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ANALYSIS OF THE IMPLICIT EULER LOCAL UNIFORM GRID 
REFINEMENT METHOD* 

R. A. TROMPERTt AND J. G. VERWERt 

. Abstract. ~ttention is fo~used. on parabolic problems having solutions with sharp moving transitions 
m space and time. An adaptive gnd method is analysed that refines the space grid locally around sharp 
spatial transitions, so as to avoid discretization on a very fine grid over the entire physical domain. This 
method is based on static-regridding and local uniform grid refinement. Static-regridding means that for 
evolving time the space grid is adapted at discrete times. Local uniform grid refinement means that the 
actual adaptation of the space grid takes place using nested locally and uniformly refined grids. The present 
paper concentrates on stability and error analysis while using the implicit Euler method for time integration. 
Maximum norm stability and convergence results are proved for a certain class of linear and nonlinear 
partial differential equations. The central issue is a refinement condition with a strategy that distributes 
spatial interpolation and discretization errors in such a way that the spatial accuracy obtained is comparable 
to the spatial accuracy on the finest grid if this grid would be used without any adaptation. The analysis is 
confirmed with a numerical illustration. 
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1. Introduction. Attention is focused on parabolic problems having solutions with 
sharp moving transitions in space and time, such as steep fronts and disappearing 
layers. For such problems, a space grid held fixed throughout the entire time evolution 
can be computationally very inefficient. We consider an adaptive grid method that 
refines locally around sharp spatial transitions so as to avoid discretization on a very 
fine grid over the entire physical domain. 

Our method is based on the techniques called static-regridding and local uniform 
grid refinement (LUGR), as previously proposed by Berger and Oliger [3], Gropp 
[6]-[8], Arney and Flaherty [2], Flaherty, Moore, and Ozturan [11], Trompert and 
Verwer [13], and others. Static-regridding means that for evolving time the space grid 
is adapted at discrete times. This should be contrasted with dynamic-regridding, where 
the space grid moves continuously in the space-time domain. With the term LUGR 
we mean that the actual adaptation of the space grid takes place using local, uniform, 
refined grids. LUGR should be contrasted with pointwise refinement, which leads to 
truly nonuniform grids. In this connection, our LUGR method bears resemblance to 
the fast adaptive composite grid (FAC) method [10] for elliptic equations, where the 
basic computational objective is to solve on an irregular grid by way of regular grids 
only. 

The idea of the method can be briefly described as follows. Given a coarse base 
grid and a temporal step size, nested, local, uniform subgrids are generated. These 
subgrids possess nonphysical boundaries and on each of these subgrids an integration 
is carried out. They are generated up to a level of refinement good enough to resolve 
the anticipated fine scale structures. Having completed the refinement for the current 
base space-time grid, the process is continued to the next one while the fine grid results 
computed at forward time levels are kept in storage so that they can be used for step 

continuation. 
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An attractive feature of the static-regridding approach is the possibility of dividing 
the solution process into the following computational procedures: spatial discretization, 
temporal integration, error estimation, regridding, and interpolation. Depending on 
the application, these individual procedures may range from simple or straightforward 
to very sophisticated. This flexibility is attractive since it makes it possible to treat 
different types of partial differential equation (PDE) problems with almost one and 
the same code, assuming that the grid and the associated data structure remain 
unchanged. Note that the choice of data structure is important for keeping the 
unavoidable overhead at an acceptable level, because at each time step grids may be 
created or removed, while communication between grids of adjacent levels of refinement 
frequently takes place. 

The method we analyse in this paper has many similarities with the method 
constructed in Trompert and Verwer [13]. In fact, the grid and data structure, the 
spatial differencing, and the memory use are the same. However, in the present paper 
we concentrate on analysis rather than on construction, while using implicit Euler 
instead of the explicit Runge-Kutta-Chebyschev method for time integration. The 
main aim of this paper is to present a detailed error analysis and to prove stability 
and convergence for a certain class of PDEs. The central issue in this analysis is a 
refinement condition and a strategy that distributes spatial discretization and interpola
tion errors in such a way that the spatial accuracy obtained is comparable to the spatial 
accuracy on the finest grid if this grid would be used without any adaptation. 

Section 2 is devoted to the problem class on which we will concentrate. In § 3 we 
introduce the tools and the formulation for the multilevel LUGR method. In § 4 we 
discuss the maximum norm stability of this method. We prove an unconditional stability 
result which is closely related to a maximum norm stability result of implicit Euler 
when applied on a single space grid. Section 5 is devoted to the error analysis. In this 
section we investigate the total local error with its component parts. Furthermore, here 
we introduce the refinement strategy underlying the so-called refinement condition. 
This condition enables us to control the contribution of the interpolation errors in 
favour of discretization errors. Due to this condition, we are able to prove a convergence 
result as if we are working on a single fixed grid. We further elaborate on this condition 
in § 6, where we show how to implement it for practical use. A numerical illustration 
of the error analysis is given in § 7. The numerical results found here are in complete 
agreement with the analysis. Finally, § 8 briefly discusses our future research plans. 

2. The problem class. Following the method of lines approach [ 12], we consider 
a real abstract Cauchy problem 

(2.1) u1 =L(t,u), O<t~T, u(J:,0)=u0(J:), 

where L represents a second-order partial differential operator that differentiates 
the (possibly vector-valued) solution u(~. t) to its space variable ~ in a space domain 
n in IR, IR2, or IR3• Boundary conditions are supposed to be included in the definition 
of L. 

With (2.1) we associate a real Cauchy problem for an explicit ordinary differential 
equation (ODE) system in !Rd, 

(2.2) 
d 
dtU(t)=F(t,U(t)), O<t~T, U(O)=U0, 

which is defined by a finite-difference space discretization. Thus, U and F are vectors 
in !Rd representing grid functions on a space grid w covering the interior of the space 
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domain. Each component of U and F is vector valued if u is vector valued. The 
dimension d is determined by the spatial dimension, the grid spacing, and the number 
of PDEs in (2.1). Fis determined by the type of grid, by the actual finite-difference 
formulas and, of course, by the precise form of L and its boundary conditions. Note 
that boundary values have been eliminated and worked into the ODE system. In the 
following, our method description and analysis are centered around this system. 

Next we introduce some notations and assumptions needed for further specifying 
(2.1) and (2.2). The symbol II· II denotes the maximum norm on the vector space !Rd 
or the induced matrix norm. Throughout our analysis we will deal only with the 
maximum norm. The symbol µ,[A] denotes the logarithmic matrix norm of the real 
d x d matrix A= (aij) associated with II· II, i.e., 

(2.3) µ,[A] =m~x ( a;;+j~i laijl); 

µ,[A] is a useful tool in the stability analysis of nonlinear, stiff OD Es and semidiscrete 
PDEs [ 4]. In this analysis, the structure of the Jacobian matrix F'( t, 77) = aF(t, 77 )/a77 
plays a decisive role. 

