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NON-LOCAL LIE PRIMITIVE SUBGROUPS OF LIE GROUPS 

ARJEH M. COHEN AND ROBERT L. GRIESS JR. 

ABSTRACT. Borovik found a Lie primitive subgroup of E8(C) isomorphic to (Alts x 
Sylili;) : 2. In this note, we provide a short proof of existence and his result that the 
conjugacy class of this subgroup is the only one among those of non-local Lie primitive 
subgroups of finite dimensional simple complex Lie groups having a socle with more 
than one simple factor. 

I. Introduction and statement of results. In [CoGr 1987], the isomorphism types 
of finite nonabelian simple subgroups of the complex Lie groups E1(C) and Es(C) were 
studied. We define a Lie primitive subgroup of a complex Lie group to be a subgroup 
which is not contained in any proper, positive dimensional Zariski closed subgroup. In 
any group, a local subgroup is the normalizer of a nonidentity p-subgroup, for some 
prime number p. In [Aleks 1974] and, later, with different methods in [CLSS 1989], the 
local Lie primitive subgroups of complex simple Lie groups of exceptional type were 
classified. 

Here, we continue the study of Lie primitive subgroups of a complex simple Lie group 
G of exceptional type. We show that any finite nonlocal Lie primitive subgroup of G 
normalizes a nonabelian simple subgroup, which, apart from a single exception found 
by Borovik, is unique up to conjugacy. Thus, we establish: 

THEOREM 1.1. Let G be an adjoint simple complex Lie group. Suppose L is a finite 

Lie primitive subgroup of G. Then either Lis contained in a finite local subgroup or 
its socle is a nonabelian simple subgroup or G = Es(C) and soc L is isomorphic to 

Alts x Al16. Conversely there exists a subgroup of Es(C) isomorphic to Alts x Al16 which 
is Lie primitive and such a group is unique up to conjugacy. 

The above group of the form Alts x Al16 is called the semisimple Borovik group and 
its normalizer is called the Borovik group. The Borovik group contains the semisimple 
Borovik group with index 4 and it contains Alts x Sy~ with index 2. More details on 
this group are given in § 4. 

A more general version of this theorem (arbitrary characteristic of the ground field) 
hasbeen announced by [Borov 1989] and, later, by [LiSe 1989]. We obtained these results 
independently and our treatment is relatively elementary and more detailed. The result 
(2. 7), given by [Li Se 1989], considerably shortened an earlier version of this paper. 

REMARK. The result is known for classical groups, for instance, by [Aschb 1984]. 
In fact, he points out a distinguished list of closed subgroups such that every finite group 
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whose socle is not nonabelian simple is a subgroup of one of them. The members of that 
list are infinite except for normalizers of abelian subgroups, which come from nonabelian 
groups in the universal cover. 

In a letter to one of us, Borovik exhibited a Lie primitive subgroup of E8 (C) isomor­
phic to (Alts x Sym6) : 2. Our construction of this group can be found in§ 4. 

We take this opportunity to report that the simple group Sz(8) with a ? should be on 
Table 2 of [CoGr 1987]. First of all, Sz(8) is in a 2-local subgroup of the sporadic group 
Ru. There is an embedding of Ru in £ 7 (5) [KMR 1989]. Hence, by [Gr 1991, Appendix 
2], the Borel subgroup of Sz(8), being of order prime to 5, lifts to E7 (C) (an error is in 
(5.6.2) of [CoGr 1987]). From [GrRy 1992], we know that Sz(8) is contained in E7(K) for 
a field Kif and only if char(K) is 2 or 5; the possibility that Sz(8) is embedded in Es(C) 
remains. Also, 1/3(8) : 12 is now known to be embedded in E7(C) [GrRy 1992] and Ru is 
embedded in £7(5) [GrRy 1992] [KMR 1989]. An embedding of L(2,61) in £8(C) was 
proved recently [CoGrLi 1992]. Also, Lemma (3.5) of [CoGr] does not suffice to elimi­
nate L(4, 5), though its nonembedding in £ 8(C) follows trivially from the nonembedding 
of a PSp(4, 5)-subgroup. Finally, the second argument given to show the nonembedding 
of F3 in E8(C) is not valid since the indicated element of order 3 need not have trace 5. 

Another correction should be made to part (ii) of Theorem l.l of [CoGr 1987]; the 
groups SL(2, 31) and SL(3, 4) should be removed from the list, and the group 2 · L(3, 4) 
should be inserted. The error is just a misstatement of our correct results (5.3.l) and 
(5.2.7) (which are correctly reported in Table 2). 

A consequence of the above remarks, Theorem 1.1 of this article, [CoGr 1987] and 
[Co Wa 1983, 1989] is that the isomorphism types of semisimple Lie primitive sub­
groups of exceptional Lie groups G are known, except for the few specific cases listed 
in [CoGr 1987] and [CoWa 1989]. 

2. The setup. Throughout this article, we shall denote by L a finite Lie primitive 
subgroup of G whose socle is denoted soc Land which is a direct product of finite non­
abelian simple groups. Let N be a nonidentity normal subgroup of l such that N ::::; soc L. 
Then there exist t E N and nonabelian simple subgroups N; (1 ::::; i ::::; t) such that 
N = N1 x N2 x · · · x Nr. 

We assume that t > 1 and prove that N is the semisimple Borovik group; see (3.6) 
and§ 4. 

NOTATION 2.1. The ad joint module of G is denoted by g, and the corresponding char­
acter of G by x. By E7 (C) we mean the adjoint group; its universal cover will be denoted 
by 2£7 (C). Similar notations for central extensions apply to the other simple Lie groups. 
By la, 8&, ... we mean an irreducible module of dimension 1, 8, etc. for some group or 
Lie algebra. The subscripts distinguish nonisomorphic modules of a given dimension. 
When the group is finite and essentially simple, we use the notation of [Atlas 1985]; oth­
erwise, the symbols stand for well-known modules of the group, e.g., 8a, 8b, 8c stand for 
the complete set of 8-dimensional irreducibles for the Lie algebra or simply connected 
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Lie group of type D4 • The type of an element offinite order at most 7 in E8(C) is the label 
given to its conjugacy class in [CoGr 1987, Table 4 ]. 

