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1. Introduction. 

If r is a graph and "Y is a vertex of r, then let us write r,("Y) for the set of all 
vertices of r at distance i from"/, and r('Y) = r 1 ('Y)for the set of all neighbours of 

'Y in r. We shall also write ry ...., S to denote that -y and S are adjacent, and 'YJ. for 

the set h} u r b) of "/ and its all neighbours. r i will denote the graph with the 

same vertices as r, where two vertices are adjacent when they have distance i in r. 

The graph r is called distance-regular with diameter d and intersection array 

{bo, ... , bd-li c1, ... , cd} if for any two vertices ry, oat distance i we have lfH1(1')n 
nr(o)j = b, and jri-ib) n r(o)j = c,(o ::; i ::; d). Clearly bd =co = 0 (and 
C1 = 1). Also, a distance-regular graph r is regular of degree k = bo, and if we put 
ai = k- bi - c; then jf ;(i) n r(o)I = a, whenever d("f, S) =i. We shall also use the 

notations k, = lf1b)I (this is independent of the vertex ry),). = a1,µ = c2 . For 
basic properties of distance-regular graphs, see Biggs [4]. 

The graph r is called imprimitive when for some I~ {O, 1, ... , d}, I-:/= {O}, If 

-:/= {O, 1, ... , d}, having distance in I is an equivalence relation, or, equivalently, 

when for some i, 1 s i ::; d, the graph r. is disconnected. 

Two obvious types of imprimitive graphs are bipartite graphs of diameter d 2'.: 2 

(here r 2 is disconnected) and the antipodal graphs (graphs such that r d is an 

equivalence relation) of diameter d 2 2. Smith [31] showed that an imprimitive 

distance-regular graph of valency k > 2 is bipartit<l or antipodal (or both). (He 

stated his result for distance-transitive graphs, but his proof is easily extended to 
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arbitrary distance-regular graphs. Of course the distance-regular graphs of valency 
k = 2 are just the polygons.) 

This result may be rephrased by saying that if k > 2 and having distance in 
I is an equivalence relation, then I= {O}, or I= {O, d}, or I = {O, 2, 4, ... }, or 
I= {O, 1, ... , d}. 

When r is connected and bipartite of diameter d 2: 2, then rz has two 
components, and the graphs induced on these components by f2 are called the 
halved graphs of r. Clearly, the halved graphs of r have diameter [d/2] 

When r is antipodal then we can define a new graph, the folded graph of 
r, which has the equivalence classes of r d as vertices, and where two equivalence 
classes are adjacent whenever they contain adjacent vertices. Clearly, the folded 
graph of r has diameter [d/2]. 

Given an arbitrary distance-regular graph (not a polygon), we may obtain a 
primitive distance-regular graph after halving at most once and folding at most 
once. Thus, the big project of classifying all distance-regular graphs naturally 
goes in two stages: first all primitive distance-regular graphs, and next, given a 
distance-regular graph r, find all the distance-regular graphs 6. such that r is a 
halved graph or the folded graph of 6.. For the current state of affairs concerning 
the first stage, cf. Bannai and Ito [2,3]. The question of what distance-regular r 
are halved graphs has been attacked by Hemmeter [21,22]. In this note we address 
the question what distance-regular graphs have distance-regular antipodal covers. 

2. Geometry of antipodal covering graphs. 

A map 11": 6.-+ r, where rand 6. are graphs, is called a covering when 11" is a graph 
morphism (i.e., 11" maps points to points and edges to edges), and for each vertex 5 
of 6. the restriction of 11" to the set 5J.. is injective. If 6. is moreover distance-regular 
of diameter D, then 11" is called an antipodal covering when two vertices of 6. have 
the same image under 11" if and only if they have distance D. We call 6. a cover 
(antipodal cover) of r. Although every graph is a cover of itself (with 11" =id.), no 
graph on more than one point is an antipodal cover of itself. When 111"- 1(1)1 = r 
for all vertices / of r, then 6. is also called an r-cover of r. 

A geodesic in a. graph r is a path 10, Ii. ... , It, where "f•-1 """Ii (1 :S i :S t) 
and d{Jo, It) = t. For two vertices 0t., /3 off we let C(0t., ,B) denote the union of all 
geodesics between Of. and /3 in r. 

The following two propositions give strong necessary conditions for the ex­
istence of antipodal covers of distance-regular graphs. Indeed, they will be the 
major tools in the rest of this paper. (Recall that if r has diameter d, and 6. is a 
distance-regular antipodal cover of r, then A has diameter D = 2d or D = 2d + 1.) 

Proposition 2.1. Suppose that r is distance-regular of diameter d 2: 2 and has a 
distance-regular antipodal r-cover of diameter 2d. Then for any two vertices 1, 5 
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ofr ~i~h. d(1, ~) = d, the subgraph C("f, 5) \ {1, 5} = u::~ r;('Y) n r d-;(5) ofr is 
the dJSJomt union of r subgraphs of equal size. 

Proof. Let b. be a distance-regular antipodal r-cover of diameter 2d of r with 
• I 

covering map 1r : b. -+ r. Let 1 1 E 1r- 1 (1), and let 1r-1(5) = {511 ••• ,or}· 
Let C; be the union of all geodesics in b. between 1 1 and 5; (1 5 j 5 r) and 
0 = U;O; \ b1, 5;}. Then 1rlc: C-+ C("Y, 5} is an isomorphism. • 

Proposition 2.2. Suppose that r is distance-regular of diameter d 2: 2 and has 
a distance-regular antipodal r-cover of diameter 2d + 1. Let 1, 5 be vertices of r 
with d("f,5) = d, and put E = {5} u (r(o) n rd(1)). Then the collection of sets 
0(1,e) \ {1,e}(e EE) can be partitioned into r nonempty parts such that sets 
from different parts are disjoint, and all edges joining vertices from sets in different 
parts are contained in r('Y). • 

An immediate corollary of this last proposition is that the dual polar graphs, 
and, more generally, the collinearity graphs of regular near 2d-gons (for definitions, 
see Shult and Yanushka [30]), do not have antipodal distance-regular covers of odd 
diameter. 

Corollary 2.S. If d 2:: 2, and any two adjacent vertices 5, e in r db) have 'a 
common neighbour in r d-1b), then r does not have distance-regular antipodal 
covers of diameter 2d + 1. In particular, this holds for the collinearity graph of a 
regular near 2d-gon. 

Proof. Clearly, if r(S) n r(e) n r d-1b) ;to 0, then 0(1, 5) \ {1,5)} and G("Y, e) \ 
{1, e)} are not disjoint. But if r is a near 2d-gon, and Sein an edge in r.s("Y), then 
by definition of regular near 2d-gon, the line containing Se has a (unique) point in 

r d-1b). • 

Corollary 2.4.. If d 2:: 2 and for any two adjacent vertices 6, e in r db) there is a 
point in r('Y) n r d-1(5) n r d-1(e), then r does not have distance-regular antipodal 
covers of diameter 2d + 1. Similarly, if d 2:: 3 and if d("Y, 5) = d then for any two 
vertices a.,[3 E f(5) n r d-1h) there is a vertex e E r('Y) n r d-2(a) n r d-2(.8), then 
r does not have distance-regular antipodal covers of diameter 2d. • 

Trivially, bipartite graphs do not have distance-regular antipodal covers of 
odd diameter. As was already remarked in the introduction, antipodal graphs of 
diameter d 2:: 3 do not have any distance-regular antipodal covers. 
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3. Parameter conditions for distance-regular antipodal 
covers. 

Let r be distance-regular of diameter d and with parameters a,, b,, c,, and A a 
distance-regular antipodal r-cover of r of diameter D > 2 and with parameters 
A,, B,, c,. (We shall use these notations everywhere below, and also such notations 
as K = B0 ,A = A1 ,M = 0 2.) Then r = l+kD = l+Bd/CD-d and we have 
b, = B,, Ci = c,(o $ i :$ d-1), B, = CD-i(O :$ i $ D,i i- d),cd =red if D = 2d, 
and Cd = cd if D = 2d + 1. (Gardiner [19].) 

