
Fundamenta lnjormaticae XVI (1992) 1-38
!OS Press

A SEMANTIC APPROACH TO FAIRNESS

J.J.M.M. RUTTEN*
CW/, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

J.I. ZUCKER**
Department of Computer Science & Systems McMaster University, Hamilton, Ont. L8S 4KJ,
Canada

ABSTRACT: In the semantic framework of metric process theory, we undertake a general
investigation of fairness of processes from two points of view: (1) Intrinsic fairness of
processes, and (2) fair operations on processes. Regarding (1), we shall define a
"fairification" operation on processes called Fair such that for every (generally unfair) pro
cess p the process Fair(p) is fair, and contains precisely those paths of p that are fair. Its
definition uses systematic alternation of random choices. The second part of this paper
treats the notion of fair operations on processes: suppose given an operator on processes
(like merge, or infinite iteration), we want to define a fair version of it. For the operation of
infinite Iteration we define a fair version, again by a "fair scheduling" technique.
1980 Mathematical Subject classification: 68810, 68C01 , 68C05.
1986 Computing Reviews Categories: D.1.3, F.1.2.
Key words and phrases: Fairness, semantic domains of metric processes, fair infinite itera
tion, alternation of random choices.

1. INTRODUCTION

The most basic context in which the notion of fairness can be defined is that of a

repetitive choice among alternatives. In [F] the reader can find an elaborate intro

duction to the notion(s) of fairness, with an extensive overview of the research in this

In this paper we propose a different approach, which could be called a semantic

one, as opposed to the language (or syntax) directed approach mentioned above. Our

The research of Jan Rutten was partially supported by ESPRIT project 415: Parallel Architectures and Languages for
Advanced Information Processing - a VLSI-directed approach.
The research of Jeffery Zucker was supported by the National Science Foundation under grant no. DCR-8504296
and by a grant from the Natural Sciences and Engineering Research Council of Canada.

2 J.J.M.M. Rutten and J.l. Zucker I Fairness

point of departure is a semantic domain for nondeterministic languages in general,

without limiting ourselves to the choice of a particular language. Such a semantic

domain will in general be a solution of some reflexive domain equation

FP::::::P,

where F is a functor on some category of mathematical domains, and "::::::" means "is

isomorphic to". Various techniques have been developed for solving this type of

equation. We follow a metric approach, following Nivat ([NJ) and De Bakker and

Zucker ([BZl]), and reformulated and extended in a category-theoretic setting in

[AR]. The category e under consideration consists of complete metric spaces, and the

functors on e are so-called contracting functors. These spaces are composed from

basic metric spaces (sets provided with the trivial 0-1 metric) by the operations of

union, Cartesian product, forming function spaces, and forming the set of all (closed)

subsets of a given space. Examples would be complete metric spaces satisfying one

of the following equations:

P :::::A U(B XP), or

P =A U(B-(CXP)),

where A, B and C are arbitrary sets and - stands for "is isometric to". (Since ele

ments of e are pairs <P,dp>, consisting of a set P and a metric dp on P, domain

equations over e should also specify a condition on these metrics. In this introduc

tion, however, we omit such details.)

Another example of a domain is a metric space P satisfying the domain equation:

P:::::: {po} U~c1(B XP).

(Here CJ' ci(· · ·) denotes the set of all closed subsets of (· · ·).) Since this is the

domain we shall use in this paper as a starting point for our study of fairness, we dis

cuss it in some detail. The (possibly infinite) set B = { b l>b 2, •.• } is called the

alphabet of P. The elements of Pare called processes. A process p EP is either p 0 , the

so-called nil process, or a (closed) set of the form

p ={ <b;,p;> I <b;,p;>EBXP,iEI}

for some set I of indices. (Here the set I represents the choice among alternatives.)

Then p can be regarded as a process that for each i El can ta.Ice a step b;, and then

continues with the process p; (called the resumption of b;). This is itself either po,

indicating that the process p has terminated after performing step b;, or again a
(closed) set of possible next steps and corresponding resumptions.

Roughly, one can think of these processes as tree-like entities. However, there are
some differences. Trees with a left branch labeled a and a right branch labeled b, and

J.J.M.M. Rutten and J.I. Zucker I Fairness 3

with a left branch labeled band a right branch labeled a, are identified, and both are

represented by { <a,p o >, <b,p 0 >}. A tree with only one branch labeled a is

identified with a tree with two branches both labeled a. Furthermore, we do not con

sider arbitrary subsets of B XP, but only closed ones. For an extensive comparison of
trees and processes we refer to [BK].

In our approach the elements of B, which are called basic steps, are atomic actions,

whose possible interpretations have been abstracted from. One such interpretation

would be to associate a basic step b; with each component of a guarded command,

indicating that the i-th component of that command is selected. Another interpreta

tion would be to regard b; as an arbitrary action of the i-th component of a system of

(possibly infinitely many) active components, indicating that "progress" is being

made by that component. A context in which this interpretation makes sense is that

of object-oriented programming (see e.g. [ABKR] or [CJ). The basic steps could also

be thought of as being different possible actions (e.g. read, write, assignment, etc.)

which a single component can perform.

In this framework of metric process theory, we undertake a general investigation of

fairness of processes from two points of view: (l) intrinsic fairness of processes, and

(2) fair operations on processes.

Regarding (1), a process p is called (intrinsically) fair if all its paths are fair. A path

forp is a sequence of pairs: <ai.p 1>,<a 2,p 2>, .. ., such that <a1,p1>Ep and

<a;+ 1,p; + 1 > Ep; for all i;.. i. The difference between fair and unfair paths can

easily be illustrated with a simple example: consider a process p eP satisfying

p = { <0,p >, <l,p> }.

This process must choose infinitely often (in fact at every step) whether to perform

the basic step "O" or the basic step "l". The following path in p

<0,p>, <0,p>, <0,p>, ...

is unfair (with respect to basic step "!"), because step "1" never occurs whereas it

can be taken infinitely often. An example of a fair path is

<0,p >, <I,p >, <0,p >, <I,p >, ...

Actually, there are (at least) two notions of fairness current in the literature. The

notion we are considering in this paper is often called "strong" fairness (e.g. in [OAJ),

as opposed to "weak" fairness. In our context a path '1T would be called weakly fair if
every basic step that is from some moment on continually enabled in '1T occurs
infinitely often in 'IT. (For the definition of enabled see 2.3.) This notion is also called

justice ([LPS]). A path is strongly fair if every basic step that is enabled infinitely

often (but not necessarily continually) in 7T occurs infinitely often in '1T.) The

difference between these two notions can again be illustrated with a simple example:

4 lJ.M.M. Rutten and ll. Zucker I Fairness

consider a process p eP satisfying

p={<0,{<0,p>}>, <1,{<1,p>}>}.

This process can choose infinitely often whether to perform twice the basic step "O",

or twice the basic step "l". Then the path in p

<0, { <0,p >} >, <0,p >, <0, { <0,p >} >, <0,p >, ...

is weakly fair but not strongly fair. In this paper we only deal with strong fairness.

The case of weak fairness can be handled similarly; in fact it would be even easier.

We shall define in section 3 (for a finite alphabet B) a "fairification" operation

Fair:P4plnd

(where plnd is a suitably extended version of P), such that the process Fair(p) is fair,

and contains precisely those paths of p that are fair, or, more precisely, representa

tives of such paths. The relation between Fair(p) and p will be clarified by the

definition of a mapping from the paths of Fair(p) to those paths of p which they

represent. Roughly, Fair(p) is defined by associating indices with the subprocesses

(or "nodes") of p so as to provide a "bookkeeping" of the way in which alternative

subprocesses are chosen in forming paths. These indices indicate priorities for each
of the basic steps b1. During the construction of Fair(p), new sets of indices will

from time to time be chosen by certain random choices. (This idea of implementing

fair scheduling by means of systematic alternation of random choices is well known

(see e.g. [AO], [BZ2,3], [P]).) In section 4 this theory is extended to an infinite alpha

bet, with an "expanding" system of indices (i.e. increasing in length), so that an index

at a node records all the (finitely many) basic steps already encountered on the path

to that node.

We turn now to (2), the notion of fair operations on processes. Suppose given an

operation 19 on processes, which is, say, binary: 19:P XP-"?P. We want to define a

fair version l9f PX P ~p of 19, such that for all p 1,p 2 eP: first, if p 1 and p 2 are (int

rinsically) fair, then so is 19fP 1,p 2); and second, 19fP 1iP 2) is fair with respect to the

operation 19. This second condition must be explicated for each operation 19. A good

example is the merge operation ll:P XP4P. In [BZ2,3] a fair version 111 is defined.