Any irreducible representation of N is the tensor product of representations of the N; 
(1 :'.S i :'.S t). Thus, if 1/J~) •... , Vi~:') are the irreducible characters of N;, the irreducible 

characters of N are of shape ,pp> 01/Jl2> Q'.:1 • • • 0 V;j1>, where 0 denotes character multi-
1 2 ... ,., , 

plication for a tensor product of modulps for a direct product of groups. Hence there are 

non-negative numbers a;i. .. .,i, such that~ 

In using this kind of decomposition, we will write the characters as in [Atlas 1985]. 

We recall 

LEMMA 2.2 (cf. [COGR 1987]). A nontrivial normal subgroup of L has zero fixed 
point subalgebra on g. 

PROOF. Let M be a nontrivial normal subgroup of L. The connected component C 
of the identity of the centralizer of M (for short: the connected centralizer of M) in G is 

normalized by the normalizer in G of M, whence by L. If M has nonzero fixed vectors 
in g then Cg(M) is a nontrivial subalgebra of g; therefore No( C) is a closed complex Lie 

subgroup of positive dimension containing L, contradicting Lie prirnitivity of L. • 

We remark that, for N; non-normal (so t > l), (2.2) does not exclude Cg(N;) =f 
0, although eventually we shall see that this does not happen. Besides the connected 

centralizer of N, the lemma below gives another closed subgroup which is trivial. 

LEMMA 2.3. The subgroup (Cc( Ca(N;)<00l) (oo)) 0 is trivial.for all i. 

PROOF. Take distincti,j E {l, ... ,t}. Clearly, Ik;i;Nk :'.S C(N;)<00>, so 1 < N; :'.S 

L; := C(C(N;)(rXJ))(oo) :'.S CClli;.!;Nk)<00l, which is proper in G since t > 1. Similarly, 

Lj :'.S CClli;.!i Nd00> :'.S C(N;)<00>, whence L; :'.S C(Lj). Thus, Ilk Lk is a proper algebraic 
subgroup of G normalized by L, so must be finite. Hence L'k = l for each k E { 1, ... , t} . 

• 
COROLLARY 2.4. (Ca( Ca(S)<00>)<00>) 0 = I for any subgroup S of N;, for each i. 

PROOF. Immediate from Ca( Ca(S)<00>)<00> :'.S Ca( CG(N;)<00>)(ooJ and the above 

lemma. • 

LEMMA 2.5. If. for each i, the group Ca(N;) has a solvable component group, the 
subgroup Ca( Ca(N;)0 ) is finite. 

PROOF. As in the previous lemma, it can be shown that the subgroups Co( Co(N;)0 )
0 

of G commute and that their product is normalized by L. • 
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LEMMA 2.6. Let S be a finite simple subgroup of G. Then the component group of 
is solvable or we are in an exceptional group and CG(S) is.finite and nonsolvable. 

PROOF. Without loss, we may alter G by a convenient central extension or quotient. 
If G is of non-exceptional type, consider the standard representation on a complex 

vector space V, and the decomposition 

of V into isotypical components V; (i E l). If G has type A,, then CG(S) is an algebraic 
group between a direct product of groups GL(V;) and its commutator subgroup, whence 
the result. Suppose, next, that G is the commutator subgroup of the group stabilizing a 
nondegenerate alternating or symmetric bilinear fo!Til/. For i E /, denote by i1 the index 
in I for which V, is contragredientto v,,, and setJ = { i E I i I { i, i'} I = 2 }. Then CG(S) is 
a subgroup containing the commutator subgroup of a direct product of the groups GL(V,) 
(one for each pair {i, i'} E J) and classical groups associated to the forms obtained by 
restricting! to the spaces V; (i E I - J), whence the result. 

From now on, assume G is of exceptional type. Let S be a counterexample. Define 
C := Ca(S). Then R := c<xil > C° n c<00> and C is infinite. Note that C is reductive 
(the centralizer of the reductive subgroup S) and that R is an algebraic group (equal to 
(ikl, for sufficiently large k) and satisfies C°' s; R. Consequently, Rn C° = ZkC"', for 
k sufficiently large, where Zk := [?(kl n Z(C'). Since Zk is an algebraic subgroup of a 
torus, it is reductive. Therefore, Rn C° is reductive, whence so is R. Observe that if the 
reductive group CC(R) is not l, it contains nontrivial semisimple elements outside Z( G). 
We consider cases to obtain a contradiction. 

CASE l. Ceo(R) has a semisimple element t E Ceo(R), t 1- Z(G). Then, Ca(t) has 
solvable component group and has dimension less than that of G, so we finish by induc­
tion on the dimension upon passing to a qua<>isirnple component Y of Ca(t)° such that 
Cr(S)/Cy(S)0 is nonsolvable. 

CASE 2. C0 (R) = Z(G),C° has quasisimple components and R has a nontrivial 
orbit on the set of quasisimple components. The components in this orbit must consist 
of groups H; of type A1 for i E J, an index set of cardinality n ::'.': 5. Thus, G has type 
£ 6 , £ 7 or £ 8 . Embed G in a group X of type Es, altering G by a central extension or 
quotient if necessary. Since the 2-rank of G is at most 9 (by [Adams 1986], [CoSe 1987], 
[Gr 1991]), each H; is isomorphic to SL(2,C). Let H := (H; I i E J) and let z; be 
the central involution of H;. Since R is perfect and n S 8, the action on the set of z; is 
primitive. So, either the::; are pairwise distinct or all equal. 

We claim that the H; are fundamental SL(2, C)s in X. 