In other words, suppose that r has intersection array 
i(r) = {bo, ... , bd-l; c1, ... , cd}· If A has a diameter 2d > 2, then 

(so that rlca and r :$ cd/ max(ca-1, ca - ba-1)) and if A has a diameter 2d + 1, 
then 

for some integer t, where t(r - 1) :$ min(ba-1,ad) and cd :$ t. Clearly, given i(r), 
there are only finitely many possibilities for r and t, and if Ca > min(ba-1, aa), 
there are none. Sometimes one uses the notations r.r and (r.r)t for such graphs 
(intersection arrays). 

From the above it follows that if cd > 2bd-l then the graph has no covers. 
We shall often want to apply this for the complement of a given strongly regular 
graph. (A connected graph is called strongly regular when it is distance regular 
of diameter 2. The complement of strongly regular graph is either disconnected or 
again strongly regular.) So, let us translate this condition for this situation. 

Lemma 3.1. Let r be strongly regular with intersection array {k, b1 ; 1, c2 }. Then 
its complementary graphs r does not have distance regular antipodal covers when 
b1 > 2c2. • 

Concerning the spectrum we can say the following. The eigenvectors of r yield 
in the obvious way eigenvectors of A that are constant on the fibers 11"- 1(-y), so 
that the eigenvalues of r are also eigenvalues of A, and it is easy to see that their 
multiplicity in A will be the same as in r. If r has eigenvalues 80 ;:::: 81 ~ ... ~ Oa 
and A has eigenvalues 0o;:::: 01;:::: ... ;:::: 0v, then 0o = Bo,02 = 81 1 ... ,02d =Ba, 
i.e. the eigenvalues of r interlace the "new" eigenvalues of A. 
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Proposition 3.2. If D = 2d, t.hen the d eigenvalues of!::.. that a.re not eigenvalues 

of r a.re the eingenvalues of the d x d matrix 

() bd-2 

cd-1 aa-1 

Thus, these eigenvalues do not depend on r, and their multiplicity is proportional 

tor - l. If D = 2d + 1, then the d + 1 eigenvalues of lJ.. {with parameters (r.f)t) 
that are not eigenvalues of r are the eigenvalues of the ( d + 1) x ( d + 1) matrix 

0 k 
1 ), bi () 

µ 

() 

Thus, these eigenvalues depend only on rt. 

Corollary 3.3. In particular, in case d = 1, D = 3, the two new eigenvalues () a.re 

the two roots of (j2 - (k - 1- rµ)6 - k = 0, (withµ= µ(t::..)), and have multiplicity 

m(6) = k(k: ~~:- l). Thus, either k-1 = rµ and kµ is even, or() is an integer, 

and (r - l)kµ is even. 

Proof. The parity restrictions follow by counting edges in t::..(oo) for some vertex 

oo of D.. 1111 

Corollary 3.4. In particular, in case d = 2, D = 4, the two new eigenvalues fJ a.re 
. . . . (r-l)v 

the two roots of fJ2 - ),(J - k = 0, and occur with mult1plmty m(8) = 2 + ),{} / k. 

Consequently, either ), = 0, or >.2 + 4k is a square {and these eigenvalues a.re 

integral). 1111 

All of the above is already contained in Biggs and Gardiner [6]. 

Covers of the classical graphs. 

In the sections below we determine almost all distance-regular antipodal covering 

graphs of classical distance-regular graphs of diameter d 2: 2, and of some related 
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graphs. (Here "classical" is defined by what appears below.) Specifically, we treat 
a) Johnson graphs, b) Hamming graphs, c) Grassmann graphs, d) Dual polar 
graphs, e) Bilinear forms graphs f) Alternating forms graphs, g) Hermitean forms 
graphs (but only for d ~ 3), h) Quadratic forms graphs, i) E1 graphs, j) Affine 
E6 graphs, a.nd k) Witt graphs. The result is that no such cover exist, except in 
those cases where covers were known already, and in these cases the covers turn 
out to be unique. (Only for the Witt graphs a few open cases remain; see §14.) 
For the definitions and properties of all graphs involved, see the (hopefully soon to 
be published) book Brouwer, Cohen and Neumaier [9]. Note that we shall write 
"cover" instead of "distance-regular antipodal cover". 

4. Johnson graphs and related graphs. 

The Johnson graphs J ( n, k) (also known as (~)) has as vertex set the set of k­
subsets of a fixed n-set, where two k-sets are adjacent when they meet in a (k-1)­
set (or, equivalently, when their union is a (k + 1 )-set). The diameter of this graph 
is d = min(k, n - k). Ford 2: 2, no covers exist, as follows immediately from §2. 

The Odd graph Od+ 1 is the distance-d-graph of the Johnson graph J(2d+ 1, d) 
(i.e., vertices are d-sets in a fixed (2d + 1)-set, adjacent when they are disjoint). 
For d = 2, the Odd graph 0 3 is better known as the Petersen graph. 

Given a graph r with vertex set X, its bipartite double is the graph with vertex 
set X x {O, l} where (x, i) ~ (y, 3") if and only if x ~ y and i /:: J°. The bipartite 
double of a graph is bipartite, and it is connected precisely when r is connected 
and non-bipartite. The bipartite double of the Odd graph Od+l is again distance­
regular; it may be described as the graph with as vertices the subsets of sizes d and 
d + 1 in a (2d + 1)-set, with as adjacency (symmetrized) proper inclusion. 

Proposition 4.1. (cf. Ivanov [26]) The Odd graph Od+ 1 (d ?: 3) has a unique 
distance-regular antipodal cover, namely its bipartite double. The Odd graph 0 3 

has two nonisomorphic distance-regular antipodal covers, namely its bipartite dou­
ble (sometimes called the Desargues graph} and the 1-skeleton of the dodecahedron. 

Proof. The standard conditions on t and r for covers r.Om or (r.Om) (cf. §3), 
immediately yield that we have one of the possibilities mentioned, or (3.03 )i or 
2.04 or (2.02t+1)t with t ?: 2. The last possibility is ruled out by the inequality 

(see Brouwer and Lambeck [10], or Faradjev, Ivanov and Ivanov [18], Prop. 3.3) 
applied for i = t, or by the geometric condition of Proposition 2.2; (3.03)i has 
nonintegral multiplicities, and 2.04 is ruled out by detailed explicit investigation 
along the lines of Smith [32], who did the distance-transitive case. 1111 
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The Johnson graphs J(2k, k) are antipodal, and their quotients are called the 
folded Johnson graphs F J(2k, k). For k ~ 4 the Johnson graphs J(2k, k) a.re the 
only covers of the folded Johnson graphs F J(2k, k). (Indeed, this follows from the 
local characterization of the Johnson graphs, cf.Blokhuis and Brouwer [7].) 

The Johnson graphs J(2k, k) (also known as the triangular graphs T(n)) and 
the folded Johnson graphs F J(8, 4) and F J(lO, 5) are strongly regular, and their 
complementary graphs are also strongly regular. The graph T(5), the complement 
of T(5), is the Petersen graph, and was treated a.hove. 

Proposition 4.2. The graphs T(n) have no distance-regular antipodal covers for 
n > 7. T(6) and T(7) have unique distance-regular antipodal covers; these are 
3-covers of diameter 4 on 45 resp. 63 vertices. 

Proof. Concerning covers of diameter 4, for 1 -f- 6 we have C(J, 6) \ {J, 6} ~ 
~ T(n - 3), which is connected for n = 5 and n ~ 8. The graphs T(3) and 
T( 4) are isomorphic to 3K1 and 3K2, respectively, and indeed there exist unique 
3-covers of T(6) and T(7), d. Smith [33], Hall [20] and Ito [25]. 

Concerning covers of diameter 5, if 6 e is an edge in r 2 ( 1) then 1..L n 6 ..L n e..L ~ 
~ T(n - 4) ¥= 0 for n 2:'.: 6. Thus, such covers are possible only for the Petersen 
graph, and those we have seen already. Iii 

The complement of the folded Johnson graph F J(8, 4) is the Grassmann graph 
of the lines in PG(3, 2), and we shall see below that there are no covers. Finally, 
from the parameters of F J(lO, 5) one immediately sees that it has no covers. 
(Indeed, it has 84 =ea> 2ba-l = 42.) 