In this case the second condition is the requirement that all paths in the resulting

process p 1 I IJP 2 must be fair with regard to alternate scheduling from p 1 and p 2 • A
trivial and wrong solution to the problem would be to define

Obviously, the first condition would be satisfied, but not so the second. The reason
for this is, roughly, that in the resulting process p 1 llJP 2, (intrinsically) unfair paths
of p 1 llp 2 that are fair with respect to the alternate scheduling from p 1 and p 2 should

J.J.M.M. Rutten and J.I. Zucker I Fairness

still be present. The operation Fair, however, would remove them from p 111p 2. So

this solution Would be too coarse. A satisfactory solution was given in [BZ2,3], where

the fair merge was defined on the basis of alternate sequences of random choices.

In this paper (section 5) we shall consider another example of an operation on

processes, namely infinite iteration (· · ·)"':P_,,P, defined by

where p 0 =po and pn+ 1=pn°p. (Here "0 " stands for sequential composition of

processes.) We define the fair infinite iteration p "'r of a process p EP and, after expli

cating the notion of fairness with respect to infinite iteration, prove that the conditions

above are indeed satisfied. Our approach is flexible enough to enable us to deal here

with two notions of fairness simultaneously: global and node fairness.

An area that remains to be investigated is that of fairness for non-uniform processes

[BZ l], where our uninterpreted basic actions are replaced by basic state transforma

tions, since here even the definition of fairness of paths in such processes is prob

lematic.

Nevertheless an investigation of non-uniform processes would ultimately be neces

sary, to deal with certain issues which cannot be handled in the present framework.

Consider, specifically, the case of guarded commands (with Boolean guards), where

successive "visits" to the same node have different descendent nodes, depending on

the state- for example, the process

P ::=: *[b--7c:=....,c Ob/\c.-+b:=ff]

which terminates only under (strong) fairness. Nodes corresponding to the "top level"

here have, alternately, one and two descendents. In our "uniform" framework a node

always has the same set of descendents, and so a situation like this cannot be han

dled.

RELATED WORK: We already mentioned [F] above, where the reader can find an

introduction to the notion(s) of fairness. Next, we mention a few related papers

without the intention of giving a complete overview of this area of research.

In I DMJ, fairness properties are imposed through metrics that allow convergence to

fair processes only. The starting point is a simple concurrent language for which a

semantics is given with the help of so-called concurrent histories, which are partial

orderings describing 'true' concurrency. In [AO] and [CS], proof rules are given for

fair transformations in concurrent systems: in the first paper for a fixed number of

concurrent components, and in the latter for a (possibly) growing number.

The main difference between the above approaches and ours, is that we study fair

ness of processes purely at a semantic level. This enables us to consider the notion of

arbitrary fair operation on processes, of which the merge (of concurrent, possibly

infinitely many, processes) is just one example.

6 J.J.M.M. Rutten and J.I. Zucker I Fairness

ACKNOWLEDGEMENTS: It was Jaco de Bakker who first noticed that fair scheduling,

implemented by systematic alternation of random choices (as in [PJ), could be used to

model fair merge in the semantic framework of process domains, as in [BZ2,3]. The

second author had useful discussions with Shenquan Xie on fairification and fair

infinite iteration. We thank the anonymous referees for their detailed and construc

tive comments.

2. MATHEMATICAL PRELIMINARIES

DEFINITION 2.1 (Domains)

We shall use mathematical domains P of processes p, which are such that:

(1) P is a complete metric space,

(2) P satisfies the following reflexive equation:

where = stands for "is isometric to", p 0 is a null process, 0'c1(· · ·) denotes the set

of all closed subsets of (· · ·) and A, with typical elements a, is such that it contains

as a subset a (possibly infinite) alphabet

of basic steps.

We shall not dwell too long upon the mathematical details of the construction of a

domain P which satisfies the above definition. Let us just briefly mention two

different approaches. First, one can take a metric completion of a union of metric

spaces in the following way. We need two definitions. First, dis an ultrametric on a

metric space M if, for all x, y, z EM,

d(x, z),,;;;; max{d(x,y), d(y, z)}

Second, given a metric space (M, d), the metric d induces a metric, the Hausdor:fl

metric dH, on the set '3'c1(M) of closed subsets of M, defined by

Note that if dis an ultrametric, then so is dH.

Now we define a sequence of metric spaces ((Pn, dn))n by

Po = {po}, do(po,po) = O

J.J.M.M. Rutten and J.l. Zucker I Fairness 7

d" 11(po,po) = 0

d11+1(p,po) = dn+1(po,p) = 1, for p=/=po

h1r p,p'e:•:1',i(A X P,,), d(p,p') is the Hausdorff metric induced by the distance

between points d,, 11 (x,y), where, for x = <a 1,p 1> andy = <a 2,p 2 >,

d,, + 1 (x, y) '"' l1 if a 1=j=a2
VJ·d,,(p i,p2) if a 1 =a2

Note that P0 cP 1 C · · · and d0 cd 1 c ···.Define

d.,= u d,,
n

and (P, d) as the metric completion of (P w, dw).

Note that P is a complete metric space, d is an ultrametric on P with maximum

value l, and P satisfies the reflexive equation above. Full mathematical details and

extensive motivation are supplied in [BZl]. The second approach is to interpret the

rdlexivc equation for P as defining a functor F on a category of complete metric

spaces, thus:

FP {po} U •!Pc1(A X P).

Clhc definition of F should also specify a metric for FP.) In [AR] it is shown how to

define F as a so-called contraction, which has a (unique) fixed point; so

FP - P.

Thus this method also presents us with a solution.

Rl:MARKs: We should be more precise about the metrics involved. We should have

written the equation above as

where, for any positive real number c, idc maps a metric space (M,d) onto (M,d')

with d'(x,y) cd(x,y). For the details see [AR].
The metric d on P has the following convenient description: First, for p=/=po, we

define the left projection of p:

'TT(p) 77 {a EA: 3p'[<a,p'>Ep]}

Then we have, for p, qo/=-p 0, the following two cases.

(l) if 1T(pY/=-1T(q) then d(p, q) = I

8 J.J.M.M. Rutten and JJ. Zucker I Fairness

(2) if w(p)='Tl'(q)

then d(p, q) = l6 sup{d(p', q'): 3a EA [<a, p'> Ep /\<a, q'> Eq]} (*)

The constant l6 appearing in the formula (*) will be used in the "contraction argu

ments" below.

We now introduce a number of concepts related to processes.

DEFINITION 2.2 (Paths)

A path for a process p EP is a (finite or infinite) sequence

such that

We say that 7T passes through p;, and p; will be called a node of p or a subprocess of p

(for i ;;;.1). The set of all paths for p will be called Paths(p).

The following definition explains which processes we want to consider fair.

DEFINITION 2.3 (Fairness)

(a) Let b; EB. Consider a path

We say that b; is enabled in 'TI' (or i is enabled in 7T) at step k whenever

We say that b; occurs in 'Ti, whenever

(b) We call a path 'Ti fair whenever for all b;EB, if b; is enabled infinitely often in '11',

then it occurs infinitely often in 'TT.

(c) A process p EP is called fair if all its paths are fair.

ExAMPLE: Let p EP be such that p = { <a,p >, <b,p > }. Then b is continually

enabled in

'IT= (<a,p >, <a,p >, ...),

but never occurs in it. Thus, the path 'Ti is unfair.

J.J.M.M. Rutten and J.I. Zucker I Fairness 9

Please note that only basic steps b; EB are taken into account in the definition of fair

ness.

3. FAIRIFICATION OF PROCESSES WITH FINITE ALPHABET

Let P be defined by

with B a finite alphabet:

Given a process p EP, we want to form a new process Fair(p), which is, in some

sense, a fair version of p. For this purpose we want to define a function

Fair: p~plnd

such that there is an obvious correspondence between the paths of Fair(p) and the

fair paths of p. Here plnd is given by:

plnd ={po} U~i'c1(A xplnd),

where A = B U Index, and Index is a set of indices (to be defined below). A node p'

of a process p EP!nd with

p' = { <v,p v> I PEI},

for some subset I of Index, is called a sum node and is denoted by

p' = '2,p •.
PEI

After having defined the function Fair, we shall clarify the relation between p and

Fair(p) by defining a mapping

<1): Paths(Fair(p))~Paths(p),

that will satisfy the following two properties. First, for every path 'TTEPaths(Fair(p))

we have that $('TT) is fair. Secondly, any fair path inp will be in the range of .P. The

function Fair will be defined in such a way that it transforms a process p into a fair

process Fair(p) by labeling each node of p with an index and, moreover, interspersing

some new nodes consisting of sums of indices (to be defined below). Indices are the

main building blocks in the definition of the function Fair. They are defined as

10 llM.M. Rutten and 11. Zucker I Fairness

follows.