CASE 2a. ::; has type 2A. If Z(H) contains a four group, V, of type AAA, H lies in 
C( V) ~ T2£6 . 2, a contradiction to V s; ff<xil. If Z(H) contains a four group, V, of type 
AAB, H lies in a natural subgroup of type A 1A1 D6. Without loss, we assume that there is 
no four group of type AAA in Z(H). Embed a maximal torus of Hin T, a maximal torus 
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of X. With respect to the natural quadratic form on {x E T I x2 = 1 }, Z(H) is singular 

with respect to the bilinear fonn, but not the quadratic form, so has rank at most 4 and 

Z(H) n 2A is the nontrivial coset of a codimension one subspace. On the other hand, it 

supports a group of automorphisms which is transitive on then distinct Z;, so has rank at 

least 4, whence exactly 4. Therefore, from [CoGr], (3.8), we get that c( Z(H)) 9o! 24A~. 
Since III 2: 5, at least one, hence all, of the H; are fundamental SL(2, C)s. Finally, we 

suppose that the z; are equal and seek a contradiction. Then, H :S C(z;) 9o! 2A1E7. If H 

contains the A1 factor, the factor must be normal in Hand so must be one of the H;, as 

required. So, we may assume that H does not contain the A1 factor and so its image in 

the simple £7 quotient is a direct product of n PSL(2, C)s. This implies that the 2-rank of 

adjoint £ 7 is at least 10, in contradiction to [Gr 1991], (9.8.ii). 

CASE 2b. z; has type 2B. If all Z; are distinct, then [CoGr 1987], (3.7) implies that H 

is in a group oftypeA7 or D~. If A1, we get a contradiction by rank considerations. So, we 

may assume that Z(H) contains no four group of type ABB. Thus, in any maximal torus 

T containing Z(H), Z(H) is a maximal isotropic subspace of {x E T I x2 = 1} under the 

natural quadratic form. If D~, we argue as in Case 2a to get Hin a natural 24A~ and then 

verify the claim. Now assume that the z; are all equal. We obtain a contradiction in this last 

case. Reindex to arrange I= {1, ... , n }. Let P 9o! Alt4 be diagonally embedded in H1H2• 

If the involutions of 02(P) are of type 2B, then Cx( 0 2(P)) 9o! 22 D~ : 2 and H3 · · · HnS 

is embedded in a product of at most two groups of type G2 or Az (see [Tits 1959] or 

look ahead to (3.2)). Since these two groups have Lie rank at most two, at most two H; 

project to a given factor and so, as n 2: 5, there is a pair i,j such that H; n Hj = 1, 

a contradiction. If these involutions are of type 2A, H3 · · · HnS is in Y, a natural £ 6 -

subgroup. Since H3 · · · HnS contains 21+Z(n-2) x 22, which has 2-rank n - 1 + 2 2: 6, it 

follows from [Gr 1991] that if Eis a subgroup of H3 · · · HnS of rank at least 6, it is toral of 

rank 6 and is maximal elementary abelian in Yand that Cx(E)0 ' is a natural 3A2-subgroup. 

Since H1H2 is not embeddable in SL(3, C), we have a contradiction. 

We now have that the H; are fundamental SL(2, C)s. From [CoGr, 1987], (3.7), we 

know that the centralizer in X of two distinct such H; has shape 22 D6 . 2 and so the struc­

ture of D6 implies that the connected centralizer of five such is a product of three funda­

mental SL(2, C)s (and lies in the subgroup 24A~ of [CoGr 1987], (3.8.i)). Since Sis simple 

and C(H)' contains the finite simple group Sand is a direct product of at most three fun­

damental SL(2, C)s, we have a contradiction to the classification of finite subgroups of 

SL(2, C). 

CASE 3. Ceo(R) = Z(G), C° has quasisimple components and R has only trivial 

orbits on the set of quasisimple components. Thus, R = C0 ' oCR( C0 '), a central product. 

We get a contradiction by replacing G with a quasisimple component of Cc(t)0 , for some 

t E C°' - Z( G) and using induction on the dimension; see the last remark in Case 1. 

CASE 4. Ceo(R) = Z(G), C0 has no quasisimple components, so is a torus. Set T := 

C°. Since C is infinite, d :=dim (T) > 0. By Case 1, CT(R) = Z(G). Let D := Cc(n; 

if we embed T in a maximal torus To and let TI be a root system, then D is generated 



LIE PRIMITIVE SUBGROUPS 93 

by Nc(To) n Cc(T) and those root groups centralizing T. Thus, Dis connected and D' 
contains S, whence rank(D') 2: 1. Also, the action of R on T corresponds to a subgroup 
of the Weyl group of G acting trivially on the subsystem Il' of roots associated to D'. 
Thus, R acts on To as a subgroup of the Weyl group associated to Il11, the set of roots 
in TI perpendicular to those roots in n'. Since R acts on T as a nontri vial perfect group, 

TI" must have a connected component which contains an A4 subsystem and Rf CR(T) 
contains an element h of order 5. It follows that D' is generated by root groups in a 
natural simply connected subgroup H = Cc([T0 , h]) of type A~. for some m > 0, m S 4. 

In particular, D' is a nonempty direct product of at most two SL(n, C)s and Z(D') n 
Z(G) = I. Thus, R centralizes the nontrivial finite group Z(D'), which is in T but not in 

Z( G), a contradiction. • 

We owe part (i) of the following simple but powerful lemma to [LiSe 1989]. 

LEMMA 2.7. Denote by n the product of all primes dividing the coefficients of the 
highest root when expressed as a linear combinations as fundamental roots. Thus n = 30 

if G = Es(C) and n = 6 if G = E1(C), E6(C), F4(C) or G2(C). If G has type An, n = 1 
and otherwise n = 2. 

(i) If x E G is an element of finite order not equal to a coefficient of the highest root 

(in particular; if the order is prime ton), then the connected center z( Cc(x) ) 0 of 
Cc(x) is nontrivial. 

(ii) If X is a subgroup of G such that Cc(X)0 = l, then each element x E Cc(X) 
satisfies z( Ca(x)) 0 = 1. In particular; lxl divides 60. 