5. The Hamming graphs. 

The Hamming graph H(n, q) has as vertex set the collection of all n-tuples with 
entries in a fixed q-set, where two n-tuples are adjacent when they differ in only 
one coordinate. This graph has diameter d = n (for q > 1). 

Proposition 5.1. Let n, q ~ 2. Then H(n, q) has no distance-regular antipodal 
covers, except for H(2, 2), the quadrangle, which is covered by the octagon. 

Proof. Terwilliger [35]'s bound d 5 (k + ea)/(>.+ 2) on the diameter of the 
distance-regular graphs containing a quadrangle holds with equality for H(n, q) 
(since d = n, k = d(q - 1), ea = d, >. = q - 2). For a cover we find 
D 5 (K + Cn)/(A + 2) = 2d(q-1)/q < 2d, so covers cannot contain quadrangles, 
and necessarily D = 4, d = 2. Concerning covers of diameter 4 of the "lattice 
graph" H(2, q), we see that lines (q-cliques) lift to lines in the cover, and for q > 2 
one quickly arrives at a contradiction. 11 

For q = 2, the Hamming graph H(n, 2) is antipodal (it is the n-cube); the 
folded graph is usually denoted by 0,... 
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Proposition 5.2. The only distance-regular antipodal cover of diameter D ~ 3 of 
tbe folded n-cube o.i is the n-cube, except for n = 4, 5 where unique covers with 
intersection arrays { 4, 3, 3, 1; 1, 1, 3, 4} and {5, 4, 1, 1; 1, 1, 4, 5} exist. 

Proof. Neumaier [27] proves that a graph with >. = O, µ = 2 and valency k has 
at most 21c vertices, with equality only for the k-cube. This shows that for D ~ 5 
the only covers are D-cubes. If D = 4, d = 2, then n E {4, 5}, and if M =f 2, then 
M = 1 and we :find the two arrays mentioned above. It is not difficult to show that 
there are unique graphs corresponding to these arrays. (They are known as 4.K4,4 
and Wells' graph, respectively.) Finally, for D = 3, d = 1 we see that no feasible 
parameter sets exist different from that of the 3-cube. • 

For q = 2, the Hamming graph H(n, 2) is also bipartite; let us denote the 
halved graph by ~H(n, 2). If n is even, then ~H(n, 2) is still antipodal; let us 
denote the folded halved (or halved folded) n-cube by !O..· 
Proposition 5.3. For n ~ 4, the halved n-cube !H(n, 2) does not have distance­
regular antipodal covers. For (even) n ~ 8, the only distance-regular antipodal 

1 • 1 ' cover of 2o.i JS 2H(n, 2). 

Proof. For even n, ! H( n, 2) has diameter d = n/2 and cd = (;), ba-i = 1, so no 
covers exist. For odd n, this graph has diameter d = [n/2] and cd = (n;1), bd-l = 
= 3, so for n > 5 no covers exist. Bp.t covers of !H(5, 2) must have diameter 4, 
and are ruled out by Corollary 3.4. 

Concerning the folded halved n-cubes !Dn(n ~ 8), these are locally T(n). By 
Neumaier [28] (Propositions 2(ii) and 3) any connected locally triangular graph is 
the halved graph of a bipartite graph with µ = 2 (indeed, for n > 4 the missing 
points are uniquely found as the maximal cliques). It follows that any cover of a 
folded halved n-cube gives rise to a cover of the folded n-cube, but since n ~ 8, 
such a cover must be the n-cube. • 

The Hamming graph H(2, q) and the folded cubes ~ and Ds, the halved 
Hamming graphs !H(4, 2) and iH(5, 2), and the halved folded cubes !Ds and 
iD10 are strongly regular, and we have to consider possible covers of their com-

plements. Now H(2, 2) and E4 and ~H(4, 2) are disconnected, and fall off. Next, 

H(2, 3) ~ H(2, 3) and Os ~ !H(5, 2) and !H(5, 2) ~ Ds, so these have been con­

sidered alrea.dy. Next, H(2, q) with q > 3 has cd > 2ba-l and hence has no covers. 
The complement of the folded halved 8-cube is the alternating forms graph on F~, 

and will be considered below (it has no covers). Finally, !D10 has c2 > 2b1 and 
hence has no covers. 

There are a few more graphs related to the Hamming graphs. First of all, 
there are the Doob graphs (cf. Doob [16]), direct products of a number of K4 's 
and Shrikhande graphs. These have the same parameters as the Hamming graphs 
H ( n, 4), and hence covers are ruled out by the same argument. (For the Shrikhande 
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graph itself, and for its complement, covers of diameter 4 are ruled out by Corollary 
3.4, and covers of diameter 5 are not feasible either.) 

Lastly, the folded n-cubes are characterized by the parameters except when 
n = 6 (cf. Terwilliger [34]). For n = 6 there ~e precisely three nonisomorphic 
graphs with intersection array {6,5,4; 1,2,6}(cf. Hussain [24]). The argument 
used above shows that none of these has distance-regular antipodal covers. 

6. Grassmann graphs. 

Let V be an n-dimensional vector space over the finite field F 9 with q elements, 
q a prime power. The Grassmann graph of the e-subspaces of V has vertex set 
[~], the collection of linear subspaces of V of dimension e. Two subspaces Y, Z are 
adjacent whenever dim Y n Z = e - 1. 

Proposition 6.1. Grassmann graphs of diameter d ~ 2 do not admit distance­
regular antipodal covers. 

Proof. The Grassmann graph of the e-subspaces of V has diameter d = 
= min(e, n - e); indeed, more generally we have d(Y, Z) = e - dim(Y n Z) for 
e-subspaces Y, Z of V. Since the Grassrnann graphs [~] and [n'::,eJ are isomorphic 
(any nondegenerate symmetric bilinear form provides an isomorphism), we may as­
sume n ~ 2e, so that d =e. Now if d(Y, Z) = d, then r(Y) n r d-i(Z) is the direct 
product [e:1J X [~] (a grid) and hence is connected, so that by Proposition 2.1 there 
are no covers of even diameter. Similarly, if also d(X, Z) = d and d(X, Y) = 1, 
then any e-subspace of V containing X n Y and meeting Zin a nonzero vector is 
a common neighbour of X and Y in r d-i(Z), so that by Corollary 2.3 there are 
no covers of odd diameter either. • 

Related to the Grassmann graphs are the so-called double Grassmann graphs. 
Suppose that V is a vector space of dimension 2m + 1 over F 11 • Let r be the 
graph whose vertex set is [~] U [m~l], and such that Y ...., Z for vertices Y, Z 
of r if and only if Y # Z and either Y c Z or Z c Y. It is isomorphic to 
the bipartite double of 6.m, where 6. is the Grassmann graph [~]. Note tha.t 
d(Y, Z) = dim(Y /Y n Z) + dim(Z/Y n Z), so that r has diameter 2m + 1. 

Proposition 6.2. The double Grassmann graphs of diameter d > 1 do not have 
distance-regular antipodal covers. 

Proof. Since a double Grassmann graph r is bipartite, it cannot have covers of 
odd diameter. Assume first m > 1, i.e., d > 3. Suppose d(X, W) = d, say X is 
an m-space and W an (m + 1)-space with X n W = 0. HY, Z are vertices in 
rd_ 1(X) n r(W) then they are m-spaces contained in W. Now for any 1-space P 
contained in Y n Z the vertex U = X + P of r lies in r(X) n r d-2(Y) n r d-2(Z), 
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and hence by Corollary 2.4 there are no covers of even diameter either. Remains 
the case m = 1, where we have the incidence graph of the points and lines of 
a projective plane. Let A be a distance-regular bipartite antipodal r-cover of a 
bipartite graph r of diameter 3. Since A is bipartite, its spectrum is symmetric 
around O; since it has diameter 6, its spectrum contains 7 distinct eigenvalues. 
It follows that 0 is an eigenvalue of A, and hence -k/µ is an eigenvalue of !A. 
Now Biggs [5] teaches us that the multiplicity of an eigenvalue x different from 
the valency and from -1 in an antipodal distance-regular graph of diameter 3 
equals m = (r - l)(k + l)k/(k + x2 ). Applying this to ~A with x --+ -k/ µ. and 
k--+ k(k- 1)/ µ,we find m1 = (r - l)(k - l)(k2 - k + µ)/(kµ + k - µ). From this 
more general nonexistence results can be derived, but here we are only interested 
in the caseµ= 1,k = q + 1, and integra.lity of m implies 2q + 1 = 3(r - 1). But 
r divides c3 = q + 1, and it follows that q = 1, contradiction. So, also for m = 1 
there a.re no covers. • 

Another related graph is the incidence graph of points and hyperplanes in a 
projective space, the bipartite graph with point set fi"] U [n~ 1 ] (where dim V = n) 
and symmetrized inclusion as adjacency. For n = 3 this is the graph just studied. 
For n > 3, -k/µ is not an (algebraic) integer and hence this graph has no covers. 
(For n = 4 this graph is the dual polar graph [D3 (q)], see below.) 