DEFJNITION 3.l (Indices)

The set Index of indices, with typical elements v, is given by

Index = { <n~', ... , n~~ > I

V'iE{l, ... ,m} [n;;;.O /\O<s;.;;;oo /\ (n;=O~s;= oo)J},

where m is the number of elements in B, and n1' denotes the Cartesian pair <n;,s;>.

Let p be a process and /1 an index. The process p ", which is defined below, can be

viewed, informally speaking, as a process that behaves like p as far as is allowed by

the index v. Consider the i-th element of v, say nf'. It is related to b;, the i-th ele

ment of our alphabet B. The interpretation of nf' (relative top) is that in paths start

ing in p, a step b; is permitted 11; times with priority s;.

For the priorities s; we have the convention that a low number indicates a high prior

ity. It is possible that two or more s;'s have the same value, the corresponding b;'s

having the same priority. The symbol oo indicates the lowest priority possible.

Because it is always associated with an n that is 0, it can also be interpreted as indi

cating no priority at all.

REMARK

The interpretation of the i-th component nf' is in a sense orthogonal to the approach

taken in e.g. [AO]. There a single number z; is used to indicate the priority of the i-th

component of some system of active components. This number z; indicates, roughly,
the number of times a computation can "allow itself' not to choose this component as

the next one to make progress. In our approach the number n; indicates the number

of times we are allowed to choose b; (the i-th component) as the next step, before

another component gets the highest priority.

Now suppose we have a process p containing a step <b;,q >:

p = { ... ,<b;,q>, ... };

and assume furthermore that we have PElndex with

v = < ... ,nf'' ... >

where n;>O and s;=min{s 1, ••• ,sm}· Then, according to our interpretation ofp",
it is permitted to choose <b;,q> as the first step of a path starting fromp. With the
resumption q of this step will be associated a new index ,,- (i], in which n; is
decreased by one. If n; >I nothing happens to the priority s; of b;. If n; = I (and so

J.J.M.M. Rutten and J.l. Zucker I Fairness ll

decreased to 0) it is, for the time being, the last time that b; is allowed, and s; is

changed to oo (the lowest priority possible). As we will see, at some later stage it will

be taken care of that n; and s; are reset again, so that n; >0 and s; < oo. All this is

formalized in the following definition.

DEFINITION 3.2

Let vElndex be such that

and let iE{l, ... ,m}. We define

<n~', ... ,(n;-1)\ ... ,n;;,'> if n;>I

v-[i]== <n~', ... ,000 , ••• ,n':;;> if n;=l
undefined if n;=O.

There is another operation on indices we shall need.

DEFINITION 3.3

Let vElndex be such that

then

- -
N(v) = { <n~', ... ,n:7> I

'v'jE{I, ... ,m}

The elements v in N (v) are obtained from ,, by changing, for all i with n; = 0 and

s; = oo, the value of n; to an arbitrary positive number and the value of s; to s + 1. In

words, this means that b; is again allowed to be chosen (n; times) but with a priority

lower than all other priorities present in I' that are not oo. This definition will also be

used in the definition of Fair, where it will be further elucidated.

We now give this definition, upon which an explanation will follow.

DEFINITION 3.4 (Fairification)

We define a function

12 J.J.M.M. Rutten and J.J. Zucker I Fairness

Fair: p-';plnd.

Let p EP. Then

Fair(p) = 2: fair(p,v),
vEl0

where

lo= {<nl, ... ,n~,> I n;>O, i=l, ... ,m}

and

fair:P Xlndex-';P 1nd

is defined as follows. (We often write p" for fair(p, v).) For all vElndex we define

fair(po,v) =PO·

For p-=Fpo we distinguish two cases.

Case 1:

Case 2:

REMARKS

If 3i E { 1, ... , m} [n; >0 !\ s; < oo !\ enabled(i)],

then p" = { <b1,qv-UJ> I <b1,q>Ep As1=rnin{s1, ... ,sm}}.

If V'i E {1, ... , m} [enabled(i) ==> (n; = 0 !\ S; = oo)],

then p" = 2: p".
vEN(v)

(1) The definition of fair:P X/ndex-';P 1nd is self-referential and therefore needs
some justification. We observe that fair could be defined as the fixed point of a
mapping

IP:(P X /ntJex-';plnd)-'>(P Xlndex-'>Pind),

which can be defined according to the definition scheme of fair above. It is
straightforward to show that such a definition yields a contracting function (as
we will see), which thus has a unique fixed point (cf. Banach's fixed point
theorem ([E], [BZl])). We now show that IP is a contracting function using equa
tion (*) in Remark 2 in Section 2. First note that the distance between two
functions

J.J.M.M. Rutten and J.J. Zucker I Fairness 13

is given by

d(cp, i./;) = sup { d(cJ>(p,v), iJ;(p,v)): p EP, 11Elndex} (1)

So

d(4>(</>), (f)(>f)) = sup {d(4>(q,)(p,11), 4>(>f,i)(p,J1)): p EP, PElndex} (2)

Now for all p EP, vElndex

Hence

d(4>(<1>)(p,11), <f>(lf;)(p,11)) = (following Definition 3.4 schematically)

IF p =po THEN d(po,po) = 0

ELSE IF [Case l] THEN Msup{d(</>(q, 11-un, i/l(q, 11-U])): ••. } by(*)

~ Yid(</>, i/;) by (1)

ELSE IF [Case 2] THEN M sup{d(</>(q, ii), i/;(q, ii)): iieN(J1)} by(*) again

~ Yid(</>, i/;) by (1)

d(4l(cp), <f>(>f,i)) ~ Md(cf>, i./;) by (2)

(2) Because case 2 never occurs twice in succession, fair(p, J1) never contains two

sum nodes successively.

(3) Every node in Fair(p) is either a sum node, or of the form { <b;1,pj > Jj el}, for

some set of indices I.

(4) We give some informal intuition for this definition. The indices J1Elndex in the

definition above can be interpreted as strategies for the construction of a process

Fair(p) such that every path in this process will be fair with respect to every b;

in B. An element 11 in I o can be regarded as permission, for each i, to choose b;

n; times. All i are supplied at the beginning with the same priority, that is I.

We will treat p' for the case that p=j=p 0. As long as case 1 applies there is no

need to change our strategy or, in other words, to choose a new JI. Each b; that

is enabled atp, and for which n;>O and S; =min{s1, ... ,sm}, may be chosen as

the next step in the new process we are constructing. The index JI is changed

according to the definition of 11 - [i], so n; is decreased by I and the priority s;

remains constant, unless n; was I. Then it is set to oo, indicating no priority at

all. Because every application of case 1 causes the decrease of an n;, it is obvi

ous that after a finite number of such applications case 2 must hold. For didac

tic purposes we shall now make a conceptual distinction between two possible

situations that may arise in this case. Formally however, as may be inferred

from the definition of case 2, this is not necessary.

14 J.J.M.M. Rutten and J.J. Zucker I Fairness

First, it may be the case that all n;'s have been decreased to 0 (and all s;'s have

been set to oo). Then we can consider the strategy suggested by the v we started

with to be a great success: every b; has been chosen the number of times we had

in mind for it (n;). The fact that originally all n;'s were strictly positive implies

that so far we have made sure that all b;'s have been treated fairly. It is clear

what to do next: we can just restart by choosing a new index v, with all n;

strictly positive and all s; set to I. According to the definition of N (v), this is

exactly what happens in this case.

The second situation is more typical. It concerns the case that for all i that are

enabled at p, n; = 0 and S; = oo. But we have not finished the strategy suggested

by the original P, because there exists at least one j not enabled at p, with n1 >0

and s;<oo. Although we have not finished our first strategy, we are forced to

change it because it does not tell us what to do about the i's that are enabled at

p. A new strategy v is defined such that for all j with n1>0 and s1<oo these

values remain unchanged, thus preserving that part of the first strategy (v) that

has not yet been dealt with. For all other i (enabled or not enabled) the value of

n; is set to an arbitrary strictly positive number, and the value of s; to

max{s1, ... ,sm}+l. So the new priority introduced here is lower than all the

already existing priorities. When at a later stage one of the js, for which n1 and

s1 remain unchanged here, is enabled, it will take precedence over those i's for

which a new priority is introduced. Thus a fair treatment of such js is ensured

for the future.

