n I ' t 

-[y,, + a;hf(t,,, Y,,) + h E a;J(t,, + cth, lj10l) - h8J( t,, + c;* h, r;<0l)], 
J=I 

[/-h8J](Y,(µ-l) _ Y,(µ)) 

= l/1µ - 1> - [Yn + a;hf( t ,,, Y,,) + h _E a;jf( In + cjh, lj(µ - I))], µ. = 2, ... , m, 
J= I 

where i = 1, ... , k and where now J denotes an approximation to the Jacobian matrix of f at 
the point (t,,, y,,). Notice that this iteration scheme can be viewed as a modified Newton 
method for solving the stage vector equation employing a block-diagonal approximation to the 
Jacobian. Clearly, the k linear systems that are to be solved in each outer iteration step can be 
solved in parallel. Since each system has dimension equal to that of the system of ODEs, the 
computational complexity per step and per processor essentially consists of the computation of 
r,<11l, the evaluation and LU-decomposition of the matrix I - h8;f (or its updating), m + 2 
evaluations of f, and m forward-backward substitutions. Of these costs, the evaluation and 
LU-decomposition of I -h8;1 are the most time-consuming, while the evaluations of f and 
the forward-backward substitutions are relatively cheap (notice that the iteration parameters 8; 
are independent of µ. in order to avoid repeated LU-decompositions of I - h8;l in the 
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successive iterations). Thus, when basing a code on PDIRK methods, first of all the number of 
stepsize changes (which automatically requires new LU-decompositions) and the number of 
Jacobian updates should be minimized. 

It is of interest to compare the sequential costs of PDIRK methods with the sequential costs 
of the celebrated BDF-based methods. If the BDFs arc solved by using m modified Newton 
iterations, then the sequential costs in each step of the PD IRK methods and the Newton-iterated 
BDFs are almost identical. We expect that PDIRK methods need more iterations but, because 
of their higher order, less steps to produce some given accuracy. As explained above, 
evaluations of f and the forward-backward substitutions are relatively cheap, so that for 
modest values of m, the sequential costs per step of PDIRK methods are expected to be not 
much higher than those of the BDFs. The reduced number of steps required by the PDIRKs 
should make them superior to the BDFs. 

2.3. The step-point values 

Suppose that we adopt y<ml as a sufficiently accurate approximation to the exact stage vector 
solution Y of the corrector (2.1). Then, the most natural way to approximate the step-point 
value Yn+ 1 in (2.1) defines this value according to the formula 

(2.4) 

However, the presence of the right-hand side evaluations in this formula may give rise to loss of 
accuracy in the case of stiff problems (cf. [10]). This difficulty can be overcome by applying , 
similar approach as proposed in [6] for the implementation of implicit RK methods. Observi 
that the corrector (2.1) can be written in the form 

Yn+I =y,,+b0 hf(t,,, Y,,}+b.1A- 1[Y-ey,,-ahf(t,,, y,,)), 

provided that A is non singular, we can approximate the corrector solution Y,, + 1 by the formula 

Y,, +1 = Yn + b0 hf(t,,, Y11 ) + b.1A 1 [ y<mJ -ey,, - ahf(t", Y,,)], (2.3b) 

where y<ml denotes the last computed approximation to Y. In many cases the corrector satisfies 
the relations of stiff accuracy, i.e., ck= I, b 0 = ak, and b'1A ··· 1 = el", so that (2.3b) reduces to 
Yn, 1 = e{Y<ml. In order to avoid confusion, we shall from now on denote the corrector solution 
and stage vector values obtained from y,, by u,, + 1 and U, respectively. 

2.4. The predictor 

In [ 12) we considered one-step predictors of the form 

y<0> := ey + hEj'(et ey ) + hBt(et + c * h y(I») n ·"' n' n 'J n ' ' (2.5) 

where B and E arc k X k matrices. Of particular interest arc the cases where E vanishes and 
where B is either the zero matrix yielding last step-value predictors (LSP) or B = D yielding 
implicit Euler predictors (IEP). 

However, by using information from the preceding step, that is the values of Y,, and the stage 
vector y<ml computed in the last step, we can construct more accurate predictors. In order to 
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indicate to which step a particular stage vector corresponds, we 
corresponds to the step [ t n _ 1, t n ]. Consider the two-step predictor 

define Y == y<ml if y<m> 
n 

y<0> =VY + vy + hBE(et + c*h y<0>) 
n n 'J n ' ' (2.6) 

where either B = 0 or B = D, and where the matrix V and the vector v satisfy the usual 
consistency conditions (we shall assume that the vector v vanishes in the case of stiffly accurate 
correctors). The cases B = 0 and B = D will be referred to as the extrapolation predictor 
(EXP) and the backward differentiation predictor (BDP). 