The Grassmann graph ~] of the lines in a projective space is strongly reg­
ular, but its complement does not have covers, except in the case of the lines in 
PG(3, 2), where this complementary graph is isomorphic to the folded Johnson 
graph F J(B, 4) and has the unique cover J(8, 4). (Indeed, this follows immediately 
from Proposition 2.1 and Corollary 2.3.) 

7. Dual polar graphs. 

Let q be a prime power. Let V be one of the following spaces equipped with a 
specified form: 

[Ca(q)J = F;d with a nondegenerate symplectic form; 

[Ba(q)) = F;a+l with a nondegenerate quadratic form; 

[Da(q)) = F;d with a nondegenerate quadratic form of (maxima.I) Witt index d; 

[2 Da+i(q)] = F;a+2 with a nondegenerate quadratic form of {non-maximal) 
Witt index d; 

[2 A2a(r)] = F;d+l with a nondegenerate Hermitean form (q = r2 ); 

[2 A2a-i{r)] = F;a with a nondegenerate Hermitean form (q = r2 ). 

Background on the spaces and their forms can be found in Artin [ 1] and 
Dieudonne [15]. The spaces [Ca(q)], [Ba(q)], [Da(q)], [2 Da+i(q)], [2 A2 ,1(r)], 
{2 A2tt-dr)] are often named Sp(2d, q), 0(2d+l, q), n+(2d, q), n-(2d+2, q), U(2d+ 
1, r) and U(2d, r), respectively. 
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A subspace of V is here called isotropic whenever the form vanishes completely 
on this subspace. (In standard terminology this is called totally isotropic, or, 
in cert a.in cases, totally singular.) Maximal isotropic subspaces have dimension 
d (in other words, are d-spaces of V). The dual polar graph (on V) has as 
vertices the maximal isotropic subspaces; two points 1, 6 a.re adjacent whenever 
dim 1 n 6 = d - 1. 

Proposition 7 .1. Dual polar spaces of diameter d 2: 3 do not admit distance­
regula.r antipodal covers. For d = 2 the generalized quadrangle of order (2, 2) has 
a unique distance-regular antipodal 3-cover, and many of the (thin) generalized 
quadrangles of order (1, q) (complete bipartite graphs Kq+l,q+i) have covers, but 
no other covers occur. 

Proof. (We shall use the terminology and results of the theory of near polygons. 
See Shult and Yanushka [30], Cameron [12,13], Brouwer and Wilbrink [11] and 
Shult [29].) Since dual polar graphs are regular near polygons, it follows from 
Corollary 2.3 that there are no covers of odd diameter. H r is a dual polar graph 
of diameter d 2: 3 and d{"f,6) = d,a,/3 E f(6) n rd-1(1), then there is a unique 
quad Q containing {a, f3, 6}. Since all point-quad relations are classical, there is a 
unique point e Er d- 2 {1) n Q, and e,..., a, {3. It follows from Proposition 2.1 that 
no covers of diameter 2d exist. 

Dual polar graphs of diameter d = 2 are generalized quadrangles of order (s, t) 
with t = q and s = q, q, 1, q2 , q312 , q112 in the six respective cases, By Corollary 3.4 
we must have either s = 1, or (s -1) 2 + 4s(t + 1) is a. square. This latter condition 
is of the form 

for cert a.in integers a, b, c, when q is a power of the prime p. It follows that 
(c - pa - l)(c +pa+ 1) = 4pb and hence ~(c ±(pa+ 1)) are powers of p. Hence 
c - pa - 1 = 2 and c + pa + 1 = 2pb, pa + 1 = pb - 1, p = 2, a = 1, b = 2, c = 5. 
Thus our generalized quadrangle was either GQ(l,q) or GQ(2,2). The former is 
the complete bipartite graph Kq+l,q+li the latter is T(6). We know already that 
the latter has a unique 3-cover. Concerning the former, its covers are precisely the 
incidence graphs of symmetric (r,µ)-nets, with µr = q + 1, and many such graph 
are known. [For example, when r = 2 these correspond precisely to Hadamard 
matrices of order q + 1, and these exists for each prime power q = 3(mod4). For 
q = 5 a unique graph 3.K6 ,6 exists; for q = 9 there are no examples.] 1111 

The dual polar graphs on [Dn(q)] are bipartite, but the halved graphs of 
diameter d = [n/2] 2: 2 do not have covers. (This follows again by looking at the 
geometry of the near polygon.) 

The six dual polar spaces with d = 2 and the halved dual polar spaces ~[D4( q )] 
and ~[D5 (q)] are strongly regular, and we may consider the complementary graphs. 
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Moreover, the dual polar spaces with d == 2 are generalized quadrangles, and we 
may consider their duals. However, no covers occur. 

[The complement of GQ{l, q) is disconnected, and that of GQ(q, 1) was treated 
earlier. The complement of GQ(s, t) with s, t > 1 has c2 > 2b1 except for s = 2 and 
(s, t) = (3, 2). But no GQ(3, 2) exists, GQ(2, 2) ~ T(6) was treated earlier, and 
covers of GQ(2, 4) (that is, of the Schlafti graph E6 (1)) are ruled out by Corollary 
3.4. The dual generalized quadrangles have order (p4 , pb) with a, b ~ 0. H a, b > 0 
then the above argument shows that no covers exists. Concerning GQ(q, 1), this is 
H(2, q + 1), and hence has no covers either. Finally, for ~[Ds(q)] and all q and for 
~ [ D 4 ( q) ] and q > 3 one finds that c2 > 2b 1 ; in the remaining cases Corollary 3 .4 is 
violated.] 

8. Bilinear forms graphs. 

Set V = F: and W = F;. Let B be the vector space (of dimension de over F 9 ) of 
bilinear maps from V x W to F 9 • (Then B is canonically isomorphic to (V ® W)*, 
the vector space of linear maps from V ® W to F q.) The null space of f in V is 
defined as { v E Vlf ( v, W) = O}. Defining f ,.._, g if and only if rk(f - g) = 1 (where 
the rank rk(f) of a bilinear map f is the codimension of each of its null spaces 
(in V and W)), we get a graph r called the bilinear forms graph {over F 9 with 
dimension d and e ). In a bilinear forms graph, two vertices 1, 6 have distance i if 
and only if rkb - 5) =i. Note that we might also consider B (and f) as the set 
of d x e matrices over F q (where the distance of two matrices is the rank of their 
difference). 

A useful geometric description of the bilinear forms graph is that of collinearity 
graph of so-called attenuated spaces: Let V be a vector space of dimension d + e 
over F q and W a subspace of V of dimension e. Then the corresponding attenuated 
space is the collection of subspaces U of V with U n W = O, where subspaces U 
of dimension d are called "points", and those of dimension d - 1 "lines", and 
incidence is symmetrized inclusion. The identification with the above description 
of the bilinear forms graph follows by choosing a fixed "point" U0 ; now each 
"point" U defines a map fu : Uo - W by Fu(uo) + uo E U for uo E Uo (i.e., 
{fu(uo)} = W n (U - uo)), and one easily verifies that dim(U n U') = e - r if and 
only if rk(fu - fu•) = r. But clearly the space Hom(U0, W) of maps from U0 into 
W is isomorphic with (Uo ® W)*. Note that r is a subgraph of the Grassmann 
graph of d-spaces in V. 

