NON-LOCAL LIE PRIMITIVE SUBGROUPS OF LIE GROUPS

ARJEH M. COHEN AND ROBERT L. GRIESS JR.

Abstract

Borovik found a Lie primitive subgroup of $E_{8}(\mathbb{C})$ isomorphic to ($\mathrm{Alt}_{5} \times$ Sym_{6}) : 2. In this note, we provide a short proof of existence and his result that the conjugacy class of this subgroup is the only one among those of non-local Lie primitive subgroups of finite dimensional simple complex Lie groups having a socle with more than one simple factor.

1. Introduction and statement of results. In [CoGr 1987], the isomorphism types of finite nonabelian simple subgroups of the complex Lie groups $E_{7}(\mathbb{C})$ and $E_{8}(\mathbb{C})$ were studied. We define a Lie primitive subgroup of a complex Lie group to be a subgroup which is not contained in any proper, positive dimensional Zariski closed subgroup. In any group, a local subgroup is the normalizer of a nonidentity p-subgroup, for some prime number p. In [Aleks 1974] and, later, with different methods in [CLSS 1989], the local Lie primitive subgroups of complex simple Lie groups of exceptional type were classified.

Here, we continue the study of Lie primitive subgroups of a complex simple Lie group G of exceptional type. We show that any finite nonlocal Lie primitive subgroup of G normalizes a nonabelian simple subgroup, which, apart from a single exception found by Borovik, is unique up to conjugacy. Thus, we establish:

THEOREM 1.1. Let G be an adjoint simple complex Lie group. Suppose L is a finite Lie primitive subgroup of G. Then either L is contained in a finite local subgroup or its socle is a nonabelian simple subgroup or $G=E_{8}(\mathbb{C})$ and $\operatorname{soc} L$ is isomorphic to Alt $_{5} \times$ Alt $_{6}$. Conversely there exists a subgroup of $E_{8}(\mathbb{C})$ isomorphic to $\mathrm{Alt}_{5} \times \mathrm{Alt}_{6}$ which is Lie primitive and such a group is unique up to conjugacy.

The above group of the form $\mathrm{Alt}_{5} \times \mathrm{Alt}_{6}$ is called the semisimple Borovik group and its normalizer is called the Borovik group. The Borovik group contains the semisimple Borovik group with index 4 and it contains Alt $_{5} \times \mathrm{Sym}_{6}$ with index 2. More details on this group are given in § 4.

A more general version of this theorem (arbitrary characteristic of the ground field) has been announced by [Borov 1989] and, later, by [LiSe 1989]. We obtained these results independently and our treatment is relatively elementary and more detailed. The result (2.7), given by [LiSe 1989], considerably shortened an earlier version of this paper.

REMARK. The result is known for classical groups, for instance, by [Aschb 1984]. In fact, he points out a distinguished list of closed subgroups such that every finite group

[^0]whose socle is not nonabelian simple is a subgroup of one of them. The members of that list are infinite except for normalizers of abelian subgroups, which come from nonabelian groups in the universal cover.

In a letter to one of us, Borovik exhibited a Lie primitive subgroup of $E_{8}(\mathbb{C})$ isomorphic to $\left(\mathrm{Alt}_{5} \times \mathrm{Sym}_{6}\right): 2$. Our construction of this group can be found in $\S 4$.

We take this opportunity to report that the simple group $\mathrm{Sz}(8)$ with a ? should be on Table 2 of [CoGr 1987]. First of all, $\mathrm{Sz}(8)$ is in a 2-local subgroup of the sporadic group Ru . There is an embedding of Ru in $E_{7}(5)$ [KMR 1989]. Hence, by [Gr 1991 , Appendix 2], the Borel subgroup of $\operatorname{Sz}(8)$, being of order prime to 5 , lifts to $E_{7}(\mathbb{C})$ (an error is in (5.6.2) of [CoGr 1987]). From [GrRy 1992], we know that $\mathrm{Sz}(8)$ is contained in $E_{7}(K)$ for a field K if and only if $\operatorname{char}(K)$ is 2 or 5 ; the possibility that $\mathrm{Sz}(8)$ is embedded in $E_{8}(\mathbb{C})$ remains. Also, $U_{3}(8): 12$ is now known to be embedded in $E_{7}(\mathbb{C})$ [GrRy 1992] and Ru is embedded in $E_{7}(5)$ [GrRy 1992] [KMR 1989]. An embedding of $L(2,61)$ in $E_{8}(\mathbb{C})$ was proved recently [CoGrLi 1992]. Also, Lemma (3.5) of [CoGr] does not suffice to eliminate $L(4,5)$, though its nonembedding in $E_{8}(\mathbb{C})$ follows trivially from the nonembedding of a $P S p(4,5)$-subgroup. Finally, the second argument given to show the nonembedding of F_{3} in $E_{8}(\mathbb{C})$ is not valid since the indicated element of order 3 need not have trace 5.

Another correction should be made to part (ii) of Theorem 1.1 of [CoGr 1987]; the groups $\operatorname{SL}(2,31)$ and $\operatorname{SL}(3,4)$ should be removed from the list, and the group $2 \cdot L(3,4)$ should be inserted. The error is just a misstatement of our correct results (5.3.1) and (5.2.7) (which are correctly reported in Table 2).

A consequence of the above remarks, Theorem 1.1 of this article, [CoGr 1987] and [CoWa 1983, 1989] is that the isomorphism types of semisimple Lie primitive subgroups of exceptional Lie groups G are known, except for the few specific cases listed in [CoGr 1987] and [CoWa 1989].
2. The setup. Throughout this article, we shall denote by L a finite Lie primitive subgroup of G whose socle is denoted $\operatorname{soc} L$ and which is a direct product of finite nonabelian simple groups. Let N be a nonidentity normal subgroup of L such that $N \leq \operatorname{soc} L$. Then there exist $t \in \mathbb{N}$ and nonabelian simple subgroups $N_{i}(1 \leq i \leq t)$ such that $N=N_{1} \times N_{2} \times \cdots \times N_{t}$.

We assume that $t>1$ and prove that N is the semisimple Borovik group; see (3.6) and $\S 4$.

NOTATION 2.1. The adjoint module of G is denoted by \mathbf{g}, and the corresponding character of G by χ. By $E_{7}(\mathbb{C})$ we mean the adjoint group; its universal cover will be denoted by $2 E_{7}(\mathbb{C})$. Similar notations for central extensions apply to the other simple Lie groups. By $1_{a}, 8_{b}, \ldots$ we mean an irreducible module of dimension 1,8 , etc. for some group or Lie algebra. The subscripts distinguish nonisomorphic modules of a given dimension. When the group is finite and essentially simple, we use the notation of [Atlas 1985]; otherwise, the symbols stand for well-known modules of the group, e.g., $8_{a}, 8_{b}, 8_{c}$ stand for the complete set of 8 -dimensional irreducibles for the Lie algebra or simply connected

Lie group of type D_{4}. The type of an element of finite order at most 7 in $E_{8}(\mathbb{C})$ is the label given to its conjugacy class in [CoGr 1987, Table 4].

Any irreducible representation of N is the tensor product of representations of the N_{i} ($1 \leq i \leq t$). Thus, if $\psi_{0}^{(i)}, \ldots, \psi_{s_{i}}^{(i)}$ are the irreducible characters of N_{i}, the irreducible characters of N are of shape $\psi_{i_{1}}^{(1)} \otimes \psi_{i_{2}}^{(2)} \otimes \cdots \otimes \psi_{i_{t}}^{(t)}$, where \otimes denotes character multiplication for a tensor product of modules for a direct product of groups. Hence there are non-negative numbers $a_{i_{1}, \ldots, i_{t}}$ such that ${ }^{'}$

$$
\begin{equation*}
\left.\chi\right|_{N}=\sum_{i_{1}, i_{2}, \ldots, i_{t}} a_{i_{1}, \ldots, i_{t}} \psi_{i_{1}}^{(1)} \otimes \psi_{i_{2}}^{(2)} \otimes \cdots \otimes \psi_{i_{t}}^{(t)} \tag{*}
\end{equation*}
$$

In using this kind of decomposition, we will write the characters as in [Atlas 1985].
We recall
LEMMA 2.2 (cf. [CoGr 1987]). A nontrivial normal subgroup of L has zero fixed point subalgebra on \mathbf{g}.

