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CHAPTER 1

Introduction

In queueing theory, the main entity is a station where service is provided; examples include
counters, call centers, elevators, and traffic lights. Customers seeking this service arrive at the
system, where they wait if the service facility cannot immediately allocate the required amount
of service. They depart after being served. In most of these applications, it is intrinsically
uncertain at what time customers arrive and how long they need to be served. This explains
why probability theory plays an important role in the analysis of queueing systems.

In order to design these systems optimally, it is desirable to know how this randomness in-
fluences the performance of the system. Therefore, it is crucial to study system characteristics
that reflect this performance. For instance, one may wish to analyze the probability distribu-
tions of the queue length or the waiting time of a customer, as a function of the random arrival
process and service requirements.

The investigation of such a performance measure starts with a reformulation of the problem
into mathematical terms. On an appropriate level of abstraction, the analysis no longer involves
queues; rather a problem of (applied) probability theory needs to be solved.

The system characteristics that we encounter in this thesis are all related to so-called
extremes as a result of this translation. An inherent advantage of investigating queues through
examining extremes is the wide applicability of the resulting theory. For instance, many of
our results are also relevant for risk theory and financial mathematics; even though it may
be unclear upfront how these fields relate to customers waiting in a line, extremes also play a
pivotal role in these theories. Since our results are often illustrated with queueing examples,
we first briefly discuss how queues are related to extremes.

Extremes

To see how the connection between queues and extremes arises, we set V0 := 0, and consider
Lindley’s recursion

Vn+1 := max(0, Vn +Bn − r), (1.1)

for n ≥ 0, where r > 0 is given and the Bn are nonnegative. This recursion plays a role in
a variety of queueing situations, for instance when analyzing waiting times and the remaining
amount of work in a queueing system. In those situations, the sequence B := {Bn : n ≥ 0} is
random, and V := {Vn : n ≥ 0} inherits this property; we then say that B and V are stochastic
processes.

In the absence of the maximum in (1.1), the solution of this recursion can immediately be
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given. Indeed, if Ṽn+1 := Ṽn +Bn − r for n ≥ 0 while Ṽ0 = 0, then we have for n ≥ 1,

Ṽn =

n−1∑

`=0

B` − rn. (1.2)

We call Ṽ := {Ṽn : n ≥ 0} the free process. Before solving the recursion with the maximum, it
is insightful to interpret this maximum in terms of the free process. As long as the constrained
process V := {Vn : n ≥ 0} is strictly positive, it behaves exactly in the same way as the free
process. However, if the free process becomes negative, the constrained process is ‘pushed’
back to zero. The process {Vn : n ≥ 0} is called the reflected process; occasionally, the term
regulated process is encountered in the literature.

In Section 1.1.2, we apply the recursion in (1.1) n times to obtain the identity

Vn = Ṽn − min
0≤k≤n

Ṽk. (1.3)

For many underlying stochastic processes {Bn}, Ṽn−min0≤k≤n Ṽk has the same distribution as

max0≤k≤n Ṽk. This constitutes the remarkable (and perhaps even counterintuitive) fact that
the reflected process is equal in distribution to the running maximum of the free process. In
other words, the probability that Vn exceeds x equals the probability that Ṽ reaches x no later
than time n.

As a result, there are essentially two ways to analyze the solution of Lindley’s recursion. A
‘direct’ approach, which is based on the queueing interpretation, studies the evolution of the
reflected process V . Alternatively, one can analyze the running maximum of Ṽ ; this approach
is based on the extremes of the free process Ṽ . This shows that extremes and queues are closely
related.

Throughout, we use the term ‘extreme’ to refer to the maximum (or minimum) of a random
function. We are also interested in other quantities, such as the epoch at which the maximum
is attained. These objects, as well as the closely related hitting and first-passage times, have
been investigated ever since the foundations of modern probability theory. In this broader
context, the term fluctuation theory is sometimes used.

Fluid queues

In several applications of queueing theory, individual customers are so small that they can
hardly be distinguished. Instead of customers, it is then easier to imagine a continuous stream
of work that flows into the system. The resulting queueing models are called fluid queues.

Fluid queues are closely related to dams. A dam can be modeled as a reservoir, in which
water builds up due to rainfall, is temporarily stored, and then released according to some
release rule. Consequently, a fluid queue can be viewed as a dam in which work is buffered
until enough capacity becomes available. Alternatively, the water in the dam can be interpreted
as the amount of goods stored, and the name storage model is therefore sometimes used.

Modern communication networks provide further motivation for studying fluid queues. In
such networks, small data packets are sent to routers (or switches), where they are queued up,
subsequently inspected, and then forwarded to (other routers closer to) their destination. For
network design purposes it is desirable to gain insight into the amount of work that builds up in
router buffers, rather than the individual waiting times of the packets. Instead of interpreting
packets as customers, the aggregate packet flow can thus be viewed as fluid.

Technically, shifting from standard queues to fluid queues amounts to working with a
continuous-time version of Lindley’s recursion. Even though a considerable body of theory
is needed to specify this ‘continuous recursion’, the free and reflected processes are simply
continuous-time analogues of (1.2) and (1.3) respectively. This can be intuitively understood
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by imagining increasingly smaller time units. Most importantly, a distributional duality again
often relates the reflected process to the running maximum of its free counterpart.

This chapter is organized as follows. First, in Section 1.1, we describe fluid queues and
their relationship to extremes of stochastic processes in more detail. Then, a brief introduction
to fluid networks is given in Section 1.2. Finally, Section 1.3 motivates the investigation of
several special fluid queues that are encountered in this thesis.

1.1 The fluid queue

1.1.1 Model description

Let A := {At : t ≥ 0} be a continuous-time stochastic process such that for any t ≥ 0, At is
the amount of work offered to the system in the interval [0, t]. Throughout this thesis, we use
At and A(t) interchangeably; this notational convention is employed for all continuous-time
stochastic processes. We suppose that A has right-continuous sample paths with left-hand
limits, which is often summarized by saying that A has càdlàg sample paths. The buffer can
be interpreted as a fluid reservoir, to which input is offered according to the input process A.
The buffer is drained at a constant rate r, i.e., a tap at the bottom of the fluid reservoir releases
fluid at rate r as long as the buffer is nonempty. After the fluid is processed, it immediately
leaves the system. Throughout, we suppose that the buffer capacity is unlimited.

Although its name suggests that sample paths of the input process are always nondecreasing,
we do not impose this condition. Indeed, if the input (over a certain time interval) is negative
while the buffer stays nonempty, this input is interpreted as additional outflow. In this way,
nonconstant (e.g., random) release rules can be incorporated into the model. On the other
hand, since it is impossible to drain fluid from an empty reservoir, nothing happens if the
buffer is empty and the system dynamics dictate that fluid be released.

We write Wt for the amount of work in the buffer at epoch t, and call this the buffer content.
The buffer-content process is also known as a (stochastic) storage process. For simplicity, we
suppose that there is initially no work in the system, i.e., that W0 = 0.

The fluid queue naturally arises from the standard queueing model with individual cus-
tomers, since it can be used to represent the unfinished work in such a model. Indeed, the
input corresponds to service requirements at arrival epochs of customers, and the unfinished
work declines at unit rate when service is provided. In this context, the buffer content is
sometimes referred to as workload or virtual waiting time.

1.1.2 Lindley’s recursion

To gain intuition for the general fluid queue, we first consider the special case where work only
arrives at the epochs 0, 1, 2, . . .. Let Bn be the (nonnegative) amount of work that arrives at
epoch n. Therefore, A is a nondecreasing (random) step function with jump Bn at epoch n.
It is our aim to study the buffer content just before a new batch of work arrives: we analyze
Vn := Wn−. It follows from the description of the model that Vn satisfies Lindley’s recursion
(1.1). Since we start with an empty system, we set V0 := 0.

Lindley’s recursion shows that Vn can be expressed in terms of the Bn:

V1 = max(0, B0 − r),
V2 = max(0, V1 +B1 − r) = max(0, B1 − r,B1 +B0 − 2r),

...

Vn = max(0, Bn−1 − r,Bn−1 +Bn−2 − 2r, . . . , Bn−1 + . . .+B0 − rn).
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The latter equation can be rewritten in terms of the An as

Vn = An−1 − rn−min(0, A0 − r,A1 − 2r, . . . , An−1 − rn),

which is Equation (1.3).
For a wide class of random step functions A, the distribution of {A0, . . . , An−1} equals the

distribution of {An−1 −An−2, . . . , An−1 −A0, An−1}. In that case, A is called time-reversible,
and Vn then has the same distribution as

max(0, A0 − r,A1 − 2r, . . . , An−1 − rn). (1.4)

In queueing theory, one is often interested in the behavior of a system after initial effects
have disappeared, i.e., when the system is in steady-state. This amounts to letting n grow
large, but further assumptions are required to ensure that Vn does not blow up. In other
words, we need assumptions for stability of the system. In view of (1.4), this means that
lim supn→∞An−1 − rn <∞.

Under this stability assumption, as indicated by (1.4), the random quantity Vn converges
in distribution (see Definition 2.9) to

V := sup
n≥0

An−1 − rn, (1.5)

where A−1 should be interpreted as zero. If A fails to be time-reversible, a related formula
can be given by looking backward in time; this concept is often called Loynes’ construction.
Equation (1.5) is the main reason why extremes play an important role in the context of queues.