(iii) For Es(C), the classes of finite order elements x such that z( Cc(x) )° = 1 are the 
following (below which are the component types of the centralizer): 

IA 2A 2B 3A 38 4A 4C 5C 6F 

PROOF. (i) Let l = rank( G) and let (ao, ... , a1) be the labels of the extended Dynkin 
diagram (ao = I and the other a; are coefficients of the highest root; see [Kac 1985], 
Chapter 4, Table Aff I for this and Chapter 8 for what follows). Elements of order m 
in Inn(G), up to conjugacy in Aut(G), are given, modulo diagram automorphisms, by 

assignments (mo, ... , m1) of nonnegative integers to the nodes which generate the unit 
ideal of land satisfy m = L:; a;m;. Furthermore, the semisimple part of the centralizer of 
such an automorphism has as Dynkin diagram that subdiagram of the extended diagram 
which is supported at the set of those i E { 0, ... , l} where m; = 0. If x is an element of 
order m such that Z(Cc(x))0 is trivial, this index set must have cardinality l, and if i is 
the unique index where m; is nonzero, then (by the unit ideal condition) m; = 1. Thus, 
m=a;. 

(ii) For x E Cc(X), we have z( Ca(x)) ::; Cc ( CG(x)) S Cc(X) whence z( Cc(x)) 0 S 
Cc(X)0 = 1. 

(iii) Use (ii), [CoGr 1987] and the coefficients of the highest roots [Bour 1968]. • 
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COROLLARY 2.8. G = Es(C), and, for all i, the order of N; has no prime divisors 

greater than 5 and the centralizer of every element of N; has trivial connected center. 

Furthennore, a Sylow 5-group of N; has order 5 and there exists an involution of N; 

inverting it under conjugation. 

PROOF. We first claim that every element of N; has trivial connected centralizer. By 

Lemmas 2.5 and 2.6, X := Cc(N;)° is trivial or has a finite centralizer. Suppose that Cc(X) 

is finite. Then Lemma 2.7(ii) applies yielding that z( Cc(x)) is finite for each x E N;. 

According to Lemma 2.7(i), this implies that the order of N; is as stated. Now assume 

thatX = land that the claim is false. There is an elementx EN; such thatZ := z( Cc(x)) 

is nontrivial. Thus, for every indexj =J. i, N1 centralizes Zand so Cc((N1 I j =J. i)) is a 

positive dimensional closed subgroup. It is normalized by L (since X = 1) and we have 

a contradiction to Lie primitivity of L. The claim implies that G = Es(C) since the order 

of a nonabelian simple group requires at least three primes. 
A Sylow 5-group has exponent 5, so it suffices to show that it does not contain a 

subgroup of the form 5 x 5. Suppose that A is such a group of order 25. Since A is a 

2-generator finite abelian group, it is toral, so its centralizer has dimension at least 8. 

Orthogonality relations and the fact that traces of elements of order 5 here are all - 2 

(by (2.7.iii)) lead to a connected centralizer of dimension 8 exactly which therefore must 

be a torus, say T. Inspection of the centralizer of such an element of order 5 (shape 

5A4A4 ) shows that Cc(A) ~ T : 5, a solvable group. This is a contradiction since, for 

j =J. i, N1 :S Cc(A). (At this point, one could quote [Brauer 1968], which classifies finite 

simple groups of order 2a3h5 (a, b E N). The argument we choose in this article is more 

elementary.) 
Burnside's famous normal p-complement theorem implies that, if P is a Sylow 5-

group of N;, there is x E NN;(P) which acts nontrivially on P. Since Aut(P) is cyclic of 

order 4 and P = CN;(P), we may take x to be an involution. 11 

LEMMA 2.9. Suppose that x 1, .•. ,Xn are involutions from a torus of G = E8(C) 

and that each x; is in 2A. Assume further; for each i, that S; is a fundamental SL(2, C)­

subgroup containing x; in its cent er (it is just the SL(2, C)-factor in Cc(x;)) and that.for 

each pair of indices i :f j, [S;, S1] = 1. If the product x1 · · · Xn is an involution, it is in 2B 

if! n is even. 

PROOF. Use the interpretation of involutions in the torus T as isotropic or anisotropic 

vectors in the vector space { x E T I i2 = 1}, according to whether they are in class 

2B or 2A. Under the natural bilinear form, two anisotropic vectors are orthogonal iff 

[S;, Sj] = 1. Our hypotheses imply that the x1 generate a subspace of { x E T I x2 = l} 

which is totally singular with respect to the bilinear form. The products of evenly many 

x; form a subgroup of index 2 consisting of the identity and the singular vectors. 11 

COROLLARY 2.10. For each i, N; contains no element of order 6 and.for some i, N; 
contains a subgroup isomorphic to AI14. 

PROOF. Suppose that N; contains an element x of order 6. Then, x, i2 and x3 are in 

6F, 3B and 2A, respectively. Letj f i and let D := (h, u) be a subgroup of Nj which is 
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dihedral oforder 10, with ihl = 5 and juj = 2; by (2.8), it is available. The centralizer of h 
has shape 5A4A4 and u induces on each factor an outer automorphism whose fixed points 
form a copy of S0(5, C).Let F1 and F2 be the two factors of type 5A4 • For each index 
I =f. j. Each Fk meets N, trivially, or else simplicity of N1 implies that N1 s;; F1 and that 
a subgroup of order 5 in N, meets Fie ( { k, k'} = { 1, 2}) trivially, against (2. 7.iii ). Thus, 
each N1 injects into each Fk/ Z(Fk) under the natural maps. By considering the natural 5-
dimensional module for Fb which contains (N1 I /=f. j), we conclude thatt = 2. Suppose 
that N; is normal in L. Since CG(X) 9:! 6A1AzA5, (2.2) implies that N1 projects nontrivially 
to each factor, whence the classficiation of finite subgroups of SL(2, C) implies that Ni 9:! 