Here, and in the sequel we shall use geometric language whole talking about 
vector spaces; for example, we call subspaces X, Y disjoint when they have no 
projective point in common, i.e., when X n Y = 0. This cannot cause confusion. 

Proposition 8.1. The bilinear forms graph of diameter d > 2 do not have 
distance-regular antipodal covers. 
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Proof. (i) We show that C('y, 5) \ {-y, 5} is connected when d('Y, 5) =d. 

The graph r is isomorphic to the collinearity graph of the attenuated space of 
the d-spaces in a ( d + e)-space V disjoint from a given e-space W. Let /, 5 corre­
spond to d-spaces X, Y, respectively, then XnY = 0. The vertices of r a-<(1)nr.: (5) 
correspond to maximal totally isotrophic subspaces Z with WnZ = O, dim(XnZ) = 
= i, dim(Y n Z) = d - i. But the pair of disjoint spaces W, X spans V, and so we 
have a bijective projection 7r : Y --+ X (defined by: the line (y, 1f(y)) meets W), 
and if we put E = X n Z, F = (?r(Y n Z) then En F = O (since Z n W = o). 
Thus, there is a 1-1 correspondence between pairs (E, F) of disjoint subspaces of 
X with dim E + dim F = d and subspaces Z on a geodesic from X to Y. We find 
the following description of C('y, 5): 

Let 1, 5 be two vertices at distance j in a bilinear forms graph r. Then G('Y, 5) 
is isomorphic to the graph with as vertices the pairs (E, F) of subspaces of a 
j-space X such that En F = O, E + F = X, where (E, F)""' (E', F') if and 
only if dim(E + E')/(E n E') + dim(F + F')/(F n F') = 2. The vertices of 
r,._,(1) n r,(5) correspond to pairs (E, F) with dimE = i,dimF = j-i. 

It follows immediately that C("Y, 5) \ {1, 5} is connected; even r d-i (1) n r( 5) 
is connected: Thus, by Proposition 2.1, r does not have covers of even diameter. 

(ii) If also Z n X = 0, Y,..., Z, then there is a 1-spa.ce P ~ X with (P + (Y n 
nZ)) n W = 0, so that P+ (Y nZ) is a common neighbour of Y and Zin r d-i(X). 
Thus, by Corollary 2.3, r does not have covers of odd diameter. 11 

Remark. The special case q ~ 4, d ~ 3, e ~ 2d of this proposition wa.s already 
proved in Huang [23]. 

9. Alternating forms graphs. 

Set V = F~ and let A be the n(n - 1)/2-dimensional vector space of (bilinear) 
alternating forms on V. Thus f E A if and only if f is a bilinear form on 
V and f (x, x) = 0 for all x E V. We define rk(f) = dirn(V /Rad/), where 
Rad/ = {x E Vjf(x, y) for ally E V}. Note that rk(f) takes even values only 
for f EA. 

The alternating I orms graph r on v is defined on the points of A by 1 E r( 5) 
for/, 5 E A whenever rk('Y - 5) = 2; thus two vertices /, 5 have distance i if and 
only if rk(I - 5) = 2i. 

We could also have defined A (and r) as the set of all skew symmetric n X n 
matrices over F q with zero diagonal (where two matrices are adjacent whenever 
their difference has rank 2). 

The alternating forms graph can be described inside the dual polar graph 
[Dq(q)]. Indeed, let 11 be the collinearity graph of the dual polar space [Dq(q)], 
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let oo be a vertex of A, and put A= Ad(oo). Then A is a coclique in A, but the 
graph included on A by .62 is isomorphic to the alternating forms graph on F:. 

This is easy to see directly, but we shall need the geometric interpretation of 
this fact later. What it means is that if 1,0 E Ad(oo) and 001 1 1 0 correspond to 
subspaces u, v, w (with u n v = u n w = 0), then w determines a symplectic 
polarity J_w on V defined by 

z.iw = ((z.i n W) + U) n v. 

In this way ea.eh maximal totally isotropic subspace W disjoint from U gives 
rise to a.polarity J_w ofV, and J_w will be nondegenerate precisely when VnW = 0. 
(In fact, Ra.d(j_w) = V nW.) Ea.eh symplectic polarity J_w distinct from the totally 
degenerate J_v is determined by precisely q-1 subspaces W (and these do not have 
common points outside V). 

Proposition 9.1. The alternating forms graphs r on F~ with n ~ 4 do not have 
distance·regular antipodal covers of even diameter. 

Proof. Note that r has diameter d = [n/2]. We show that G(,Y, 6) \ {l,o} 
is connected when dr('Y,6) = d. Since for arbitrary a,/3 the graph G(a,.8) is 
determined up to isomorphism by dr(a,.8), independent of n, we may suppose 
n = 2d. Let !::.. be the collinearity graph of the dual polar space [Dn(q)] , then r is 
isomorphic to the graph induced by .62 on Lln(oo) for some fixed vertex oo of .6. 
Let oo, 1 1 6 correspond to maximal totally isotropic subspaces U, V, W, respectively, 
then U, V, Ware pairwise disjoint. The vertices of rd-i('Y) n ri(6) correspond to 
maximal totally isotropic subspaces z with unz = 0, dim v n z = 2i, dim wnz = 
= n - 2i. But Y = V n Z determines W n Z = W n Y .l and Z = Y + (W n Z), and 
Z n U = 0 precisely when Y n Y .Lw = 0. Thus we find the following description of 
0(1,6): 

Let 1, 6 be two vertices at di.9tance j in an alternating forms graph r. Then 
G('Y, 6) is isomorphic to the graph with as vertices the nondegenerate subspaces 
Y of a 2j-space V provided with a nondegenerate symplectic form, where two 
subspaces Yi, Y2 are adjacent when dim(Y1 + Y2)/(Y1 n Y2) = 2. The vertices 
of r ;-i b) n 'Yi ( 8) correspond to the subspaces Y with dim Y = 2i. 

It follows immediately that G("Y, o) \ {1, 6} is connected; even r d-ib) n r(o) 
is connected. • 

Proposition 9.2. The alternating forms graph r on F~ with n ~ 4 do not have 
distanc~regular antipodal covers of odd diameter. 

Proof. We want to show that if o, e Er d('Y), 6,.., e, then r('Y)nr d-1(6)nr d-i(e) i= 
=I- 0. Translating this to polar space situation, we see that if n is even, then the 
size of this set is the number of hyperbolic lines meeting an (n - 2)-subspace 
of an n·space with a nondegenerate symplectic form in at least one point. But 
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this is always nonzero. H n is odd, then we may suppose that I n 8 n e = 0 -
otherwise we can divide out this intersection and reduce to the case n even. But 

now jf(I) n r d-1(8) n r d-1(e)j is the number of hyperbolic lines in an (n - 2)­

subspace of an n-space with a syrnplectic form with radical of dimension 1. Also 
this is nonzero. II 

For n = 4, 5 these graphs a.re strongly regular, and we may consider the 

complementary graphs. For n = 4 and q ~ 4 and for n = 5 these complementary 

graphs have c2 > 2b 1 and hence have no covers. For n = 4, q = 3 covers with odd 

diameter fail on c2 = 306 > b1 = 170, and with even diameter on Corollary 3.4. 

For n = 4, q = 2, the complementary graph is the folded halved 8-cube, and wa.s 
treated earlier. 

10. Hermitean forms graphs. 

Set V = F~, where q = r2 with r a prime power, and let H stand for the n 2-

dimensional vectorspace over Fr of the Hermitean forms on V. Thus f E H if and 

only if f (x, y) is linear in y, and f(y, x) = f(x, y) for all x, y E V. 

The Hermitean forms graph on V is the graph whose vertices a.re the members 

of H and in which /, 8 E H are adjacent whenever rk(I - 8) = 1. Here, rk(I) 

and Rad1 have the same meaning as in the previous section. As before we have 

d(I, 5) =rk(I- 5). Note that we could also have defined Has the set of Hermitean 

n x n matrices over F q. 