Proof. Let M be a nontrivial normal subgroup of L. The connected component C of the identity of the centralizer of M (for short: the connected centralizer of M) in G is normalized by the normalizer in G of M, whence by L. If M has nonzero fixed vectors in \mathbf{g} then $C_{\mathbf{g}}(M)$ is a nontrivial subalgebra of \mathbf{g}; therefore $N_{G}(C)$ is a closed complex Lie subgroup of positive dimension containing L, contradicting Lie primitivity of L.

We remark that, for N_{i} non-normal (so $t>1$), (2.2) does not exclude $C \mathbf{g}\left(N_{i}\right) \neq$ 0 , although eventually we shall see that this does not happen. Besides the connected centralizer of N, the lemma below gives another closed subgroup which is trivial.

LEMMA 2.3. The subgroup $\left(C_{G}\left(C_{G}\left(N_{i}\right)^{(\infty)}\right)^{(\infty)}\right)^{\circ}$ is trivial, for all i.
Proof. Take distinct $i, j \in\{1, \ldots, t\}$. Clearly, $\Pi_{k \neq i} N_{k} \leq C\left(N_{i}\right)^{(\infty)}$, so $1<N_{i} \leq$ $L_{i}:=C\left(C\left(N_{i}\right)^{(\infty)}\right)^{(\infty)} \leq C\left(\Pi_{k \neq i} N_{k}\right)^{(\infty)}$, which is proper in G since $t>1$. Similarly, $L_{j} \leq C\left(\Pi_{k \neq j} N_{k}\right)^{(\infty)} \leq C\left(N_{i}\right)^{(\infty)}$, whence $L_{i} \leq C\left(L_{j}\right)$. Thus, $\Pi_{k} L_{k}$ is a proper algebraic subgroup of G normalized by L, so must be finite. Hence $L_{k}^{\circ}=1$ for each $k \in\{1, \ldots, t\}$.

COROLLARY 2.4. $\quad\left(C_{G}\left(C_{G}(S)^{(\infty)}\right)^{(\infty)}\right)^{\circ}=1$ for any subgroup S of N_{i}, for each i.
Proof. Immediate from $C_{G}\left(C_{G}(S)^{(\infty)}\right)^{(\infty)} \leq C_{G}\left(C_{G}\left(N_{i}\right)^{(\infty)}\right)^{(\infty)}$ and the above lemma.

Lemma 2.5. If, for each i, the group $C_{G}\left(N_{i}\right)$ has a solvable component group, the subgroup $C_{G}\left(C_{G}\left(N_{i}\right)^{\circ}\right)$ is finite.

PROOF. As in the previous lemma, it can be shown that the subgroups $C_{G}\left(C_{G}\left(N_{i}\right)^{\circ}\right)^{\circ}$ of G commute and that their product is normalized by L.

LEMMA 2.6. Let S be a finite simple subgroup of G. Then the component group of $C_{G}(S)$ is solvable or we are in an exceptional group and $C_{G}(S)$ is finite and nonsolvable.

Proof. Without loss, we may alter G by a convenient central extension or quotient.
If G is of non-exceptional type, consider the standard representation on a complex vector space V, and the decomposition

$$
V=\sum_{i \in I} V_{i}
$$

of V into isotypical components $V_{i}(i \in I)$. If G has type A_{n} then $C_{G}(S)$ is an algebraic group between a direct product of groups $\mathrm{GL}\left(V_{i}\right)$ and its commutator subgroup, whence the result. Suppose, next, that G is the commutator subgroup of the group stabilizing a nondegenerate alternating or symmetric bilinear form f. For $i \in I$, denote by i^{\prime} the index in I for which V_{i} is contragredient to $V_{i^{\prime}}$, and set $J=\left\{i \in I| |\left\{i, i^{\prime}\right\} \mid=2\right\}$. Then $C_{G}(S)$ is a subgroup containing the commutator subgroup of a direct product of the groups $\mathrm{GL}\left(V_{i}\right)$ (one for each pair $\left\{i, i^{\prime}\right\} \in J$) and classical groups associated to the forms obtained by restricting f to the spaces $V_{i}(i \in I-J)$, whence the result.

From now on, assume G is of exceptional type. Let S be a counterexample. Define $C:=C_{G}(S)$. Then $R:=C^{(\infty)}>C^{\circ} \cap C^{(\infty)}$ and C is infinite. Note that C is reductive (the centralizer of the reductive subgroup S) and that R is an algebraic group (equal to $C^{(k)}$, for sufficiently large k) and satisfies $C^{\circ \prime} \leq R$. Consequently, $R \cap C^{\circ}=Z_{k} C^{\circ \prime}$, for k sufficiently large, where $Z_{k}:=R^{(k)} \cap Z\left(C^{\circ}\right)$. Since Z_{k} is an algebraic subgroup of a torus, it is reductive. Therefore, $R \cap C^{\circ}$ is reductive, whence so is R. Observe that if the reductive group $C_{C}^{\circ}(R)$ is not 1 , it contains nontrivial semisimple elements outside $Z(G)$. We consider cases to obtain a contradiction.

CASE 1. $\quad C_{C}(R)$ has a semisimple element $t \in C_{C}(R), t \notin Z(G)$. Then, $C_{G}(t)$ has solvable component group and has dimension less than that of G, so we finish by induction on the dimension upon passing to a quasisimple component Y of $C_{G}(t)^{\circ}$ such that $C_{Y}(S) / C_{Y}(S)^{\circ}$ is nonsolvable.

CASE 2. $\quad C_{C^{\circ}}(R)=Z(G), C^{\circ}$ has quasisimple components and R has a nontrivial orbit on the set of quasisimple components. The components in this orbit must consist of groups H_{i} of type A_{1} for $i \in J$, an index set of cardinality $n \geq 5$. Thus, G has type E_{6}, E_{7} or E_{8}. Embed G in a group X of type E_{8}, altering G by a central extension or quotient if necessary. Since the 2-rank of G is at most 9 (by [Adams 1986], [CoSe 1987], [Gr 1991]), each H_{i} is isomorphic to $\operatorname{SL}(2, \mathbb{C})$. Let $H:=\left\langle H_{i} \mid i \in J\right\rangle$ and let z_{i} be the central involution of H_{i}. Since R is perfect and $n \leq 8$, the action on the set of z_{i} is primitive. So, either the z_{i} are pairwise distinct or all equal.

We claim that the H_{i} are fundamental $\operatorname{SL}(2, \mathbb{C}) s$ in X.
CASE $2 \mathrm{a} . \quad z_{i}$ has type $2 A$. If $Z(H)$ contains a four group, V, of type $A A A, H$ lies in $C(V) \cong T_{2} E_{6}$. 2 , a contradiction to $V \leq H^{(\infty)}$. If $Z(H)$ contains a four group, V, of type $A A B, H$ lies in a natural subgroup of type $A_{1} A_{1} D_{6}$. Without loss, we assume that there is no four group of type $A A A$ in $Z(H)$. Embed a maximal torus of H in T, a maximal torus
of X. With respect to the natural quadratic form on $\left\{x \in T \mid x^{2}=1\right\}, Z(H)$ is singular with respect to the bilinear form, but not the quadratic form, so has rank at most 4 and $Z(H) \cap 2 A$ is the nontrivial coset of a codimension one subspace. On the other hand, it supports a group of automorphisms which is transitive on the n distinct z_{i}, so has rank at least 4 , whence exactly 4 . Therefore, from [CoGr], (3.8), we get that $C(Z(H)) \cong 2^{4} A_{1}^{8}$. Since $|J| \geq 5$, at least one, hence all, of the H_{i} are fundamental $\operatorname{SL}(2, \mathbb{C}) s$. Finally, we suppose that the z_{i} are equal and seek a contradiction. Then, $H \leq C\left(z_{i}\right) \cong 2 A_{1} E_{7}$. If H contains the A_{1} factor, the factor must be normal in H and so must be one of the H_{i}, as required. So, we may assume that H does not contain the A_{1} factor and so its image in the simple E_{7} quotient is a direct product of $n \operatorname{PSL}(2, \mathbb{C}) s$. This implies that the 2-rank of adjoint E_{7} is at least 10, in contradiction to [Gr 1991], (9.8.ii).