We are now ready to list the assumptions we make in further specifying (2.1), 
(2.2). These assumptions are concerned with, respectively, the class of PDEs (2.1), the 
smoothness of u, the choice of spatial grid and actual finite-differencing, and the 
stability of the semidiscrete system (2.2). 

(Al) The LUGR method is applicable in any number of space dimensions. 
Following [13], we concentrate on the two-dimensional case, while n is supposed to 
be the unit square. With minor changes n is allowed to be composed of a union of 
rectangles with sides parallel to the coordinate axes. In fact, as we will see later, refined 
grids normally are of this shape. In what follows, we will generally use the notation 
u(x, y, t), rather than u(~. t). 

(A2) The solution u of (2.1) uniquely exists and is as smooth as the numerical 
analysis requires. Specifically, for our purpose it suffices that u is a C 2-function in t 
and a C 4 -function in (x, y). 

(A3) We will invariably use uniform space grids. Thus our base grid can be written 
as 

(2.4) cu = {(x;, yj): X; = ihx, 1;;; i;;; M -1 and Yi= jhy, 1 ;;;j;;; N -1}, 

where hx = 1/ M, hy = 1/ N, and M, N are positive integers. The spatial differencing 
on cu is supposed to be based on three-point formulas of second-order consistency. 
As a rule, we use central differencing. For boundary conditions involving first-order 
derivatives, the one-sided, three-point formula is used. 

(A4) A constant v exists such that µ.[ F'( t, 77)];;; v for all t e (O, T], 77 E !Rd, and 
all grid spacings. Like (Al) and (A2), this assumption involves a restriction on the 
class of PDE problems. Of course, they are made only for the sake of (model) analysis. 
The LUGR method remains applicable in situations where these assumptions do not 
hold or cannot be verified. On the other hand, for interesting classes of operators, such 
as the scalar, nonlinear parabolic operator 

(2.5) L(t, u) = f 1(t, x, y, u, (p1(t, x, y)ux)J + f 2(t, x, y, u, (p2(t, x, y)uy)y), 

with standard restrictions on f; and p;, one can prove the existence of a constant v [ 4]. 
The inequality µ,[F'(t, 17)];;; vis to be interpreted as a stability condition, both 

concerning the ODE system (2.2) and its implicit Euler discretization 

(2.6) U" = un-I + TF(tn, U"), n = 1, 2, ... , 
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where T = tn - tn-i is the step size and U" is the approximation for U ( tn ). This inequality 
enables us to formulate the following, powerful stability result for implicit Euler. 
Consider the perturbed form 

(2.7) er= er-I+ TF(tn, (r) + rn, n = 1, 2, ... ' 

where ,n is an arbitrary local perturbation and 0"-', On are perturbations to u"- 1, 

U". Then 

(2.8) n = 1, 2, ... , 

for all T > O satisfying TV< 1 [ 4]. Since 11 is independent of the grid spacing, this 
stability inequality is valid uniformly in hx and hr For 11 = 0 we have contractivity for 
all T > 0, while for v < 0 we even have damping for all T > 0. A result closely related 
to (2.8) will be derived in § 4. 

3. The implicit Euler local uniform grid refinement method. 
3.1. Outline. Although its elaboration readily becomes complicated, the idea 

behind LUGR is simple. Starting from w, finer and finer uniform subgrids are created 
locally in a nested manner in regions of high spatial activity. These subgrids are created 
by bisecting sides of next coarser grid cells. A new initial-boundary value problem is 
solved at each subgrid, and the integration takes place in a consecutive order, from 
coarse to fine. Each of these integrations spans the same time interval. Required initial 
values are defined by interpolation from the next coarser subgrid or taken from a 
subgrid from the previous time step when available. Internal boundaries are treated 
as Dirichlet boundaries and values are also interpolated from the next coarser subgrid. 
The generation of subgrids is determined by the local refinement strategy and is 
continued until the spatial phenomena are described well enough by the finest grid. 

During each time step the following operations are performed: 

1. Integrate on coarse base grid. 
2. Determine new finer uniform subgrid at forward time. 
3. Interpolate internal boundary values at forward time. 
4. Provide new initial values at backward time. 
5. Integrate on subgrid using the same steplength. 
6. If the desired level of refinement is reached, go to 7, else go to 2. 
7. Inject fine grid values in coinciding coarser grid points. 

Thus, for each time step, the computation starts at the coarse base grid using the most 
accurate solution available, since fine grid solution values are always injected in 
coinciding coarse grid points. Moreover, all subgrids are kept in storage for step 
continuation. 

We consider the use of uniform grids attractive because uniform grids allow an 
efficient use of vector-based algorithms, and finite differences on uniform grids are 
faster and more accurate to compute than those on nonuniform grids. In this respect, 
the current approach is to be contrasted with pointwise refinement leading to truly 
nonuniform grids. Pointwise refinement techniques also require a more involved data 
structure [5]. On the other hand, with the LUGR method, there are nodes that exist 
on more than one grid at the same time, meaning that in these nodes integration takes 
place more than once during one time step. Hence, the total number of nodal integra
tions needed will be larger than on a comparable single nonuniform grid. 

In [2], [3], [7] and [11] LUGR methods are examined based on noncellular 
refinement and truly rectangular subgrids, which may rotate and overlap to align with 
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an evolving fine scale structure. We avoid these difficulties. Our local subgrids do not 
overlap, they may be disjunct, they need not be rectangles, and the actual refinement 
is cellular. 

3.2. The mathematical formulation. LUGR methods solve PDEs on the whole 
domain at the coarsest grid only and on a part of the domain at finer subgrids. Our 
method can be interpreted as a sequence of operations on vectors in ~d with varying 
dimension d. The dimensions are time and level dependent because the number of 
nodes changes per level of refinement and per time step. This constitutes a problem 
for the formulation of the method. To bypass this difficulty, the fine grids will be 
expanded so that they cover the whole domain. The dimensions are then fixed per 
level of refinement, which facilitates the derivation of a concise mathematical formula
tion. We emphasise that this grid expansion is auxiliary. In actual application, only 
part of the expanded higher-level grids is processed. 