There is a vast body of literature on queueing theory in general, and Lindley’s recur-
sion in particular. Some textbooks (in alphabetical order) are Asmussen [19], Beneš [38],
Borovkov [55], Cohen [79], Kleinrock [191], Prabhu [263], Robert [272], Takács [293], and
Tijms [295]; a list that is by no means exhaustive.

Baccelli and Brémaud [33] is a basic reference on stochastic recursions in queueing theory;
for stability issues, we refer to the survey paper by Foss and Konstantopoulos [134]. We
also mention Aldous and Bandyopadhyay [9], who give an overview of max-type stochastic
recursions in a more general context.

1.1.3 The buffer content

Motivated by the above representation of V as the maximum of the free process in case the
input process A is a step function, we now focus on the distribution of the buffer content Wt

as t → ∞ for a general input process A. It is our aim to give a continuous-time analogue of
(1.5).

Since the analysis is much more technical than in the discrete-time case, we do not give
a derivation of the resulting formula, but refer to Section 13.5 for more details. We suppose
that A is time-reversible; in the continuous-time case, this means that the distributions of
{At − limu↑(t−s)Au : 0 ≤ s ≤ t} and {As : 0 ≤ s ≤ t} are equal. The steady-state buffer
content then has the same distribution as

sup
t≥0

At − rt, (1.6)

a representation that is often attributed to Reich [268].
It is interesting to see the connection between Reich’s formula and the buffer-content process

Ŵ := {Ŵt : t ∈ R} on the whole real line. To give the definition of Ŵ , suppose that time is
indexed by R instead of R+, and for t ≤ 0, let At be the amount of work fed into the fluid
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reservoir during the time interval [t, 0]. The buffer content is then also defined at negative

epochs, and Ŵt can be thought of as the amount of work in the system at time t if the buffer
was empty at time −∞. Since Ŵ satisfies the continuous-time analogue of Lindley’s recursion,
it can be shown that

Ŵt = sup
−∞<s≤t

At −As − r(t− s). (1.7)

Observe that Ŵ0 = sups≤0 rs−As, so that it has the same distribution as the random variable
in (1.6) if A is time-reversible.

Of special interest for this monograph is the case where A has stationary increments, i.e.,
At − As has the same distribution as At−s for t > s. In that case, we say that the input is

stationary. The distribution of Ŵt then does not depend on t; in other words, the buffer-content
process Ŵ is stationary, and it is therefore sometimes called the stationary buffer-content
process.

1.1.4 The busy period

If the buffer content is strictly positive at some given time t, one may ask when the buffer
has last been empty. We call this the age of the busy period (straddling t); it is also known
as the backward busy period. The total and remaining length of the busy period are two
characteristics closely related to this age. Similarly, if the buffer is empty, the age of the idle
period is of interest, i.e., how long the server has been idle. Here, we only focus on busy periods.

Suppose that we are interested in the steady-state age of the busy period, i.e., we let t→∞.
It is convenient to consider the stationary buffer-content process Ŵ and look at the last epoch
at which the buffer content vanishes before time zero. By definition, this is the largest t ≤ 0
such that sups≤t rs−As = rt−At. In the time-reversible case, this is equal in distribution to

inf

{
t ≥ 0 : At − rt = sup

s≥0
As − rs

}
. (1.8)

Hence, intuitively, the age of the busy period is the (random) optimizing t in (1.6).

1.1.5 Connection with risk theory and finance

Consider the evolution of the reserves within an insurance company. Let {Rt : t ≥ 0} be
the risk (reserve) process, representing the capital of the company at time t. Suppose that
R0 = x > 0.

The ruin probability is the probability that the reserve ever drops below zero, i.e.,

P

(
inf
t≥0

Rt < 0

)
= P

(
sup
t≥0

[R0 −Rt] > x

)
.

Consequently, studying the steady-state buffer-content distribution in a fluid queue immedi-
ately yields the ruin probability in the corresponding risk model. Note that the queue is stable
if and only if the ruin probability is strictly smaller than one. This duality between queueing
and risk models is due to Prabhu [262] for the so-called M/G/1 queue; we refer to Asmussen [19,
Sec. XIV.5] for more details.

In a classical risk process, premiums are received continuously at a constant rate c. Claims
arrive according to a Poisson process N , and their sizes are independent and identically dis-
tributed (i.i.d.). This leads to the description

Rt = x+ ct−Xt,
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where X := {Xt : t ≥ 0} is a compound Poisson process; Xt represents the total value of the
claims that arrive in the interval [0, t]. A detailed analysis of this model and its ramifications
can be found in the standard texts on insurance risk by Asmussen [18], Embrechts et al. [131],
or Rolski et al. [275].

We now show that extremes also play an important role in finance. For this, consider a
risky asset with price process S; for instance, S could represent the price process of a share. It
could also be the total capital (i.e., the risk process) of the aforementioned insurance company,
see Gerber and Shiu [143].

Suppose that we can buy a perpetual option on the asset modeled by S. A perpetual call
(or put) option is a contract that allows the holder to buy (or sell) the underlying share(s) at
some prespecified price K, the exercise price. The word ‘perpetual’ means that the holder can
exercise the option at any time (yet only once); the option is then also called American. We
remark that, as opposed to their American counterparts, European options have a fixed expiry
date. If the holder of a perpetual call or put option chooses to exercise the option at time t,
t ≥ 0, he receives the amount

max(0, St −K), or max(0,K − St)

respectively. For simplicity, we suppose here that the interest rate of a risk-free asset (i.e., the
discount rate) is zero, and that the initial price is deterministic, i.e., S0 = s0 for some s0 > 0.

The widely-used Black-Scholes model yields a closed-form expression for the price of Euro-
pean calls and puts. In the Black-Scholes model, the price process S is modeled as a geometric
Brownian motion, i.e., logS evolves (up to normalization) as a Brownian motion with drift.

Mordecki [238] studies the prices of perpetual options if Z := logS is a Lévy process. A Lévy
process is characterized by the requirement that its increments are stationary and independent;
more details are given in Section 11.2. In particular, since a Brownian motion with drift falls
within the class of Lévy processes, the price process underlying Mordecki’s model is more
general than the Black-Scholes price process. Mordecki shows that the price of a perpetual call
option is given by

E max

(
0,
s0e

supt≥0 Zt

Eesupt≥0 Zt
−K

)
,

provided ES1 < s0 (or, equivalently, EeZ1 < 1). As a result, if the distribution of supt≥0 Zt is
known, it immediately yields the price of this contract. Mordecki gives a similar formula for
the perpetual call option, in which the minimum of Z plays a role.

It is not only possible to investigate Lévy-driven price processes; similar results hold for
so-called Markov-additive price processes, see Asmussen et al. [20], Jobert and Rogers [176],
or Pistorius [255].

We end this section by discussing the relevance of extremes for statistics. Closely related
notions such as boundary-crossing times play an important role in sequential analysis, in which
data is collected sequentially (as opposed to in a fixed sample). Unfortunately, since the main
questions are slightly different, queueing results are of limited statistical interest. We refer to
Appendix 2 of Siegmund [290] for more details.

1.2 Fluid networks

This section serves as an introduction to studying buffer contents and busy periods in (tree)
networks of fluid queues. The analysis of such networks is useful for evaluating the performance
of communication systems with a more realistic structure than the single fluid queue.
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It is most instructive to analyze the canonical network with two fluid queues in tandem
(or series). Our main goal in this section is to show that it is possible to derive formulas
reminiscent of (1.6)–(1.8). In the course of this thesis, we also encounter networks with more
than two nodes.

1.2.1 The buffer contents

We first look for an analogue of (1.6), Reich’s representation for the steady-state buffer content.
A fluid network with two stations in tandem can be described by means of two fluid reser-

voirs with unlimited capacity. We allow for external input to the second queue. The first
input process governs the flow of work into the first reservoir as for a single queue, and fluid is
released at some constant rate r1. As soon as it is drained, it flows immediately into the second
reservoir, where it is joined by the input from the (second) external input process. There is a
tap at the bottom of the second buffer that releases fluid at a constant rate r2. We denote the
external input processes to the first and second station by A(1) and A(2) respectively, again
with the understanding that negative input should be interpreted as additional outflow.

A representation for buffer content in the first station follows as in the single fluid queue,
but more work is needed for the second station. It can be seen that the steady-state buffer
content in this station has the same distribution as

sup
t≥0

[
sup

0≤s≤t

(
A(2)
s + (r1 − r2)s

)
+A

(1)
t − r1t

]
− sup

t≥0

[
A

(1)
t − r1t

]
. (1.9)

The presence of multiple suprema in this expression is typical for so-called feedforward net-
works.

Of special interest is the case where A(2) is a nondecreasing process and r1 > r2. The
second buffer is then always nonempty as long as there is content in the first buffer. Such a
system is called work-conserving. Representation (1.9) becomes

sup
t≥0

[
A

(1)
t +A

(2)
t − r2t

]
− sup

t≥0

[
A

(1)
t − r1t

]
, (1.10)

which can be interpreted as follows. The first term corresponds to the steady-state buffer-
content distribution in a single fluid queue with input process A(1) + A(2) and drain rate r2.
Since fluid that flows from the first into the second reservoir does not influence the aggregate
buffer-content process, the first term can be thought of as the (steady-state) total amount of
fluid in the system. Therefore, the content in the second buffer is found upon subtracting the
buffer content in the first station.