Alt5. But then, its image in the 6As-factor is a reducible subgroup of the group 6A5 in 
its action on a 6-dimensional irreducible module and so C(N;)0 =f. I, against (2.2). We 
conclude that N1 and Nz are conjugate in Land so both contain elements of order6. Thus, 
Ni centralizes Y, the Ai-factor in CG(x). Letting D s;; Ni,D 9:! Dih 10 as above, we get 
that CG(D) 9:! S0(5, C)2 and that, under one of the projections, the central involutionz of 
Y maps to l or an involution conjugate to diag( -1, -1, - I, -1, I) in CF, (t) 9:! S0(5, C) 
due to the invariant symmetric bilinear fonn. Thus, ;:: is a product of evenly many 2A 
involutions as in (2.9) (the fundamental SL(2, C)s come from C(D') 9:! SA~) and so is 
in 28; however, the structure of CG(X) implies that it is in 2A since Y is a fundamental 
SL(2, C).This contradiction proves that no N; has an element of order 6. 

We now prove that one of the N; contains a copy of Alt.i. Since N; is simple, it has no 
nonnal 2-complement, so by an old theorem of Frobenius, [Gor 1968] (7.4.5), there is a 
nonidentity 2-subgroup, Q, and an element u of odd order which nonnalizes but does not 
centralize Q. The possibilities here are juj = 3 or 5. lf3, we are done, since (u, t) 9:! Al4 
for any involutiont E Q. So, we may assume that 3 does not occur this way for any i. The 
fact that N; has no elements of order 10 means that u is fixed point free on Q. We may 
assume that Q is elementary abelian of order 16. Then, in the notation of the previous 
paragraph, every involution of Q is a product of involutions from the two factors F;. 

CASE I. For each involution of Q, both components from the F; are conjugate to ei­
ther diag( -1, -1, 1. I, l) or diag( -1, -1, -1, -1, I). In either case, every involution of 
Q is the product of central involutions from n pairwise commuting fundamental 
SL(2, C)s, where n is even and positive. Thus, involutions of Qare in 28, by (2.9). It fol­
lows from (3.8.ii) of [CoGr] that CG(Q)0 is a maximal torus and CG(Q) has component 
group 21+6. Since CG(Q) is solvable but contains Ni• forj =f. i. we have our contradiction. 

CASE 2. Case l does not hold for either value of i. In either case, we may assume that 
the image of the natural map of Q to the F; lies in the diagonal group, whose involutions 
are in 2A iff they are conjugate to diag(-1. -1, I. I. I); see (2.9). Since (u) has three 
orbits on Q', we deduce from knowing the three orbits of a 5-cycle pennutation matrix on 
the diagonal group and from our being in Case 2 that exactly one orbit of ( u) on Q consists 
of elementsof2B. An inner product calculation with (2.7.iii)gives that dim CG((Q, u)) = 
4. Thus, CG( ( Q, u)) is of type 1( or A 1 Ti. This forces Nj to be Alt5, which contains an 
Al4 subgroup, and so we are done. • 
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3. The proof. Recall that Lis a finite Lie primitive subgroup of G with socle N = 
N1 x · · · x Nr. a direct product oft nonabelian simple subgroups. In this section, we shall 
assume t :=:::: 2. From this, we derive thatN s:! Alt5 x Alt6, and describe XIN· According to 
(2.10), G = E8(C) and there is an index, k, such that Nk contains a subgroup isomorphic 

to Al4. 

LEMMA 3.1. Let Ebe a four group in Gall of whose involutions are conjugate. Set 
Y = CG(E)<00l. Then Eis conjugate to a subgroup ofT, Y is connected, and one of the 

following holds: 
(i) All involutions in Y are of type 2B, Y is of type D4D4 and E:::; Z(Y}. 

(ii) All involutions in Y are of type 2A, Y is of type E6 and En Y = 1. Moreover, 
CG(Y)<00> is a Lie subgroup of type Az. 

PROOF. See [CoGr 1987], (3.8) and (3.9). The statement about the centralizer of Y 
in (ii) follows from the fact that Y contains a conjugate of T. • 

LEMMA 3.2. Let S be a subgroup ofG isomorphic to A14 all of whose involutions 
have type 2B. Then CG(S)<00> has type A2Az, A1G2, or GzG1 according as the trace of an 

order 3 element of Song equals -4, 5, or 14. Moreover; CG( CG(S)<cx»/00> is/mite only 

in the first two cases, while in the last case, the centralizer is a subgroup of type A1. 

PROOF. Let Ebe the four group in S. By Lemma 2.4, C := CG(E)<00> is of type D4D4 . 

It acts on g with character 

(**) 

Choose an element y E S of order three. It induces an outer automorphism on C, which, 
by [CoGr 1987] is nontrivial on both factors D4 . By classical results on triality 
(cf [Tits 1959]), the centralizer subgroup in each factor must then be of type A1 or G2, 

the centralizer of type A1 acting irreducibly on each irreducible 8-dimensional module 
for D4. Thus, Y = CG(S) is a closed subgroup of C of type A1A1, A1G1, or G2G2, as 
claimed. Moreover, the dimension of this subgroup is 16, 22, 28 in the respective cases 
and must equal 

1 
(la, xls) = 12 (248 + 3. (-8) + s. x(y) ). 

Hence y has trace -4, 5, 14 in the respective cases. 

On any 8-dimensional module for D4, the triality subgroups of type A2 and G2 have 
restrictions Sa and la+ 7 a• respectively. On the Lie algebra for D4, they have restrictions 
8~- = Sa+ IOa + lOb and Cla + 7a)2- = 2 · 7a + 14a, respectively. Straightforward 
character computations show that the trivial character occurs in xlr only if Y has type 
G1G1 (coming from the triple 10 ®la part). Conversely, the centralizer subgroups of type 
G1 have centralizer of type F4. Thus, if Y has type G1 G1, the centralizer F of one factor 
is isomorphic to F4(C) and contains the other factor, whence CG(Y} 2:: C p( Y), a subgroup 
of type Ai. • 
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LEMMA 3.3. We have t = 2. Let { i,j} = { 1, 2} and let Ebe a four subgroup of Ni 
all of whose involutions are G-conjugate. Then Eis of the kind described in (i) of Lemma 
3.1. Suppose furthermore that Sis a subgroup of Ni isomorphic to A14. Then Nj projects 
nontrivially into both factors of Y = CG(S)(oo) as in the previous lemma. In particular; 
Ni embeds in PSL(3, C) and so is isomorphic to one of Alt5, Alt6. 