If B = D, then both (2.5) and (2.6) require the solution of k implicit relations. Similar to the 
strategy followed in solving the implicit relations in (2.2), we shall perform just one Newton 
iteration. (Notice that the right-hand side derivatives required in the Newton iteration method 
are identical to those occurring in (2.3a).) In order to perform this Newton iteration we need an 
initial guess y<- 1> for y<0>. For the cases (2.5) and (2.6) we shall respectively use 

y<-l) =ey 
n• c*=(E+B)e, 

y<- 1>=WY +wy c*=c, n n' 

where the Wand w are to be determined (we shall assume that w vanishes in the case of stiffly 
accurate correctors, and that W = V and w = v in the case where B = 0). If the corrector is 
based on collocation, then the matrix W and the vector w can be computed by extrapolating 
the collocation polynomial defined in [tn_ 1, tn] to the interval [tn, tn+ 1].and can be expressed in 
terms of the Lagrange interpolation polynomials. 

2.5. The iteration parameters 

There are various options for choosing the number of iterations m, and the iteration 
parameters 8;. In this paper, we consider three cases: 

Option 1 (fixed-number-of-iterations option): 
- the number of iterations is fixed and such that the orders of the PD IRK and corrector are 

equal; 
- the iteration parameters are chosen such that the stability region in the left halfplane is 

optimized. 
Option 2 (minimal-spectral-radius option): 
- the number of iterations is sufficiently large to closely approximate the corrector solution; 
- the iteration parameters are such that the spectral radius of the matrix D- 1A - I is 

minimized. 
Option 3 (minimal-stiff-error-constant option): 
- the number of iterations is sufficiently large to closely approximate the corrector solution; 
- the iteration parameters are such that the principal stiff error constant of the PDIRK 

method is minimized. 

Several families of methods constructed according to the fixed-number-of-iterations option 
were already considered in [12]. An interesting family considered in that paper possesses the 
stability functions investigated by Wolfbrandt [13] and uses constant iteration parameters 8; 
determined by these stability functions. However, because of the fixed number of iterations, 
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these methods are in fact DIRK methods and consequently, they have the disadvantage of 
possessing stage order q = 1. In many stiff problems, such a low stage order may lead to 
reduced accuracies. In order to get insight into the extent of this accuracy reduction, we shall 
consider the magnitude of the stiff error constants for the "fixed-number-of-iterations PDIRK 
methods" (see Section 4.2, Table 4). 

For the explicit one-step predictor, (11] presents a number of PDIRK methods constructed 
according to the minimal-spectral-radius option. The effect of minimizing the spectral radius of 
the matrix D - 1A - I is a strong damping of the stiff iteration error components. On the one 
hand, the number of iterations m should be sufficiently large to solve more cir less the RK 
corrector, on the other hand, m should be sufficiently small to achieve that the (sequential) 
costs per step are not excessive when compared with those of the BDFs. In this paper, we shall 
investigate a few characteristics of the "minimal-spectral-radius PD IRK methods" as a function 
of m. In particular, in Section 3 we consider the rate of convergence (Table 1) and the effect on 
the stability of the various predictors (Tables 2 and 3), and in Section 4 we consider the 
magnitude of the principal stiff error constants (Tables 5 and 6). 

Option 3 offers an alternative to option 2 and directly addresses the truncation error of 
PDIRK methods when applied to stiff systems. In this paper, we present results for the simple 
inhomogeneous test equation y'(t) = Ay(t) + g(t). 

3. Convergence and stability 

We shall investigate convergence and stability by means of the scalar test equation y' = Ay. 
Note that for this simple test equation the particular strategy used in the inner iterations is not 
relevant. For a rigorous convergence analysis of parallel RK methods containing the PDIRI< 
methods of this paper we refer to Jackson and N0rsett [7,8]. 

3.1. Rate of convergence 

From (2.2) it can be deduced that the iteration error satisfies the recursion 

U-Yn+ 1 =Z(z)(U-Y<m-I>)= ··· =Zm(z){U-Y<0>), 

Z(z) := zD[ I -zD]- 1[D- 1A -/], z :=Ah. 
(3.1) 

The region in the complex z-plane where zm(z) ~ 0 for m ~ oo will be called the region of 
convergence. We define the iteration function C of the PDIRK method by the spectral radius of 
Z(z), i.e., 

C(z) := p(Z(z )) = p( zD[ I -zD]- 1[D- 1A - !]) . (3.2) 

Evidently, the region of convergence is determined by the set of points where C( z) < 1. The 
rate of convergence is larger as the norm of C(z) is smaller in the region of relevant values of 
z. Thus, adopting the maximum norm, we are led to the minimization of C( z) in this region. In 
this connection we introduce the following definition: 
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Definition 3.1. A PDIRK method is said to be strongly A-convergent if its iteration function 
C(z) ~ T/ < 1 in the whole left halfplane Rez < 0. If, in addition, C(-oo) = 0, then the PDIRK 
method is called L-convergent. 