CASE 2b. $\quad z_{i}$ has type $2 B$. If all z_{i} are distinct, then [CoGr 1987], (3.7) implies that H is in a group of type A_{7} or D_{4}^{2}. If A_{7}, we get a contradiction by rank considerations. So, we may assume that $Z(H)$ contains no four group of type $A B B$. Thus, in any maximal torus T containing $Z(H), Z(H)$ is a maximal isotropic subspace of $\left\{x \in T \mid x^{2}=1\right\}$ under the natural quadratic form. If D_{4}^{2}, we argue as in Case 2 a to get H in a natural $2^{4} A_{1}^{8}$ and then verify the claim. Now assume that the z_{i} are all equal. We obtain a contradiction in this last case. Reindex to arrange $J=\{1, \ldots, n\}$. Let $P \cong$ Alt $_{4}$ be diagonally embedded in $H_{1} H_{2}$. If the involutions of $O_{2}(P)$ are of type $2 B$, then $C_{X}\left(O_{2}(P)\right) \cong 2^{2} D_{4}^{2}: 2$ and $H_{3} \cdots H_{n} S$ is embedded in a product of at most two groups of type G_{2} or A_{2} (see [Tits 1959] or look ahead to (3.2)). Since these two groups have Lie rank at most two, at most two H_{i} project to a given factor and so, as $n \geq 5$, there is a pair i, j such that $H_{i} \cap H_{j}=1$, a contradiction. If these involutions are of type $2 A, H_{3} \cdots H_{n} S$ is in Y, a natural E_{6} subgroup. Since $H_{3} \cdots H_{n} S$ contains $2^{1+2(n-2)} \times 2^{2}$, which has 2 -rank $n-1+2 \geq 6$, it follows from [Gr 1991] that if E is a subgroup of $H_{3} \cdots H_{n} S$ of rank at least 6, it is toral of rank 6 and is maximal elementary abelian in Y and that $C_{X}(E)^{\circ}$ is a natural $3 A_{2}$-subgroup. Since $H_{1} H_{2}$ is not embeddable in $\operatorname{SL}(3, \mathbb{C})$, we have a contradiction.

We now have that the H_{i} are fundamental $\operatorname{SL}(2, \mathbb{C}) s$. From [CoGr, 1987], (3.7), we know that the centralizer in X of two distinct such H_{i} has shape $2^{2} D_{6} .2$ and so the structure of D_{6} implies that the connected centralizer of five such is a product of three fundamental $\operatorname{SL}(2, \mathbb{C}) s$ (and lies in the subgroup $2^{4} A_{1}^{8}$ of [CoGr 1987], (3.8.i)). Since S is simple and $C(H)^{\prime}$ contains the finite simple group S and is a direct product of at most three fundamental $\operatorname{SL}(2, \mathbb{C}) s$, we have a contradiction to the classification of finite subgroups of SL(2, C $)$.

CASE 3. $\quad C_{C^{\circ}}(R)=Z(G), C^{\circ}$ has quasisimple components and R has only trivial orbits on the set of quasisimple components. Thus, $R=C^{\circ \prime} \circ C_{R}\left(C^{\prime \prime}\right)$, a central product. We get a contradiction by replacing G with a quasisimple component of $C_{G}(t)^{\circ}$, for some $t \in C^{\circ \prime}-Z(G)$ and using induction on the dimension; see the last remark in Case 1.

CASE 4. $\quad C_{C^{\circ}}(R)=Z(G), C^{\circ}$ has no quasisimple components, so is a torus. Set $T:=$ C°. Since C is infinite, $d:=\operatorname{dim}(T)>0$. By Case $1, C_{T}(R)=Z(G)$. Let $D:=C_{G}(T)$; if we embed T in a maximal torus T_{0} and let Π be a root system, then D is generated
by $N_{G}\left(T_{0}\right) \cap C_{G}(T)$ and those root groups centralizing T. Thus, D is connected and D^{\prime} contains S, whence $\operatorname{rank}\left(D^{\prime}\right) \geq 1$. Also, the action of R on T corresponds to a subgroup of the Weyl group of G acting trivially on the subsystem Π^{\prime} of roots associated to D^{\prime}. Thus, R acts on T_{0} as a subgroup of the Weyl group associated to $\Pi^{\prime \prime}$, the set of roots in Π perpendicular to those roots in Π^{\prime}. Since R acts on T as a nontrivial perfect group, $\Pi^{\prime \prime}$ must have a connected component which contains an A_{4} subsystem and $R / C_{R}(T)$ contains an element h of order 5 . It follows that D^{\prime} is generated by root groups in a natural simply connected subgroup $H=C_{G}\left(\left[T_{0}, h\right]\right)$ of type A_{m}, for some $m>0, m \leq 4$.

In particular, D^{\prime} is a nonempty direct product of at most two $\operatorname{SL}(n, \mathbb{C}) s$ and $Z\left(D^{\prime}\right) \cap$ $Z(G)=1$. Thus, R centralizes the nontrivial finite group $Z\left(D^{\prime}\right)$, which is in T but not in $Z(G)$, a contradiction.

We owe part (i) of the following simple but powerful lemma to [LiSe 1989].
LEMMA 2.7. Denote by n the product of all primes dividing the coefficients of the highest root when expressed as a linear combinations as fundamental roots. Thus $n=30$ if $G=E_{8}(\mathbb{C})$ and $n=6$ if $G=E_{7}(\mathbb{C}), E_{6}(\mathbb{C}), F_{4}(\mathbb{C})$ or $G_{2}(\mathbb{C})$. If G has type $A_{n}, n=1$ and otherwise $n=2$.
(i) If $x \in G$ is an element of finite order not equal to a coefficient of the highest root (in particular, if the order is prime to n), then the connected center $Z\left(C_{G}(x)\right)^{\circ}$ of $C_{G}(x)$ is nontrivial.
(ii) If X is a subgroup of G such that $C_{G}(X)^{\circ}=1$, then each element $x \in C_{G}(X)$ satisfies $Z\left(C_{G}(x)\right)^{\circ}=1$. In particular, $|x|$ divides 60.
(iii) For $E_{8}(\mathbb{C})$, the classes of finite order elements x such that $Z\left(C_{G}(x)\right)^{\circ}=1$ are the following (below which are the component types of the centralizer):

$$
\begin{array}{ccccccccc}
1 A & 2 A & 2 B & 3 A & 3 B & 4 A & 4 C & 5 C & 6 F \\
E_{8} & A_{1} E_{7} & D_{8} & A_{8} & A_{2} E_{6} & A_{7} A_{1} & A_{3} D_{5} & A_{4} A_{4} & A_{5} A_{2} A_{1} .
\end{array}
$$

Proof. (i) Let $l=\operatorname{rank}(G)$ and let $\left(a_{0}, \ldots, a_{l}\right)$ be the labels of the extended Dynkin diagram ($a_{0}=1$ and the other a_{i} are coefficients of the highest root; see [Kac 1985], Chapter 4, Table Aff 1 for this and Chapter 8 for what follows). Elements of order m in $\operatorname{Inn}(G)$, up to conjugacy in $\operatorname{Aut}(G)$, are given, modulo diagram automorphisms, by assignments (m_{0}, \ldots, m_{l}) of nonnegative integers to the nodes which generate the unit ideal of \mathbb{Z} and satisfy $m=\sum_{i} a_{i} m_{i}$. Furthermore, the semisimple part of the centralizer of such an automorphism has as Dynkin diagram that subdiagram of the extended diagram which is supported at the set of those $i \in\{0, \ldots, l\}$ where $m_{i}=0$. If x is an element of order m such that $Z\left(C_{G}(x)\right)^{\circ}$ is trivial, this index set must have cardinality l, and if i is the unique index where m_{i} is nonzero, then (by the unit ideal condition) $m_{i}=1$. Thus, $m=a_{i}$.
(ii) For $x \in C_{G}(X)$, we have $Z\left(C_{G}(x)\right) \leq C_{G}\left(C_{G}(x)\right) \leq C_{G}(X)$ whence $Z\left(C_{G}(x)\right)^{\circ} \leq$ $C_{G}(X)^{\circ}=1$.
(iii) Use (ii), [CoGr 1987] and the coefficients of the highest roots [Bour 1968].