Suppose that for a given time interval [O, T] and a given base grid, I levels are 
needed to describe the spatial activity of a solution sufficiently accurately when 
integrating over the entire time interval [O, T]. Introduce fork= 1, ... , I the expanded 
uniform grids 

(3.1) wk = {(x;, yj): X; = ihx,k. 1~i~2k-IM -1 and yj = jhy.k> 1 ~j~2k-i N-1}, 

where N and M are the same integers as in (2.4), and hx,k = hx/2k-i, hy,k = hy/2k-i. 
Note that for k = 1 the base grid w 1 = w given by (2.4) is recovered. 

Let the generic notation for a grid function YJ defined at wk be Y/b and let Sk 
denote the space of these grid functions. We then denote the semidiscrete system 
considered in sk by 

(3.2) 

Note that due to the grid expansion, only a part of the components of the ODE system 
(3.2) is integrated for k > 1 in reality. 

We are now ready to formulate the implicit Euler LUGR method. The following 
formula defines the time step from step point tn-i to tn for I levels of refinement: 

(3.3a) 

(3.3b) 

U~=R11 U7- 1 +rF1 (tn, U~), 

UZ = DZ[R1ku7- 1 + rFk(tn, UZ)]+(Ik - DZ)[Pk-1kUZ-1 +Vi], 

for k = 2, ... , I, where 
UZ E SZ is the approximation to u at wk at t = tn, 
h : sk ~ sk is the unit matrix, 
DZ: sk ~ sk is a diagonal matrix with entries (DZ)u either unity or zero, 
R1k : S1 ~ Sk is the natural restriction operator from w, to wko Ru = Ii. 
Pk-1k: sk-1 ~ sk is an interpolation operator from Wk-1 to wko 
bZ E sk contains time-dependent terms emanating from the boundary an. 

Specifically, the nonzero entries of DZ (2 ;;ii k ;;ii/) are meant to determine t?at part_ of 
wk where the actual integration takes place. This integration has the fine gnd solution 
DZR1ku7- 1 as initial function and is defined by 

(3.4) DZ uz = DZ[R1ku7-l + rFk(tn, um, k = 2, ... , l. 

The definition of DZ is provided by the refinement strategy. For the time being, there 
is no need to further specify Dk· Note that the nesting property of the integration 
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domains is hidden in the precise definition of the matrices Di:. The interpolation step 

is defined by 

(3.5) (h- Di:) U'k = (h- D'k)[Pk-1k U'k-1 +Vi], k=2, ... , I, 

where the grid function bk contains various time-dependent terms occurring in physical 
boundary conditions. We need to include b'k because physical boundary conditions 
have been worked into the semidiscrete system. For the analysis to follow, bf: plays 
no role whatsoever. 

The formulation (3.3a, b) automatically comprises the interpolation of boundary 
values at grid interfaces. This follows directly from the observation that for nodes at 
grid interfaces, the associated diagonal entry of DZ is zero (there is no integration at 
grid interfaces). Further, we note that (3.3) implies an order, (3.3a) is carried out for 
the coarse base grid and (3.3b) for k = 2, ... , l successively. Having done this, the 
updating will take place, meaning that u;; is replaced by R1k U~ from k = I - 1 to 1. 
After this we move on to the next time step. Recall that, due to the grid expansion, 
in (3.3a, b) the interpolation is carried out for all nodal points outside the integration 
domain of wk. This enables the stability and convergence analysis to be carried out in 
the spaces Sk. However, in actual application, interpolation only takes place at the 
local subgrids. In § 6.2 it is shown that this does not interfere with the analysis. 

4. Stability analysis. 
4.1. Preliminaries. Consider, along the same lines as (2.7) for n = 1, 2, ... , the 

perturbed scheme 

(4.la) 

(4.lb) 

if~= RII if~-l + TF1 Ctn, if~)+ r~' 

if;;= Di:[R1kif;1-1 + TFk(tn, ifi:)] + (h - Df:)[Pk-lk Uf:_ 1 +bi:]+ ri:, 

for k = 2, ... , l with local perturbations ri:, and introduce the errors e'k = if;; - u;;, for 
k = 1, ... , I. To shorten the formulas, we introduce the auxiliary quantities e~, D~, and 
Po1, where e~ = 0 E S1, D~ is the unit matrix 11 , and P01 is the zero matrix. Then, by 
subtracting (3.3a, b) from ( 4.la, b ), we get 

(4.2) Z'ke'k = D'kR1ke~-t + (h-Dk)Pk-lke;;_ 1 + r'k, n = 1, 2, ... , k = 1, ... , l, 

where z;; = Ik - TD'kM'k and Mi: is the integrated Jacobian matrix 

(4.3) Mi:= L F'( tn, eifk + (1- e) U'k) de, 

which results from applying the mean value theorem for vector functions. 

(4.4) 

with 

(4.5) 

Assuming Z'k to be nonsingular, we can rewrite (4.2) as 

X'k = (ZZ)- 1(Ik - Dk)Pk-ik. 

r;; = (ZZ)-1 DkR1k, 

<P'k = (zk)- 1r;;. 

~ote that. x~ = 0 and .th~t the operators x;;, r;; are associated, respectively, to the 
mterpolat10n and restnct10n. We can rewrite (4.4) in the standard form 

(4.6) e/,'.=GZe7- 1+1{.r/,'., n=l,2, ... , k==l, ... ,I, 
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where the amplification operators G~ and the local perturbation terms tVi are defined 
by 

(4.7) 
G~ =f~, 

k=2, ... , l, 

(4.8) 
1/17=<1>~. 

!/JZ = X~t/l~-1 + </>Z, k=2, ... ' l. 

The error recurrence ( 4.6) describes the error propagation for all refinement levels. 
The main interest lies in the operator 07 and the local perturbation !fr7, since coarse 
grid values are always updated by fine grid values. In ( 4.6) this is reflected by the 
presence of e7- 1• 

The stability of the implicit Euler method in the above is contained in the following 
lemma. 

LEMMA 4.1. Let v be the logarithmic norm value defined in assumption (A4) of§ 2. 
Then, 

(4.9) 

ll(Z~)- 1 11~-1 - 'VTv<l, k=l, 
1- 'TV 

ll(Zn)-111~{1/(1-w) 'VTv<l 
k 1 \tT>O 

if lJ > 0, 

if v~O, 
k=2, . .. 'l. 

Proof. The result for k = 1 is standard since D~ is the unit matrix (see [ 4, p. 46]). 
The premultiplication of M~ for k > 1 with DZ has the effect that either entire rows 
of MZ are put to zero, or are left unchanged. From (2.3) we can then immediately 
deduce that for v > 0 the bound (1- TV )- 1 still holds, whereas for v ~ 0 the zero rows 
introduce the bound 1. 0 

Observe that the replacement of the bound (1- Tv)- 1 by the bound 1 for v < 0 
implies that in this case we no longer exploit the damping property of implicit Euler. 
For the analysis to follow, this is no restriction since here we are merely interested in 
proving stability and convergence results. Specifically, the stability result we will prove 
is not dependent on the damping in implicit E11ler. To shorten derivations, we first 
make another assumption. 