The Hermitean forms graph can be described inside the dual polar graph 

[2 A2d-1 (r)]. Indeed, let A be the collinearity graph of the dual polar graph 

[2 A2d_i(r)] (with r2 = q), and let oo be a vertex of A. Then the subgraph Ad(oo) 
of A. is isomorphic to the Hermitean forms graph on F~. (And just as in the 

previous section we can define polarities _.Lw - this time these are Hermitean.) 

Proposition 10.1. The Hermitean forms graph r of diameter d 2 3 do not have 

distance-regular antipodal covers of diameter 2d, except in cased= 3, q = 4, where 

unique antipodal 2- and 4-covers of diameter 6 exist. 

Proof. Similarly to the proof of Proposition 9.1 we find here: 

Let 1, 5 be two vertices at distance j in a Hermitean forms graph r. Then 

C(I, 5) is isomorphic to the graph with as verti"ces the nondegenerate subspaces 

Y of a j-space V provided with a nondegenerate Hermitean form, where two 

vertices Y1, Y2 are adfacent when dim(Y1 + Y2)/(Y1 nY2) = 1. The vertices of 

r j-ih) n r,(5) correspond to the subspaces y with dim y =i. 

It follows that 0(1, 5) is bipartite. For d ~ 3, the distance two graph of 

C(I, 8) \{I, 8} (with d(I, 8) = d) induced on r d-ib) n f(5) is isomorphic to the 

graph on the nonisotropic points of a d-space V provided with a nondegenerate 
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Hermitean form, adjacent when the line joining them is hyperbolic. It is easy to 
see that this graph is connected precisely when r > 2. For cl~ 4, C(I, 6) \ {1, 6} is 
connected also when r = 2. Thus, by Proposition 2.1 it follows that f does not have 
antipodal covers of diameter 2d, except possibly in case d = 2, or (d, r) = (3, 2). 
When (d, r) = (3, 2), then C(1, 6) \ {1, S} ~ 406 for d("Y, S) = 3, and such covers 
do exist, see §14. • 

When cl= 2, then by Corollary 3.4 we find that either r E {2, 3}, or 4r- 3 is a 
square, and if we have an antipodal t-cover, then ./4r - 3l5(t - 1). If r = 2, then 
the Hermitean forms graph is the folded 5-cube, and its unique antipodal double 
cover of diameter 4 is the Wells graph (see §5). If r = 3 then the Hermitean forms 
graph is the coset graph of the truncated ternary Golay code, and has an antipodal 
3-cover (see §14). Concerning larger r for which 4r - 3 is a square (7, 13,31, ... ), 
nothing is known. 

Proposition 10.2. The Hermitean forms graphs r of diameter d ~ 2 do not have 
distance-regular antipodal covers of diameter 2d + 1, except in case d = 2, q = 4 
where we find the 5-cube. 

Proof. We show that if S,e E fd('y),S,..., e, then f("Y) nfd-1(6) nfd-i(e) =f 0. 
Translating to the polar space situation, we see that the size of this set is the 
number of nonisotropic points in a hyperplane of a cl-space with nondegenerate 
Hermitea.n form. For d ~ 3 this is nonzero and we are done. For d = 2, q = 4, 
our graph is isomorphic to the folded 5-cube, and has a unique double cover of 
diameter 5, the 5-cube. For d = 21 q > 4 we use the full strength of Proposition 
2.2. For 6 E f2(1), put E = {S} u (f(6) n f2(1)). We have to show that there 
is no nontrivial partition of E with the property that if e, e1 E E have a common 
neighbour in f{-y) then they belong to the same part. Embed r a,; A2 (oo) in 
the collinearity graph A of a generalized quadrangle GQ(r, r2 ) with the property 
that any three pairwise noncollinear points have r + 1 common neighbours. Put 
A = { oo, ')', S}.1. Then all points of E on some lines on 6 not meeting A belong 
to the same part Eo of the partition. If e EE\ E0 , e on the line oa., a. EA, then 
for P E A \ {a.} let ~ be the neighbour of e on 1P. Put B = { 001 6, "f }.1. Since 
r2 + 1 > 2r + 1, there are lines on Snot meeting A or B, and a neighbour 'I of~ 
on such a line would belong to E0 , but also to the same part as e, contradiction. 
Thus E= Eo. • 

For n = 2, the Hermitean forms graphs are strongly regular. We have b1 = 
= q(r -1) and c2 = r(r-1), so for r > 2, q > 4 the complementary graph does not 
have covers. But when r = 2, q = 4 we are looking for covers of the complement 
of the folded 5-cube, that is, of the halved 5-cube, and by Proposition 5.3 there 
are none. 
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11. The quadratic forms graphs. 

The graphs discussed in this section were constructed in Egawa. [17]. 

Set V = F~. A quadratic form on V (over F q) is a. ma.p 1 : V -> F q such that 

1(..\x) = ..\21(x) for all ..\ E Fq a.nd x E V 

a.nd such that B,., : V x V -> F q defined by 

B,., (x, y) = 'Y(x + y) -1(x) - ry(y) (x, y E V) 

is a symmetric bilinear form (the symmetric bilinear form associated with 'Y)· Let 
Q denote the n(n + 1)/2-dimensional vector space of all quadratic forms on V. 
The radical of 1, denoted by Rad')', is defined by 

Ra.d-y = {x E RadB1 h(x) = O} = {x E Vh(y) = 'Y(x + y) for all y E V}, 

where, of course, Ra.dB,., is defined as in §9. We observe that RadB,., =Rad1 if q is 
odd and that dim(RadB,.,) ~ dim(Rad1) + 1 in general. The rank of 'YE Q, denoted 
rk('Y), is the number rk('Y) = dim(V/Rad1). Put R; = {(1', 6) E Q2 1rk(1'- o) = i} 
and R,;(6) = b E Ql('Y,6) ER;}. 

The quadratic forms graph on V has a vertex set Q and 'Yi 5 E Q are called 
adjacent if rk('Y - 5) E {1, 2}. In this section, we shall denote this graph by r. 

For the study of r we need an auxiliary graph E, the symmetric bilinear forms 
graph. 

Let S be the n(n + 1)/2-dimensional vector space of symmetric bilinear forms 
on V. The symmetric bilinear forms graph Eon V is defined on the elements of S 

by 'Y,...., 6 whenever rk('Y - 6) = 1. 

We could also have defined S (and E) as the set of all symmetric n x n matrices 
over F q (where two matrices are adjacent whenever their difference has rank 1). 

The graph E can be described inside the dual polar graph [Cn(q)]. Indeed, let 
tl. be the collinearity graph of the dual polar graph [Cn(q)], and let oo be a vertex 
of tl.. Then the su bgraph tl.n ( oo) of tl. is isomorphic to the symmetric bilinear 
forms graph on F~. (And just as in the previous sections we can define polarities 
J_ w - this time these a.re orthogonal.) 

When q is odd, then we may canonically identify the vertex sets of r and 
E, and then the quadratic forms graph E is the distance-l-or-2-graph of r:; i.e., 

f('Y) = E('Y) u E2 (1') for a.ll 1. 

Proposition 11.1. Let q be odd. Then the quadratic forms graphs of diameter 
d 2 2 do not have distance regular antipodal covers of diameter 2d. 

Proof. Similarly to what we found in the proofs of Proposition 8.1 and 9.1, we 

find here: 
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Let q be odd, and let /, 6 be two vertices at distance j in a symmetric bilin­
ear forms graph E. Then CE(I, 6) is isomorphic to the graph with as ver­

tices the nondegenerate subspaces Y of a :;"-space V provided with a non­

degenerate quadratic form, where two subspaces Y1, Y2 are adjacent when 

dim(Y1 + Y2 )/(Y1 n Y2 ) = 1. The vertices of fi-ib) n r,(6) correspond to 

the subspaces Y with dim Y = i. 

It follows that C('Y, 6) is bipartite. Concerning the quadratic forms graph r, 
if j = dr; (1, 6) is even, then 

Cr(')', 6) = {e E CE(1, 6)ld(1, e) even}, 

while if j is odd, then 

Crh, 6) = Cr;(1, 6) U {e-!dE(e-, 1) + dE(e-, 6) = j + 1}. 