COROLLARY 2.8. $\quad G=E_{8}(\mathbb{C})$, and, for all i, the order of N_{i} has no prime divisors greater than 5 and the centralizer of every element of N_{i} has trivial connected center. Furthermore, a Sylow 5-group of N_{i} has order 5 and there exists an involution of N_{i} inverting it under conjugation.

Proof. We first claim that every element of N_{i} has trivial connected centralizer. By Lemmas 2.5 and 2.6, $X:=C_{G}\left(N_{i}\right)^{\circ}$ is trivial or has a finite centralizer. Suppose that $C_{G}(X)$ is finite. Then Lemma 2.7(ii) applies yielding that $Z\left(C_{G}(x)\right)$ is finite for each $x \in N_{i}$. According to Lemma 2.7(i), this implies that the order of N_{i} is as stated. Now assume that $X=1$ and that the claim is false. There is an element $x \in N_{i}$ such that $Z:=Z\left(C_{G}(x)\right)$ is nontrivial. Thus, for every index $j \neq i, N_{j}$ centralizes Z and so $C_{G}\left(\left\langle N_{j} \mid j \neq i\right\rangle\right)$ is a positive dimensional closed subgroup. It is normalized by L (since $X=1$) and we have a contradiction to Lie primitivity of L. The claim implies that $G=E_{8}(\mathbb{C})$ since the order of a nonabelian simple group requires at least three primes.

A Sylow 5-group has exponent 5 , so it suffices to show that it does not contain a subgroup of the form 5×5. Suppose that A is such a group of order 25 . Since A is a 2-generator finite abelian group, it is toral, so its centralizer has dimension at least 8 . Orthogonality relations and the fact that traces of elements of order 5 here are all -2 (by (2.7.iii)) lead to a connected centralizer of dimension 8 exactly which therefore must be a torus, say T. Inspection of the centralizer of such an element of order 5 (shape $5 A_{4} A_{4}$) shows that $C_{G}(A) \cong T: 5$, a solvable group. This is a contradiction since, for $j \neq i, N_{j} \leq C_{G}(A)$. (At this point, one could quote [Brauer 1968], which classifies finite simple groups of order $2^{a} 3^{b} 5(a, b \in \mathbb{N})$. The argument we choose in this article is more elementary.)

Burnside's famous normal p-complement theorem implies that, if P is a Sylow 5group of N_{i}, there is $x \in N_{N_{i}}(P)$ which acts nontrivially on P. Since $\operatorname{Aut}(P)$ is cyclic of order 4 and $P=C_{N_{i}}(P)$, we may take x to be an involution.

LEMMA 2.9. Suppose that x_{1}, \ldots, x_{n} are involutions from a torus of $G=E_{8}(\mathbb{C})$ and that each x_{i} is in $2 A$. Assume further, for each i, that S_{i} is a fundamental $\operatorname{SL}(2, \mathbb{C})$ subgroup containing x_{i} in its center (it is just the $\mathrm{SL}(2, \mathbb{C})$-factor in $C_{G}\left(x_{i}\right)$) and that, for each pair of indices $i \neq j,\left[S_{i}, S_{j}\right]=1$. If the product $x_{1} \cdots x_{n}$ is an involution, it is in $2 B$ iff n is even.

PROOF. Use the interpretation of involutions in the torus T as isotropic or anisotropic vectors in the vector space $\left\{x \in T \mid x^{2}=1\right\}$, according to whether they are in class $2 B$ or $2 A$. Under the natural bilinear form, two anisotropic vectors are orthogonal iff $\left[S_{i}, S_{j}\right]=1$. Our hypotheses imply that the x_{i} generate a subspace of $\left\{x \in T \mid x^{2}=1\right\}$ which is totally singular with respect to the bilinear form. The products of evenly many x_{i} form a subgroup of index 2 consisting of the identity and the singular vectors.

Corollary 2.10. For each i, N_{i} contains no element of order 6 and, for some i, N_{i} contains a subgroup isomorphic to Alt_{4}.

Proof. Suppose that N_{i} contains an element x of order 6. Then, x, x^{2} and x^{3} are in $6 F, 3 B$ and $2 A$, respectively. Let $j \neq i$ and let $D:=\langle h, u\rangle$ be a subgroup of N_{j} which is
dihedral of order 10 , with $|h|=5$ and $|u|=2$; by (2.8), it is available. The centralizer of h has shape $5 A_{4} A_{4}$ and u induces on each factor an outer automorphism whose fixed points form a copy of $\operatorname{SO}(5, C)$. Let F_{1} and F_{2} be the two factors of type $5 A_{4}$. For each index $l \neq j$. Each F_{k} meets N_{l} trivially, or else simplicity of N_{l} implies that $N_{l} \leq F_{k}$ and that a subgroup of order 5 in N_{l} meets $F_{k^{\prime}}\left(\left\{k, k^{\prime}\right\}=\{1,2\}\right.$) trivially, against (2.7.iii). Thus, each N_{l} injects into each $F_{k} / Z\left(F_{k}\right)$ under the natural maps. By considering the natural 5dimensional module for F_{k}, which contains $\left\langle N_{l} \mid l \neq j\right\rangle$, we conclude that $t=2$. Suppose that N_{i} is normal in L. Since $C_{G}(x) \cong 6 A_{1} A_{2} A_{5}$, (2.2) implies that N_{j} projects nontrivially to each factor, whence the classficiation of finite subgroups of $\operatorname{SL}(2, \mathbb{C})$ implies that $N_{j} \cong$ Alts. But then, its image in the $6 A_{5}$-factor is a reducible subgroup of the group $6 A_{5}$ in its action on a 6 -dimensional irreducible module and so $C\left(N_{i}\right)^{\circ} \neq 1$, against (2.2). We conclude that N_{1} and N_{2} are conjugate in L and so both contain elements of order 6 . Thus, N_{j} centralizes Y, the A_{1}-factor in $C_{G}(x)$. Letting $D \leq N_{j}, D \cong D i h_{10}$ as above, we get that $C_{G}(D) \cong \operatorname{SO}(5, C)^{2}$ and that, under one of the projections, the central involution z of Y maps to 1 or an involution conjugate to $\operatorname{diag}(-1,-1,-1,-1,1)$ in $C_{F_{1}}(t) \cong \mathrm{SO}(5, \mathrm{C})$ due to the invariant symmetric bilinear form. Thus, z is a product of evenly many $2 A$ involutions as in (2.9) (the fundamental $\operatorname{SL}(2, C) s$ come from $\left.C\left(D^{\prime}\right) \cong 5 A_{4}^{2}\right)$ and so is in $2 B$; however, the structure of $C_{G}(x)$ implies that it is in $2 A$ since Y is a fundamental $\operatorname{SL}(2, \mathbb{C})$. This contradiction proves that no N_{i} has an element of order 6 .

We now prove that one of the N_{i} contains a copy of Alt4. Since N_{i} is simple, it has no normal 2-complement, so by an old theorem of Frobenius, [Gor 1968] (7.4.5), there is a nonidentity 2 -subgroup, Q, and an element u of odd order which normalizes but does not centralize Q. The possibilities here are $|u|=3$ or 5 . If 3 , we are done, since $\langle u, t\rangle \cong$ Alt $_{4}$ for any involution $t \in Q$. So, we may assume that 3 does not occur this way for any i. The fact that N_{i} has no elements of order 10 means that u is fixed point free on Q. We may assume that Q is elementary abelian of order 16 . Then, in the notation of the previous paragraph, every involution of Q is a product of involutions from the two factors F_{i}.

CASE 1. For each involution of Q , both components from the F_{i} are conjugate to either $\operatorname{diag}(-1,-1,1,1,1)$ or $\operatorname{diag}(-1,-1,-1,-1,1)$. In either case, every involution of Q is the product of central involutions from n pairwise commuting fundamental $\operatorname{SL}(2, C) s$, where n is even and positive. Thus, involutions of Q are in $2 B$, by (2.9). It follows from (3.8.ii) of [CoGr] that $C_{G}(Q)^{\circ}$ is a maximal torus and $C_{G}(Q)$ has component group 2^{1+6}. Since $C_{G}(Q)$ is solvable but contains N_{j}, for $j \neq i$, we have our contradiction.