First we consider the constant-8. case which is of interest in the case of fixed-number-of-iter-
' ations methods. 

Theorem 3.2. If D has constant, positive diagonal elements, then minimization of p(D- 1A - I) 
implies that the norm of C(z) is minimized whenever z is in the left halfplane. 

Proof. If D = o · /, then we may write C( z) = I oz Ip( o -1A - /) / / 1 - oz /. In the left halfplane, 
the maximum of the function I oz/0 - oz) I does not depend on o, provided that o > 0. 
Hence, the norm of C( z) is minimized if p( D- 1A - I) is minimized. D 

In the case where D does not have constant diagonal entries, we cannot derive such a simple 
expression for C( z ), and a numerical search is needed to find the matrix D that minimizes the 
norm of C(z) in the left halfplane. However, our numerical experiments revealed that also in 
the nonconstant-5; case the minimization of p( n-1A - I) yields fast converging PD IRK 
methods and that II C II := max{C(z): Rez ~ O} is considerably smaller than in the constant-5; 
case. 

Example 3.3. We consider an example of the fixed-number-of-iterations methods studied in [12] 
which is based on the third-order Radau IIA corrector. For 

m=3, A=-2:__(5 
12 9 

-1) 
3 ' 

D = 5 ·I, o = 0.43586650, 

this leads to a third-order, L-stable PDIRK method. The convergence function associated with 
this method is given by 

C(z) =I oz I p(o- 1A -1)//1-oz I, 
vhere 

p( 5- 1A - /) = 5- I VI/6 - 28/3 + 52 • 

tting o = 0.43586650 we find that C( z) < 0.59 in the whole left halfplane. Among the 
methods with D = 5 ·I this method is almost optimal (the minimizing value is given by o = 1/2 
leading to C(z) < f 1/3 :::::: 0.577). 

Next, we consider the case where D minimizes p( n- 1A -1). In [11] it was shown that the 
method can be made L-convergent (i.e., it has vanishing p(D-1A -!)) for 8 1 = (4 - ../6)/6 and 
o2 = (4 + v'6)/10. The corresponding matrix Z(z) is easily computed, yielding II C II :::::: 0.262. 

Table 1 lists the II C /I-values for a number of minimal-spectral-radius PD IRK methods. 
These methods are based on Radau IIA correctors and on the so-called Lagrange correctors 
derived in [11]. The Lagrange methods are strongly A-stable, stiffly accurate collocation 
methods which are completely determined by the collocation vector c (see Table 1). Their stage 
order is one higher than that of the Radau IIA methods which was achieved by using one 
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Table 1 
II C II-values for minimal-spectral-radius PD IRK methods based on Radau IIA and Lagrange correctors 

Corrector k llCll Strongly L-convcrgent 
A-convergent 

Radau IIA 2 0.262 yes yes 
3 0.401 yes no 
4 0.527 yes no 

Lagrange 2 c = (3/4, 1)1' 0.182 yes yes 
3 c=(7/12,5/6, l)T 0.403 yes no 
4 c = 0/6, 7 /12, 11/12, 1)1' 0.404 yes no 

explicit and k implicit stages. However, they do not possess the superconvergence property of 
the Radau methods, so that the computation of the nonstiff solution components is consider­
ably less accurate. 

For the Radau IIA and Lagrange correctors with k implicit stages, the iteration parameters 
are contained in the matrices DkR and DkL: 

20 -5/6 
3 

0 
4( v'2 + 1) 

0 

D1R = 3~ D2L = 1 
0 12 + 3{6 0 

6( v'2 - 1) 

(3.3a) 

4365 0 0 2246 0 0 13624 l!l609 

D3R = 0 1032 0 D3L = 0 2537 0 7373 8794 (3.3b) 

0 0 1887 0 0 3026 
5077 8923 

3055 0 0 0 5147 0 0 0 9532 38467 

0 531 0 0 0 1983 0 0 5950 17459 
D4R = 

0 0 1471 0 
D4L = 

0 0 3197 0 8094 14090 

(3 .3c) 