(AS) The logarithmic norm bound v from (A4) is nonpositive. Hence we now 
restrict ourselves to dissipative problems. This is not essential; results obtained for 
v ~ 0 can be extended to the case v > 0 by inserting ( 1 - TV )- 1 for the bound 1 any 
time the stability inequality II (ZZ)- 1 II ~ 1 is used. 

4.2. Stability and linear interpolation. In this section we will prove a general 
stability result for the multilevel adaptive grid method (3.3) that is similar to the 
stability result (2.8) for the implicit Euler method applied without adaption. 

THEOREM 4.2. Let v ~ 0 according tu (AS), and suppose that linear interpolation is 

used. Then, for all T> 0 and all n ~ 1, 

( 4.10) 11az11~1. k=1, ... ,1, 
k 

(4.11) 111/JZll~ I lirill, k=l, ... ,1, 
j=I 

I 

(4.12) lle?ll~lle?- 1 11+ L llrZll-
k=1 
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Proof. Inequality (4.12) is a trivial consequence of (4.10) and (4.11). Let us first 
prove ( 4.1 O ). This is done by induction with respect to k. Suppose II GZ-1 II ~ 1. From 
( 4.7) it follows that 

(4.13) 11az11=11xzoz_1 + rz11=ll<ZZ-1l- 1 QZll~II0;;11, 

where QZ = (Jk - DZ)Pk-1kGZ-1 + DZR1k· 
Consider the ith row of this operator. Suppose (DZ);i = 1. Then 

( 4.14) l: I< QZ)ul = l: l(R1k)ul = 1, 
j 

by definition of the restriction operator Rik· Next suppose (D/;)u = 0. Then 

(4.15) L: l(QZ)ul = L: l(Pk-1kGZ-1)ijl ~ llPk-1kGZ-1ll ~ l!Pk-1kll llGZ-1ll ~ 1, 
j 

by virtue of the induction hypothesis and the norm 

( 4.16) 

of the linear interpolation operator Pk-ik· Combining (4.14) and (4.15) gives llOZ+1ll, 
and inequality (4.10) now follows from (4.13). The induction proof is finished if we 
can prove that II G~ II~ l. This follows immediately from the observation that G~ = r~ = 
(z~r 1 R11. 

There remains to prove (4.11). We have llc:t>Zll ~II rZll· It then follows from (4.8) that 

( 4.17) 

so that we are finished if we can prove that llXZll ~ 1. This is trivial due to (4.16) and 
l!Ik-Dkll=I. D 

The inequality (4.12) is the counterpart of the inequality (2.8). We may conclude 
from Theorem 4.2 that when implicit Euler is stable and we interpolate linearly, our 
multilevel adaptive grid method (3.3) retains stability of implicit Euler through the 
bound llG?ll ~ 1. 

4.3. Stability and higher-order interpolation. A drawback of linear interpolation 
is its limited accuracy. In a genuine application, it might well be preferable to use 
higher-order interpolants (in [13] we successfully used fourth-order Lagrangian inter
polation). Unfortunately, in this case we must have llPk-ikll > 1, so that we are not 
able to prove the results of Theorem 4.2 when following the above method of proof. 
If II Pk-i k II > 1, then it is possible to prove (a constrained form of) stability by introducing 
an additional condition that underlies the intention of interpolating exclusively in low 
error regions. Unfortunately, this condition turns out to be of no direct practical use 
and is omitted here. On the other hand, numerical evidence suggests very strongly that 
those higher-order interpolants do not cause genuine stability problems in real applica
tion. We believe we owe this to the fact that the method interpolates in low error 
regions, so that, loosely speaking, this condition is satisfied implicitly. 

5. Error analysis. We will present a detailed examination of the local error. From 
this we deduce the refinement condition which henceforth underlies the refinement 
strategy. This condition enables us to control the contribution of spatial interpolation 
errors in favour of spatial discretization errors. Due to this condition, we can prove a 
convergence result as if we are working on a single fixed grid. Specifically, it will be 
shown that the usual convergence behaviour applies and that the accuracy obtained 
is comparable to the accuracy obtained on the finest grid if this grid would be used 
without any adaptation. 
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S.1. The local level error. Let uk( t) E Sk denote the pointwise restriction of the 
true solution u(x,y, t) to wk. Consider (4.1). By replacing all if-values by associated 
uk-values, the local perturbation r;; becomes the local level error at grid level k. For 
convenience, we will denote this error also by rk: 

rZ = uk - DZ[R1ku7-i + rFk(tn, uk)]-(Ik - DZ)[Pk-Ikuk-I + bZ], 
(5.1) 

n = 1, 2, ... , k = 1, ... , l, 

where uZ = uk(t") and P01 , u~, b~ are auxiliary and put to zero; r/; contains the following 
local error components, the local spatial error induced by the finite-difference approxi
mation, the local temporal error of the implicit Euler method, and the interpolation 
error. We first discuss these different components. They are defined in the standard 
way by 

(5.2) 

(5.3) 

(5.4) 

d 
ak(t) = dt uk(t)- Fk(t, udt)) (spatial discretization error), 

d 
f3k(t) = udt)- uk(t- r) - r- udt) (temporal error), 

dt 

'Ydt) = uk(t)-Pk-ikuk_ 1(t)-bk(t) (interpolation error). 

The grid function bk(t) in (5.4) has the same meaning as b/; in (3.5). In the following, 
we assume without loss of generality that hx.k = hy.k = hk. In view of assumptions (A2) 
and (A3) in § 2, we have 

(5.5) adt) = O(hD, 

with order constants determined by higher-order spatial derivatives of u and by PDE 
operator quantities. Likewise, (A2) implies f3k(t) = r2Ck where ck= -!d2uk/ dt2 evalu
ated at a time t+(K -l)r, o;;;;K~ 1. If u is a C 3 -function in t, then 

1 ? d2 3 
f3k(t)=--r·-,uk(t)+O(r ), 

2 dr 
(5.6) r~o. 

Let q denote the accuracy order of the (Lagrangian) interpolation. Then 

(5.7) k = 2, ... , I, 

and here the order constants again depend exclusively on higher spatial derivatives of 
u, assuming sufficient differentiability. If linear interpolation is used, then assumption 
(A2) implies q = 2 and second-order spatial derivatives determine the constants. 