Now for the rest of this section let p E P be fixed. We define a mapping

<I>: Pathr(Fair(p))-'>Paths(p),

relating to each path ?T in Fair(p) a fair path in p. For its formal definition we shall

make use of the following lemma.

LEMMA 3.5

For all pEP with p=/=po, vElndex and <a,q>Efair(ji,v), there exist p'EP and

v' Elndex such that

q = fair(p',v') /\

aE/ndex=*p'=p A

a EB =* <a,p'> Ep.

The proof is straightforward from the definition of j" (= fair(ji, v)).

DEFINITION 3.6 (The mapping <I>)

J.J.M.M. Rutten and J.l. Zucker I Fairness 15

Let

'TT= <ao,qo>, <a1,q1 >, · · ·

be a path in 1'mr(p). By the above lemma and the definition of Fai.r(p) we can
rewrite it as

'TT= <ao,pv>, <al>p)' >, ... ,

for certain v,v1, ... Elndex and p 1,p 2, ... EP. Now if we delete all pairs
<a;,p~' > with a; Elndex, and all superscripts P;, we get a sequence

which is a path in p. We call <l>('IT) the path in p corresponding to the path 'IT in
Fair(p). This defines a mapping

<I>: Paths(Fair(p))-o,Paths(p).

EXAMPLE

Consider the alphabet B = {O, 1} and the process p EP defined by

p~{<O,p>, <1,p>}

We give an example of a path 'TT in Fair(p):

'IT=

<<3 1, 21 >, fair(<3 1, 21 >, p)>,

<1, fair(<3 1, 11 >, p)>,

<0, fair(<2 1, 11>, p)>,

<I, fair(<21, 000 >, p)>,

<0, fair(<l 1, 000 >, p)>,

<0, fair(<Ou°, 000 >, p)>,

<<23 1, 183 1 >, fair(<23 1, 183 1 >, p)>, · · ·

For this 'IT we have

<l>(7T) = <l,p >, <0,p >, <l,p >, <0,p >, <0,p >, ...

Next, we have an important theorem.

16 J.J.M.M. Rutten and Jl. Zucker I Fairness

THEOREM 3.7

Fair(p) is fair. That is, for all 'TT E Paths (Fair(p)), 'TT is fair.

PROOF

Let 'II" EPaths(Fair(p)) be such, that

Suppose h; is enabled infinitely often in 'TT. We must show that b, occurs infinitely

often within 'TT. It is sufficient to show that for any j, if h; is enabled at the node P?
of 'II", then h1 occurs further on in the path 'TT, that is, for some j';:;;. j: h, ·-a/.
We consider the sequence v1, "J + J, ... and observe that for every k F~l\I, ''k , 1 is
obtained from "k by an application of case I or 2 in the definition of fair(p, v)

(definition 3.4). Now let

_ < S1 Sm~~ ,,, .. n 1 , .•• ,n,,,.o>.

We consider all possible cases.

(1) n; 0:
Then s; = oo. For every application of case l (above) one of the nk 's mu:<>t

decrease. Therefore eventually case 2 must apply, which makes all nk 's positive

and brings us to the next case.

(2) n; >0: This implies s; < oo. As long as s1 is not the highest priority, the followrng

may happen. Any application of case I results in either the decrease of an n,,
not to 0, or the decrease of an nk to 0 and the removal of a higher priority than

s,. After a finite number of applications of case J, the latter must happen. Any
application of case 2 introduces only priorities that are lower than s,, and mut>t

he followed by an application of case J. Furthermore, during any of these appli ·
cations, ni and s; remain constant. It follows then that eventually s, will he the

highest priority. Because h, is enabled infinitely often in 'Ii, it must he enabled at
some step beyond this, at which point case l will be applied to it and h1 will

occur at the next step.

Now that we have proved that we did not promise too much, that is to say that
Fai.r(p) indeed contains only fair paths, let us also make sure that for all fair paths in
p there is a corresponding path in Fair(p).

Tl!l:OR!;M 3.8

Any fair path in p is in the range of the mapping <I>.

J.J.M.M. Rutten and J.l. Zucker I Fairness 17

PROOF

Given a fair path 'ff'EPaths(p), we must construct a path 'TTEPaths(Fair(p)) such that

cI>('1T) ='ff'.

First, we partition the set { 1, ... , m} into two parts F and l, where F is the set of

all i such that b; is enabled finitely often (perhaps never) in 'TT', and I is the set of all i
such that b; is enabled infinitely often in 'TT'. Thus:

{l, ... ,m}=/UF.

Note that for all i EF, b; occurs only finitely often in 'TT', and for all i El, b1 occurs

infinitely often in 'TT', since 'TT' is fair. Let/ 1 EN be so big that

(1) nob; with i EF is enabled in the part of 'TT' at or after step / 1;

(2) every b1 with i El occurs at least once by then.

Now for i = 1, ... , m, let n;' be the number of times that b; occurs before (or at) step
l 1 and then define

n· = [n;'+ 1 if iEF
' n;' if i El.

We define our first index v1 by

v1 = <n}, ... ,n~>.

Now we can construct the first part of the path ,,,. corresponding with the part of 'TT'

before step l 1, by starting with p •, and repeatedly applying case 1 for the appropriate

b;, thus decreasing the n;'s until (at step 11) our index is such that for all

iE{l, ... ,m}:

iEF=?n;=l /\s;=l,

Now case 2 must be applied to get a sum node, since no i EF is enabled at step t 1.

To determine the following index v2 we again choose a number !2 EN, with l2>l i,

such that every b1 with i El occurs at least once between steps l 1 and / 2 (including l 1,

excluding 12). Then choose an index v2 such that, for i El, n; denotes the number of

occurrences of b; between / 1 and 12• We proceed as before, constructing the part of

'ff' between / 1 and / 2 • Continuing in this way, we construct a path 'IT in Fair(p) such

that ll>(w) ='TT'.

REMARK: This function <P is not bijective. In general there are more than one (in fact,

infinitely many) paths in Fair(p) that are mapped by <P to the same path in p.

18 J.J.M.M. Rutten and J.l. Zucker I Fairness

4. fAIRIFICATION OF PROCESSES WITH INFINITE ALPHABET

We now want to extend our technique of fairification to a set of processes, which we

shall (again) call P, defined by

P ~{po} U0'c1(B XP),

with B an infinite denumerable alphabet:

We shall again define a function

Fair:P->P 1nd,

where plnd is given by

pind ={po} U0'c1(A xplnd),

A =BUlndex,

with Index to be defined below. We shall repeat the approach of the previous section

with some small but essential changes. The definitions, lemmas and theorems that

need not be changed will be mentioned, but not repeated in full.

An important change is the new definition of indices. They no longer have a fixed

length.

DEFINITION 4.1 (Indices)

The set Index of indices, with typical elements v, is given by

Index= LJ Jndex[m]
mEN '

with

lndex[m] =

{ <n~', ... ,n;;> \'Vii::{!, ... ,m} [n;;;;.,O /\O<s;~oo /\ (n;=O<:=}s;= oo)]}.

An index of length k is related to the first k elements of our alphabet B. The

interpretation of n; and priority s; is as before. When we define, for a given process

p, a fair version Fair(p), we shall, during the construction, increase the length of the

indices used, thus considering fairness with respect to a growing number of basic

steps b;. Once the length of an index is bigger than or equal to some i i::N, it is

ensured that b; is treated fairly thereafter. The definition of the first operation on

indices, v- [· · ·], remains unchanged, but for the fact that the original definition

J.J.M.M. Rutten and J.I. Zucker I Fairness 19

(3.2) should hold for indices of arbitrary length. The most important adaptation of

this section lies in the following new definition of N (v).

DEFINITION 4.2

Let vElndex be such that v == <n~', ... , n;;• > and let p EP. We define

- -
-s1 -Sm• I

N(v,p) == { <n1 , ... , nm'>

m'>m /\

{k I l~k~m' /\nk>O/\k enabled atp}* 0 /\

Let us see how this definition is used in the definition of the function Fair below, and

then try to comment on its intuitive interpretation. Although we do not change the

definition of Fair (definition 3.4), we repeat its most interesting part and discuss it in

the context of the altered definition of N(v).

If p EP with p*p 0, then p" (== fair(p, 11)) is given by:
Case 1:

Case 2:

If 3i E{l, ... , length(11)} [ni>O /\ si < oo /\ enabled(i)],

then p" = { <b1,qv-[j] > I <b1,q> Ep /\ sj == min{s J, ... , S/ength(v)} }.