0 0 0 1848 0 0 0 3086 
7919 12339 

Table 1 shows that these methods can all be made strongly A-convergent, and that only the 
methods based on a two-stage corrector are L-convergent (see also [11]). Furthermore, we 
observe that the convergence factors of the Lagrange-based methods are slightly better. Hence, 
together with their increased stage order, the Lagrange correctors seem to be attractive 
alternatives to the Radau correctors in problems where the order of accuracy is determined by 
the stage order. However, in problems where, apart from the stage order, the nonstiff (or, 
classical) order is important, the superconvergent Radau correctors are to be preferred. As to 
the II C II-values given in Table 1, it should be remarked that these are "worst-case" values, 
that is, in actual computation, where the relevant values of z are located in a restricted region 
of the left halfplane, the corresponding bound on C(z) may be much smaller. 
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3. 2. Region of stability 

In order to investigate the stability properties of PDIRK methods we have to specify the 
predictor formula. The stability of PDIRK methods using the one-step predictor (2.5) was 
extensively discussed in [12] for the case where Yn + 1 is defined by (2.4). For the case (2.3b) 
considered in this paper, we have the following theorems: 

Theorem 3.4. For the equation y' = Ay the PDIRK solution generated by {(2.3a), (2.3b), (2.5)} 
satisfies the recursion 

where 

R(z) := 1 +zb 0 +zbT[I-zA]- 1[e+za]. 

Em ( z) := b TA - 1 Z m ( z) { [ I - zA] - 1 [ e + za] - [ I - zB] - 1 [ I + zE] e) . 
Here, R( z) is the stability function of the corrector reducing to 

R ( z) = en I - zA i - I [ e + za l 
in the stiffly accurate case. 

Proof. From the relations 

y<0>= [I-zB]- 1[l+zE]eyn, 

it follows that 

U-Yn+I = zm(z)(U- y<0>) 

= Z m ( z) ( [ I - zA] - 1 [ e + za] - [ I - zB] -- 1 [ I + zE] e) Y n . 

Hence, from the step-point formula (2.3b) we obtain 

Un+ 1 - Y n + 1 = b TA - 1 ( U - Yn + I) 

(3.4) 

(3.5) 

= b 1A - I z m ( z) ([I - zA i - 1 [ e + za l - l I - zB r 1 [ I + zE l e) y n . ( 3 .6) 

Furthermore, introducing the stability function R(z) of the corrector, we may write 

Un+l =R(z)yn, (3.7) 
where R( z) is defined in the theorem. From (3.6) and (3. 7) the assertion of the theorem is 
immediate. o 

Theorem 3.5. For the equation y' = Ay the PD IRK solution generated by {(2.3), (2.6)} satisfies the 
recursion 

( Yn + I ) = Mm ( z) ( Yn ) , 
Yn+l Yn 
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where M,,,( z) is the amplification matrix 

( I 0) 1 
M,,,( z) := - b'IA. ... I 1 

x(Z"'(z)[/o~zB] 1V [I-Z"'(z)][I-zA] 1[e:za]+Z"'(z)[l-zBr 1v)· 
1 + b0 z - b 1A - 1[e + za] 

Proof. By means of the equation for U given in (3.4), relation (3.5) and 

y<O> = [ / -zB] -l[VYn + vyn] 

we derive that 

Y,,+ 1 = Z"'( z )[ / -zB] 1VY,, 

+ ([I - zm ( z) ][I - zA l I [ e + za l + Z"' ( z )[I - zB i - Iv) Yn. 

179 

(3.8) 

(3.9) 

Together with the step-point formula (2.3b) the one-step recursion of the theorem is easily 
obtained. 0 

With the amplification matrix M,,/ z) we associate the stability function 

R,u(z) ==p(M"'(z)), (3.10) 

where p( M,,) denotes the spectral radius of the matrix Mm. The region in the complex z-plane 
where R,,,( z) < I will he called the region of stability associated with m. Furthermore, we define 
mcrii as the minimal value of m for which this region contains the whole left halfplane for all 
m ;;.merit· 

For future reference, we have computed the value of merit for a number of predictor-correc­
tor (PC) pairs. For the correctors we again chose the Radau IIA methods and the Lagrange 
methods of Section 3.1. The predictors are those defined in Section 2.4 and the matrices D are 
defined according to the minimal-spectral-radius option (see (3.3a), (3.3b), and (3.3c)). Table 2 
shows that merit increases if the number of stages of the corrector increases. However, in actual 
computation, the minimal number of iterations may be much smaller because many stiff 
problems require only A(a)-stability. This means that automatic codes based on PDIRK 

Table 2 
Values of merit of minimal-spectral-radius PDIRK methods for various PC pairs 

Corrector LSP EXP IEP BDP 
-,~·---- .. ··-·~-·-------··---·--~----~---·--¥• 
Radau IIA k=2 I I I 

k=3 5 5 2 4 
k=4 7 7 4 7 

l,agrangc k =2 2 2 2 2 
k=3 3 3 3 3 
k=4 6 7 5 6 

-··------··------
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Table 3 
Value> of a = n( ml !in degree~) ,ir minimal-spectral-radius PDIRK methods for various PC pairs 