1.2.2 The busy periods

Suppose we are interested in the age of the busy periods in the above two-station tandem fluid
network. Clearly, there is a busy period in each of the stations, and their joint distribution is
of interest.

Motivated by the relationship between (1.6) and (1.8), it seems natural to expect a connec-
tion between busy periods and the ‘arguments’ of the suprema in (1.9). In the work-conserving
case, the interpretation of (1.10) shows that the optimizing t in the first and second term
correspond to the age of a busy period in the second and first station respectively. Note that
it follows from (1.10) that the age of the busy period in the first station cannot exceed the one
in the second station, as expected from the interpretation of a work-conserving system.
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1.3 Approximations for the input process

In Section 1.1, we found that the steady-state buffer content in a single fluid queue is equal
(in distribution) to the maximum of the free process, cf. (1.6). Unfortunately, for many arrival
processes A, it is hard to analyze this quantity rigorously. A natural idea to overcome this
problem is to approximate A with a ‘simpler’ process. This leads to limit theory for stochastic
processes, see for instance Whitt [305] or Jacod and Shiryaev [170].

The goal of this section is to introduce two classes of approximating (time-reversible) in-
put processes: Gaussian processes and Lévy processes. To do so, we first discuss a fairly
generic input model motivated by telecommunications engineering, the superposition of so-
called ON/OFF sources. Despite this specific model choice, the results in this section are
typical in the sense that Gaussian processes and Lévy processes also appear as limits of other
input processes. A well-studied alternative to the ON/OFF model is the infinite-source Poisson
model, sometimes called M/G/∞-input model; see [178, 206, 228] and references therein. A
connection with the ON/OFF model has been established in [172].

Two important issues arise when resorting to approximating fluid models based on limit-
theory arguments. First, as argued by Wischik [307], it is extremely important to check the
appropriateness of scalings. Moreover, even though the limiting process might be a good
approximation for the input process, this need not be the case for the corresponding buffer-
content distributions. For the ON/OFF model, this desirable property has been verified by

Dȩbicki and Mandjes [91]; in fact, they show that the whole stationary buffer-content process Ŵ
converges. However, as pointed out by Konstantopoulos and Lin [196], the (tail) behavior of the
corresponding distributions need not be the same, cf. Boxma and Dumas [59] and Chapter 4.
In a different setting, this point has been worked out in detail by Mandjes and Borst [223].

1.3.1 The ON/OFF model

In the ON/OFF model, a router in a communication network is represented as a fluid queue.
As seen before, queueing arises when information must be temporarily stored in the buffer of
the router. Here, a fluid formulation is particularly suitable, as traffic consists of small packets
that together resemble a continuous stream. Willinger et al. [306] provide statistical evidence
for the applicability of the ON/OFF model in a communication-network context.

An ON/OFF source has two alternating states, called ON and OFF. During an ON-period,
the source generates fluid (traffic in this context), say at unit rate. During an OFF-period, the
source remains silent and there is no input to the system. We write St = 1 (or St = 0) if the
source is active (or inactive) at time t. The lengths of the ON-periods are i.i.d., those of the
OFF-periods as well, and the lengths of ON-periods and OFF-periods are independent; denote
their distribution functions by FON and FOFF respectively. We suppose that these lengths
have finite mean; then we can choose S0 and the initial ON-period (or OFF-period) so that S
becomes stationary.

The buffer content in a fluid system fed by a superposition of independent ON/OFF sources
is well-studied if the lengths of the ON-periods and OFF-periods have an exponential distri-
bution, see Anick et al. [11]. Related systems have been studied earlier by Kosten [199] and
Cohen [78]. In this exponential case, the model can be viewed as a special case of so-called
fluid-flow models; see the survey paper by Kulkarni [203]. We examine these models extensively
in Chapter 14. For the exposition in the present section, however, it is essential that we allow
general distributions for the lengths of the ON-periods and OFF-periods.

Let AN := {ANt : t ≥ 0} be the output process of N i.i.d. ON/OFF sources, i.e., the fluid
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generated in the interval [0, t] is

ANt :=

∫ t

0

N∑

i=1

S(i)
s ds,

where the S(i) are i.i.d. copies of S. The process AN can serve as an input process for a
fluid queue or possibly a fluid network. In the remainder of this section, we are interested in
approximations for AN . Our presentation closely follows Taqqu et al. [294], to whom we refer
for further details and proofs.

1.3.2 Gaussian processes as limits

A first approximation for AN arises by letting N grow large. In that case, a natural connection
arises with the so-called heavy-traffic asymptotic regime, see Dȩbicki and Palmowski [95].

As a result of the central limit theorem, the process

ANt −NtES0√
N

(1.11)

tends to a centered Gaussian process A∗ as N →∞. The mathematically vague term ‘tends to’
can be made precise with the terminology of Chapter 4, but we do not address this issue here. A
Gaussian process is characterized by the requirement that the finite-dimensional distributions
are Gaussian (i.e., that they have a multivariate normal distribution). In particular, these
distributions are completely specified by the mean and covariance structure; see Chapter 3 for
more details.

Since the centered Gaussian process A∗ has stationary increments, its covariance structure
is determined by its variance function σ2 given by

σ2(t) := Var

(∫ t

0

Ssds

)
= 2

∫ t

0

(∫ s

0

R(u)du

)
ds,

where R : u 7→ ESuS0 − (ES0)
2 is the covariance function of the stationary process S. It is

easy to check that A∗ is distributed as
∫ ·
0
Zsds, where Z is a stationary centered Gaussian

process with covariance function R. Therefore, A∗ is known as a Gaussian integrated process.
An important consequence of this representation is that the sample paths of A∗ are always
continuous.

The behavior of the process A∗ critically depends on the distributions FON and FOFF. For
instance, if both FON and FOFF have finite second moments, the increments on intervals which
are ‘far enough apart’ behave almost independently: σ2(t) ∼ Ct for some constant C, like a
Brownian motion [271]. This is called the short-range dependent case. However, the behavior
of A∗ is different if 1 − FON(x) ∼ x−α for some 1 < α < 2 while FOFF has a finite second
moment: then σ2(t) ∼ Ct3−α for some (different) constant C. The so-called heavy tail of FON

(see Section 2.4) then causes a significant long-term influence of initial behavior. Therefore,
this is called the long-range dependent case. It also arises if 1 − FOFF(x) ∼ x−α

′
for some

1 < α′ < 2, see [294].
These qualitative remarks are made precise by scaling A∗ in time and space. In the short-

range dependent case, up to a normalizing constant, the process A∗(Tt)/
√
T tends to a Brown-

ian motion as T →∞. However, in the long-range dependent case, a different limiting process
appears: again up to a normalizing constant, A∗(Tt)/T (3−α)/2 tends to a fractional Brownian
motion with Hurst index H := (3 − α)/2 > 1/2, i.e., a continuous Gaussian process with
stationary increments and variance function t 7→ t2H . Note that Brownian motion is a special
case of fractional Brownian motion (H = 1/2), but that it is excluded by the assumption that
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1 < α < 2. As an aside, we point out that a fractional Brownian motion cannot be written as
an integral of a stationary Gaussian process.

A fractional Brownian motion B enjoys the following self-similarity property:

{Bat : t ≥ 0} = {aHBt : t ≥ 0}, (1.12)

where the equality should be interpreted as an equality in the sense of finite-dimensional
distributions. After the pioneering work of Leland et al. [217], much work has been done to
provide statistical evidence for this property in different communication-network settings.

1.3.3 Lévy processes as limits

As an alternative to studying (1.11) for large N , one could analyze the process ANTt for large T
and fixed N . The limiting process AN◦ that results from this scaling need not be Gaussian. In
fact, there is only one case in which the limit is Gaussian: when FON and FOFF have a finite
second moment. In that case, up to a normalizing constant, AN◦ is a Brownian motion. For
more details on the use of Lévy processes as an approximation for network traffic, we refer to
Konstantopoulos and Lin [196].

As in the previous section, let us suppose that 1 − FON(x) ∼ x−α for some 1 < α < 2,
while FOFF has a finite second moment. The limiting process AN◦ then behaves completely
differently from the Gaussian processes encountered in Section 1.3.2; its sample paths are not
even continuous. In fact, AN◦ is a so-called α-stable Lévy process with positive jumps, see
Section 11.2. Since Lévy processes have stationary, independent increments and a Gaussian
distribution is 2-stable, Brownian motion is a special case of an α-stable Lévy process. However,
α = 2 is excluded from the parameter range. The process AN◦ is self-similar with index 1/α.

In view of the previous section, where we obtained a fractional Brownian motion by first
letting N → ∞ and then T → ∞, it is natural to investigate AN◦ as N → ∞. Interestingly,
it turns out that AN◦ /N

1/α does not tend to a fractional Brownian motion as N →∞, but to
CA1

◦, where C is some constant.
Mikosch et al. [228] letN,T →∞ simultaneously, and show that it depends on the growth of

N relative to T whether convergence occurs to an α-stable process or to a fractional Brownian
motion. For the infinite-source Poisson model, recent progress has been made by Kaj and
Taqqu [178]: they show that in certain regimes non-Gaussian and non-Lévy limiting processes
appear.