If ViE{l, ... ,length(v)} [enabled(i)=;.(n;=O/\s;=oo)],

then p" == 2: p ".
vEN(v,p)

The interpretation of case 1 is the same as before. When the condition of case 2
holds, we are obliged to change our strategy, that is to choose a new index, because
our current strategy does not say anything about the ts that are enabled at p. This
can have two reasons. For such an i we either have ni =O and s; = oo or i>length(v).

20 J.J.M.M. Rutten and J.l. Zucker I Fairness

In order to be able to continue our construction, we therefore allow several new stra

tegies v EN (v,p), which all must satisfy the following constraints. First, the part of
the old strategy v that has not been dealt with yet has to be preserved: for

1~i~length(v) with ni>O and s;<oo we have 1ii =n; and .s; -==s;. Then, for
1~i~length(v) with n;=O and s;=oo, the values of n, and s; are reset: n; arbitrary
positive, s; """ 1 + s. As in the finite case, the new priority is lower than the existing
ones. Because we want each bk EB eventually to be treated fairly, for each k there
should be a moment in our construction where an index v is introduced with
length (v)>k. Therefore we require the length of the new index v to be strictly greater
than the length of v. For the newly introduced j's (length(v)<j .,,;;;,m) we require

(n/>O /\ s; =s + J) v (ii;= or, S('" oo).

Although here n1=0 is allowed, we know that the next time that case 2 is applied n1

will be set to a strictly positive value. The newcomers, so to speak, arc granted one
(and only one) moment of respite. The motivation for this generosity lies in the
rather selfish wish to prove theorem 4.4. It appears that it would he too restrictive to

demand for all such j that iii >0. Finally, the condition that

{k I I ~k~m' /\ nk>O (\ k enabled at p} / 0

entails that case 2 can never occur twice in succession.

Now for the rest of this subsection let p E P be fixed. We define a mapping

<i>: Paths(Fair(p))-;.Path.s(p),

relating to each path Tr in Fai.r(p) a fair path in p, in exactly the same way as in
definition 3.6. We finally repeat theorems 3.7 and 3.8 of the previous section, which
together show that the definition of Fair(p) (using the new definition of N (P,p)) is
satisfactory. The former proofs of these theorems have to he altered, as can he seen
helow.

EXAMPLE

Consider the alphabet B '""'{O, 1, 2, 3, · · · } and the process p < P defined hy

P'"""{<:O,p>, <1,p:>, <2,p>, · · ·}

We give an example of a path Tr in Fair(p):

<<2 1, 11>,fair(<2 1, 11>,p)>,

<0,fair(<l 1, 11>,p)>,

J.J.M.M. Rutten and J.l. Zucker I Fairness

<0, fair(<000 , 11 >, p)>,

< 1, fair(<0 00 , 000 >, p)>,

<<13 1, 21,421, 11 >, fair(<13 1, 21,421, 11>, p)>,

<2, fair(<13 1, 21,41 1, 11 >, p)>, ...

For this 'lT we have

<f>('lT) = <0,p>, <0,p>, <l,p>, <2,p>, ...

'))!EOREM 4.3

Fair(p) is fair. That is, for ail 'lTEPaths(Fair(p)), 'IT is fair.

PROOF

Let p EP and let TTEPaths(Fair(p)) be such that

21

Suppose b; is enabled infinitely often in 'IT. We must show that b; occurs infinitely

often within TT. From the construction of Fair(p) it follows that in the sequence (vj)j

each index "i + 1 is obtained from "i by an application of case 1 or 2. Since case 1

can be applied only finitely many times in succession, it follows that case 2 must have

been applied infinitely many times, each application increasing the length of the

index. Therefore there is an N EN such that for all j > N:

length (111) > i.

Now we arc back in the old situation of the previous section! The proof can be com
pleted as before, but for the new observation that with the increase of the length of

an index, only priorities lower than the existing ones are introduced.

T1moREM 4.4

Any fair path in p is in the range of the mapping 41.

PROOP

Given a fair path TT' E Paths(p),

we must construct a path 'ITEPaths(Fair(p)) such that

et>('IT) -~ 'IT'.

22 J.J.M.M. Rutten and J.l. Zucker I Fairness

First, we partition N into two parts F and /, where F is the set of alI i such that b; is
enabled finitely often (perhaps never) in 'Tr', and I is the set of all i such that h; is

enabled infinitely often in w'. Thus:

N=!UF.

Note that (as in 3.4) for all i EF b; occurs only finitely often in 'TT' and for all i E/ b;
occurs infinitely often in 'Tr', since rr' is fair. Secondly, we introduce the following

functions that will be very useful in our proof.
(a) For all LEN we define a (position) function PosL:B-'>N by

smallest L'~L such that
if kEF

PosL(bk) = smallest L'~L such that

3j [L<j<L' /\ b;1 =bk] if kEI.

For k E F this function gives the smallest position greater than L after which bk

is never enabled again. For k El the smallest position greater than J. is chosen

such that bk has occurred (at least) once since L.
(b) For all L, L'EN, with L~l/, we define a (number) function Num1,.f,':B->N by

I+ (number of occurrences in w'

of bk between L and L') if k EF

(number of occurrences in 7r'
of bk between L and L') if k E f.

(In this definition between L and L' means including f. and excluding L'.)
We shall define, at each of an infinite sequence of stages k, an index Pk and,
corresponding to that index, the k-th part of the path 'TT corresponding to 'TT'. After
we have constructed, at stage k -1, the (k - 1)-th approximation of path 'TT

corresponding to the initial segment

<b;,,p1>, ... ,<b;,,p1>

of path w', then at stage k we shall take into account the basic steps h,1 ,, and all the

b/s we have cnc:ountered in the preceding stages. We shall make sure that the length
of the index vk will be, as prescribed by definition 4.2, strictly bigger than the length
of Pk - 1. Note that in the previous section, where our alphabet was finite, from the
beginning we could focus on all h/s at the same time.

Stage 1

For the definition of our first index P 1 we focus on basic step h, 1 • We define

L1 = Pos 1(h;,),

J.J.M.M. Rutten and J.L Zucker I Fairness 23

Mi= maxR 1.

Our first index PJ, with v1 = <n~', ... , n';;; >, is defined so that

The length of v 1 is M 1, because according to the definition of indices no holes are

allowed in v1, that is: every index is related to an initial part of the enumeration of

our infinite alphabet { b 1,b2, •.• }. For those basic steps bi that do not occur in the

path 'TT' before place L 1, default values n i = 0 and si = oo are chosen in v1• (Here we

use the fact that for newly introduced j's, ni can get the value 0 once. See the

corresponding remark in the explanation following definition 4.2.) With v1 we can

construct the first part of 'TT corresponding to the part of w' before L 1, starting with

p "1 , and repeatedly applying case I for the appropriate bh thus decreasing the n;'s

until (at step L 1) our index is such that for all 1 ~i ~M 1:

(i EFn R 1) "'* (n;= 1As;=1),

Now case 2 must be applied, since no j EF n R 1 is enabled at step L 1. This brings us

to stage 2.

Stage 2

We define our next index v2, taking into account all steps encountered at stage 1, that

is all b;'s with 1 ~i ~Mi, and the next step in the path 'TT', that is b;L,. We define

We define our second index v2 , with v2 =<ii{', ... , ii~~>, such that

';/l,,,;;,,j,,;;;.M2 [((I,,,;;,,j,,,;;,,M1 f\ni=O)V(j>M1 AjER2) =?

iii= NumL"L 2 (b) A si = 1+max{skf1,,,;;,,k~M i}) A

24 lJ.M.M. Rutten and 11. Zucker I Fairness

Note that M 2, the length of P2 , is strictly bigger than M 1, the length of P1. We
proceed as before, constructing the part of 'll' corresponding to the part of 'll'' between
L 1 and L 2 . Continuing in this way, we construct a path 'll' in fair(p) such that

<l>('ll') ='TT'.

5. INFINITE ITERATION

Let P be the mathematical domain of section 3, that is, a complete metric space satis
fying

where B is a finite alphabet

The operation of sequential composition on P is defined in

DEFINITION 5.1 (Sequential composition)
Leto: Pxp_,,.p be given by

[
q ifp=po

pcq = { <h,p'0q> I <b,p'> Ep} ifp=/=po

for all p and q in P.

REMARKS

(1) Because this definition is self-referential, it needs some justification. We observe
that 0 can be defined as the unique fixed point of a contraction <I> of type
<I>: (P XP~P) ~ (P XP-'>-P). (Similar argument to that for Fair: Remark (I)
after Definition 3.4.)