Now it is easy to see that Cr(I, 6) \ {!, 6} is connected in r - even r d-1h) n f(6) 
is connected. (Indeed, if dE(1, 5) = 2d, then r d-1h) n f(5) = I:2d-2(1') n E2(5) 
and this set induces in r the graph on the nondegenerate lines in a 2d-space with 
nondegenerate quadratic form, where two lines are adjacent when they meet, and 
for d 2: 1 this graph is connected. On the other hand, if dr; ('Y, 5) = 2d - 1, then 

r d-1 (1) n f(6) = (E2d-2(1) n E(6)) u (E2d-s(1) n E2 ( 6)) U (Eu-2(1') n E2( 6)) and 
each vertex in the last summand determines a point-line flag (P, L) with P not 
contained in LJ.. (i.e., at least one of P and Lis nondegenerate). But E2d_2 (1) n 
E(6) is a nonempty clique in r, each point of E2d-sb) n E2(6) has a neighbour 
(for E and hence also for r) in this clique, and finally a vertex that determines 
the fl.ag (P, L) has a neighbour in E2d_2 (1) n E(6) when P is nondegenerate (i.e., 
nonisotropic) and in E2d-sh) n E2 (6) when Lis nondegenerate.) 11111 

Remark. Let us see how one may compute Cj from the description of C(1, 6) 
above. Let d(I, 6) = j, and compute ci = lfi_1 (1)nf(o)I. If dr;('Y,6) = 2:;' is even, 
then ci equals the number of nondegenerate lines in a 2:;"-space with nondegenerate 
quadratic form. Let t; be the number of totally isotropic i-subspaces. Then 

[2j] [2j - 2] 
Cj = 2 - 1 t1 + qt2. 

If the form is hyperbolic (has Witt index :;"), we find 

t1 = [~] (qt- 1 +1), 

t2 = [~] (qi-l + l)(qi-2 + 1), 

so that 
Cj = q2j-2(q2i _ l)/(q2 _ 1). 
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If the form is elliptic (has Witt index j - 1), we find 

t1=[j~ 1](<1+1), 

t2 = [j; 1] (c/ + l)(gi- 1 +1), 

and again the same value for Cj· 

Finally, suppose di: b, 8) = 2j - 1 is odd. Then 

t1 = [j ~ 1] (qi-1+1) = (q2:j-2 - 1)/(q - 1), 

and 

t2 = [j; 1] (q.i-1 + l)(qi-2 + 1) = (q2:j-2 - 1)(q2i-4 -1)/(q2 - l)(q - 1). 

Thus, 

and 

159 

[2 . - 1] [2 . - 3] IE2i-3b) n E2(8)1 = 3 2 - 3 1 t1 + qt2 = q2i-2 (q2i-2 - 1)/(q2 - 1). 

Finally, let us investigate E 2i- 2 b) n E 2 (8) - this corresponds to the set of totally 
isotropic n-spaces Z such that Un Z = O, dim V nz = n- 2j + 2, and dim W nz = 
= n - 2, where U, V, W are totally isotropic n-spaces in [Gn(q)] corresponding to 
=,"f, 8, respectively. We must have VnW ~ Z, for otherwise (VnZ, WnZ, V nW) 
would be totally isotropic and properly contain Z. Thus, we may divide out V n W 
and suppose that n = 2j - 1 and U, V, W are pairwise disjoint. Now we find 

q2:i-2 - 1 2. 3 
IE2i-2b) n E2(8)1 = · q J- · (q - 1)+ q-1 

L !qi·-i(qi-1 + e) . ((qi-I - e:)(qi-2 + e) . (q - 1) + qi·-2(qi-1 - e:) . (q - 2)) 
£=±12 (q-1) 

= q2i-2(q2i-2 - 1). 

[The three terms correspond to the Z with P = V n Z an isotropic point, a 
hyperbolic point (e: = +1) or an elliptic point (e: = -1), where P is called 
hyperbolic (elliptic} when p.lw is. For each terms, the first factor is the number 
of choices for P, the second is the number of choices of H = W n Z (in at least two 
terms differentiated between tangent hyperplane and nondegenerate hyperplane in 
(W, ..lv)), and the last factor is the number of ways of extending (P, H) to Z.] 
Altogether, we find 

q2i-2 1 q2i - 1 
c.= q2i-2(1 + - + q2:j-2 - 1) = q2:j-2. ---, 

j q2-1 q2-1 

the same value as before. 
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Proposition 11.2. Let q be odd. Then the quadratic forms graphs of diameter 
d 2:: 2 do not have distance-regular antipodal covers of diameter 2d + 1. 

Proof. Let d{l,S) = d(l,e) = d,d(S,e:) = 1. We want to find a vertex in 
r(I) n r d-i(S) n r a-i(e). Let oo, "/, S, e correspond to totally isotropic n-spaces 
U, V, W, X. (Then UnV = UnW = UnX = O, dim VnW and dim VnX are either 
0or1, and dimWnXis either n-2 or n-1.) If dimWnX = n-2, then we can find 
a totally isotropic n-space Y with dim W n Y = dim X n Y = n-1. Now either the 
corresponding vertex 11 in r is in r a- i ("!), and we see that C('"t, S) nc b, e) \ b} f. 0, 
or 17 Er d('"t). Thus (using the full strength of Proposition 2.2 instead of Corollary 
2.4) it suffices to consider the case dim W n X = n - 1. If W n X contains a line L 
that is nondegenerate in (W, ..Lv ), then (L, L.L n V) is the required vertex. Since 
dim W n X = n - 1 ~ 3, this is certainly the case when n > 4 or when W n V = 0 
or X n V = 0. But when n = 2d = 4, dim W n V = dim X n V = 1, then we can 
choose a point P in W n X that is nonisotropic for l_v, and (P, p.L n V) is the 
required vertex. Ill 

Now let us turn the case when q is even. 

Proposition 11.3. Let q be even. Then the quadratic forms graphs of diameter 
d 2:: 2 do not have distance-regular antipodal covers. 

Proof. If 1 is a quadratic form on V, then B.., is an alternating form, and to 
any alternating form B there correspond qn quadratic forms / such that B = B..,. 
The condition rk(1- S) E {l, 2} for adjacency of the quadratic forms "! and 5 is 
equivalent to either B1 = B5 {and 1 f. 5), or rk( B7 - B.,) = 2 and 1 and S coincide 
on Rad(B1 - B0 ). Thus, the fibers Cs = blB7 = B} for alternating forms B are 
qn-cliques, and if"!</. Cn then"! is adjacent to either 0 or q2 elements of Cn. As 
Egawa [17] shows, it is possible by looking at r to distinguish the cases rk("f-8) = 1 
and rk('"t - S) = 2. (For q > 2 this is trivial, since the singular line {"!, S}-1.l has 
size q in the former case, and 2 in the latter case.) This means that the fibers Cn 
can be recognized, and that r determines the alternating forms graph. Now if A 
is a distance-regular antipodal cover of r (of diameter 2:: 4)' then cliques in r lift 
to cliques in A, and if A has diameter at least 5 then "adjacent" cliques lift to 
adjacent cliques. It follows that if A has diameter at least 5, then the quotient of 
A with respect to this partition into cliques covering fibers Cs is a distance-regular 
antipodal cover of the alternating forms graph, but by Propositions 9.1 and 9.2 no 
such covers exist. Remains the case where A has diameter 2d = 4 and n E {3, 4}, 
but this is excluded by Corollary 3.4. 11111 

For n = 3, 4, the quadratic forms graphs are strongly regular, and we may 
consider the complementary graphs. But the quadratic forms graph on F~ has the 
same parameters as (and in case (n, q) = (3, 2) is isomorphic to) the alternating 
forms graph on F;+ 1 , and the arguments that disposed of covers in the case of the 
alternating forms graphs also work here. 
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12. E1 graphs. 

Let r be the collinearity graph of the points in a building of type E1 defined over 
F q, where the points are those objects whose residue is of type E6 • Then r is 
distance-regular with intersection array 

The corresponding Coxeter graph (the "q = 1" case) is the Gosset graph on 56 
points and with intersection array {27, 10, 1; 1, 10, 27}. 