CASE 2. Case 1 does not hold for either value of i. In either case, we may assume that the image of the natural map of Q to the F_{i} lies in the diagonal group, whose involutions are in $2 A$ iff they are conjugate to $\operatorname{diag}(-1,-1,1,1,1)$; see (2.9). Since $\langle u\rangle$ has three orbits on $Q^{\#}$, we deduce from knowing the three orbits of a 5 -cycle permutation matrix on the diagonal group and from our being in Case 2 that exactly one orbit of $\langle u\rangle$ on Q consists of elements of $2 B$. An inner product calculation with (2.7.iii) gives that $\operatorname{dim} C_{G}(\langle Q, u\rangle)=$ 4. Thus, $C_{G}(\langle Q, u\rangle)$ is of type T_{1}^{4} or $A_{1} T_{1}$. This forces N_{j} to be Alt ${ }_{5}$, which contains an Alt 4 subgroup, and so we are done.
3. The proof. Recall that L is a finite Lie primitive subgroup of G with socle $N=$ $N_{1} \times \cdots \times N_{t}$, a direct product of t nonabelian simple subgroups. In this section, we shall assume $t \geq 2$. From this, we derive that $N \cong \operatorname{Alt}_{5} \times \operatorname{Alt}_{6}$, and describe $\left.\chi\right|_{N}$. According to (2.10), $G=E_{8}(\mathbb{C})$ and there is an index, k, such that N_{k} contains a subgroup isomorphic to Alt4.

Lemma 3.1. Let E be a four group in G all of whose involutions are conjugate. Set $Y=C_{G}(E)^{(\infty)}$. Then E is conjugate to a subgroup of T, Y is connected, and one of the following holds:
(i) All involutions in Y are of type $2 B, Y$ is of type $D_{4} D_{4}$ and $E \leq Z(Y)$.
(ii) All involutions in Y are of type $2 A, Y$ is of type E_{6} and $E \cap Y=1$. Moreover, $C_{G}(Y)^{(\infty)}$ is a Lie subgroup of type A_{2}.
Proof. See [CoGr 1987], (3.8) and (3.9). The statement about the centralizer of Y in (ii) follows from the fact that Y contains a conjugate of T.

LEMMA 3.2. Let S be a subgroup of G isomorphic to Alt_{4} all of whose involutions have type $2 B$. Then $C_{G}(S)^{(\infty)}$ has type $A_{2} A_{2}, A_{2} G_{2}$, or $G_{2} G_{2}$ according as the trace of an order 3 element of S on g equals -4 , 5, or 14. Moreover, $C_{G}\left(C_{G}(S)^{(\infty)}\right)^{(\infty)}$ is finite only in the first two cases, while in the last case, the centralizer is a subgroup of type A_{1}.

Proof. Let E be the four group in S. By Lemma 2.4, $C:=C_{G}(E)^{(\infty)}$ is of type $D_{4} D_{4}$. It acts on \mathbf{g} with character

$$
\begin{equation*}
8_{*}^{2-} \otimes 1_{a}+1_{a} \otimes 8_{*}^{2-}+8_{*} \otimes 8_{*}+8_{*} \otimes 8_{*}+8_{*} \otimes 8_{*} \tag{**}
\end{equation*}
$$

Choose an element $y \in S$ of order three. It induces an outer automorphism on C, which, by [CoGr 1987] is nontrivial on both factors D_{4}. By classical results on triality (cf. [Tits 1959]), the centralizer subgroup in each factor must then be of type A_{2} or G_{2}, the centralizer of type A_{2} acting irreducibly on each irreducible 8 -dimensional module for D_{4}. Thus, $Y=C_{G}(S)$ is a closed subgroup of C of type $A_{2} A_{2}, A_{2} G_{2}$, or $G_{2} G_{2}$, as claimed. Moreover, the dimension of this subgroup is $16,22,28$ in the respective cases and must equal

$$
\left(1_{a}, \chi \mid s\right)=\frac{1}{12}(248+3 \cdot(-8)+8 \cdot \chi(y))
$$

Hence y has trace $-4,5,14$ in the respective cases.
On any 8 -dimensional module for D_{4}, the triality subgroups of type A_{2} and G_{2} have restrictions 8_{a} and $1_{a}+7_{a}$, respectively. On the Lie algebra for D_{4}, they have restrictions $8_{a}^{2-}=8_{a}+10_{a}+10_{b}$ and $\left(1_{a}+7_{a}\right)^{2-}=2 \cdot 7_{a}+14_{a}$, respectively. Straightforward character computations show that the trivial character occurs in $\left.\chi\right|_{Y}$ only if Y has type $G_{2} G_{2}$ (coming from the triple $1_{a} \otimes 1_{a}$ part). Conversely, the centralizer subgroups of type G_{2} have centralizer of type F_{4}. Thus, if Y has type $G_{2} G_{2}$, the centralizer F of one factor is isomorphic to $F_{4}(\mathbb{C})$ and contains the other factor, whence $C_{G}(Y) \geq C_{F}(Y)$, a subgroup of type A_{1}.

Lemma 3.3. We have $t=2$. Let $\{i, j\}=\{1,2\}$ and let E be a four subgroup of N_{i} all of whose involutions are G-conjugate. Then E is of the kind described in (i) of Lemma 3.1. Suppose furthermore that S is a subgroup of N_{i} isomorphic to Alt . Then N_{j} projects nontrivially into both factors of $Y=C_{G}(S)^{(\infty)}$ as in the previous lemma. In particular, N_{j} embeds in $\operatorname{PSL}(3, \mathbb{C})$ and so is isomorphic to one of Alt_{5}, Alt_{6}.

Proof. By definition of k, such an E is available in N_{k}, at least. Let $j \neq i$. If (ii) of Lemma 3.1 holds for some $E \leq N_{i}$, then, the subgroup $C_{G}\left(C_{G}(E)^{(\infty)}\right)^{(\infty)}$ is a group of type A_{2} contradicting Corollary 2.4 above. Hence E is as described in (i) of Lemma 3.1. Again by Corollary $2.4, C_{G}\left(C_{G}(S)^{(\infty)}\right)^{(\infty)}$ must be finite. By Lemma 3.2 this implies that Y has a factor of type A_{2}. The group N_{j} must project nontrivially on each factor of Y, for otherwise N_{j} lies in an $\operatorname{PSL}(3, \mathbb{C})$-subgroup of a D_{4} factor which is irreducible on a natural 8 -dimensional representation. The D_{4}-factor is isomorphic to $\operatorname{Spin}(8, \mathbb{C})$; its involutions form two conjugacy classes, one central (in the G-class $2 B$) and one noncentral (in the Gclass 2 A); it follows that the involutions of such N_{j} are of type 2 A . In particular, N_{j} would have a four group as described by (ii) of Lemma 3.1, contradicting the first assertion of this lemma. Hence N_{j} embeds in both factors. Since at least one of them is of type A_{2}, the centralizer of $N_{1} N_{2}$ has trivial projection on at least one factor. Therefore, $t \leq 2$. Since Alt $_{5}$ and Alt 6 are the only simple $\{2,3,5\}$-subgroups of $\operatorname{PSL}(3, \mathbb{C})$ [Blich 1917], we need only reverse the roles of i and j to establish the lemma.

LEMMA 3.4 (ELEMENTS OF ORDER 3 IN TRIALITY SUBGROUPS OF $D_{4} D_{4}$). Let Y_{1}, Y_{2} be triality subgroups of D_{4} (of type A_{2} or G_{2}) such that $C_{G}(S)^{(\infty)}=Y_{1} Y_{2}$, and suppose $y_{i} \in Y_{i}$ is an element of order $3(i=1,2)$ in Y_{i} lifting to an element of order 3 in the covering group of Y_{i}.
(i) If Y_{i} has type A_{2}, y_{i} has trace -1 on an 8-dimensional module for D_{4}.
(ii) If Y_{i} has type G_{2}, y_{i} has trace -1 or 2 on an 8 -dimensional module for D_{4}.
(iii) The product $y=y_{1} y_{2}$ satisfies $\chi(y)=5$ if both y_{i} have trace -1 on the 8 dimensional D_{4}-modules and $\chi(y)=-4$ if one has trace -1 and the other trace 2 on the 8-dimensional D_{4}-modules.