(2) It is not very difficult to show that:

I
"tp,q,q'EP fp=/=po ~ dp(poq,poq') ~2dp(q,q')]. (**)

We shall use this property below.

In this section we want to study the operation of irifinite iteration of a process p EP.
It is defined as follows:

J.J.M.M. Rutten and J.I. Zucker I Fairness

DEFINITION 5.2 (Infinite iteration)

Let (· · ·)w: p_,,p be given by

pw = limpn
1)--400

for p r:c:P, where po"" po and pn + 1 =pnop.
(This limit exists, as can be easily proved using the property of remark (2) above).

25

Let us now explain how fairness issues come into play by taking the infinite itera

tion of p EP. Generally, taking the infinite iteration of a process p EP introduces
new infinite paths in p"' that were not yet present in p. When we take, for example,

pc·. { <a,po >, <h,po> }, then p does not contain any infinite paths, whereas pw,
which satisfies

contains many. Some of these arc unfair, such as

TT= <::.a,pw>,<:a,p"'>,<a,p"'>, ... ,

which is unfair with respect to b. Such unfair paths TT we call globally unfair. We do
not call every unfair path in pw globally unfair, only those that are introduced, so to

speak, by taking the infinite iteration of p. Another example may illustrate this point.

(Formal definitions follow below.) Consider a process p EP satisfying

p ~c { <a,p >, <h,po > }.

Then pw will contain the unfair paths

<a,p :.:::·,.., <a,p :>, ... ,

~<h,p ~>, ... <a,p >, <a,p >, ... ,

•C:::.b,p :>, <b,p >, <a,p >, <a,p >, ... , etc.

The unfairness of these paths is, as it were, reducible to the unfairness of the path

<a,p :;:.>, <-::..a,p :>, ... ,

which was already present in p. Therefore they will not be called globally unfair

paths.

There is a second notion of unfairness, which plays a role here. It is called node

(or local) unfairness. Again we explain it here by giving an example, the formal
definition following below. Let p EP contain the node p'== { <a,p 1 >, <h,p2 > }. Let
TTE:Path.<;(pw) and suppose TT passes throughp' infinitely many times. If it is the case
that in w the next step that is taken after passing through p' is always a, and never h,

26 J.1M.M. Rutten and J.I. Zucker I Fairness

we call 'ff node unfair (with respect to the node p'). The reason for this terminology
is obvious: although b is infinitely often enabled in 'ff at node p', it is never chosen in

'TT as the next step after p '.
The notions of global and node unfairness are in a sense independent. Let p EP be

given by

p = { <b,p'> }, where

p' = {<a,p>,<b,po>}.

Consider 'lTEPaths(p"'), given by

'ff= <b,p'>,<a,p>,<b,p'>,<a,p>,

This path is not globally unfair, but is node unfair with respect to the node p'. Thus
node unfairness does not imply global unfairness. The same holds in the opposite
direction. Let p E P be defined by

p = {<an,{<a,p 0 >,<b,p 0 >}>1nEN} U {a"'},

using an and a"' as shorthand with an obvious interpretation. (The fact that a"' Ep is
not important for the point we want to make with this example, but is implied by the
(topological) closedness of p.) Now it is not difficult to find a path

in Paths(p"') (withp 1,p 2,p 3, ... nodes ofp) that is globally unfair (with respect to
b), but fair with respect to every node of p, although it passes through p infinitely
many times.

Note that the notions of global and node fairness are not related to each other as
those of "top level" and "all levels" fairness (cf. Section 3.3 in [FJ), since "all levels"
fairness implies "top level" fairness, but (as we have seen) neither of global and node
fairness implies the other.

Let us now proceed with formally defining these notions of global and node unfair
ness. Actually, we shall define what we consider to be globally fair and node fair.
For this we need the following notion.

DEFINITION 5.3 (Iteration paths)

Let p EP, 'llEPaths(p"'). We call 'TT an (in.finite) iteration path, whenever 'TT is the con
catenation of an infinite sequence of finite paths 'TTJ, 7r2, ••• EPaths(p):

For a basic step b occurring in 'Tlk we say that b occurs in the k-th instantiation of p.

J.J.M.M. Rutten and J.1. Zucker I Fairness

DBflNITlON 5.4 (Global fairness)

Letp EP, 'ITEPaths(pw). We call 'IT globally fair whenever

(1) 'IT is fair (in the sense of definition 2.3); or

(2) 'IT is not an iteration path.

We call p w globally fair whenever all paths in p w are globally fair.

27

REMARK: It follows that a path in p"' is globally unfair if and only if it is an iteration

path and unfair.

DEFINITION 5.5 (Node fairness)

Let p 1'": P, 'ITEPaths(p"'). We call 'IT node fair with respect top', for a subnode p' of p,

whenever it is the case that: if 'IT passes through p' infinitely often, then for all b EB

that arc enabled in p': b occurs infinitely often in 'IT, immediately after p'. We call 'IT

node fair if it is node fair with respect to every subnode p' of p. Finally we call pw

node fair if all paths in Paths(p w) are node fair.

The aim of this section is to define two fair versions of the infinite iteration operator:

such that the result pwf''' will be globally fair and node fair respectively. For this

purpose we first give an alternative definition of infinite iteration, which will be used

as a start.ing point for defining (· · · t 1"".

PROPOSITION 5.6 (Alternative definition of infinite iteration)

I.et p c P. We define Appp: P _,,p by

Appp(po) = p oAppp(p)

Appp(q) ·""' { <a,Appp(q')> I <a,q'> Eq}, if q=/=po.

(Read '"append'' for App.) Then we have:

PW Appp(p)

REMARKS

(1) Formally, Appp can be defined as the unique fixed point of the function

<Pp: (P-">P) _,. (P_,.P), given by

(l>f' (<P)(p 0) ::-.: pa<f.f..p),

<l>p(</>)(q) = { <a,<f>(_q')> [<a,q'> eq}, if q=f;p 0•

(Again it can be shown that if>p is contracting by a similar argument as given in

28 J.J.M.M. Rutten and J.J. Zucker I Fairness

Remark (1) following Definition 3.4)

(2) The function Appp applied to an argument qEP replaces all occurrences of po in

q by p, in which, recursively, all occurrences of po are again replaced by p.
(3) From proposition 5.6 it follows that Appp(po)=Appp<p).

PROOF OF THE PROPOSITION

We define, for fixed p EP, a function </>p: P -..c;P by

We have

and, for q EP, q=/=p o:

<i>p(q) = qop"' (definition of o)

{ <a,q'op"'> I <a,q'> Eq}

{ <a,r:f>p(q')> I <a,q'> Eq}.

From this it follows that </>p is also a fixed point of il>p. Because il>p is contracting, it

has a unique fixed point, thus </>p =Appp- Thus

(l) Global fairness

In this subsection we set out to define a fair version

of the operation of infinite iteration such, that for p in P the result p "'1,;, will be glo

bally fair. The range pFind of this mapping (· · · t1'1' is given by

pFind = {po} U0'c1(A xpFind),

with

A = B U Findex,

where Findex is a set of indices to be defined below. A naive first attempt would be
to define

p"'1"' = Fair(p"'),

J.JM.M. Rutten and J.I. Zucker I Fairness 29

with the function Fair as in definition 3.4. This would be wrong, according to our

definition of global fairness. The function Fair transforms its argument into a pro

cess, in which all unfair paths have disappeared. However, not every unfair path in

p w is globally unfair, only those that are iteration paths. Thus the function Fair

removes too many paths from pw. (For an illustration see the informal explanation

above.) Therefore we have to come up with another solution. We shall use the

definition of p"' as Appp(p) as a starting point for the definition of p wf"'', but changing

it by again using indices (as we did in the definition of Fair) to label the nodes of p.

After having defined p wr"", we shall clarify the relation between p'"f"" and pw by

defining a mapping

Although the idea of defining p wfav as Fair(p w) does not work (as was mentioned

above), the definition of (· · ·)"'!"'' will be surprisingly similar to that of the func

tion Fair. The reason is the following: in constructing p "'f"" for a given p EP, we do

two things at the same time. On the one hand we construct (a special version of) the

infinite iteration of p, and on the other hand we select certain paths, namely those

that are globally fair. The first task is performed along the lines of the definition of

Ap;p, the second task is realised following the definition of Fair. So in some sense

the definition of p "'f"'' will be a combination of the definitions of Appp and Fair (see

proposition 5.6 and definition 3.4).

DEFINITION 5.7 (Flag indices). The set of flag indices, with typical element µ,, is

defined by:

FITulex

where m is the number of basic steps in our finite alphabet B, and { U,D} is the set

of flags, containing two elements: U (for "up") and D (for "down").