1.4 Outline of the thesis

Chapter 2 surveys four techniques that play an important role in parts of this thesis: regular
variation, weak convergence, large deviations, and tail asymptotics. Chapters 3–14 can be
roughly classified according to the method of studying extremes. We distinguish three methods,
and indicate how they can be used to gain insight into the probability px := P(supt≥0At−rt >
x) for x > 0, cf. (1.6):

• Tail asymptotics: an approximation for px is found that works well for large x. A
disadvantage of this approach is that it is not known how large x should be chosen for
the approximation to be ‘satisfactory’.

• Simulation: sample paths of A are generated, and px is approximated by the fraction of
these paths for which supt≥0At − rt exceeds x. However, if px is small, there are (too)
few of these paths. This can be resolved by simulating a different free process under
which x is exceeded rather frequently, and by then correcting afterwards for the ‘error’
that has been introduced.
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• Transforms: suppose that we have the so-called Laplace transform

β ∈ R+ 7→ E exp

(
−β sup

t≥0
(At − rt)

)
∈ R+

at our disposal. Since this transform completely characterizes the distribution of
supt≥0At − rt, it determines in principle px for all x > 0. Numerical inversion [1, 102]
can be used to convert the transform to these probabilities.

This thesis consists of three parts. In Part A, we study Gaussian queues: motivated by
Section 1.3.2, we suppose that the input process is Gaussian. We focus on the steady-state
buffer content and the steady-state (total) length of the busy period. First, we restrict ourselves
to so-called logarithmic tail asymptotics and qualitative behavior of the queue. After that, we
establish the (exact) tail asymptotics for the buffer content. The latter results are applied to
examine reduced-load equivalence for Gaussian queues, i.e., the question when a subset of M
independent Gaussian input processes dominates the tail asymptotics for the buffer content.

Part B is motivated by the need to simulate the buffer content for Gaussian queues, as
analytic results are often hard to obtain. Since the buffer-content distribution can be written
as a so-called large-deviation probability, we first study how large-deviation probabilities can
be simulated in general. To this end, we formulate sharp conditions under which a widely-
used method, exponential twisting, works. These conditions are then applied to a random-walk
setting, before we turn to the buffer content in a Gaussian queue.

In Part C, we study Lévy-driven fluid systems, relying on path decompositions (so-called
splitting properties). First, these are applied to analyze the transform of the buffer content in
a queue with Lévy input and a special jump structure. Furthermore, splitting is an effective
concept to investigate perturbed risk processes, a variant of the classical risk process discussed
in Section 1.1.5. We also show that splitting is not only useful to obtain the exact tail asymp-
totics for the buffer content in a single fluid queue, but that it is also a powerful method to
study fluid networks driven by Lévy processes. For these networks, we find (joint) transforms
of busy periods, idle periods, and buffer contents. Finally, some of these results are extended to
queueing networks in a random environment, including the fluid-flow models of Section 1.3.1.
This relies on an extensive analysis of Markov-additive processes.

Each of the three parts starts with an introductory chapter, where fundamental results
from the literature are discussed to put the material into the right context.





CHAPTER 2

Techniques

In this chapter, we discuss four topics of analysis and probability theory: regular
variation, weak convergence, large deviations, and tail asymptotics.

2.1 Regular variation

The concept of regular variation plays an important role in various branches of mathematics.
Whereas it is essentially a chapter in classical real-variable theory, interest in the subject has
been stimulated predominantly by probabilists, for example Feller [132, Sec. VIII.8].

In this section, we give some elements of the theory of regular variation, which we mainly use
in Part A. Our treatment is based on the standard reference book by Bingham et al. [51]. Other
good introductions to the theory are Geluk and de Haan [142], Resnick [269], and Seneta [286].
See also Embrechts et al. [131] for a concise treatment.

We start with the definition of regular variation.

Definition 2.1 A nonnegative measurable function f on [0,∞) is said to be regularly varying
at infinity with index ρ ∈ R, written as f ∈ Rρ, if for all t > 0,

lim
α→∞

f(αt)

f(α)
= tρ. (2.1)

If f ∈ R0, then f is called slowly varying.

This definition implies that f ∈ Rρ always has the form f(x) = xρ`(x), where ` ∈ R0.
Typical examples of functions in Rρ are xρ, xρ log(1 + x), (x log(1 + x))ρ, xρ log log(e+ x).

Occasionally, we make use of regular variation at the origin; a function f is regularly varying
at the origin with index ρ ∈ R if x 7→ f(1/x) is regularly varying at infinity with index −ρ.
Unless stated otherwise, we consider regular variation at infinity.

We first discuss two of the most fundamental results in the theory of regular variation, the
representation theorem and the uniform convergence theorem. Interestingly, it is known that
these two theorems are equivalent.

Lemma 2.2 (Representation theorem) The function f is regularly varying with index ρ
(f ∈ Rρ) if and only if

f(x) = c(x)xρ exp

(∫ x

z

ε(u)

u
du

)
, x ≥ z,
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for some z > 0, where c and ε are measurable functions, c(x) → c0 ∈ (0,∞), ε(x) → 0 as
x→∞.

The representation theorem yields important information on the behavior of f near infinity.
Indeed, if f ∈ Rρ, then the representation for the function x 7→ log f(ex) shows that

lim
x→∞

f(x) =

{
∞ if ρ > 0;
0 if ρ < 0.

(2.2)

We remark that the limit of a slowly varying function ` at infinity does not necessarily exist;
one can have lim supx→∞ `(x) =∞ while lim infx→∞ `(x) = 0.

The next fundamental theorem for regularly varying functions, the uniform convergence
theorem, is used extensively in Chapter 5; for notational convenience, we abbreviate it as
UCT.

Theorem 2.3 (Uniform convergence theorem) Let 0 < a ≤ b < ∞. If f ∈ Rρ (in case
ρ > 0, assuming f bounded on each interval (0, ·]), then (2.1) holds uniformly for t

(i) in the interval [a, b] if ρ = 0,

(ii) in the interval (0, b] if ρ > 0, and

(iii) in the interval [a,∞) if ρ < 0.

Before giving an important corollary of the UCT, we first introduce some notation that
is used throughout this thesis. We say that a function g is asymptotically equivalent to f as
x → ζ, where ζ ∈ [−∞,∞], if f(x) = g(x)(1 + o(1)) as x → ζ, i.e., f(x)/g(x) → 1 as x → ζ.
In that case, the function g is a reasonable approximation for f near ζ. The symbol ‘∼’ is
shorthand for asymptotic equivalence.

Corollary 2.4 If f ∈ Rρ be locally bounded on [x0,∞) for some ρ > 0, then we have for
x→∞,

sup{f(t) : x0 ≤ t ≤ x} ∼ inf{f(t) : t ≥ x} ∼ f(x).

If f ∈ Rρ for some ρ < 0, then we have for x→∞,

sup{f(t) : t ≥ x} ∼ inf{f(t) : x0 ≤ t ≤ x} ∼ f(x).

The representation theorem and the uniform convergence theorem are key to proving other
useful properties of regularly varying functions. For instance, when integrating, slowly varying
functions can be treated in the same way as constants; the following lemma makes this precise.

Lemma 2.5 (Karamata’s theorem; direct half) Let f ∈ Rρ be locally bounded on [x0,∞).
Then for any σ ≥ −(ρ+ 1), as x→∞,

∫ x

x0

tσf(t)dt ∼ xσ+1f(x)

σ + ρ+ 1
.

Moreover, for any σ < −(ρ+ 1), as x→∞,

∫ ∞

x

tσf(t)dt ∼ −x
σ+1f(x)

σ + ρ+ 1
.



2.2 Weak convergence 15

In a sense, regularly varying functions are the only functions with this property, see the
‘converse half’ of Karamata’s theorem [51, Thm. 1.6.1]. There also exist theorems on the
behavior of regularly varying functions after differentiation. Typically, additional monotonicity
assumptions are then needed, see [51, Thm. 1.7.2].

Let f ∈ Rρ, ρ > 0 be locally bounded on some interval [x0,∞). One can then define the
generalized inverse ←−

f (x) := inf {y ≥ x0 : f(y) > x} .
Interestingly, functions that are asymptotically equivalent to

←−
f share an important property,

as the following lemma shows. These functions are known as asymptotic inverses.

Lemma 2.6 There exists some g ∈ R1/ρ such that, as x→∞,

g(f(x)) ∼ f(g(x)) ∼ x. (2.3)

Here g is determined uniquely within asymptotic equivalence, and one version is
←−
f .

Similarly, g is an asymptotic inverse near zero if (2.3) holds for x → 0. It becomes clear
from the context whether x→∞ or x→ 0.

Second-order regular variation: de Haan theory

If f ∈ Rρ, then f(αt) is of the same order as f(α). De Haan theory studies the difference
f(αt) − f(α), and can therefore be regarded as a second-order theory for regularly varying
functions. Our exposition is based on the treatment in Chapter 3 of [51].

We start with the definition.

Definition 2.7 A measurable function f on [0,∞) is said to lie in the de Haan class of g ∈ Rρ
with index c if for all t > 0,

lim
α→∞

f(αt)− f(α)

g(α)
=

{
c(tρ − 1)/ρ if ρ 6= 0;
c log t if ρ = 0.