Predictor CorrcctlJr k m=I m =2 m=3 m=4 m= m=6 m= 

LSP Radau !IA 
, 90 

EXP 90 
IEP 90 
BOP 90 

LSP 3 * 81.9 89.94 90 

EXP 64.7 88.7 90 

IEP 87.5 90 
BDP 65.ll 81.8 88.4 90 

LSP 4 * * * 40.3 80.5 88.5 90 
EXP * * 70.3 84.2 90 
IEP 60.2 75.9 86. l 90 
BDP 43.0 14.6 67.1 78.2 84.6 88.6 90 
....... " ............................................................................. 
LSP Lagrange 2 * 90 
EXP * 90 
IEP 86.5 90 
BOP 89.82 90 

LSP ' * * 90 _, 

EXP * * 90 
IEP 77.2 * 90 
BOP 83.4 90 

LSP 4 * * * 60.8 86.7 90 
EXP * * * * 73.0 88.0 90 
IEP 51.6 * * 86.5 90 
BOP 48.8 * * 79.9 87.6 90 

methods are likely to choose the number of iterations not larger than necessary to ensure a 
stable performance. Table 3 presents the corresponding angles a as a function of m (lack of 
A(O)-stability is indicated by * ). The results illustrate the favourable A( a )-stability characteris-

·<::s of minimal-spectral-radius POIRK methods after only a few iterations. In general, the 
1plicit predictors IEP and BOP possess (of course) larger stability angles a than the explicit 

. cedictors LSP and EXP, even if we take into account that the implicit predictors require extra 
computational effort roughly comparable with an additional iteration. Furthermore, if we 
compare IEP and BDP, then IEP has the best stability characteristics (in particular for 
Radau-based methods). However, the overall efficiency will be reduced because of its low order 
of accuracy. Therefore, we drop the low-order predictors LSP and IEP and recommend either 
the EXP or BOP predictor. 

4. The error functions for the linear inhomogeneous test equation 

The following theorem presents a result for general RK methods derived in [l]: 

The 
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Theorem 4.1. For RK methods the global error e,, when applied to the test equation y'(t) = Ay(t) 
+ g( t) satisfies 

e,,+ 1 =R(z)e,,+ L Qf(z)hfy~~)(t"), 
j=q+l 

1 1 
Qi( z) == ~ [ 1 - jbTef- 1] + ~ zb T[ I - zA] - 1 [ ef - jAef-1], 

J. J. 

where y ex ( t) denotes the exact solution of the test equation, R( z) is the stability function of the RK 
method, and q is its stage order, i.e., the largest integer such that 

1-jbTef-t =cf-jAcf- 1 =0 forj= l, ... ,q. 

We shall prove a similar theorem for PDIRK methods employing one-step predictors. As 
before, the simplicity of the test equation y '( t) = Ay( t) + g( t) implies that the particular 
strategy used in the inner iteration process is not relevant. 

In the following, y(t) denotes the locally exact solution at t,,, i.e., Y,, = y(t,,). It is straightfor­
wardly verified that for the linear inhomogeneous equation the recursion (3.5) changes to 

U - Y,,+ 1 = zm(z )(U - y<OJ + hz- 1[g(t,,e +he) - g(t,,e +he*)]). 

Assuming that g is sufficiently differentiable, we may write for any fixed vector v 

Hence, 

1 . 1 1 [ l 
g(t,,e+hv) = L ~(hv)1 g<n(t,,) = -h ,l: ~hfy<fl(t,,) jvf-t _zvf. 

j=Ol· f=Ol· 

h[g(t,,e+he)-g(tne+he*)] = L ~YJ(z)hfy<n(t,,), 
j= I ] . 

yf(z) ==jef-· 1 -zcf-j(c*Y-' +z(c*)f. 

Furthermore, it follows from (2.1) that 

U = [I - zA] 1 [ y ( t 11 ) e + hy ' ( t,,) a + hAg ( t,, e + he)] , 

so that 

1 
U=y e + "-c(z)hiyUl(t) 

" L., . , J " , 
j ,~I .f. 

c1(z)==c, cf(z)==[I-zA] 1A[jcf- 1 -zc1], j~2. 