Now, using the relation uk-i = R1ku7- 1 for k = I, ... , l, we can derive 

(5.8) r/;=D/:(rnZ+/3Z)+(h-DZhZ. n=I,2, ... , k=l, ... ,l. 

Note, by definition of DZ, that DZ( ra/; + M) is the restriction of the usual local 
discretization error m;; + {3/; to the integration domain of the grid wk> while (h - D/:hZ 
represents the restriction of the interpolation error 'YZ to the complement of this domain. 

S.2. A crude global error bound. Denote the global discretization error by e;; = 
u;;- u;; and suppose e~ = 0. For any choice of DZ the consistency results (5.5)-(5.8) 
imply 

(5.9) 

If we now suppose linear interpolation and assumption (A5), then application of ( 4.12) 
yields 

(5.10) n = 1, 2, ... , 
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where llS"ll = 0( rhi) + 0( r 2)+ O(hi). Here the coarsest mesh width occurs due to simply 
adding all normed local level errors in (4.15), including llr~ll- Following standard 
practice, we thus obtain at any fixed time point tn = nr the global error bound 

h2 
(5.11) lle711;;aC,r+C2h2 +C3-, 

T 

where h = h1 and C1 , C2 , and C3 are positive constants independent of step size and 
mesh sizes. 

The first two terms are due to the temporal integration and spatial discretization. 
They will vanish if mesh sizes and step size tend to zero independently of each other, 
thus reflecting the unconditional convergence of the method when applied without 
adaptation. On the other hand, if no relation is imposed between r and h, then the 
third term can grow unboundedly as r, h ~ 0. This term is due to the interpolation. 
Hence, even though we have stability and consistency, this result shows that uncondi
tional convergence cannot be hoped for. Fortunately, this conclusion is not as bad as 
it looks. By not specifying the matrices Dk and, subsequently, by adding norms of the 
local level errors, we have simply supposed arbitrary integration domains at all levels 
of refinement. This must lead to a crude error bound like (5.11). In application, the 
computations should be organized in such a way that the interpolation only takes place 
in low error regions so that the interpolation error is virtually absent. This poses the 
task of setting up a precise error analysis and the design of a local refinement strategy 
aimed at a suitable selection of the matrices Di:. 

5.3. Local and global errors. According to (4.6), the global error e;; satisfies the 
recurrence relation 

(5.12) ei: = Gi:e7- 1 +I/Ii:, n = 1, 2, ... , k = 1, ... , I, 

where l/l'k is the local error defined by recursion (cf. (4.8), (4.5)) 

t/l~=(Z~)- 1 r~, 
(5.13) 

I/Ii:= X;;l/Ji:-1 + (Zi:t1 r;;, k = 2, ... , I. 

The operators a;;, x;;, and z;; are supposed to be redefined (replace an u-values by 
associated uk-values). Note that t/Ji: is essentially different from the local level error 
r;;. While r;; is associated with the single kth level, t/l'k is associated with all levels up 
to this kth level according to (5.13). This recursion governs the propagation of each 
local level error when introducing higher and higher levels. Elaborating, it gives, for 
k=l, ... ,I, 

(5.14) k (j+l ) l/l'k =I: Il X~ (Zj)- 1rj. 
j=I i=k 

N;xt we split t/l'k into its temporal and spatial part denoted by, respectively, t/1~ 1 and 
t/I k.•: 

(5.15) t/Ji: =I/I~.+ I/It., k = 1, ... '~ 

and it follows from (5.8) that I/It, and I/I~. are given, respectively, by 

(5.16) k (j+l ) 
t{l~,=j~1 iR X7 (Zj)-1Dj~j, 

k (j+l ) 
t/J~. = .L .Il X~ (Zj)-1[ rDj'aj'+ (lj-Dj')yj]. 

J=I i=k 

(5.17) 
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Let us first examine I/I~,. Since f3i: does not depend on mesh sizes, we have 
13;; = R1,J3/. Substitution into (5.16) then yields 

(5.18) k (j+I ) 
I/I~.= j~I Dk x7 (zj)-1 v; Rijf3/, 

and we see that this operator is just the amplification operator Gi: featured in (5.12); 
see the recursion ( 4.7). In conclusion, l/J~, satisfies 

(5.19) l/J~, = GZf31, k = 1, ... , I. 

We next examine I/I~ •. Using the definition of x;; given in (4.5), we rewrite 
(5.17) as 

(5.20) 

where 

(5.21) 

l/J~s = (Zi:)-1(/k - D;;)Pk-lk ~~: (~0~ 1 X7 )(zj)-1[ TDjaj + (lj- Dj)yj] 

+ (Zi:)- 1[ TD;; a;;+ (Ik - Di:hi:J 

= (Z;;)-1[ TD;; a;;+ (Ik - Di:)pi:], k = 1, ... , I, 

k=2, ... , I, 

and p~ = 0. In (5.20) the spatial local discretization error Di:a;; committed on the 
integration domain of grid wk is separated from the spatial local error part (h - D'/,Jp;; 
defined outside this domain. Hence, pi: collects all spatial error contributions defined 
on the grids wj (1 ;f:.j;;;,, k-1), including discretization error aj and interpolation error 
-yj, together with 'Yk on wk. This separation enables us to formulate a refinement 
condition which ensures that when a new grid level is introduced, the spatial local 
accuracy outside its integration domain will be smaller than or equal to the spatial 
accuracy on the integration domain itself. This distribution of local space errors is 
desirable, as we never return to grid points lying outside a current integration domain. 

The refinement condition constrains the matrices D;;, and is taken to be 

where c > 0 is a constant specified in § 6. If (5.22) is true, then all errors l/J~. satisfy 

(5.23) Ill/JUI ;a (1 + c)1i(Zi:)- 1TD;;a;;i1, 

and combining (5.12) with (5.15), (5.19) enables us to present the global error inequality 

lle;;ll;;;,, II Gi:ll lle/- 1 11 +II Gi:Mll + (1 + c)ll(Zi:)- 1TD;;a;;ll, 
(5.24) 

n = 1, 2, ... , k= 1, ... ' I. 

The importance of the refinement condition (5.22) is reflected by the fact that in 
(5.24) the interpolation error contribution has been removed. This is in agreement with 
our goal of developing a local refinement strategy that generates refined subgrids such 
that the accuracy obtained on the final finest grid is comparable to the accuracy obtained 
if this finest grid would be used without adaptation. We will elaborate on condition 
(5.22) in § 6. Note that it suffices to consider (5.22) only for k = 1, since it suffices to 
consider (5.23) and (5.24) for k = l. 