(2.4)

Interestingly, de Haan theory can not only be regarded as a second-order theory for regularly
varying functions, but it also generalizes the first-order theory. Indeed, if f ∈ Rρ, then as
α→∞,

log f(αt)− log f(α)→ ρ log t,

so that de Haan theory applies to log f with g ≡ 1. Although many results for (first-order)
regularly varying functions have analogues in de Haan theory, we only need the uniform con-
vergence theorem (Theorem 3.1.16 of [51]).

Theorem 2.8 Let 0 < a ≤ b <∞. If f lies in the de Haan class of g ∈ Rρ with index c, then
(2.4) holds uniformly for t in the interval [a, b].

2.2 Weak convergence

Weak convergence deals with the convergence of probability measures. Such convergence oc-
curs, for instance, in the central limit theorem. We use the theory predominantly in Chapter 4.

Modern theory of weak convergence, which was originally promoted in the 1968 seminal
work of Billingsley [49], supposes that these measures are defined on some metric space. Our
presentation is based on the 1999 update [50] of Billingsley’s work. Other expositions are in
Resnick [270], Stroock [291], and Whitt [305].
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Let X be a complete, separable metric space with metric d and let B be the Borel σ-field of
subsets of X generated by the open sets. Recall that X is complete if every Cauchy sequence
has a limit in X , i.e., for any sequence {xn} with limn→∞ supi,j≥n d(xi, xj) = 0, there exists
some x ∈ X such that limn→∞ d(xn, x) = 0. Also recall that X is separable if it contains a
countable, dense subset. A complete, separable metric space is often called a Polish space.

Suppose that (Ω,A,P) is a probability space. A random element X in X is a measurable
mapping from (Ω,A) into (X ,B). For instance, X is a random variable if ω ∈ Ω is mapped
into X = R, and a random vector if X = Rd. X can also be a random continuous function, or
even a discontinuous function.

Given a sequence {Xn} of mappings from (Ω,A) to (X ,B), there is a corresponding sequence
of distributions on X ,

νn = P ◦X−1
n = P(Xn ∈ ·).

The measure νn is called the distribution of Xn.

Definition 2.9 We say that νn converges weakly to ν (written νn ⇒ ν), or that Xn converges
in distribution to X (written Xn ⇒ X), if whenever f ∈ C(X ), the class of bounded, continuous
real-valued functions on X , we have

lim
n→∞

∫

X
f(x)νn(dx) =

∫

X
f(x)ν(dx).

Note that the metric d defines the topology on X , and hence determines the class C(X ).
Therefore, if one has two metrics d, d′ on the same space X and convergence in the d′-metric
implies convergence in the d-metric, then there are at least as many d′-open sets as d-open sets.
The d′-topology is then called stronger (or finer) than the d-topology, and the class C(X , d′)
is larger than C(X , d). Hence, a d-weakly convergent sequence of probability measures need
not be d′-weakly convergent. In Section 4.3.3, we encounter an important example of this
observation.

One of the key results in the theory of weak convergence is Prokhorov’s theorem. A family
Π of probability measures is called relatively compact if every sequence {νn} ⊂ Π contains a
weakly convergent subsequence (the limit need not be in Π). The family Π is called tight if
for each ε > 0 there exists a compact set K such that ν(K) > 1 − ε for all ν ∈ Π. It can
be checked that singletons are tight. The following lemma is a generalization of this fact; we
point out that it relies on the assumption that X is complete and separable.

Lemma 2.10 (Prokhorov) A family Π is tight if and only it is relatively compact.

There are several equivalent characterizations of weak convergence, which are summarized
in Billingsley’s portmanteau theorem. To state this theorem, we need the notion of ν-continuity
sets. Write the interior and closure of a set B ⊆ X as Bo and B respectively. Given some
measure ν on (X ,B), we call a set B ∈ B a ν-continuity set if its boundary ∂B = B\Bo satisfies
ν(∂B) = 0.

Theorem 2.11 (Portmanteau) The following five conditions are equivalent:

(i) νn ⇒ ν,

(ii) limn

∫
fdνn =

∫
fdν for all bounded, uniformly continuous f ,

(iii) lim supn νn(F ) ≤ ν(F ) for all closed F ,

(iv) lim infn νn(G) ≥ ν(G) for all open G, and

(v) νn(B)→ ν(B) for all ν-continuity sets B.
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Another important result entails that weak convergence is preserved by continuous map-
pings. Let h be a continuous mapping from X into another metric space X ′, with metric d′

and Borel σ-field B′. Each probability measure ν on (X ,B) induces a probability measure
ν ◦ h−1 on (X ′,B′) (namely, ν ◦ h−1(B) = ν(h−1(B)) for B ∈ B′). The following corollary to
Theorem 2.11 is a straightforward consequence of the change-of-variable formula for integrals.
It is called the continuous mapping theorem.

Corollary 2.12 If νn ⇒ ν, then νn ◦ h−1 ⇒ ν ◦ h−1.

It is useful to know that the continuity assumption can be relaxed; see [49, Thm. 1.5.5] for
a version where a discontinuous h is also allowed to depend on n.

We end this section by remarking that weak convergence is not the only convergence concept
for probability measures or random elements. Stronger forms of convergence are convergence in
probability and almost sure convergence; see, e.g., Chung [75, Ch. 4] or Resnick [270, Ch. 6] for
an overview. Moreover, it is possible to define Xn ⇒ X for nonmeasurable Xn and measurable
X; this situation arises in statistical applications, see van der Vaart and Wellner [301].

2.3 Large deviations

There is no unambiguous mathematical meaning of the term ‘large deviations’; in fact, two
approaches can be distinguished.

The first considers the asymptotic behavior of the logarithm of probabilities, which is some-
times referred to as rough (or coarse) asymptotic behavior. It is merely a set of tools, known
as large-deviation techniques (or large-deviation theory), that allows an analysis under fairly
general conditions. For instance, relatively explicit results can be obtained for dependent
sequences of random variables, or for variables with values in an infinite-dimensional space.

The second class of large-deviation probabilities deals with exact asymptotics; these are
much more powerful than logarithmic asymptotics. However, results in this domain are of-
ten derived on a case-by-case basis, rather than from general principles. To give a (small)
selection of the relevant literature, we mention Petrov [251], Nagaev [240], and Borovkov and
Mogul′skĭı [57].

The rest of this section focuses on the first class of large deviations, with the notable excep-
tion of Lemma 2.17. This theory is used extensively in Part B. There is a vast body of textbooks
on large-deviation techniques. We mention two books by pioneers in the field: Varadhan [303]
and Ellis [129]. The books by Ganesh et al. [140], Shwartz and Weiss [288], and Bucklew [63]
focus on queueing theory and performance evaluation. Dembo and Zeitouni [100], den Hollan-
der [101], Deuschel and Stroock [104], and Feng and Kurtz [133] are general introductions to
the theory. Finally, Dupuis and Ellis [126] and Puhalskii [266] develop the theory from two
alternative points of view.

Large-deviation techniques are closely related to the theory of weak convergence as discussed
in the previous section. It is no coincidence that many of the statements below look somewhat
similar to those in Section 2.2. In fact, one can set up the theory of large deviations completely
analogously to the theory of weak convergence, see Dupuis and Ellis [126]. It is even possible to
unify both theories by working with capacities, see O’Brien [246] or Puhalskii [265] for details.

Despite the similarities with the theory of weak convergence, we do not take the above
approach here. Instead, this section is based on the textbook of Dembo and Zeitouni [100],
since we need large deviations for measures on so-called topological vector spaces (see, e.g.,
Conway [81]). These spaces cannot be compared to Polish spaces: there are Polish spaces that
are not topological vector spaces and vice versa.

Therefore, throughout this section, we let (X ,B) be a regular topological space with its
Borel σ-field, which includes both the possibility that X is a metric space and a (Hausdorff)
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topological vector space. Suppose that we are given a family of probability measures on this
space (for instance, as constructed from random functions as in Section 2.2). This family is
either indexed by a continuous parameter ε > 0 or by a discrete parameter n ∈ N.

A function I is said to be lower semicontinuous if the level sets LI(α) := {x : I(x) ≤ α} are
closed subsets of X for all α ∈ [0,∞). A function I : X → [0,∞] is called a rate function if it
is lower semicontinuous. If LI(α) is compact for every α ≥ 0, I is called a good rate function.

The central notion in large-deviation theory is the large-deviation principle, which consists
of a large-deviation upper and lower bound. Here, and throughout this thesis, we use the
convention that the infimum over an empty set is ∞.

Definition 2.13 A family of probability measures {νε : ε > 0} on (X ,B) satisfies the large-
deviation principle (LDP) with a rate function I if for all B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
ε→0

ε log νε(B) ≤ lim sup
ε→0

ε log νε(B) ≤ − inf
x∈B

I(x).

Similarly, a sequence of probability measures {νn : n ∈ N} on (X ,B) satisfies the LDP with a
rate function I and scale sequence {λn : n ∈ N} if for all B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
n→∞

1

λn
log νn(B) ≤ lim sup

n→∞

1

λn
log νn(B) ≤ − inf

x∈B
I(x).