The interpretation of n; and s; is as in definition 3.1 (see the informal explanation

that follows there), but for the difference that only the first occurrence of b; in each

instantiation of p in p wf"'' will cause n; to be decreased by 1. Whether or not h; has

been chosen in a given instantiation of p, is indicated by the tlag ft. If it is up, b; has

not yet been chosen, and if it is down, b; has been chosen at least once in the current

instantiation of p.

We need the following operations on indices.

DEFINITION 5.8

30 J.J.M.M. Rutten and J.l. Zucker I Fairness

Let µEFfndex, with µ=<<nJ,s 1,f1>, ... , <nm,sn,,fm>>, and let iE{l, ... ,m}.

We define

µ. iff;=D

<<n1,s1,/1>, ... , <n;-1,s;,D>, ... , <nm,Sm,fm>> iff;=U !\n;>l

µ.-[i] = <<n 1,s 1,J1>, ... , <0,oo,D>, ... ,<nm,smJm>> iff;=U !\n;=l

undefined otherwise.

For µEFlndex with f; =Uthe interpretation of µ-[i] is as in definition 3.2, with the

difference that U is changed to D. This indicates that in the current instantiation of

p the basic step b; has been chosen (at least once). If f; =D, then µ-[i]=µ, as indi

cated above. This will be explained below, after the definition of p w1'''.

DEFINITION 5.9

Let µEFlndex, withµ= <<n1,s 1,j1>, ... , <nm,smJm>>. We define

!\ (n;>O !\s;<oo ~n;=n; !\s;=s;)}.

The definition of N(µ) is as in definition 3.3, because the flags do not matter here.

DEFINITION 5.10

Let µEFlndex, with µ=<<n1,s1,/1>, ... , <nm,sm,Jm>>. Then

This operation sets all flags to "up" and is used upon entrance to a new instantiation

of p. Now we are ready to define (· · ·)"'!,;,.

DEFINITION 5.11 (Fair infinite iteration)

We define (· · ·)"'t';,:P-'>PF!nd. Letp EP. Then

pwp,,, = L Appp<p,µ),
p.E/o

where

lo= {<<n1,1,U>, ... ,<nm,1,U>>/n;>O}

and for givenp eP

Appp: p XFITUJex~pFind

is defined as follows. (We write q" for Appp(q,µ).) Let µEFlndex. We define

J.J.M.M. Rutten and J.I. Zucker I Fairness

For q EP, q=fpo, we distinguish two cases.

Case I:

Case 2:

REMARKS

If 3iE{l, ... ,m} [enabled(i)A(fi=Dv(s6oo/\n;>O))],

then qP. = { <b;,qp.-[i]> I <b;,q> Eq/\

If \>'iE{l, ... ,m} [enabled(i)=;.(f;=U/\s;=oo/\n;=O)]

then q" = 2: qP.'.
p.'EN(p.)

31

(1) The remarks (1), (2), and (3) following definition 3.4 apply also to the above

definition.

(2) We give some informal explanation of this definition by referring to remark (4)

after definition 3.4 and making explicit what is different here. First, when we

reach Po in the definition (3.4) of fair, we are done: fair(p 0,v) =PO· Here we

continue by appending p to p 0, together with the index µ. changed into

µ.u: App/p 0,µ,)=App/.p,µ.u). The reason why we append p to p 0 is obvious: we

are building the infinite iteration of p. (See proposition 5.6.) The index µ. is

changed to µ.u, that is all flags Ji ofµ. are set to U to indicate the entrance of a

new instantiation of p. The second important difference between this definition

and definition 3.4 is the role played by the flags. Let qEP with <b;,q> Eq for

some qEP, b;EB. If fi=D (down), then b; has already been chosen (at least

once) in the current instantiation of p. Therefore it may be chosen unrestrictedly,

even infinitely many times, within this instantiation of p (no matter what the

values of n; and s; are). In this case we have: µ.- [i] = µ, formally expressing that

b; may pass "for free" without changing the values of n; and s;. The reason for

letting b; pass for free is that it provides us with the presence within p "''"'' of

those infinite paths (possibly unfair) that are not iteration paths (and, hence, not
globally unfair). If on the other hand f; = U and n;>O and
s1=min{s1, ... ,sm}<oo, then b1 may be chosen (as in case 2 of definition 3.4),
but now µ, is changed into µ-[i] by changing the values of n; and s1 (as in

definition 3.4) and by changing the :fiag.fi to D.

Now for the rest of this subsection let p E P be fixed. We define a mapping

32 J.J.M.M. Rutten and ll. Zucker I Fairness

relating to each iteration path inp"'i"' a corresponding fair iteration path inp"'. We

start by re-stating lemma 3.5.

LEMMA 5.12
LetjJEP, withp=po, µ.EFlndex, and <a,q>EAppp(j,µ.) for aEB and qEP. Then
there existp'EP and µ'EF!ndex such that

q = Appp(p',µ') /\

aEFlndex =>p'=p ;,

a EB =='> <a,p'> Ep.

The proof is straightforward from the definition of pi' (= Appp(j,µ.)).

DEFINITION 5.13 (The mapping .P)

Let

be a path in p "''"'. We can rewrite it as:

for certain µ.,µ.J,µ.2, ... EFlndex and p l>P 2, ... EP. If we omit in 1T all pairs

<ai,p); > with ai EFlndex, and further all superscriptsµ.;, we get a sequence

.P(w) = <ai 1 ,pi 1 >, <ai,,Pi, >, · · ·

which is a path inp"'. We call .P(w) the path inp corresponding to the path w inp"'f0 ;'.

This defines a mapping

THEOREM 5.14

p "'1°" is globally fair. That is, for all w E Paths(p "'1°''), if 1T is an iteration path, then w is
fair.

PROOF

Let 'TlEPaths(p"'1"') and suppose 'Tl is an iteration path. We reduce the proof of this
theorem to that of theorem 3.7 by making the following observation. Since 1T is an

J.J.M.M. Rutten and J.l. Zucker I Fairness 33

infinite iteration path it enters infinitely often into a new instantiation of p. Upon

each entrance, all flags are raised (set to "up"). As was observed above, if f; = U (for

i E { 1, ... , m}), then b; is treated in case 1 of definition 5 .11 above in exactly the

same way as in case 1 of definition 3.4. Because this situation arises infinitely often,

the argument given in the proof of theorem 3.7 also applies here. (Note that case 2

in both definitions 3.4 and 5.11 is the same.)

REMARK: Formally we have to extend definition 5.4 of global fairness to processes in

pFlnd. This can be done straightforwardly.

THlioREM 5 .15: Any global{y fair path in p"' is in the range of the mapping ell.

PROOF

Let 'TT'EPaths(p"') such that 'TT' is globally fair. We must construct a path

rr E Paths (p "'1"") such that

<l>('TT) = 'TT'.

We distinguish between two cases: first, that 'TT' is not an iteration path (and possibly

unfair); second, that 'TT' is an iteration path and fair.

(l) Suppose 'TT' is not an iteration path. Without loss of generality we may assume

that 'TT' lies entirely within p (that is, the first instantiation of p in p"'). We define

a ftag index µ. by

µ. = <<l, 1, U>, ... , <1, 1, U>>

and take <µ.,pP-> as the first element of the path 'TT that we are constructing.

Now we can continue the construction of '1T by repeatedly applying case l (of

definition 5.11) for the appropriate b;'s (namely, those that occur in 'TT'). Each

time we encounter a b; for the first time, the corresponding triple < 1, 1, U > in

the index is changed into <0,oo,D >. From this moment on b1 may be chosen

unrestrictedly within this instantiation of p (in which the path 'TT' lies), without

changing the index. The path 'TT thus constructed is an element of Paths(p "'101').

Furthermore: cl>('TT)::::?T'. (Note that it is of no importance whether '77" is fair or

not.)
(2) Suppose 'TT' is a fair infinite iteration path. As in the proof of theorem 5.14, we

reduce this proof to that of the corresponding theorem in section 3 (theorem 3.8)

by observing that the latter only needs a slight modification. When we count the

number of times that a certain h; occurs before a given step 11 in the path 'TT', we

have to count only the first occurrences of b; in different instantiations of p.

With this change in mind the proof of 3.8 can easily be transformed into a proof
of this theorem.

34 llM.M. Rutten and ll. Zucker I Fairness

(2) Node fairness
Let us now forget about global fairness and focus on the second notion: node fair-

ness. We again set out to define a fair version

(... t'"": p~pNlnd

of the operation of infinite iteration but now such that for all p EP the result p wt,;,

will be node fair. The domain pNlnd is like plnd and pFind, but with

A = B UNlndex,

with Nlndex a set of indices to be defined below.