S.4. Convergence and linear interpolation. Assuming linear interpolation and 
assumption (A5), as in § 5.2, (5.24) can be rewritten as 

(5.25) 1ie;;l!;alle/-11!+1i/3k1l+(l+c)Ti1a;;i1, n=l,2, ... , k=l, ... ,l. 



270 R. A. TROMPERT AND J. G. VERWER 

Hence, following the same derivation as carried out for (5.11), for the highest level l 
the global error bound 

(5.26) 

results where C1 and C2 are positive constants independent of step size and mesh sizes. 
This bound is unconditional in the sense that it assumes no relation between step size 
and mesh sizes and, according to our goal, the smallest mesh width h1 occurs. We have 
recovered an error bound similar to the standard error bound for implicit Euler when 
applied on a single grid. 

5.5. Convergence and higher-order interpolation. As pointed out in § 4.3, for the 
case of higher-order Lagrangian interpolants, a powerful stability result like that of 
Theorem 4.2 is not available. However, assuming that higher-order interpolation in 
low error regions does not severely damage stability, as is strongly supported by our 
practical experience, it is natural to impose the refinement condition (5.22) also in the 
case of higher-order interpolation. Note that in the derivation of (5.22) no a priori 
choice was made for the interpolants. 

6. The refinement condition. 
6.1. Determining the integration domains. Condition (5.22) first needs to be elabor

ated into a workable form before it can be implemented for determining the integration 
domains. To begin with, we rewrite the error p'k as 

(6.1) 

p;;= yi:+Pk-1k kI1 (ill X?)(zj)- 1TDjaj 
j=I i=k-1 

+Pk-lk :~~ (~q~, x7)czn- 1(Jj-D}h;, 2~k~l. 

Next, we rewrite the first sum as 

(6.2) + Pk-lk :~~ (}L x? )czn-1(Jj- vn 
· ~-1j(Z}-1)- 1 TDj_ 1 a}-i. 

and substitute this expression into (6.1). It then follows that pk_ can be written as 

(6.3) 
k-1 ( j+I ) 

pi:=).k,+Pk-1k i~2 i=Q_ 1 X? (Zj)- 1 (~-Dj)Aj, k=2, ... ' l, 

where 

(6.4) Aj=yj+~-1j(Z}-1)- 1 TDj_ 1 a)-i. j=2,. . .,l. 

The error function Aj contains the interpolation error at level j and the prolongation 
of the spatial discretization error of level j -1 to level j. The derivation now rests upon 
monitoring the error (Z'k)- 1(Ik - D'k)p'k occurring in (5.22) through monitoring all 
errors ( ~ - Dj)Aj, j ~ k, occurring in ( 6.3). The idea is to select the matrices Dj such 
that the error functions (Ii- Dj)Aj become sufficiently small. This makes sense because 
if C 3 and C4 are stability constants such that 

(6.5) 
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then 

(6.6) 

Hence, if for k = 2, ... , l, the matrices DJ; are selected. such that 

(6.7) 

then the refinement condition (5.22) is satisfied. 
In general, the stability constants C3 and C4 are unknown. However, if the 

dissipativity assumption (AS) is satisfied, then the constant C3 ~ 1. Furthermore, if we 
use linear interpolation, then (4.16) applies and C4 also can be set equal to one, so 
that (6.7) simplifies to 

(6.8) k=2, ... ' l. 

If assumption (AS) does not hold or if higher-order interpolation is used, then C3 and 
C4 may be larger than one, but not by a considerable amount. C3 shall generally be 
of moderate size in view of the excellent stability behaviour of implicit Euler. Our 
practical experience with fourth-order Lagrangian interpolation is that higher-order 
interpolation is unlikely to yield instability problems, thus indicating that llXl:ll, and 
hence C4 , are also of moderate size. That is why we proceed with (6.8) and also use 
it in situations where (AS) may be violated and/ or higher-order interpolation is used. 

In application, it suffices to impose (5.22) for k = l only, so that (6.8) can be 
replaced by 

(6.9) 

In order to satisfy this condition, estimates of AJ; have to be computed. Therefore, to 
create an extra safety margin, we replace (6.9) by the slightly more conservative 
condition 

(6.10) k=2, ... ' l, 

where, componentwise, {;'J; is defined as 

(6.11) 

Condition (6.10) will determine the integration domain of wk. Let OJ; be this 
integration domain and recall that when a node belongs to n;;, the corresponding 
diagonal entry of DJ; is equal to one and zero otherwise. Suppose that the maximal 
level number l and c(/-1)-1 ll(Z7)-1TD/a/ll are known and that a solution at n;;_i. 
k ~ l, has just been computed. Prior to the integration step on level k, our task is then 
to determine n;;. That is, we must define DJ; such that (6.10) is satisfied and in such 
a way that the area of n;; is as small as possible. The actual selection of n;; is carried 
out by a flagging procedure that scans level-k grid points. A point is flagged if, using 
appropriate estimates, 

(6.12) 

Hence, for such a point the corresponding diagonal entry (D;:)u = 1, and for nonflagged 
points we define (D/;);; = 0. Thus the refinement condition (6.10) is satisfied. 
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In conclusion, the solution at a node of grid wk is interpolated only if a correspond
ing component of (k is smaller than the maximum of the spatial discretization error 
at the finest grid multiplied with Tc(l -1)- 1• Otherwise, integration is carried out at 
this node. No doubt this imposes a severe restriction on the size of the interpolation 
errors. On the other hand, this restriction is natural because when going to a higher 
level within the current time step, we never return to a grid point where the solution 
has been interpolated, which means that the interpolation error will be carried along 
to the next time step. The fact that we do not return is a direct consequence of the 
nesting property of the integration domains, which we will discuss next. 

6.2. Restricted interpolation and the nesting property. We now introduce the nesting 
property of the integration domains. Recall that this property, being hidden in the 
definition of the matrices Dk, has played no role in the foregoing analysis. We stipulate 
that in application the nesting is enforced by the flagging procedure; in other words, 
this procedure scans only level-k points lying within the previous integration domain 
DZ+ A direct consequence is that, unlike (3.5), the interpolation is carried out only 
for level-k points within nz_ 1• Here we will justify the deviation due to this restricted 
interpolation. We will argue that the restricted interpolation is in fact allowed by the 
inequality (6.10), where interpolation over the whole of wk is still assumed. 