If the random element Xn has law νn and {νn} satisfies the LDP with some scale sequence
{λn}, we say that the family {Xn} satisfies the LDP with this scale sequence. In the next
two lemmas, we suppose that the family of probability measures is indexed by ε > 0; the
formulation of the discrete analogues is left to the reader.

A set B ∈ B is called an I-continuity set if infx∈Bo I(x) = infx∈B I(x) = infx∈B I(x). Note
that then limε→0 ε log νε(B) = − infx∈B I(x); this is a large-deviation version of the fifth item
of Theorem 2.11.

There is also a notion of tightness in the large-deviation context. A family {νε} of proba-
bility measures is said to be exponentially tight if for each α < ∞, there exists a compact set
K such that

lim sup
ε→0

ε log νε(K
c) < −α,

where Kc denotes the complement of K in X . An analogue of Prokhorov’s theorem holds,
provided additional conditions on X are met; see Theorem 2.3 of O’Brien and Vervaat [247].

The following lemma captures the most important implication (for us) of Theorem 2.11 in
a large-deviation framework.

Lemma 2.14 (Varadhan) If {νε} satisfies the LDP with some good rate function I, then for
any f ∈ C(X ), we have

lim
ε→0

ε log

∫

X
ef(x)/ενε(dx) = sup

x∈X
[f(x)− I(x)] .

The condition that f be bounded can be relaxed: it suffices to have either

lim
M→∞

lim sup
ε→0

ε log

∫

x:f(x)≥M
ef(x)/ενε(dx) = −∞,

or the exponential-moment condition that for some γ > 1,

lim sup
ε→0

ε log

∫

X
eγf(x)/ενε(dx) <∞, (2.5)

see Lemma 4.3.8 of [100].
We end our exposition of large-deviation tools with an analogue of the continuous mapping

theorem, which is known as the contraction principle.
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Lemma 2.15 Let X and X ′ be Hausdorff topological spaces and h : X → X ′ a continuous
function. If {νε} satisfies the LDP in X with the good rate function I, then {νε ◦h−1} satisfies
the LDP in X ′ with the good rate function

I ′(x) = inf{I(y) : y ∈ X , x = h(y)}.

In the rest of this section, we discuss two of the most well-known instances of the large-
deviation principle.

2.3.1 Cramér’s LDP

Let X1, X2, . . . be a sequence of i.i.d. zero-mean random variables taking values in Rd, with
distribution PX . For n ≥ 1, we set Sn :=

∑n
i=1Xi. The stochastic process {Sn} is called a

random walk; see Section 11.1 for a detailed discussion of the one-dimensional case.
Cramér’s LDP describes how Sn deviates from its mean. A key role is played by the

cumulant-generating function of X1, which is defined as ΛX(ξ) := log E(eξX1) for ξ ∈ R.
This function assumes values in R ∪ {∞} and is convex by Hölder’s inequality. We write
dom ΛX = {ξ ∈ Rd : ΛX(ξ) < ∞} for its domain. The Fenchel-Legendre transform of ΛX is
defined as Λ∗

X(x) := supξ∈Rd [ξ′x−ΛX(ξ)], see Rockafellar [273] (or any of the aforementioned
textbooks on large-deviation theory) for more details.

Proposition 2.16 (Cramér) Suppose that 0 ∈ (dom ΛX)
o
. Then {Sn/n} satisfies the LDP

with the (convex) good rate function Λ∗
X and scale sequence {n}.

Cramér’s LDP yields the logarithmic asymptotics of P(Sn/n ∈ A), but some sharper results
are also known for specific choices of A. Here, we focus on the one-dimensional case with
A = [x,∞); the multidimensional case is significantly more difficult, as can be seen from the
work of Iltis [168].

To establish the exact asymptotics of P(Sn ≥ nx), one needs to distinguish between the
lattice and nonlattice case. For simplicity, we suppose that PX is nonlattice, and let ξ∗(x) be
arg supξ∈R[ξx − ΛX(ξ)]. The following lemma is taken from Höglund [159]. We denote the
complementary distribution function of a standard normal random variable by Ψ, see (3.1).
Moreover, Λ̈X stands for the second derivative of ΛX .

Lemma 2.17 As n→∞, we have

P(Sn ≥ nx) ∼ enΛ̈X(ξ∗(x))[ξ∗(x)]2/2Ψ

(
ξ∗(x)

√
nΛ̈X(ξ∗(x))

)
e−nΛ∗

X(x),

uniformly in x when ξ∗(x) stays within compact subsets of [0,∞) ∩ dom ΛX .

Note that this lemma is more general than the Bahadur-Rao theorem as presented in
Theorem 3.7.4 of Dembo and Zeitouni [100]. Indeed, the lemma includes a statement on so-
called moderate deviations (i.e., when x → 0 as n → ∞ but x

√
n → ∞), and also on normal

deviations (i.e., when x
√
n = O(1)). In particular, it includes the central limit theorem for

one-dimensional random walks.

2.3.2 Mogul′skĭı’s LDP

We now return to logarithmic asymptotics, and discuss a sample-path version of Cramér’s LDP,
which is known as Mogul′skĭı’s LDP. To state such a sample-path version, we first introduce a
path space with a certain topology, so that open and closed sets are defined on this space.
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For 0 ≤ t ≤ 1, define the scaled polygonal approximation for the partial sums of Xi as

Sn(t) :=
1

n

bntc∑

i=1

Xi +

(
t− bntc

n

)
Xbntc+1,

where btc denotes the largest integer smaller than or equal to t. Note that t 7→ Sn(t) is a
continuous function on [0, 1].

This observation enables us to consider Sn(·) on the path space C([0, 1]) of continuous
functions on [0, 1]. It is a Polish space with the metric

d(x, y) := sup
t∈[0,1]

‖x(t)− y(t)‖.

In fact, if one defines ‖x‖ := d(x, 0), then C([0, 1]) is also a Banach space.
The subspace of absolutely continuous functions AC plays an important role in the sample-

path LDP that we shortly formulate. It is defined as

AC :=

{
x :

k∑

`=1

|t` − s`| → 0, s` < t` ≤ s`+1 < t`+1 =⇒
k∑

`=1

|x(t`)− x(s`)| → 0

}
. (2.6)

In particular, for any x ∈ AC we have x(t) =
∫ t
0
ẋ(s)ds for some measurable ẋ. Note that ẋ is

the derivative of x in case it is differentiable. We can now describe the large deviations of the
paths Sn(·); more details can be found in Section 5.1 of Dembo and Zeitouni [100].

Proposition 2.18 (Mogul′skĭı) Suppose that ΛX(ξ) < ∞ for every ξ ∈ Rd. Then {Sn(·)}
satisfies the LDP in C([0, 1]) with the scale sequence {n} and good rate function

I(x) :=

{ ∫ 1

0
Λ∗
X(ẋ(t))dt if x ∈ AC, x(0) = 0;
∞ otherwise.

Comparing the assumptions of this proposition with the assumptions of Cramér’s LDP
(Proposition 2.16), it is most striking that we require ΛX to be finite everywhere. However,
this assumption is not necessary to prove an LDP in the spirit of Proposition 2.18, but the
statement then needs to be slightly reformulated. In Section 9.3, we discuss this in more detail.

2.4 Tail asymptotics

When explicit results are unavailable, one may resort to finding an asymptotically equivalent
expression of a somewhat more tractable form. Typically, we are interested in the behavior of
the tail probability F (x) := P(Y > x) near∞, where Y is a given random variable with values
in R. It is the aim of this section to introduce some definitions and discuss basic properties
related to such tail asymptotics. The techniques discussed in this section are mainly used in
Chapter 12. Throughout, let F = 1− F be the distribution function of Y .

2.4.1 The classes L(α) and S(α)

We say that F ∈ L(α) for some α ≥ 0, if

lim
x→∞

F (x+ y)/F (x) = e−αy (2.7)

for all y ∈ R. Note that this requirement cannot be fulfilled for lattice-supported distributions
F if α > 0; a variant of the above definition is then needed, but this falls outside the scope
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of this thesis. It is immediate from this definition that x 7→ F (log x) is regularly varying with
index −α, which makes it possible to apply the theorems of Section 2.1. For instance, the UCT
shows that the convergence in (2.7) holds locally uniformly (and even more if α > 0).

We now investigate the circumstances under which L(α) is closed under convolutions; recall
that the convolution of the distribution functions G and H is the distribution function given
by

G ∗H(x) :=

∫

R

G(x− y)H(dy) =

∫

R

H(x− y)G(dy), x ∈ R.

The following lemma is a simplification of Lemma 2.1 in Pakes [248]. It entails that the
tail of a convolution behaves like the ‘heaviest’ tail, up to a constant.

Lemma 2.19 Let F ∈ L(α) for some α ≥ 0, and let G be a distribution function satisfying∫
eβxG(dx) < ∞ for some β > α. Then F ∗ G ∈ L(α) and F ∗G(x) ∼

∫
eαyG(dy)F (x) as

x→∞.

The requirement F ∈ L(α) is often not enough to derive explicit results; the above lemma is
an exception. This is usually resolved by replacing F ∈ L(α) by the more restrictive condition
that F ∈ S(α) for some α ≥ 0. This means that

(i) F ∈ L(α),

(ii)
∫∞
−∞ eαyF (dy) <∞, and

(iii) F (2)(x) ∼ 2
∫∞
−∞ eαyF (dy)F (x) as x→∞.