4.1. One-step predictors 

( 4.1) 

( 4.2) 

(4.3a) 

Let us assume that y<0J is provided by a one-step formula, then it can also be expanded in 

terms of a similar Taylor series with coefficients c/(z): 

y<O) = y,.e + L ~c/(z)hfyUl(t,.). (4.3b) 
j= I .f. 
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U - Yn +I= Z"'( z) L q,( z )Jzlylil(t n), 
J "' I 

( 4.4) 

Assuming that c f ( z) does not depend on z' we may choose in (2.3) c * = c r so that q I( z) 

vanishes. Using the relation 

y<Jl(t n) = Y!e(t n) + 1\1 [ Y( t,,) - Yex(t n)) = Y~~l(tn) +Ai [ Yn - Yex(t n) J • 

the iteration error (4.4) can be expanded in terms of derivatives of the exact solution. We 
obtain 

Since 

we find 

V - Yn+ 1 = Z"'( z) L q,( z )( z'[ Y,, -yc,(t,,)] + h 1y~e(t,,) ). 
j 2 

j=2 

i=2 

( 4.4') 

(4.5) 

(4.6a) 

( 4.6b) 

Applying Theorem 4.1 to the corrector at the point t,, with e,, = Yn -Yex(t,,) and assuming that 
jb1(:1- 1 =1, j= l, .. .,q, yields 

= R( Z )[ Y11 -Yex(tn )j 
l 

+ ( q + 1 ) ! zb T [ I - zA r I [ c q + I - ( q + 1 ) Ac q l h q + I y ~% + 1) (t n ) + 0 ( h q + 2 ) ; ( 4. 7) 

hence, 

Yn +I - Yex (t n + I) = Y n +I - U 11 +I + Un+ J - Yex (t 11 + J) 

=yn+I -un+I +R(z)[yn-Yex(t,,)j +O(hq+I). 

Thus, using (4.6a) we obtain 

j=2 

The functions Q ,,,/ z) will be called the error functions of the PD IRK method. 
Finally, we show that the function R( z) - S ,,,( z) is identical with the stability function R,,, of 

the PDIRK method. For that purpose, we consider the particular case where the inhomoge­
neous term g vanishes. It is easily verified that we then may write 

g=O. (4.9) 

Now, sup 
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Now, suppose that the initial value y 0 tends to zero. Then, Yex(t) also tends to zero. Since (4.8) 
holds for vanishing g too, it follows that R ,,,( z) = R( z) - Sm( z ). Notice that in the case of the 
predictor (2.5) the functions S111( z) and Em( z) as defined in Theorem 3.4 are apparently 
identical. Thus, we have proved the following PDIRK analogue of Theorem 4.1: 

Theorem 4.2. For one-step predictors possessing the expansion (4.3b) with c* = c~ the global error 
of PDIRK methods when applied to the test equation y'(t) = Ay(t) + g(t) satisfies the recursion 

Y11+! -y",(t,,+1) = Rm(z)[y,, -yex(t11 )] - L Qmj(z)hjy~~)(t,,) + O(hq+I), 

Rm(z) = R(z) -Sm(z), 

j =2 

S112 (z) ==bTA-- 1zm(z) L qi(z)zj, 
J=2 

where q is the stage order of the corrector, and R( z) and R 11,( z) are the stability functions of the 
corrector and the ?DIRK method, respectiuely. 

This theorem shows that the stage order of PDIRK methods is only one, unless the error 
function Q,,, 2( z) is identically zero for the m-value used. (This is not surprising because 
formally PD IRK methods arc just DIRK methods which are known to have stage order one.) 
However, as all error functions Qmj( z) contain the factor Z"'( z ), their maximal values I Qmj I 
arc expected to decrease rapidly with m in any region of the left halfplane, so that effectively 
the stage order shown in actual computation is much higher. 

The following corollary presents an explicit expression of Qmi for the predictor (2.5). 

Corollary 4.3. For the predictor (2.5) the error functions are giuen by 

I 
Q (z) := -b'1A.- 1z 111 (z)z 1(jci-I - [I-zB] 1[j(c*)1 1 -z(c*)1]), 

Ill/ .i! 

j = 2, .. . ,q, 

where c* == ( B + E)e. 

Proof. In the case ( 2.5) the expansion ( 4.3h) becomes 

so that 

y( 0 > = [I - zB] 1([ I+ zE] y(t 11 )e + hEg(t 11 )e + hBg(t,,e +he*)) 

=y(t 11 )e+ [I-zB] 1 (Ehy'(t,,)e+B L -~·hiyU>(t,,)[j(c*) 1 - 1 -z(c*) 1 j), 
j l J. 

c ;+' ( z) = [I - zB] 1 (Ee +Be - zBc *) = c * = ( B + E )e, 

ct(z)=[l-zB] 1 zB[jz 1(c*)i-I_(c*)i), j~2. 
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By virtue of Theorem 4.2 we may write 

QmAz) = bTA- 1zm(z)qj(z) 

1 
= -:-;-bTA-izm(z)[cj(z)-c/(z) +z- 1yiz)] 

J. 

1 
= -:-;- b TA - 1 Z m ( Z) Z - 1 

J. 

x([J-zAr 1[jcj- 1 -zcj] - [I-zBr 1[j(c*)j-i _z(c*)j]). 