Proof. In Case (i), y_{1} has trace 0 on the standard module 3_{a} for A_{2} (as it has order 3 in the covering group) whence trace -1 on the adjoint module for A_{2}. In Case (ii) there are only two possibilities for y_{1} up to conjugacy in $G_{2}(\mathbb{C})$, leading to trace -2 or 1 on the standard module 7_{a} for G_{2} and hence trace -1 or 2 on a natural module 8_{*} for D_{4}. The lemma follows from use of these observations, the decomposition $\left({ }^{* *}\right)$ of the adjoint module in the proof of (3.2).

LEMMA 3.5. If $N_{1} \cong$ Alt $_{6}$, then $N_{2} \cong$ Alt $_{5}$ and, up to automorphisms of $N=N_{1} N_{2}$,

$$
\left.\chi\right|_{N}=3_{a} \otimes 5_{a}+3_{b} \otimes 5_{b}+4_{a} \otimes\left(8_{a}+8_{b}\right)+\left(3_{a}+3_{b}\right) \otimes 9_{a}+2 \cdot\left(5_{a} \otimes 10_{a}\right)
$$

Proof. First suppose $N_{2} \cong$ Alt . Consider the group D of type $D_{4} D_{4}$ centralizing a subgroup of N_{1} isomorphic to 2×2. Let $N_{2} \leq X_{1} X_{2}$, where X_{i} is in the i-th factor of
D and $X_{i} \cong \operatorname{Alt}_{6}$ or $\operatorname{SL}(2,9)$. The fixed point subgroup of a triality automorphism on the i-th factor of D contains X_{i}. Therefore, $X_{1} \cong X_{2} \cong$ Alt . Consequently, the character of N_{2} on the 8 -dimensional modules for D may be identified with 8_{a} and 8_{b} for Alt_{6}. We use this to find $\left.\chi\right|_{N_{2}}$ in terms of character values. We set $b_{5}=\frac{-1+\sqrt{5}}{2}$ and write b_{5}^{*} for the algebraic conjugate $\frac{-1-\sqrt{5}}{2}$ so that

$$
b_{5}+b_{5}^{*}=-1, \quad b_{5}^{2}=1-b_{5}, \quad b_{5} b_{5}^{*}=-1
$$

Now, for elements of orders ($1,2,3,3,4,5,5$) the character values are:

$$
8_{a}=\left(8,0,-1,-1,0,-b_{5},-b_{5}^{*}\right)
$$

and

$$
8_{b}=\left(8,0,-1,-1,0,-b_{5}^{*},-b_{5}\right)
$$

Thus on the exterior square for 8_{a} :

$$
8_{a}^{2-}=\left(28,-4,1,1,0,-b_{5},-b_{5}^{*}\right)
$$

and on the tensor products

$$
\begin{aligned}
& \left(64,0,1,1,0,1-b_{5}, 1-b_{5}^{*}\right) \text { in case } 8_{a} \otimes 8_{a} \\
& \quad(64,0,1,1,0,-1,-1) \text { in case } 8_{a} \otimes 8_{b}
\end{aligned}
$$

The full character on \mathbf{g} is therefore

$$
\begin{aligned}
& \left(248,-8,5,5,0,3-5 b_{5}, 3-5 b_{5}^{*}\right) \text { in case } 8_{a} \otimes 8_{a} \\
& (248,-8,5,5,0,-2,-2) \text { in case } 8_{a} \otimes 8_{a}
\end{aligned}
$$

An inner product computation shows

$$
\operatorname{dim} C \mathbf{g}\left(N_{2}\right)= \begin{cases}3 & \text { in case } 8_{a} \otimes 8_{a} \\ 0 & \text { in case } 8_{a} \otimes 8_{b}\end{cases}
$$

If $\operatorname{dim} C \mathbf{g}\left(N_{2}\right)>0$, Lemma 2.2 gives that L must conjugate N_{2} to N_{1}. But then in the case at hand, $N_{1} \cong$ Alt $_{6}$ must act trivially on the 3 -space $C_{\mathbf{g}}\left(N_{2}\right)$ (because there are no non-trivial 3-dimensional modules for Alt $_{6}$), whence $N_{1} \times N_{2}$ centralizes $C \mathbf{g}\left(N_{2}\right)$, contradicting Lemma 2.2. Consequently, the character of N_{2} is $8_{a} \otimes 8_{b}$. Taking inner products with the irreducibles for Alt_{6}, we obtain

$$
\begin{equation*}
\left.\chi\right|_{N_{2}}=3 \cdot\left(5_{a}+5_{b}\right)+4 \cdot\left(8_{a}+8_{b}\right)+6 \cdot 9_{a}+10 \cdot 10_{a} . \tag{*}
\end{equation*}
$$

Since Alt_{6} does not have a 3-dimensional character without trivial constituents, use of (*) yields $N_{1} \neq$ Alt $_{6}$.

Hence $N_{1} \cong$ Alts. In particular, N_{1} is normal in L, so by Lemma $2.3,\left.\chi\right|_{N_{1}}$ has no trivial constituents. According to [CoGr 1987] there is a unique character associated to fixed point free embedding of N_{1} in $E_{8}(\mathbb{C})$; its character $\left.\chi\right|_{N_{1}}$ is $14 \cdot\left(3_{a}+3_{b}\right)+16 \cdot 4_{a}+20 \cdot 5_{a}$. Apart
from the character mentioned in the lemma there is only one other character compatible with both factors (cf. $\left(^{*}\right)$):

$$
\left.\chi\right|_{N}=3_{a} \otimes 5_{b}+3_{b} \otimes 5_{a}+4_{a} \otimes\left(8_{a}+8_{b}\right)+\left(3_{a}+3_{b}\right) \otimes 9_{a}+2 \cdot\left(5_{a} \otimes 10_{a}\right)
$$

(It helps to note that an irreducible for N_{i} of degree divisible by the order of a Sylow p-group of N_{i} vanishes on its p-singular elements, for $p=3$ and 5). But this character is obtained from the one in the lemma by an automorphism of N induced by an automorphism of the abstract group Alt ${ }_{6}$.

LEMMA 3.6. If $N_{2} \cong$ Alt ${ }_{5}$, then $N_{1} \cong \mathrm{Alt}_{6}$.
PROOF. If not, then by (3.3), $N_{1} \cong$ Alts. We assume this and seek a contradiction.
We claim that the trace of an element of order 3 in each N_{i} is 5 . Let $\{i, j\}=\{1,2\}$. Take a subgroup S of $N_{i}, S \cong$ Alt4. Then $C:=C_{G}(S)^{(\infty)}$ is of type $A_{2} A_{2}$ or $A_{2} G_{2}$ by Lemma 3.2. Let $y=y_{1} y_{2}$ be an element of order 3 in N_{j}, with y_{1} in a factor of C of type A_{2} and y_{2} in the other factor. If C has type $A_{2} A_{2}$, then y has trace 5 on \mathbf{g} by (2.5) and (3.2), while elements of order 3 in S have trace -4 , so N_{1} and N_{2} are not conjugate. Moreover, each N_{i} is normal in L. Since Alt ${ }_{5}$ has a unique fixed point free character on \mathbf{g}, at least one N_{i} has nonzero fixed points, a contradiction to (2.2). Therefore, C has type $A_{2} G_{2}$, and by Lemma 3.2 again, if $h \in S$ has order $3, \chi(h)=5$. Reversing the roles of N_{i} and N_{j}, we get $\chi(y)=5$ whence the claim.

From (3.4), we deduce that both y_{1} and y_{2} have trace -1 on a natural module for a D_{4} factor. The character table for Alt_{5} shows that the restriction to N_{j} of a character 8_{*} for the D_{4} factor must be of the form $3_{*}+5_{a}$. But then N_{j} does not embed in a G_{2}-subgroup of D_{4}, contradicting $N_{2} \leq C$ and (3.3).