Here, F (2) = F ∗ F is the convolution of F with itself.
If one supposes that F ∈ S(α) rather than only F ∈ L(α), one gets the following stronger

version of Lemma 2.19. It is taken from Braverman and Samorodnitsky [62, Lem. 1.1.(ii)].

Lemma 2.20 Let F ∈ S(α). If ci := limx→∞Gi(x)/F (x) exists and is finite for two distribu-
tion functions G1, G2, then

G1 ∗G2(x) ∼
(
c1

∫
eαyG2(dy) + c2

∫
eαyG1(dy)

)
F (x), x→∞.

Moreover, Gi ∈ S(α) if ci > 0.

An important special case of this lemma follows by lettingG2 be a degenerate distribution at
zero. Then, it shows that S(α) is closed under tail equivalence: if F ∈ S(α) and G(x) ∼ cF (x)
for some c ∈ (0,∞), then G ∈ S(α).

2.4.2 The classes S, S∗, and S∆

The results in the previous subsection hold in particular for α = 0, but the classes L := L(0)
and S := S(0) are special in many ways. It is our present aim to study some of their properties.
The results that we state here without reference can be found in the survey paper by Goldie
and Klüppelberg [152].

If F ∈ L, we say that F is long-tailed. Furthermore, if F ∈ S, we call F a subexponential
distribution function. As a result of (2.2) and the fact that x 7→ F (log x) is slowly varying,
we know that if F ∈ L, then eεxF (x) → ∞ as x → ∞, for each ε > 0. Distribution functions
with this property are often called heavy-tailed, although it merely accounts for the name
‘subexponential’.
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If F is concentrated on [0,∞), then F (2)(x) ∼ 2F (x) implies that (2.7) holds with α = 0.
In fact, F ∈ S is equivalent with

F (n)(x) ∼ nF (x)

for some (and then all) n ≥ 2, where F (n) is the n-fold convolution of F with itself. That is, the
tail probability of the sum of n independent subexponential random variables is asymptotically
equivalent to the tail probability of their maximum.

The class S is a rich class of distribution functions, see Table 3.7 in [152]. Let us single out
three important examples with F ∈ S:

• regularly varying tail: F ∈ Rα for some α > 0;

• lognormal tail: F (x) ∼ Ψ(log x); and

• Weibull tail: F (x) ∼ e−xτ

, τ ∈ (0, 1).

General criteria for F ∈ S can be found in [152, 239].

Another relevant class of distribution functions is S∗. A distribution function F on [0,∞)
is in S∗ if

∫∞
0
F (y)dy <∞ and

∫ x

0

F (y)F (x− y)dy ∼ 2

∫ ∞

0

F (y)dyF (x).

Like S, this class is closed under tail equivalence, i.e., if F ∈ S∗ and G(x) ∼ cF (x) for some
c ∈ (0,∞), then G ∈ S∗. The distribution functions of all of the above three examples are in
S∗.

The following lemma, a special case of Lemma 9 of Denisov et al. [103], shows why the class
S∗ is interesting.

Lemma 2.21 If F ∈ S∗, then FH ∈ S, where

FH(x) =

∫
[0,∞)

F (x+ t)H(dt)
∫
[0,∞)

F (t)H(dt)
,

for some measure H with suptH((t, t+ 1]) ≤ b, b ∈ (0,∞).

In particular, if F ∈ S∗, then F ∈ S, and also FI ∈ S, where

FI(x) :=

∫ x

0

F (y)dy

/∫
yF (dy)

is the so-called integrated-tail distribution function.

We now turn to local tail asymptotics for Y . That is, we are interested in the probability
P(Y ∈ (x, x+T ]) for some fixed T > 0. After setting ∆ := (0, T ] and x+∆ := {x+y : y ∈ ∆},
this can be rewritten as P(Y ∈ x + ∆). If F ∈ S(α) for α > 0, local tail asymptotics are
immediately derived from the asymptotics of F (x). However, this cannot be done in the
subexponential case; as pointed out by Asmussen et al. [22], new classes of distributions are
then needed. Recall that Y has distribution function F supported on R.

Write F ∈ L∆ if P(Y ∈ x+ y+ ∆) ∼ P(Y ∈ x+ ∆) as x→∞, and F ∈ S∆ if F ∈ L∆ and

P(Y1 + Y2 ∈ x+ ∆) ∼ 2P(Y ∈ x+ ∆),

where Y1, Y2 are independent copies of Y . The class S∆ turns out to be closed under tail
equivalence, and many other properties known for the class S carry over to the S∆-case.

We end this section by pointing out an interesting relationship between S∗ and S∆ [198]:
if F is concentrated on [0,∞), then F ∈ S∗ is equivalent to FI ∈ S∆ for some (and then all)
T > 0.
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Gaussian queues





CHAPTER 3

Background on Gaussian
processes

In Part A of this thesis, we study Gaussian queues. Given a zero-mean Gaussian
process Y , Gaussian queues arise if Yt + µt is the amount of ‘input’ (e.g., internet
traffic) offered to the system in the interval [0, t], and r > µ is the (constant) drain
rate. We investigate extremes of Gaussian processes to study tail probabilities for
the steady-state buffer content and the length of the busy period.

There exist several tools for Gaussian processes that are useful in this context,
and this chapter gives a selection. We first discuss large-deviation principles for
Gaussian measures, which can be used to obtain the logarithmic tail asymptotics
for the aforementioned quantities. However, different techniques are required for
exact asymptotics, such as sharp inequalities. Therefore, we give two fundamental
inequalities related to extremes of Gaussian processes. Finally, we sketch in a classi-
cal example how the double sum method can be applied to find the tail asymptotics
for the maximum of a Gaussian process.

A Gaussian (or normal) random variable with mean µ ∈ R and variance σ2 > 0 is a
real-valued random variable such that for each β ∈ R,

EeiβX = eiµβ−
1
2σ

2β2

,

or, equivalently, the distribution of X has density

1

σ
√

2π
e−

(x−µ)2

σ2 .

We call X centered if µ = 0, and standard normal if in addition σ = 1.
A (centered) Gaussian process is a family {Xt : t ∈ T} of random variables on some

probability space, indexed by a parameter set T, such that each finite linear combination∑
i αiXti for ti ∈ T is (centered) Gaussian. A Gaussian process is separable if there exists a

countable set S ⊂ T such that for any open set U ⊂ T, almost surely

sup
t∈U

Xt = sup
t∈U∩S

Xt, inf
t∈U

Xt = inf
t∈U∩S

Xt.

Note that this condition ensures that the supremum functional be measurable, and that sepa-
rability is redundant if X is continuous.
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An important role in Part A of this thesis is played by the tail of a standard normal random
variable. This tail is denoted by Ψ:

Ψ(x) :=
1√
2π

∫ ∞

x

e−
1
2w

2

dw, (3.1)

and it is standard that, for x→∞,

Ψ(x) ∼ 1√
2πx

e−x
2/2. (3.2)

In particular, we have the logarithmic tail asymptotics log Ψ(x) ∼ −x2/2.

Gaussian (fluid) queues arise from the situation that the amount of traffic arriving at a
buffer in the interval [0, t] is given by At = Yt +µt, where Y is a centered Gaussian process. A
more detailed description of this fluid model can be found in Section 1.1. To ensure stability,
the buffer is drained at some rate r > µ. The case where Y has stationary increments is of
special interest. All its finite-dimensional distributions are then specified by a single function,
the variance function σ2 : t 7→ VarYt, since we have for s, t ≥ 0,

Cov(Ys, Yt) =
1

2

[
σ2(s) + σ2(t)− σ2(|s− t|)

]
. (3.3)

An inherent conceptual problem of Gaussian queues is that the input process can be neg-
ative. However, in view of the discussion in Section 1.3.2, the steady-state buffer-content
distribution for the Gaussian system can still be a good approximation for the corresponding
distribution in a ‘more realistic’ model. This is comparable to the situation where the number
of successes in n Bernoulli trials is approximated by a Gaussian random variable for large n;
the distributions are somehow ‘close’ to each other, even though their respective supports do
not agree.

In Part A of the thesis, we are interested in two aspects of Gaussian queues: the steady-state
buffer-content distribution and the steady-state total length of the busy period. Note that these
quantities can be analyzed by considering the free process, as explained in Section 1.1. To find
their logarithmic tail asymptotics, it is useful to have large-deviation principles (LDPs) at our
disposal. Therefore, we show in Section 3.1 how such LDPs can be proven. Two fundamental
inequalities that are useful for analyzing the maximum of a Gaussian process are given in
Section 3.2. In the last section of this chapter, Section 3.3, we illustrate a technique that can
be used to find the exact tail asymptotics for the maximum of a stationary Gaussian process.

3.1 Gaussian measures and large-deviation principles

In this section, we present large-deviation principles for Gaussian measures, culminating in
a powerful theorem due to Chevet [70]. Recall from Section 2.3 that these principles play a
pivotal role in large-deviation theory, which can be used to study logarithmic tail asymptotics.

Before giving the LDPs, we first discuss a space that plays a key role in the definition
of the rate function, the Cameron-Martin space, which is a special reproducing kernel Hilbert
space. Let ν be a measure on some separable Banach space X equipped with its Borel σ-field.
The measure ν is called a Gaussian measure if the image of ν under any continuous linear
mapping ξ : X → R is a Gaussian distribution. More details can be found in the monographs
by Bogachev [52], Kuo [205], Lifshits [219], and Üstünel [299].