By means of the simplifying condition C(q) associated with (2.1) (cf. [3]), we obtain the relation 
jAcj- I= cj for j = 2, ... , q which leads to the result of the corollary. D 

4.2. Last step-value predictor with constant iteration parameters 

In the case of the predictor LSP (predictor (2.5) with B = E = 0) with constant iteration 
parameters ( D = 8 · /), the error functions Qm/ z) can be factorized into factors that depend 
on z and factors that do not depend on z. This enables us to derive an explicit upper bound for 
Qm/z). 

Theorem 4.4. Let D = 8 · I and let the predictor be given by (2.5). Then the error function bound 
in a region IR is given by 

1 m 
IQmjl~= (j-l)!d(m)lbTA- 1D(D- 1A-I) cj- 1 1, j=2, ... ,q; 

(8z)m-1 
d(m)·- ---

·- (l-8z)m~ 

fj IR is the infinite wedge defined by 

then 

W == { z : ir /2 ~ <P ~ arg( z) ~ 1T, - 1T ~ arg( z ) ~ - <P}, 

m-1 xm 
d(m) = 12 ' 

(m(l -xm cos(<P))r 

where xm is the positive root of the equation x 2 - (2 - m)x cos(<fl) - m + 1 = 0. 

Proof. The expression for the error bound I Qmj I~ immediately follows from Corollary 4.3. In 
order to derive an expression for the function d(m) we first observe that 

I z I I z I 
l-z = Vt-2lzl cos(arg(z))+ lzl 2 ' 
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Table 4 
Values of I Q1 I°' and I Qmj I 0< with IR = {z: Re z.;:; O} for the N0rsett-DIRK methods and fixed-number-of-iterations 
PDIRK methods 

Method/PC pair k o, m p* j = 2 j=3 j=4 j=5 

N0rsett-DIRK l 2 3 0.144 0.076 0.024 0.0055 
{LSP. Radau !IA} 2 0.43586650 3 3 0.024 0.015 0.005 0.0012 
{LSP. Lagrange} 2 0.43586650 3 3 0.038 0.015 0.005 0.0012 

N0rsett-DIRK l 3 4 0.112 0.054 0.015 0.0040 
{LSP. Radau IIA} 3 0.278053841 5 5 0.019 0.006 0.0014 0.0003 
{LSP, Lagrange} 3 0.572816063 4 4 0.046 0.013 0.0001 0.0012 

{LSP, Lagrange} 4 0.278053841 5 5 0.025 0.005 0.0001 0.0001 

where 'TT /2 ~ arg( z) ~ 'TT or - 'TT ~ arg( z) ~ - 'TT /2. Hence, 

zm-1 lzlm-1 

(1-z)m [1-2lzl cos(arg(z)) + lzl 2 ]"'12 . 

Since the function zm- 1(1-z)-m is analytic, its maximum value in W is assumed at a point on 
the line arg( z) = <f>. An elementary calculation reveals that the modulus of this point is given by 
the positive root xm of the quadratic equation x 2 - (2 - m)x cos(cf>) - m + 1=0. This leads us 
to the bound d( m) given in the theorem. D 

This theorem shows that in the case where the relevant z-values are in an infinite wedge W, 
the optimal choice of the matrix D = 8 ·I does not depend on W. Furthermore, the function 
d(m) is slowly varying with m. This can be concluded from the extreme cases where IR is either 
only the negative axis or the whole left halfplane. We then have, respectively, xm = m - 1 and 
xm = vm - 1 'which yields 

1 ( 1 )m d( m) = -- 1 - - and 
m-l m 

1 ( 1 )m/2 
d(m) = c--;- 1 - -

vm-1 m 

Thus, within a few iterations the function d(m) slowly converges to zero. 
It is of interest to compare the error functions Q/ z) of conventional DIRK methods (cf. 

Theorem 4.1) with the error functions Q111/z) of PDIRK methods. Table 4 presents a 
comparison for two conventional N(lmett-DIRK methods [9] and a few L-stable, fixed-number­
of-iterations PDIRK methods constructed according to option 1 [12]. In this table, k denotes 
the number of processors needed, p* is the order of the method, and m denotes the number of 
sequential stages per step (both for the N0rsett-DIRK and PDIRK methods). Clearly, the 
PDIRK methods possess considerably smaller error bounds. 