PROOF. By definition of k, such an Eis available in Nb at least. Letj -:f i. If (ii) of 

Lemma 3.1 holds for some E :SN;, then, the subgroup Co( Ca(E)<00J)(ooJ is a group of 
type A 2 contradicting Corollary 2.4 above. Hence E is as described in (i) of Lemma 3.1. 

Again by Corollary 2.4, Ca ( C0 (S)<00>) (oo) must be finite. By Lemma 3 .2 this implies that 
Y has a factor of type A2• The group Nj must project nontrivially on each factor of Y, for 
otherwise Nj lies in an PSL(3, C)-subgroupof a D4 factor which is irreducible on a natural 
8-dimensional representation. The D4-factor is isomorphic to Spin(8, C); its involutions 
form two conjugacy classes, one central (in the G-class 2B) and one noncentral (in the G­
class 2A); it follows that t6e involutions of such Nj are of type 2A. In particular,Nj would 
have a four group as described by (ii) of Lemma 3.1, contradicting the first assertion of 
this lemma. Hence Nj embeds in both factors. Since at least one of them is oftypeA2, the 
centralizer of N1N2 has trivial projection on at least one factor. Therefore, t :S 2. Since 
Alt5 and All{; are the only simple {2, 3, 5}-subgroups of PSL(3, C) [Blich 1917], we need 
only reverse the roles of i andj to establish the lemma. • 

LEMMA 3.4 (ELEMENTS OF ORDER 3 IN TRIALITY SUBGROUPS OF D4D4). Let Y1, Y2 
be triality subgroups of D4 (of type A1 or G2) such that Co(S)<00> = Y1 Y2, and suppose 
Yi E Yi is an element of order 3 (i = 1, 2) in Yi lifting to an element of order 3 in the 
covering group of Yi. 

( i) Jf Y; has type Az, Yi has trace - l on an &-dimensional module for D4. 
(ii) 1f Y; has type G2, Yi has trace -l or 2 on an 8-dimensional module for D4. 
(iii) The product y = Y1Y2 satisfies x(y) = 5 if bothy; have trace -1 on the 8-

dimensional D4 -modules and x(y) = -4 if one has trace - l and the other trace 2 on 
the 8-dimensional D4-modules. 

PROOF. In Case (i), y1 has trace 0 on the standard module 3a for A2 (as it has order 3 
in the covering group) whence trace -1 on the adjoint module for A1. In Case (ii) there 
are only two possibilities for y1 up to conjugacy in G2(C), leading to trace -2 or 1 on 
the standard module 7 a for G2 and hence trace -1 or 2 on a natural module 8* for D4. 
The lemma follows from use of these observations, the decomposition(**) of the adjoint 
module in the proof of (3.2). • 

LEMMA 3.5. lf N1 9:' All{;, then Nz 9:' Alt5 and, up to automorphisms of N = N1N2, 

XIN = 3a ® 5a + 3b © 5b + 4a © (8a + 8b) + C3a + 3b) © 9a + 2 · (5a © lOa). 

PROOF. First suppose N2 9:' Alt<;. Consider the group D of type D4D4 centralizing 
a subgroup of N 1 isomorphic to 2 x 2. Let N2 :S X1X2, where Xi is in the i-th factor of 
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D and X; ~ Al16 or SL(2, 9). The fixed point subgroup of a triality automorphism on the 
i-th factor of D contains X;. Therefore, X1 ~ X 2 ~ Al16. Consequently, the character of 
Nz on the S-dimensional modules for D may be identified with Sa and 8b for Al16. We 
use this to find XIN2 in terms of character values. We set bs = - 1;v5 and write b5 forthe 

algebraic conjugate - 1;v5 so that 

bs+b; = -1, b~ = 1 - b 5 , bsb; = -1. 

Now, for elements of orders (1,2,3,3,4,5,5) the character values are: 

Sa= (S,O, -1, -1, 0, -b5 , -b;) 

and 
Sb= (S,0,-1, -1,0, -b;,-bs) 

Thus on the exterior square for Sa: 

s~- = (2S, -4, 1, 1, 0, -b5, -b5) 

and on the tensor products 

(64, 0, 1, 1, 0, 1 - b5, 1 - b5) in case Sa® Sa 

(64, 0, 1, 1, 0, -1, -1) in case Sa® Sb 

The full character on g is therefore 

(24S, -S, 5, 5, 0, 3 - 5bs, 3 - 5b5) in case Sa ®Sa 

(24S, -S, 5, 5, 0, -2, -2) in case Sa® Sa. 

An inner product computation shows 

dim Cg(N2) = { 0
3 in case Sa ® 8a 

in case Sa ® Sb · 

If dim Cg(N2) > 0, Lemma 2.2 gives that L must conjugate Nz to N1. But then in 
the case at hand, N1 ~ Al16 must act trivially on the 3-space Cg(N2) (because there are 
no non-trivial 3-dimensional modules for Alf<>), whence N1 x Nz centralizes Cg(N2), 
contradicting Lemma 2.2. Consequently, the character of Nz is 8a ® 8b. Taking inner 
products with the irreducibles for Al~. we obtain 

Since Al16 does not have a 3-dimensional character without trivial constituents, use of 

(*)yields N1 f/ Al~. 
Hence Ni ~ Alt5. ln particular,N1 is normal in L, so by Lemma 2.3, XIN1 has no trivial 

constituents. According to [CoGr 1987] there is a unique character associated to fixed 
point free embedding of N1 inEs(C); its character X !Ni is 14·(3a+3b)+I6·4a+20·5a. Apart 
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from the character mentioned in the lemma there is only one other character compatible 
with both factors (cf (*)): 

XIN = 3a ® 5b + 3b ® 5a + 4a ® (8a + 8b) + (3a + 3b) Q9 9a + 2 · (5a Q9 lOa). 