In constructing this second version of infinite iteration we proceed globally as in
the previous subsection, now using node indices in order to ensure the node fairness
of p'"1•;,, instead of flag indices, which were used above. We shall characterize (and
even identify) a subnode of a given process p EP by the subpath in p that leads to it.

DEFINITION 5.16 (Nodes)
Let p EP. We define the set of nodes of p by

Nodes(p) = { 'fl j 37T' EPaths(p) ['fl is a finite prefix of'fl']}.

For 'flENodes(p), with 'fl= <al>p 1>, ... , <a,,,p,,>, we define

end('fl) = Pn·

(When no confusion is possible we sometimes identify 'fl and end('fl).) We set
end(E) = p, where€ is the empty path.

The set of node indices for a given p EP is defined as follows. Each node index for
p has two components: the first is a finite mapping, associating with each of a (finite)
set of nodes of p an index as defined in 3.1; and the second is a node of p. Such a
node index schedules the fairness of paths with respect to this second component. At
each moment in the construction of p wf"", we consider only a finite number of nodes
(the domain of the first component), namely those that we have encountered thus far.

DEFINITION 5.17 (Node indices)
Let p eP. We define the set of node indices for pas follows:

Nlndexp = (Nodes(p)~n Index) X Nodes(p),

where -:fin denotes the set of partial functions on Nodes(p) with a finite domain, and
Index is defined as in definition 3.1. A typical element of Nlndex is denoted
p=(p1,P2). For P1 ENodes(p)-1i11 Index we use the variant notation for functions:

J.J.M.M. Rutten and J.l. Zucker I Fairness

for 'TT,'TT'ENodes(p) and PElndex,

PI {v/w}(?i') = [P
PI (ii)

if w=7r

if w=fa7r.

(We shall use this notation whether or not wEdomain(p).)

35

We again need the operations v-[i] and N(v) on indices PElndex (see definitions
3.2 and 3.3). They are used in the following

DEFINITION 5.18 (Fair infinite iteration)

We define (· · ·)"'t•":P~PN!nd_ Letp EP. Then

p"'f<"' = 2: Appp(p,(p1,c))
p 1 E{<}->fo

where c is the empty subpath of p (identifyingp as a subnode of itself),

lo= {<nl, ... ,nl>ln;>O}

and for given p EP

Appp: p XN!ruJex~pNlnd

is defined as follows. (We write qP for Appp(q,p).) Let pENlndex, p=(p1,P2) and let
qEP. If q=faend(p2), then Appp(q,p) is undefined. Now suppose that q=end(p2).

Then we define

For q=Fp a we distinguish two cases.

Case (a): P2 Edomain(p1). Let P1(P2)=v= <nl', ... ,n:; >. Then

(al) If 3iE{l, ... ,m} [enabled(i)/\n;>O/\s;<oo], then

(a2) If Vi E{l, ... ,m} [enabled(i)=}ni=O/\s; =oo], then

qP = 2: q(p,{v'lpz),Pz)_
v'EN(v)

Case (b): P2 rt:domain(p1). Then

qP = 2: q(p,{v'IP2),P2),
JJ'E/o

where I o is as above.

36 J.J.M.M. Rutten and J.l. Zucker I Fairness

RE~IARKS

(l) The remarks (!), (2), and (3) following definition 3.4 apply also to the above

definition.
(2) We have that Appp(q,p) is undefined whenever q=/=end(p2). This implies (since

P: E Nodes(p)) that Appp is defined on nodes of p only, which seems quite

natural.
(3) We give some informal explanation of the definition above. If we arrive at po,

with index p, we continue with Appp(p,p'). Here p' ==(Pi,€), that is, the second

component of p' now indicates that the node we are treating next is (end(E) =) p
itself. The interpretation of cases (al) and (a2) above is entirely similar to that

of the cases l and 2 in definition 3.4: if P2 Edmnain(p1), then v = P1 (p2) is treated

exactly as before. A small difference is that, in (al), the second component p2 is

extended with <b;,q> to denote that the next node of p that is treated is q

(=end(p2°<b;,q>)). If P2ff.domain(p1), an extension of the domain of p1 takes

place. Here I 0 is the set of initial indices (as in definition 3.4).

Now for the rest of this subsection let p EP be fixed. As in definitions 3.6 and 5.13

we can define a mapping

The following two theorems can be proved by easy generalizations of the correspond

ing proofs (3.7 and 3.8) in section 3.

THEOREM 5.19 p"'f°'' is node fair.

THEOREM 5.20 Any node fair path in p w is in the range of the mapping .P.

Combining global and node fairness

We could now combine the two definitions (5.11 and 5.18) of fair infinite iteration
and construct a function

such that p "'r"' would be both globally and node fair. We do not do this and confine

ourselves to the observation that it would be a straightforward and dull exercise.
Similarly for the generalization to an iniinite alphabet.

J.J.M.M. Rutten and J.L Zucker I Fairness 37

6. REFERENCES

[ABKR] P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUITEN, A denota

tional semantics for a parallel object-oriented language, Information and

Computation Vol. 83 (No. 2), 1989, pp. 152-205.

[AO] K.R. APT, E.-R. OLDEROG, Proof rules dealing with fairness, Science of

Computer Progranuning 3, 1983, pp. 65-100.

[AR] P. AMERICA, J.J.M.M. RuITEN, Solving reflexive domain equations in a

category of complete metric spaces, Journal of Computer and System Sci

ences Vol. 39 (No. 3), 1989, pp. 343-375.

[BK] J.A. BERGSTRA, J.W. KLoP, A convergence theorem in process algebra.

Report CS-R8733, Centre for Mathematics and Computer Science,

Amsterdam, Netherlands, 1987.

[BZl] J.W. DE BAKKER, J.L ZUCKER, Processes and the denotational semantics

of concurrency, Information and Control 54, 1982, pp. 70-120.

[BZ2] J.W. DE BAKKER, J.l. ZUCKER, Processes and a fair semantics for the

ADA rendez-vous, in: Proceedings IOth ICALP (J. Diaz, Ed.) Lecture

Notes in Computer Science 154, Springer-Verlag, 1983, pp. 52-66.

[BZ3] J.W. DE BAKKER, J.L ZUCKER, Compactness in semantics for merge and

fair merge, Proceedings Workshop Logics of Programs, (E. Clarke & D.

Kozen, Eds.) Pittsburgh, Lecture Notes in Computer Science 164

Springer-Verlag, 1983, pp. 18-33.

[CJ W.D. CLINGER, Foundations of actor semantics, Ph. D. thesis, Mas

sachusetts Institute of Technology (AI-TR-633), 1981.

[CS] G. COSTA, C. STIRLING, Weak and strong fairness in CCS, Information

and Computation 73, 1987, pp. 207-244.

[DJ E.W. DIJKSTRA, A discipline of programming, Prentice-Hall, 1976.

[DM] P. DEGANO, U. MONTANARI, Liveness properties as convergence in metric

spaces, Proceedings of the sixteenth annual ACM Symposium on

Theory of Computing, Washington, D.C., 1984, pp. 31-38.

[E] R. ENGELKING, General Tolology, Allyn and Bacon, 1966.

[FJ N. FRANCEZ, Fairness, Springer-Verlag, 1986.

[LPS] D. LEHMANN, A. PNuELI, J. STAVI, Impartiality, justness and fairness:

the ethics of concurrent termination, Proceedings 8th ICALP, Acre, July

1981 (0. Kariv, S. Even, Eds.), Lecture Notes in Computer Science 115,

[N]

Springer-Verlag, 1981.
M. NIVAT, In.finite words, in.finite trees, in.finite computations, in: Foun

dations of Computer Science III.2 (J.W. de Bakker, J. van Leeuwen,

eds.), Mathematical Centre Tracts 109, Amsterdam, 1979, pp. 3-52.

38 JJ.M.M. Rutten and JI. Zucker I Fairness

[OA] E.-R. OLDEROG, K.R. APT, Transformations realizing fairness assump

tions for parallel programs, Proceedings STACS 1984, Lecture Notes in

Computer Science J 66, Springer-Verlag, 1984.

[P] G.D. PLOTKIN, A powerdomain for countable nondeterminism, in: Auto

mata, Languages and Programming, Proceedings 9th ICALP, Aarhus,

July 1982 (M. Nielsen, E.M. Schmidt, Eds.), Lecture Notes in Com

puter Science 140, Springer-Verlag, 1982, pp. 418-428.