4.3. Minimal-spectral-radius PDIRK methods 

Table 5 lists values of I Q111i I~ with IR = {z: Re z ~ O} for minimal-spectral-radius PD IRK 
methods (option 2), based on {LSP, Radau IIA} pairs and using the iteration parameters given 



186 P.J. van der Houwen, B.P. Sommeijer /Analysis of PDJRK methods 

Table 5 
Values of the error constants for minimal-spectral-radius PD IRK methods 

PC pair k m p* j=2 j= 3 j=4 j=5 

{LSP, Radau IIA} 2 2 2 0.0249 0.0263 0.0102 0.0027 
3 3 0.0060 0.0062 0.0024 0.0006 

3 r == 0.25 r == 0.25 r == 0.25 r == 0.25 

{LSP, Radau IIA} 3 3 3 0.0360 0.0086 0.0027 0.00076 
4 4 0.0138 0.0031 0.0009 0.00025 
5 5 0.0052 0.0012 0.0003 0.00009 

5 r == 0.40 r == 0.38 r == 0.39 r == 0.38 

{LSP, Radau IIA} 4 5 5 0.0153 0.00098 0.000031 0.00004 
6 6 0.0079 0.00051 0.000016 0.00002 
7 7 0.0041 0.00027 0.000008 0.00001 

7 r == 0.50 r == 0.52 r == 0.50 r""' 0.52 

in (3.3). It turns out that for m > p* the error constants decrease by an almost constant 
reduction factor r as m increases by 1 and that they are substantially smaller than those of the 
fixed-number-of-iterations PD IRK methods of Table 4. (Notice that r is almost independent of 
j.) 

For future reference, we give a smvey of the principal stiff error constants I Qm 2 i iR with 
IR = {z: Re z ~ O} for a number of PC pairs. In Table 6, p denotes the order of the corrector 
and the order of the iterated method is in all cases given by p* = min{p, m}. From these 
results we conclude that the explicit predictor LSP leads to slightly smaller principal error 
constants than the implicit predictor IEP, provided that we count the application of IEP as an 
additional iteration. Furthermore, the Lagrange-based methods show considerably smaller 
error constants. However, we should bear in mind that the nonstiff error constants of the 
Radau-based methods decrease much faster than those of the Lagrange-based methods 

Table 6 
Values of the principal error constant for minimal-spectral-radius PDIRK methods 

PC pair k p m=k m =k +1 m=k +2 r 

{LSP, Radau IIA} 2 3 0.025 0.0060 0.0015 0.25 
{IEP, Radau IIA} 2 3 0.024 0.0059 0.0015 0.25 
{LSP, Lagrange} 2 3 0.013 0.0023 0.0004 0.18 
{IEP, Lagrange} 2 3 0.006 0.0011 0.0002 0.18 

{LSP, Radau IIA} 3 5 0.036 0.0138 0.0052 0.40 
{IEP, Radau IIA} 3 5 0.014 0.0053 0.0020 0.41 
{LSP, Lagrange} 3 4 0.008 0.0034 0.0014 0.40 
{IEP, Lagrange} 3 4 0.004 0.0018 0.0007 0.40 

{LSP, Radau IIA} 4 7 0.027 0.0153 0.0079 0.50 
{IEP, Radau IIA} 4 7 0.017 0.0088 0.0044 0.50 
{LSP, Lagrange} 4 5 0.022 0.0092 0.0037 0.40 
{IEP, Lagrange} 4 5 0.013 0.0054 0.0021 0.40 
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because of the high (nonstiff) orders of the Radau correctors. Finally, note that the reduction 
factors are very close to the II C II-values listed in Table 1. 

5. Concluding remarks 

In this paper, we have studied special characteristics, such as the rate of convergence, the 
(linear) stability, and the stiff error constants, of PDIRK methods based on Radau IIA and 
Lagrange correctors using various types of iteration parameters and predictors. The minimal­
spectral-radius methods turn out to be either comparable or superior to fixed-number-of-itera­
tions methods. Confining our considerations to minimal-spectral-radius methods, the following 
conclusions can be drawn from our analysis: 

• Rate of com·ergence: Lagrange correctors are superior to Radau correctors for k = 2 or 
k = 4. For k = 3, these correctors are comparable. 

• linear stability: Lagrange correctors are slightly superior to Radau correctors. The implicit 
predictors IEP and BDP are superior to the explicit predictors EXP and LSP. 

• Order reduction: Lagrange correctors are superior to Radau correctors (both with respect 
to the stage order and the magnitude of the error constants). The explicit predictor LSP is 
slightly superior to the implicit predictor IEP. 

• Nonstiff error constants: The two-stage Radau corrector is comparable with the two-stage 
Lagrange corrector. Radau correctors are by far superior to Lagrange correctors for k > 2. 
The predictors EXP and BOP are by far superior to the predictors LSP and IEP. 

By these conclusions, we are led to recommend PDIRK methods using an {EXP, Radau} PC 
pair and the minimal-spectral-radius iteration strategy as the most efficient in the class of 
PDIRK methods. 
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