(It helps to note that an irreducible for N; of degree divisible by the order of a Sylow 
p-group of N; vanishes on its p-singular elements, for p = 3 and 5). But this character is 
obtained from the one in the lemma by an automorphism of N induced by an automor­
phism of the abstract group Al~. • 

LEMMA 3.6. If N1 ~ Alts, then N1 ~ Al16. 

PROOF. If not, then by (3.3), N1 ~ Alt5• We assume this and seek a contradiction. 
We claim that the trace of an element of order 3 in each N; is 5. Let {i,j} = {1,2}. 

Take a subgroup S of N;, S ~ Al4. Then C := CG(S)<00> is of type A1A2 or A1G2 by 
Lemma 3.2. Let y = Y1Y2 be an element of order 3 in !V_j, with Y1 in a factor of C of type 
A1 andy2 in the other factor. If Chas typeA2A2, theny has trace 5 on g by (2.5) and (3.2), 
while elements of order 3 in Shave trace -4, so N1 and N2 are not conjugate. Moreover, 
each N; is normal in L. Since Alts has a unique fixed point free character on g, at least 
one N; has nonzero fixed points, a contradiction to (2.2). Therefore, Chas type A1G2, 
and by Lemma 3.2 again, if h E S has order 3, x(h) = 5. Reversing the roles of N; and 
Nj. we get x(y) = 5 whence the claim. 

From (3 .4 ), we deduce that both Y1 and y2 have trace -1 on a natural module for a D4 
factor. The character table for Alts shows that the restriction to Nj of a character 8* for 
the D4 factor must be of the form 3* + 5a. But then Nj does not embed in a Gi-subgroup 
of D4, contradicting N1 :::;: C and (3.3). • 

The conclusion is that L must have a normal subgroupN as described in Lemma 3.6. 
This establishes the first part of Theorem 1.1. 

4. Borovik's group. In this section we prove the second part of Theorem 1.1, i.e., 
we supply an existence proof of the Lie primitive group with socle Alts x Al~ and of its 
uniqueness up to conjugacy. It differs from Borovik's original approach in that he begins 
with a particular subgroup isomorphic to PSL(2, C) from Dynkin's list of subgroups of 
E8(C) [Dynk 1957] and takes an icosahedral subgroup of it. We begin with a subgroup 
S ~ Al4 whose involutions are in class 28 and such that CG(S) ~ A1(C)wr2; see (3.4) 
and [CoGr 1987]. Leth be an element of order 3 in S. Since dim CG(S) = 16, we have 
x(h) = -4, CG(h) ~ 3A8(C). Thus, the embedding of CG(S) in CG(h) is explained by 
identifying the 9-dimensional standard module for CG(h) with the tensor product of a pair 
of 3-dimensional spaces. Consequently, an involution of CG(S) not in either A1-factor has 
eigenvalues { -14 , 15} on the 9-dimensional module, hence, by (2.9), is in G-class 28. 

Up to conjugacy, there is a unique subgroup of PSL(3, C) isomorphic to Al16 (it is 
the image in PSL(3, C) of a subgroup 3· Al~ of SL(3, C) and is self-normalizing). Thus, 
in CG(S), there is up to conjugacy, a unique group of the form Alt{; wr2 and this group 
contains one conjugacy class of subgroups isomorphic to Syffit;. This is the only way 
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to get a Sy~-subgroup of C0 (S). By the preceeding paragraph, the involutions in the 
derived group of any such Sy~-subgroup are in class 2B. 

We claim that if J is any Sym5-subgroup of B, Cc0 (S)(J) = 1. We observe first that if 
Y is a subgroup of C0 (S)0 such that Cc0 csJ•(Y) = I, then Cc0 cS)(Y) has order at most 2. 
This remark applies to Y = J'. Since Nc0 csJ•(l1) = J' and Nc0 cS)(J1) contains J, the claim 
follows. 

Now, write B for a Sym6-subgroup obtained as above. We study Co(B), which cer­
tainly contains S. The module g for Co(h) decomposes as 80a + 9~- + 9i-, where 80a = 
9a © 9b - la is the adjoint representation of Co(h). The embedding of Bin Co(h) lifts 
to an action of Bon the 9-dimensional module which, by the character table for Sy~. 
is irreducible and which leaves invariant a nondegenerate symmetric bilinear form (the 
only other possible characters have degrees (5, 1, 1, 1, 1), which would force the involu­
tions of B' to be in class 2A, a contradiction). Consequently, we may deduce the G-class 
of every element of B (straightforward with the above decomposition of g and the for­
mula <1>3-(g) = [</>(g)3 - 3</>(g)<f>(g2) + 2</>(g3)]/ 6 for the exterior cube of the character 1>; 
on classes of cycle shapes 1, 22, 3, 32 , 42, 5, 2, 23,4, 6, 123, the respective values under x 
are 248, -8, 5, 5, 0, -2, 24, 24, 0, -3, -3) and we may, because of the invariant bilinear 
form on the 9-dimensional module, arrange for an element x E Co(B) to invert h under 
conjugation. Observe that Co((h,B)) =(h).We get Co(B) finite either using this obser­
vation or by an inner product calculation with the traces given above. Define U := (S,x). 
By definition of S andx, U' 2: S. Note that U is finite since U ::; Co(B). We want to show 
that Co(B) = U ~ Alts. 