Proposition 12.1. The collinearity graph of the points in a finite building of type 
E1 (either thin or thick) does not admit distance-regular antipodal covers. 

Proof. In case the building is thin, we have the Gosset graph on 56 points. But 
since in this graph k3 = 1, it follows that for 'YE f no line is contained in f 3('Y), 
and by Corollary 2.3 'there are no covers of odd diameter. H d('Y, S) = 3, then 
r2('Y) n r(S) is the collinearity graph of a building of type E6 , and in particular is 
connected. Thus, by Proposition 2.1 there are no covers of even diameter. • 

13. The affine E 6 graph. 

Let A. be the collinearity graph of a finite thick building of type E1, and oo a vertex 
of A.. Then the subgraph induced on A.3 (oo) is called the affine E6 graph. A direct 
description may be given as follows. 

Let F be a field and denote by Kp, or just K if no confusion arises, the 27-
dimensional vector space over F consisting of ordered triples x = (x(l), x(2), :z:(3)) 

of 3 x 3 matrices :i;(i) (i = 1, 2, 3), supplied with the following symmetric cubic form. 

Denote by L ·, ·) the linearization of Dt, i.e., 

(x, y, z) = Dt(x + y + z)-Dt(x + y) - Dt(y + z) - Dt(y + z)+ 
+ Dt(x) + Dt(y) + Dt(z) (x, y, z EK). 

Let r be the graph whose vertex set is K and in which x, y a.re adjacent if and only 
if Dt(x - y, x - y, K) = 0. Then r is said to be the affine E5-grapk over F. The 
appearance of E6 in this name is due to the fact that the automorphism group of 
this graph is a semidirect product of the additive group of K and (an extension of 
a central cover of) the group of lie type E6 defined over F. 
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Proposition 13.1. The affine E6 graph over F q does not have distance-regular 
antipodal covers. 

Proof. This can easily be read off from the explicit description of E6 in Cohen 
and Cooperstein [14]. One can give a geometric argument as follows. Consider 
r a.s .ti.3( oo) embedded in the E7 graph .6.. Note that for vertices "Y, 6 of f the 
distances dr("Y,6) and d,::,Jy,S) coincide. H "Y and 5 are vertices of r at distance 
3, and a,/3 E f 2(1) n f(6), a f {3, then inside the E1 gra~ .6. the points a 
and f3 determine a symplecton S. Let 1.1 n S = { e}, and oo n S = { ~}. Now 
5..L n e..L n S \ !:'..!. is connected (indeed, 5..L n e..L n S is the collinearity graph of a 
polar space of type D5 , and removing a hyperplane leaves this graph connected), 
it contains a and f3, and is connected in r 2 b) n r ( 5), so that this latter set is 
connected, and by Proposition 2.1 r does not have covers of even diameter. 

If 6, e E r 3(1), then let L be the line 6e. If .6.2( oo) nL # .6.2(/) n L, then 6 and 
e have a common neighbour in r 2 ( /). Otherwise, let .6.2 ( oo) n L = ..6.2 ( "Y) n L = { !:'}, 
and let S be the symplecton on I and~· Now/..!. n ~..!. n Sn .6.3(00) =I= 0, and it 
follows that r(I) n r2(6) n r2(e) "I 0, and hence r does not have covers of odd 
diameter. II 

14. The Witt graphs and related graphs. 

The large Witt graph is the graph with as vertices the 759 blocks of a Steiner system 
8(5, 8, 24), where two blocks are adjacent when they are disjoint. 

Proposition 14.1. The large Witt graph does not have distance-regular antipodal 
covers. 

Proof. This graph is near a hexagon, so covers of odd diameter are excluded 
by Corollary 2.3. When I and 6 are vertices at distance 3, then G(l,6) \ {"Y,5} 
is isomorphic to the incidence graph of the generalized quadrangle GQ(2, 2), and, 
in particular, is connected. Thus, by Proposition 2.1 there a.re no covers of even 
diameter either. II 

The subgraph of the large Witt graph induced by the 506 blocks of 8(5, 8, 24) 
that miss a fixed symbol, is itself distance-regular (of diameter 3). Consideration of 
its parameters shows that it has no distance-regular antipodal covers of diameter 
7, but 3-covers and 9-covers of diameter 6 have feasible intersection arrays. 

Problem. Do there exist distance-regular graphs with intersection arrays 
{15,14,12,6,1,1;1,1,3,12,14,15} or {15,14,12,8,1,1;1,1,1,12,14,15}? 

The subgraph of the large Witt graph induced by the 330 blocks of 8(5, 8, 24) 
that miss two fixed symbols, is again distance-regular (of diameter 4). The param­
eters allow no covers of diameter 9, and 2- and 3-covers of diameter 8. Ivanov, 
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Ivanov and Fara.djev [18] constructed an antipodal 3-cover, and Brouwer [8] showed 
that there is no antipodal 2-cover and that the 3-cover is unique. 

If C is the extended ternary Golay code (of word length 12 and dimension 6 
over F3), then the graph with as vertices its cosets, where two cosets are adjacent 
when they contain vectors that differ by a vector of Hamming weight one, is 

distance-regular of diameter 3. This graph is a near hexagon, so there are no 
covers of odd diameter. There are no feasible parameter sets for covers of even 
diameter. 

If C is the truncated ternary Golay code (of word length 10 and dimension 
6 over F3), then its coset graph is isomorphic to the Hermitean forms graph on 
F~. This graph has a triple cover, namely the coset graph of the shortened ternary 
Golay code (of word length 10 and dimension 5 over F 3 ). No other covers are 
known; the parameters of the 2- and 6-covers also satisfy all known conditions. 

If C is the doubly truncated binary Golay code (of word length 21 and di­
mension 12 over F 2 ), then its coset graph r is isomorphic to the Hermitean forms 
graph on F~. This graph has a unique double cover, namely the coset graph of the 
code (of word length 21 and dimension 11 over F2) obtained by taking all code 
words in the binary Golay code that start with 00 or 11 and deleting these two 
coordinate positions. This graph also has a unique antipodal 4-cover, namely the 
coset graph of the code (of word length 21 and dimension 10 over F 2) obtained by 
taking all code words in the extended binary Golay code that start with OOO or 111 
and deleting these three coordinate positions. The graph r has no other antipodal 
covers. (In particular, no antipodal 3-covers exist, although the corresponding in­
tersection array is feasible.) The uniqueness proofs for these covers will be given 
elsewhere. 

15. Conclusion. 

In these investigations we encountered the following antipodal distance-regular 
graphs. First the infinite families with unbounded diameter. 

0. the 2m-gons; 

1. the Johnson graphs J(2k, k); 

2. the doubled Odd graphs; 

3. the Hamming cubes H(n, 2); 

4. the folded cubes Dim· 
Next, in order of decreasing diameter: 

5. The Ivanov-Ivanov-Faradjev graph on 990 vertices (d = 8); 

6. some coset graphs related to the binary Golay code (d = 6); 

7. the dodecahedron (v = 20, d = 5); 
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8. some coset graphs related to the ternary Golay code (d = 4); 

9. the triple covers 3.T(6) a.nd 3.T(7) ( v = 45, 63, d = 4); 

10. Wells graph (v = 32, d = 4); 

11. various covers r.Kk,k (d = 4). 

We observed the following "sporadic" isomorphisms: 

a) H(2, 3) ~ J.f(2,3), 
b) 4 ~ ~H(5,2) ~ Herm(F;), 

c) 15; ~ Alt(F~) ~ Quad(F~), 
d) F J(8, 4) ~ [~] 2 , 

e} Herm(F!) is the coset graph of the doubly truncated binary Golay code, 

f) Herm(F~) is the coset graph of the truncated ternary Golay code. 

The following questions remain: 

- determine the distance-regular antipodal covers of the Hermitean forms graphs 
of diameter 2; 

- determine the distance-regular antipodal covers of the Witt graph on 506 
vertices; 

- determine the distance-regular antipodal covers of the classical generalized 
hexagons. 
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