Consider the error (ZZ_ 1r 1TDk_ 1 aZ-i. contained in (Z. This spatial error is defined 
at level k-1 and, by definition of Dk-i. has zero components outside nz_ 1. Hence, 
all its prolongated components are taken into account in the flagging procedure for 
determining nk. For the interpolation error 'YZ, which lives on the whole of wk (grid 
expansion), the situation is different. However, restricted interpolation is allowed if 
for all level-k points outside nz_i. the interpolation error satisfies 

(6.13) 

because then points outside nz_ 1 will not be flagged if the interpolation step (3.5) 
would be carried out on the whole of wk. In other words, if (6.13) holds outside OZ-i. 
then the integration domains found with the restricted interpolation over nk-1 are 
equal to the domains found if the interpolation would be carried out on the whole of 
wk, which is in accordance with the method description (3.3a, b ). 

The following argument shows that inequality (6.13) is very plausible with the 
restricted interpolation procedure. First we recall that 0 ~ coincides with the entire 
physical domain. Hence for k = 2 there is no restricted interpolation, so that for all 
level-2 points outside O~, inequality (6.13) is trivially satisfied. Next consider the case 
k=3. Now the interpolation is restricted to level-3 points within O~. Since for all 
level-2 points outside n; inequality (6.13) is satisfied, we are justified in supposing 
that this is also true for all level-3 points outside n~. in view of the consistency of the 
interpolation (level-3 interpolation errors are smaller than level-2 errors). Further, by 
construction of n;, (6.10) is satisfied for all level-3 points within O~ and outside n;, 
and so is (6.16). In conclusion, we may suppose that (6.13) is satisfied for all Ievel-3 
points outside n; when using the restricted interpolation for k = 3. For k = 4 and so 
on this argument can be repeated. 

6.3. Implementation aspects. On top of the flagging procedure implementing 
(6.12), a safety measure has been built. Any node for which (6.12) is true is flagged 
together with its eight neighbours. Next, to create an extra buffer, all sides of cells 
with at least one flagged corner node are bisected. This means that a buffer zone of 
two mesh widths is used around any intolerable node. Near boundaries, physical and 
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internal ones, the buffering differs slightly. Although in theory this buffering could be 
omitted, in practice it is wise to create a buffer zone around intolerable nodes because 
the estimation of higher spatial derivatives contained in aZ and yZ is prone to 
inaccuracies. After the flagging procedure, a cluster algorithm groups all flagged nodes 
together to form the newly defined integration domain. 

The parameter c in (6.12) must be specified. In view of result (5.25), c should be 
taken small so that the spatial accuracy obtained is indeed nearly equal to the spatial 
accuracy obtained without adaptation. In fact, the smaller c is, the more points will 
be flagged and hence the safer the local refinement will be ( c = 0 implies global 
refinement). On the other hand, when c is too large, it can occur that space errors are 
large and refinement is necessary but no nodes are flagged because ( 6.12) is satisfied 
at every node. Hence, c is available as a tuning parameter. In the experiments in § 7 
we have simply put c = 1. 

Estimates of spatial interpolation and discretization errors are required. For 
2;;; k;;; l we must estimate the interpolation error yZ and the prolongated spatial 
discretization error Pk-lk(zz_ 1)-1 vz_1a;:_1. Further, an estimate of the spatial dis
cretization error (Z7)- 1 D7a7 committed at the final Ith level must be available at all 
lower levels. Because we use local uniform grids, the estimation of these errors can 
be realized cheaply and easily. Consider the error aZ (cf. (5.2)) and let p be the order 
of consistency (in this paper p = 2). The estimation we apply is based on the use of a 
second spatial discretization operator ft of a higher-order ft. After some elementary 
calculations we obtain the approximation 

(6.14) 

as an asymptotically correct estimator for a;:. The benefit of using uniform grids now 
lies in the fact that ft is easily constructed. At internal nodes our ft provides fourth-order 
accuracy (standard symmetrical differences), while at nodes adjacent to physical or 
internal boundaries third-order accuracy is realized (standard one-sided differences). 
The benefit of using uniform grids is also reflected in the estimation for the error y;: 
(cf. (5.4)). So far we have implemented Lagrangian interpolation of second (linear) 
and fourth order. For the second-order interpolation we need to estimate spatial 
derivatives uxx, etc., while in the fourth-order case spatial derivatives like Uxxxx appear. 
For both cases the estimation is straightforward. 

We emphasise that, in spite of its simplicity, linear interpolation may become 
disadvantageous due to the low order of accuracy. Inspection of the various terms in 
(6.12) suggests a comparison between the following order relations: 

(6.15a) 

(6.15b) 

( 6. l 5c) 

(6.15d) 

IHzn-1D7a?ll = O(rhy), 

( y;:); = eJ(h~), second-order Lagrangian (linear), 

( YZL = eJ(ht), fourth-order Lagrangian. 

In the discretization terms the step size r is contained. Consequently, it is the interpola
tion error that may govern the refinement if r is very small, and particularly so when 
the interpolation is linear. The comparison is clearly in favour of the fourth-order 
interpolation. 

To estimate the right-hand side term II czn-l D? a? II of ( 6.12) for 2;;; k;;; 1-1, we 
exploit the asymptotics. Since the mesh width of level k is half that of level k+ 1, we 
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thus invoke 

( 6.16) l~k+l, 

for k = 1, 2, .... In theory it suffices to do this only for k = 1, but since for larger values 
of k this estimation will become more and more accurate, it is done for every k. 

Finally, we will make a few remarks about the approximations (6.14) and (6.16). 
Our method, like every other adaptive grid method, is designed to solve PDEs with 
steep solutions. Yet (6.14) and (6.16) underlie asymptotics, which means that they are 
only accurate if the solution is sufficiently smooth on the grid in use. This constitutes 
a problem for LUGR methods, because these methods estimate errors on coarse grids. 
Nevertheless, if in practice the estimated error is not that accurate, it might still give 
a good indication of where the spatial error is large and where it is not and, specifically, 
the estimated error might still be in the same order of magnitude as the exact error, 
in which case the implemented refinement strategy based upon (6.14) will still work. 
In our experience so far, this is indeed the case. We believe this is due to the fact that 
estimation ( 6.16) is carried out for finer and finer subgrids with an increasing accuracy 
which partly remedies the problem. However, if solutions become very steep, it might 
be necessary to improve the implementation of the refinement condition (5.22). 

7. Numerical example. This section is devoted to an illustration of the foregoing 
error analysis. Our goal here is to numerically illustrate that by imposing the refinement 
condition, the usual order behaviour is recovered. At the same time, the spatial accuracy 
obtained is comparable to the spatial accuracy on the finest grid if this grid would be 
used without adaptation. 