The conclusion is that L must have a normal subgroup N as described in Lemma 3.6. This establishes the first part of Theorem 1.1.
4. Borovik's group. In this section we prove the second part of Theorem 1.1, i.e., we supply an existence proof of the Lie primitive group with socle $\mathrm{Alt}_{5} \times \mathrm{Alt}_{6}$ and of its uniqueness up to conjugacy. It differs from Borovik's original approach in that he begins with a particular subgroup isomorphic to $\operatorname{PSL}(2, \mathbb{C})$ from Dynkin's list of subgroups of $E_{8}(\mathbb{C})$ [Dynk 1957] and takes an icosahedral subgroup of it. We begin with a subgroup $S \cong \mathrm{Alt}_{4}$ whose involutions are in class $2 B$ and such that $C_{G}(S) \cong A_{2}(\mathbb{C}) w r 2$; see (3.4) and [CoGr 1987]. Let h be an element of order 3 in S. Since $\operatorname{dim} C_{G}(S)=16$, we have $\chi(h)=-4, C_{G}(h) \cong 3 A_{8}(\mathbb{C})$. Thus, the embedding of $C_{G}(S)$ in $C_{G}(h)$ is explained by identifying the 9 -dimensional standard module for $C_{G}(h)$ with the tensor product of a pair of 3-dimensional spaces. Consequently, an involution of $C_{G}(S)$ not in either A_{2}-factor has eigenvalues $\left\{-1^{4}, 1^{5}\right\}$ on the 9 -dimensional module, hence, by (2.9), is in G-class $2 B$.

Up to conjugacy, there is a unique subgroup of $\operatorname{PSL}(3, \mathbb{C})$ isomorphic to Alt_{6} (it is the image in $\operatorname{PSL}(3, \mathbb{C})$ of a subgroup $3 . \mathrm{Alt}_{6}$ of $\operatorname{SL}(3, \mathbb{C})$ and is self-normalizing). Thus, in $C_{G}(S)$, there is up to conjugacy, a unique group of the form $\mathrm{Alt}_{6} w r 2$ and this group contains one conjugacy class of subgroups isomorphic to Sym_{6}. This is the only way
to get a Sym_{6}-subgroup of $C_{G}(S)$. By the preceeding paragraph, the involutions in the derived group of any such Sym_{6}-subgroup are in class $2 B$.

We claim that if J is any Sym_{5}-subgroup of $B, C_{C_{G}(S)}(J)=1$. We observe first that if Y is a subgroup of $C_{G}(S)^{\circ}$ such that $C_{C_{G}(S)}(Y)=1$, then $C_{C_{G}(S)}(Y)$ has order at most 2. This remark applies to $Y=J^{\prime}$. Since $N_{C_{G}(S)^{\circ}}\left(J^{\prime}\right)=J^{\prime}$ and $N_{C_{G}(S)}\left(J^{\prime}\right)$ contains J, the claim follows.

Now, write B for a Sym_{6}-subgroup obtained as above. We study $C_{G}(B)$, which certainly contains S. The module \mathbf{g} for $C_{G}(h)$ decomposes as $80_{a}+9_{a}^{3-}+9_{b}^{3-}$, where $80_{a}=$ $9_{a} \otimes 9_{b}-1_{a}$ is the adjoint representation of $C_{G}(h)$. The embedding of B in $C_{G}(h)$ lifts to an action of B on the 9 -dimensional module which, by the character table for Sym_{6}, is irreducible and which leaves invariant a nondegenerate symmetric bilinear form (the only other possible characters have degrees $(5,1,1,1,1)$, which would force the involutions of B^{\prime} to be in class $2 A$, a contradiction). Consequently, we may deduce the G-class of every element of B (straightforward with the above decomposition of \mathbf{g} and the formula $\phi^{3-}(g)=\left[\phi(g)^{3}-3 \phi(g) \phi\left(g^{2}\right)+2 \phi\left(g^{3}\right)\right] / 6$ for the exterior cube of the character ϕ; on classes of cycle shapes $1,2^{2}, 3,3^{2}, 42,5,2,2^{3}, 4,6,123$, the respective values under χ are $248,-8,5,5,0,-2,24,24,0,-3,-3$) and we may, because of the invariant bilinear form on the 9-dimensional module, arrange for an element $x \in C_{G}(B)$ to invert h under conjugation. Observe that $C_{G}(\langle h, B\rangle)=\langle h\rangle$. We get $C_{G}(B)$ finite either using this observation or by an inner product calculation with the traces given above. Define $U:=\langle S, x\rangle$. By definition of S and $x, U^{\prime} \geq S$. Note that U is finite since $U \leq C_{G}(B)$. We want to show that $C_{G}(B)=U \cong$ Alts.

Let J be a Sym_{5}-subgroup of B. On a 9-dimensional natural projective representation of $C_{G}(h)$, J has irreducibles of dimensions (4,5); also, $C_{C_{G}(h)}(J) \cong T_{1}$ and $C_{C_{G}(\langle h, x\rangle)}(J) \cong$ 2. A straightforward inner product calculation with the above information shows that $\operatorname{dim} C_{G}(J)=3$. Let F be a Frobenius group of order 20 in J. Since $C_{G}(F)$ is (by (2.7.iii)) isomorphic to $\mathrm{SO}(5, \mathbb{C})$, the reductive subgroup $C_{G}(J)^{\circ}$ cannot be a rank three torus, so has type A_{1}. On the standard 5-dimensional module for $C_{G}(F), C_{G}(J)^{\circ}$ has irreducibles of degrees $5,(1,1,3)$ or $(2,2,1)$ since there is an invariant symmetric bilinear form. Only in Case ($2,2,1$) is $C_{G}(J)^{\circ} \cong \mathrm{SL}(2, \mathbb{C})$, which contradicts an above statement that $C_{C_{G}(S)}(J)=$ 1. Therefore, $(2,2,1)$ does not occur and so $C_{G}(J) \cong \operatorname{PSL}(2, \mathbb{C}) \times E$, where E is isomorphic to a finite subgroup of $O(2, \mathbb{C})$ via its action on the 0 - or 2-dimensional fixed point space. Since $C_{C_{G}(h)}(J) \cong T_{1}$, the action of h on $C_{G}(J)$ fixes exactly a torus and h acts fixed point freely on E, whence $E \cong 2 \times 2$ or 1 . We claim that $E=1$. Suppose not. Then, the irreducibles for $C_{G}(J)$ have dimensions $(1,1,3)$ and the action of h on E preserves its subgroup acting with determinant 1 on the 2-dimensional fixed point space of $C_{G}(J)$. This eliminates the possibility $E \cong 2 \times 2$ and so $E=1$. So, $C_{G}(J) \cong \operatorname{PSL}(2, \mathbb{C})$ (and $h \in C_{G}(J)$). The hypotheses on S and x and the classification of finite subgroups of $\operatorname{PSL}(2, \mathbb{C})$ imply that $U \cong$ Alt $_{5}$ or Sym_{4}. If $U \cong \mathrm{Sym}_{4}$ then $U^{\prime}=S$, $C_{G}(S) \cong A_{2}(\mathbb{C}) w r 2$ and either $C_{G}(U) \cong \operatorname{PSL}(2, \mathbb{C}) w r 2$ (in case x normalizes the two A_{2}-factors) or $C_{G}(U) \cong \operatorname{PSL}(3, \mathbb{C}) \times 2$ (in case x interchanges the two factors) and so $C_{G}(S)$ has no Sym $_{6}$-subgroup, a contradiction. Therefore, $U \cong$ Alt $_{5}$. Since $C_{G}(B)$ is a finite subgroup of $C_{G}(U)$ containing U, we conclude that $C_{G}(B)=U$.

To get the full normalizer of the finite semisimple group $N:=U \times B$, we just recall the above remarks about $C_{G}(S)$ and $S \times B$ and use the fact that $N_{G}(S)$ has the shape $C_{G}(S)\langle S, r\rangle$, where r is an involution normalizing $C_{G}(S)$. We have $\langle S, r\rangle \cong \operatorname{Sym}_{4}$. A Frattini argument shows that r may be arranged to normalize B. Since the outer automorphism group of B has order 2 and $C_{G}(B)=U$, we have $N_{G}(N)=\langle r, U, B\rangle$ and $N_{G}(N) / U \cong \operatorname{Aut}\left(\mathrm{Alt}_{6}\right) \cong \mathrm{Alt}_{6} .2^{2}$. It follows from $\langle S, r\rangle \cong \operatorname{Sym}_{4}$ that $\langle U, r\rangle \cong \operatorname{Sym}_{5}$. We may choose r to be an involution which satisfies $C_{B}(r) \cong 5: 4$. Since this is a subgroup of $C_{G}(S)$, it follows that r induces a graph automorphism on each A_{2}-factor of $C_{G}(S)$ (see remarks about the action of x in the previous paragraph).