Let J be a Sym5-subgroup of B. On a 9-dimensional natural projective representation 
of Co(h), J has irreducibles of dimensions (4,5); also, Cca(h)(J) ~ T1 and CcaC(h.x)l(J) ~ 

2. A straightforward inner product calculation with the above information shows that 
dim Co(J) = 3. Let Fbe a Frobenius group of order 20 in J. Since Co(F) is (by (2.7.iii)) 
isomorphic to S0(5, C), the reductive subgroup Co(J) 0 cannot be a rank three torus, so 
has type Ai. On the standard 5-dimensional module for Co(F), C0 (J)0 has irreducibles of 
degrees 5, (l,1,3) or (2,2,1) since there is an invariant symmetric bilinear form. Only in 
Case (2,2,1) is Ca(J)0 ~ SL(2, C), which contradicts an above statement that Cca(SJ(J) = 
1. Therefore, (2,2,1) does not occur and so Co(J) ~ PSL(2, C) x E, where Eis iso­
morphic to a finite subgroup of 0(2, C) via its action on the 0- or 2-dimensional fixed 
point space. Since Cca(h)(J) ~ T1, the action of h on Co(J) fixes exactly a torus and 
h acts fixed point freely on E, whence E ~ 2 x 2 or 1. We claim that E = 1. Sup­
pose not. Then, the irreducibles for Co(J) have dimensions (1,1,3) and the action of 
h on E preserves its subgroup acting with determinant 1 on the 2-dimensional fixed 
point space of Co(J). This eliminates the possibility E ~ 2 x 2 and so E = 1. So, 
Co(J) ~ PSL(2, C) (and h E Co(J)). The hypotheses on Sand x and the classification of 
finite subgroups of PSL(2, C) imply that U ~ Alt5 or Sym4• If U ~ Sym4 then U' = S, 
Co(S) ~ A2(C)wr2 and either Co(U) ~ PSL(2, C)wr2 (in case x normalizes the two 
A1-factors) or Co(U) ~ PSL(3, C) x 2 (in case x interchanges the two factors) and so 
Co(S) has no SyIDt;-subgroup, a contradiction. Therefore, U ~ Alt5 . Since Co(B) is a 
finite subgroup of Co(U) containing U, we conclude that Co(B) = U. 
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To get the full normalizer of the finite semisimple group N := U x B, we just re­
call the above remarks about Cc(S) and S x Band use the fact that Nc(S) has the shape 
Cc(S)(S, r), where r is an involution normalizing Cc(S). We have (S, r) s::! Sym4 • A 
Frattini argument shows that r may be arranged to normalize B. Since the outer auto­
morphism group of B has order 2 and Cc(B) = U, we have Nc(N) = (r, U, B) and 
Nc(N)j Us::! Aut(All:t;) s::! Altt;. 22. It follows from (S, r) ~ Sym4 that (U, r) 9'! Sym5. 

We may chooser to be an involution which satisfies C8 (r) ~ 5 : 4. Since this is a sub­
group of Cc(S), it follows that r induces a graph automorphism on each A2-factor of 
Cc(S) (see remarks about the action of x in the previous paragraph). 

We now verify Lie primitivity of N, which implies Lie primitivity for every subgroup 
between it and its normalizer. Suppose His a closed Lie subgroup of G of positive dimen­
sion containing L. Then, we may assume that His reductive and that N is Lie primitive 
in H. We prove H = G. If H 0 has a nontrivial central torus, N must act nontrivially on 
the connected center of H hence also on its Lie algebra, which has dimension at most 8. 
On the other hand, the character of Lemma 3.5 shows that the minimal dimension of a 
nonzero N-submodule of g is 15, a contradiction. Hence, H 0 is semisimple. 

We argue that N must be in H 0 • For otherwise, on the set of components there is a 
nontrivial orbit {H; I i EI}, 5 ::; III ::; 8. Every such H; must have rank just 1 and, 
since the 2-rank of E8(C) is 9 (cf. [Adams 1986J, [CoSe 1987] or [Gr 1991]), each must 
be an SL(2, C). Since the minimal degree of a faithful permutation of N is 11, one of 
the factors, say NJ, operates faithfully as inner automorphisms on H* := (Hk I k E !), 
whence N1 s::! Alt5 and so, if {i,j} = { 1, 2}, N; s::! Altt; and III = 6. Since the actions 
of N; and N1 on H* commute, N; centralizes a diagonal subgroup of H* isomorphic to 
SL(2, C) or PSL(2, C), contradicting fixed point freeness of N;. Therefore, N :S H°. 

We now have that N projects faithfully into each quasisimple factor of H, by fixed 
point freeness. By Lie primitivity of Nin H, these projections are Lie primitive in the 
respective factors, which, by (2.8) are all E8(C). Therefore, H = G and we are done. 

5. Remarks on isotypical alternating subgroups. If Lis a subgroup of G contain­
ing a normal subgroup N1 • • • N1 whose factors are nonabelian simple subgroups which 
are L-conjugate, there exist a nonabelian finite simple group No and group isomorphisms 
</>;:No----+ N; such that </>//>j 1: N;----+ N1 coincides with the restriction to N; of conjugation 
by an element of L for each i ,j E { 1, ... , t}. In particular, if x is a character of G, then 
x o </>; = x o <1>1 for all i,j ( 1 ::::; i,j :S t). We say that a subgroup M of G is t-isotypical if 
there is a subgroup Mo of Mand an isomorphism</>= (</>i)1g9 : Mo xM0 x · · · xM0 --+ M 
such that x o </>; = x o <t>1 for all i,j (1 ::; i,j,::; t), where x is the adjoint character for Es. 

One might try to prove Theorem I. I via determination of characters of t-isotypical 
subgroups fort > I, using feasible characters of simple subgroups [CoGr 1987] and 
[CoWa 1989] and Lemma 2.2. 

For £ 8 and N1 s::! Alt5 , so many 2-isotypical characters (with zero fixed points in g) 
exist that this does not seem an efficient method. 
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The group All{j has very few fixed-point-free 2-isotypical representations in £ 8(C): up 
to outer automorphisms and permutations of the factors, there are two: 

and 

In the respective cases, the fixed point space of Ni in g has dimension 28 and 24. They 
lead to embeddings of Nin D4D4 and A<iA4. The character table of Alt7 then rules out 
2-isotypical representations of Alt; for i 2:: 7. 
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