7.1. The issue of implicitness. We use the implicit Euler method for time integra
tion. In connection with implicitness, two points are worth mentioning. The first is 
that at any time step refinement takes place at different levels, resulting in a different 
Jacobian per level whose order usually varies. This impedes the profitable use of old 
Jacobians (like in sophisticated stiff ODE solvers), unless it is decided not to adapt 
grids at every time step, but instead per prescribed number of steps. We consider this 
as part of an overall strategy that can easily be placed on top of the existing one. We 
adapt grids at every time step since our main aim with the experiments is to illustrate 
the convergence analysis together with the refinement strategy. However, when dealing 
with real applications, it is most likely to be more advantageous to omit adaptation at 
every time step, just for efficiency reasons. The second point is that the Jacobians do 
not possess a regular band structure, since the integration domains n ~ normally have 
an irregular shape. Unlike the first, this point is intrinsic to the local refinement method. 
In the experiments reported here, the Harwell sparse matrix solver MA28 has been 
used. This solver is well suited to coping with the structure we meet, but is rather time 
consuming for the present application. It is likely that standard iterative methods can 
be applied at lower costs. 

7.2. The example problem. The problem is hypothetical and due to [1]. The 
equation is the linear parabolic equation 

(7.1) u,=Uxx+Uyy+f(x,y, t), O<x,y<l, t>O, 

and the initial function, the Dirichlet boundary conditions, and the source fare selected 
so that the exact solution is 

(7.2) u(x, y, t) =exp [ -80( (x - r( t) )2 + (y - s(t) )2)), 
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where r( t) = ~[2 +sin ( 1Tt)] and s( t) = i[2 +cos ( 7Tl)]. This solution is a cone that is 
initially centered at 0, ~) and that symmetrically rotates around (t ~) in a clockwise 
direction with a constant speed. We have used this problem to subdue our refinement 
method to a convergence test. Observe that the semidiscrete version of this problem 
satisfies the dissipativity assumption (AS). 

7.3. Convergence experiments. We have carried out two identical convergence 
experiments. In the first, linear interpolation was used and in the second, fourth-order 
Lagrangian was used. In both the solution is computed four times over the interval 
0 ~ t ~ 2, using a uniform 10 x 10 base grid and a constant time step size 7. In the first 
computation l = 1, in the second l = 2, and so on. Since per computation the smallest 
mesh width is halved, T is simultaneously decreased by 22 in view of the first order of 
implicit Euler. Hence, in line with our analysis, per computation the maximal global 
error should also decrease by 22. 

Table 7 .1 shows the maxima of global errors restricted to the finest integration 
domain in use. This table also contains the maxima of the errors for the corresponding 
grid used without adaptation. The table clearly reveals the expected order behaviour. 
The errors of the l = 4 runs are about a factor four smaller than the corresponding 
errors of the l = 3 runs. Note that there is hardly a difference between the corresponding 
errors, showing that, as anticipated by our strategy, the choice of interpolant has no 
notable influence on the error. We emphasise that, in spite of the relatively large values 
for r, the spatial error dominates the global errors shown in this table. For example, 
using T = 0.125 instead of T = 0.5 in the I= 2 run, the same global errors are found 
(they deviate in the third or fourth decimal digit). In other words, conclusions on the 
spatial error behaviour induced by the local refinement algorithm can be drawn from 
this table. These results convincingly show, for the current example problem, that the 
use of the refinement condition ensures that the spatial accuracy obtained is very much 
comparable to the spatial accuracy on the finest grid if this grid is used without any 
adaptation. Finally we note that the choice c = 1 apparently has no influence on the 
error. We owe this to the fact that the refinement condition has been derived from 
error bounds and is thus conservative. 

The use of the two different interpolants is expressed in the slightly different 
integration domains shown in Figs. 7.1 and 7.2. As expected, at the higher levels linear 

TABLE 7.1 
Maxima of global errors restricted to the finest domain. Comparison with errors on a standard uniform grid. 

No. of Single 
'T levels Interpolation grid 0.50 1.00 1.50 2.00 

2.00000 !Ox 10 0.16447 

0.50000 2 linear 0.03876 0.03890 0.03891 0.03891 

fourth order 0.03929 0.03945 0.03946 0.03946 

20x20 0.03865 0.03881 0.03882 0.03882 

0.12500 3 linear 0.01369 0.01369 0.01369 0.01369 

fourth order 0.01376 0.01376 0.01376 0.01376 

40x40 0.01389 0.01389 0.01389 0.01389 

0.03125 4 linear 0.00340 0.00340 0.00340 0.00340 

fourth order 0.00359 0.00359 0.00359 0.00359 

80x80 0.00347 0.00347 0.00347 0.00347 
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I =0.5 1=1.0 

1=1.5 1=2.0 

FIG. 7.1. Linear interpolation. Integration domains for the 1=4 run at four dijj'erent times. The size of the 

integration domains decreases only slowly with the number of levels. This is due to the fact that the cone is not 

very steep. At the end time, t=2.0, the number of nodes amounts to 121, 425, 813, and 1917, respectively. 

interpolation gives rise to somewhat larger domains, showing that linear interpolation 

is more expensive. As a rule, fourth-order interpolation is to be preferred, as it leads 

to smaller domains. Note that for both interpolants the moving domains accurately 

reflect the symmetric rotation of the cone, which once again nicely illustrates the 

reliability of the implemented refinement condition with the various estimators. 

8. Final remarks and future plans. In our future research we plan to pay more 

attention to time-stepping efficiency. Using the refinement strategy of this paper as a 

starting point, we plan to examine the application of methods possessing a higher 

order in time. Natural candidates belong to the class of Runge-Kutta methods. It 

should be stressed, though, that fully implicit methods can only be of serious advantage 

if the numerical algebra issue can be satisfactorily solved. In this connection splitting 

methods of the ADI and LOD type (see [9]) may therefore provide an attractive 

alternative to fully implicit ones, although they are usually less accurate in time. 

Another point of serious practical concern is to apply methods not only using an a 

priori chosen number of levels, but to also have the possibility to vary the number of 

levels. This might be useful for the computation of solutions that, for example, steepen 

in time, like the combustion problem in [13]. For such problems, the application of a 

variable number of levels should be combined with the use of variable temporal step 

sizes. Preferably, the complete adaptation should then be monitored by estimators of 

temporal and spatial errors in such a way that there is a balance between the two 

which aims at minimizing the waste of computing time. 



ANALYSIS OF LOCAL UNIFORM GRID REFINEMENT 277 

t =0.5 t=l.O 

t =1.5 1=2.0 

F1a. 7.2. Fourth-order interpolation. Integration domains for the l = 4 run at four different times. At the 
end time, t = 2.0, the number of nodes amounts to 121, 425, 813, and 1361, respectively. 
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