We now verify Lie primitivity of N, which implies Lie primitivity for every subgroup between it and its normalizer. Suppose H is a closed Lie subgroup of G of positive dimension containing L. Then, we may assume that H is reductive and that N is Lie primitive in H. We prove $H=G$. If H° has a nontrivial central torus, N must act nontrivially on the connected center of H hence also on its Lie algebra, which has dimension at most 8 . On the other hand, the character of Lemma 3.5 shows that the minimal dimension of a nonzero N-submodule of \mathbf{g} is 15 , a contradiction. Hence, H° is semisimple.

We argue that N must be in H°. For otherwise, on the set of components there is a nontrivial orbit $\left\{H_{i} \mid i \in I\right\}, 5 \leq|I| \leq 8$. Every such H_{i} must have rank just 1 and, since the 2-rank of $E_{8}(\mathbb{C})$ is 9 (cf. [Adams 1986], [CoSe 1987] or [Gr 1991]), each must be an $\operatorname{SL}(2, \mathbb{C})$. Since the minimal degree of a faithful permutation of N is 11 , one of the factors, say N_{j}, operates faithfully as inner automorphisms on $H^{*}:=\left\langle H_{k} \mid k \in I\right\rangle$, whence $N_{j} \cong$ Alt $_{5}$ and so, if $\{i, j\}=\{1,2\}, N_{i} \cong$ Alt $_{6}$ and $|I|=6$. Since the actions of N_{i} and N_{j} on H^{*} commute, N_{i} centralizes a diagonal subgroup of H^{*} isomorphic to $\operatorname{SL}(2, \mathbb{C})$ or $\operatorname{PSL}(2, \mathbb{C})$, contradicting fixed point freeness of N_{i}. Therefore, $N \leq H^{\circ}$.

We now have that N projects faithfully into each quasisimple factor of H, by fixed point freeness. By Lie primitivity of N in H, these projections are Lie primitive in the respective factors, which, by (2.8) are all $E_{8}(\mathbb{C})$. Therefore, $H=G$ and we are done.
5. Remarks on isotypical alternating subgroups. If L is a subgroup of G containing a normal subgroup $N_{1} \cdots N_{t}$ whose factors are nonabelian simple subgroups which are L-conjugate, there exist a nonabelian finite simple group N_{0} and group isomorphisms $\phi_{i}: N_{0} \rightarrow N_{i}$ such that $\phi_{j} \phi_{i}^{-1}: N_{i} \rightarrow N_{j}$ coincides with the restriction to N_{i} of conjugation by an element of L for each $i, j \in\{1, \ldots, t\}$. In particular, if χ is a character of G, then $\chi \circ \phi_{i}=\chi \circ \phi_{j}$ for all $i, j(1 \leq i, j \leq t)$. We say that a subgroup M of G is t-isotypical if there is a subgroup M_{0} of M and an isomorphism $\phi=\left(\phi_{i}\right)_{1 \leq i \leq t}: M_{0} \times M_{0} \times \cdots \times M_{0} \rightarrow M$ such that $\chi \circ \phi_{i}=\chi \circ \phi_{j}$ for all $i, j(1 \leq i, j, \leq t)$, where χ is the adjoint character for E_{8}.

One might try to prove Theorem 1.1 via determination of characters of t-isotypical subgroups for $t>1$, using feasible characters of simple subgroups [CoGr 1987] and [CoWa 1989] and Lemma 2.2.

For E_{8} and $N_{1} \cong$ Alt 5 , so many 2-isotypical characters (with zero fixed points in \mathbf{g}) exist that this does not seem an efficient method.

The group Alt_{6} has very few fixed-point-free 2-isotypical representations in $E_{8}(\mathbb{C})$: up to outer automorphisms and permutations of the factors, there are two:

$$
1_{a} \otimes 8_{a}+8_{a} \otimes 1_{a}+2 \cdot 1_{a} \otimes 10_{a}+2 \cdot 10_{a} \otimes 1_{a}+3 \cdot 8_{a} \otimes 8_{a}
$$

and
$1_{a} \otimes 5_{a}+5_{a} \otimes 1_{a}+1_{a} \otimes 9_{a}+9_{a} \otimes 1_{a}+1_{a} \otimes 10_{a}+10_{a} \otimes 1_{a}+4 \cdot 5_{a} \otimes 5_{a}+10_{a} \otimes 10_{a}$.
In the respective cases, the fixed point space of N_{1} in g has dimension 28 and 24. They lead to embeddings of N in $D_{4} D_{4}$ and $A_{4} A_{4}$. The character table of Alt 7 then rules out 2-isotypical representations of Alt_{i} for $i \geq 7$.

ACKNOWLEDGEMENTS. The first author is grateful to the University of Michigan for enabling a stay during which this paper has been written. The second author wishes to acknowledge the University of Michigan for released time for research and the Na tional Science Foundation for financial support. We thank A. Borovik and G. M. Seitz for communicating their results to us.

REFERENCES

[Adams 1986] J. F. Adams, 2-tori in exceptional Lie groups, preprint.
[Aleks 1974] A. V. Alekseevskii, Finite commutative Jordan subgroups of complex simple Lie groups, Funct. Anal. and its Appl. 8(1974), 277-279.
[Aschb 1984] M. Aschbacher, On the maximal subgroups of the finite classical groups, Inventiones Math. 76(1984), 469-514.
[Atlas 1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. P. Parker and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
[Blich 1917]H. F. Blichfeldt, Finite Collineation Groups, University of Chicago Press, 1917.
[Borov 1989] A. Borovik, The structure of finite subgroups of simple algebraic groups, Algebra and Logic 28(1989), 249-279.
[Bourb 1968] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4,5 et 6, Hermann, Paris, 1968.
[Brauer 1968] R. D. Brauer, On simple subgroups of order 5. $3^{a} .2^{b}$, Bull. Amer. Math. Soc. 74(1968) 900-903.
[CLSS 1992] A. M. Cohen, M. W. Liebeck, J. Saxl and G. M. Seitz, The local maximal subgroups of the exceptional groups of Lie type, Proceedings London Math. Soc. (1992), to appear.
[CoGr 1987] A. M. Cohen and R. L. Griess, Jr., On finite simple subgroups of the complex Lie group of type E_{8}, Proc. of Symposia in Pure Math. 47(1987), 367-405.
[CoGrLi 1992] A. M. Cohen, R. L. Griess, Jr. and Bert Lisser, The group $L(2,61)$ embeds in the Lie group of type E_{8}, Comm. in Algebra (1992), to appear.
[CoSe 1987] A. M. Cohen and G. M. Seitz, The r-rank of the groups of exceptional Lie type, Indagationes Math 90(1987), 251-259.
[CoWa 1983] A. M. Cohen and D. B. Wales, Finite subgroups of $G_{2}(\mathbb{C})$, Comm. Algebra 11(1983), 441-459.
[CoWa 1989]_Finite subgroups of $E_{6}(\mathbb{C})$ and $F_{4}(\mathbb{C})$, preprint.
[Dynk 1957] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. 6(1957), 111-244.
[Glau 1966] G. Glauberman, Central elements in corefree groups, Jour. of Algebra 4(1966), 403-420.
[Gor 1968] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[Gr 1991] R. L. Griess, Jr., Elementary abelian p-subgroups of algebraic Groups, Geometria Dedicata 39 (1991), 253-305.
[GrRy 1992] R. L. Griess, Jr. and A. J. E. Ryba, Embeddings of $U_{3}(8), \mathrm{Sz}(8)$ and the Rudvalls group in algebraic groups of type E_{7}, (1992), submitted.
[Kac 1985] V. Kac, Infinite Dimensional Lie algebras, Cambridge University Press, Cambridge, 1985.
[KMR 1989] P. Kleidman, U. Meierfrankenfeld \& A. Ryba Construction of HiS and Ru in E7(5), preprint.
[LiSe 1989] M. W. Liebeck and G. M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedicata 35(1989), 353-387.
[Tits 1959] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Publ. Math. I.H.E.S. 2(1959), 14-60.

Centre for Mathematics and Computer Science
Kruislaan 413,
1098 SJ Amsterdam

Robert L. Griess Jr.
Department of Mathematics
University of Michigan
Angell Hall
Ann Arbor, MI 48104

[^0]: Received by the editors January 9, 1991.
 AMS subject classification: 22E20, 22E46.
 (c) Canadian Mathematical Society 1993.