Gaussian measures naturally arise from Gaussian processes. For instance, consider a Gaus-
sian process X = {Xt : t ∈ T}. If the paths t 7→ Xt are continuous and if T is compact,
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one can take X as the space of continuous functions on T with the topology of uniform con-
vergence. The law ν of X on X is then a Gaussian measure (for existence, see the proof of
Lemma 4.7). Indeed, for any finite set {ti} ∈ T, the image of the continuous linear map-
ping ξ : x ∈ X 7→ ∑

i αix(ti) has the same distribution as
∑
i αiX(ti), which is Gaussian by

definition of a Gaussian process.
The covariance function Γ : (s, t) 7→ Cov(Xs, Xt) of X induces the space

Sν :=

{
x : T→ R such that x(·) =

n∑

i=1

αiΓ(si, ·), for some αi ∈ R, si ∈ T, n ∈ N

}
.

An inner product 〈·, ·〉Hν
on Sν is defined by

〈
n∑

i=1

αiΓ(si, ·),
m∑

j=1

βjΓ(tj , ·)
〉

Hν

:=

n∑

i=1

m∑

j=1

αiβjΓ(si, tj). (3.4)

This inner product has the following unusual property: if x(·) =
∑n
i=1 αiΓ(si, ·), then

x(t) =

〈
n∑

i=1

αiΓ(si, ·),Γ(t, ·)
〉

Hν

= 〈x,Γ(t, ·)〉Hν
, (3.5)

which is sometimes called the reproducing kernel property. It can be checked that (3.4) defines
indeed an inner product, which induces a norm ‖f‖Hν

=
√
〈f, f〉Hν

. In particular, by (3.5)
and the Cauchy-Schwarz inequality, for any t ∈ T,

|fn(t)− fm(t)| ≤ ‖fn − fm‖Hν

√
VarXt,

implying that Cauchy sequences in Sν converge pointwise. This motivates the following defi-
nition.

Definition 3.1 (Cameron-Martin space) The function x ∈ X belongs to the Cameron-
Martin space of ν, denoted by Hν , if there exists a Cauchy sequence in Sν with x as its
pointwise limit.

The definition of 〈·, ·〉Hν
can be extended from Sν to Hν using the polarization formula

〈x, y〉Hν
=

1

2

[
‖x‖2Hν

+ ‖y‖2Hν
− ‖x− y‖2Hν

]
.

The reproducing kernel property (3.5) then continues to hold for any x ∈ Hν . Importantly,
this construction makes Hν a Hilbert space.

We will shortly see that the Cameron-Martin space plays a crucial role in large-deviation
theory for Gaussian processes, but this is not the only setting where it is useful. In fact, the
space is closely related to changes of measures, see for instance Bogachev [52, Cor. 2.4.3]. To
gain intuition for this space, the reader may consult Adler [3], Chover and Feldman [74], or
Parzen [250].

When reasoning intuitively about Cameron-Martin spaces and large deviations for Gaussian
processes, one should keep the following caveat in mind. If X = Hν = Rd, one has ν(Hν) = 1,
but if Hν is infinite-dimensional, one has ν(Hν) = 0; see [52, Thm. 2.4.7].

We now turn to large deviations for Gaussian processes. The most well-known result in
this framework is (generalized) Schilder’s theorem, which states that the LDP holds for the
empirical mean of i.i.d. copies of a centered Gaussian measure ν. More precisely, given a
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sequence {an} tending to ∞, Schilder’s theorem states that the family {ν(an·)} satisfies the
LDP with the scale sequence {a2

n} and good rate function

I(x) =

{
1
2‖x‖2Hν

if x ∈ Hν ;
∞ otherwise.

(3.6)

This result goes back to Azencott [32] and Bahadur and Zabell [34]; more details can be found
in Deuschel and Stroock [104] or Lifshits [219]. It shows that, from a large-deviation point of
view, the Cameron-Martin space is the analogue of the space of absolutely continuous functions
in Mogul′skĭı’s theorem (Proposition 2.18).

Schilder’s theorem is a special case of the following theorem, which is Theorem 2 of
Chevet [70]. For the meaning of νn ⇒ ν, we refer to Section 2.2.

Theorem 3.2 Let ν, νn be centered Gaussian measures on X , and let {an} be a sequence of
positive real numbers tending to ∞. If νn ⇒ ν in X , then {νn(an·)} satisfies the LDP with the
good rate function I and scale sequence {a2

n}, where I is the good rate function associated with
Schilder’s theorem for {ν(an·)}.

Informally, Theorem 3.2 states that the families {ν(an·)} and {νn(an·)} have the same large-
deviation behavior if νn converges weakly to ν.

3.2 Two fundamental inequalities

In this section, we present two inequalities related to extremes of Gaussian processes. The
first intuitively entails that the maximum of a Gaussian process behaves like a single Gaussian
variable with mean equal to the largest mean achieved by the entire process, and similarly for
its variance. The second provides a way to compare (the distributions of) the extremes of two
centered Gaussian processes with equal variances; if one process is ‘more correlated’ than the
other, then its maximum is (stochastically) smaller.

The following lemma is Theorem D.1 of [257]. We refer to it as Borell’s inequality, but it
is also due to Cirel′son et al. [77].

Lemma 3.3 (Borell) Let {Xt : t ∈ T} be a separable Gaussian process. Suppose that

σ2
T := sup

t∈T

VarXt <∞, mT := sup
t∈T

EXt <∞,

and that, for some a,

P

(
sup
t∈T

Xt − EXt ≥ a
)
≤ 1

2
.

Then we have for all x ∈ R,

P

(
sup
t∈T

Xt > x

)
≤ 2Ψ

(
x−mT − a

σT

)
. (3.7)

Note that this lemma provides no information for x < mT + a. Borell’s inequality is
closely related to the so-called isoperimetric inequality for the standard Gaussian measure; see
Theorem 2.5 of Ledoux [213], Theorem 2.1 of Li and Shao [218], or Ledoux and Talagrand [214].

Sometimes the following variant of Lemma 3.3 is called Borell’s inequality, as in Theo-
rem 2.1.1 of Adler and Taylor [4]. If {Xt : t ∈ T} is a centered, almost surely bounded
Gaussian process, then E supt∈TXt <∞, and for all x > 0,

P

(
sup
t∈T

Xt − E sup
t∈T

Xt > x

)
≤ e− 1

2x
2/σT .
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This inequality is Proposition 2.18 in [213], and we refer the reader to this monograph for the
exact relationship between the two inequalities.

Sometimes, we need sharper bounds than Borell’s inequality, mainly because the presence
of a (or E supt∈TXt) is undesirable in (3.7). Such inequalities (under more restrictive assump-
tions) are obtained by Berman [40], Fernique (see [211, Lem. 12.2.1]), and Piterbarg [257,
Thm. D.4]. See also Section 4.1 in [4].

We now turn to the second inequality, which compares the extremes of two Gaussian
processes with the same variances and different correlations. A proof can be found in [257,
Thm. C.1] or [4, Thm. 2.2.1].

Lemma 3.4 (Slepian) Let {Xt : t ∈ T} and {Yt : t ∈ T} be separable Gaussian processes. If
EXt = EYt and the covariance functions satisfy

VarXt = VarYt, Var(Xs −Xt) ≤ Var(Ys − Yt), s, t ∈ T,

then for any x,

P

(
sup
t∈T

Xt > x

)
≤ P

(
sup
t∈T

Yt > x

)
.

A related inequality, the Sudakov-Fernique inequality (Theorem 2.2.3 of [4]), does not
require equal variances, but only allows the comparison of means rather than probabilities.

3.3 The double sum method

In this section, we discuss one of the available tools to study tail asymptotics for Gaussian
processes, the double sum method. It serves as a stepping stone for the analysis in Chapter 5.
The presentation closely follows Piterbarg [257] (see also [259]).

The double sum method is best explained by working through an example. Suppose we are
interested in determining the asymptotics (as u→∞) of the probability

P

(
sup
t∈[0,S]

Xt > u

)
,

where X is a centered standardized stationary Gaussian process with covariance function R :
t 7→ Cov(X0, Xt) satisfying R(t) = 1− |t|α + o(|t|α) for some α ∈ (0, 2] as t ↓ 0, and R(t) < 1
for all t > 0. This is Pickands’ classical example [252, 253].

For a centered separable Gaussian process η with stationary increments and variance func-
tion σ2

η(·) := Var η·, we define the so-called Pickands’ constant

Hη := lim
T→∞

1

T
Hη(T ) := lim

T→∞

1

T
E exp

(
sup
t∈[0,T ]

[√
2ηt − σ2

η(t)
])

, (3.8)

provided both the mean and the limit exist. Depending on the context, we also write Hσ2
η

for

Hη. If η is a fractional Brownian motion BH with Hurst parameter H ∈ (0, 1), i.e., σ2
η(t) = t2H ,

the constant is strictly positive (in particular, it exists). In the present generality, Pickands’
constant has been introduced by Dȩbicki [87], and the field analogue shows up in the study of
Gaussian fields; see Piterbarg [257].

In this section, we sketch the proof of the following theorem.
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Theorem 3.5 Consider a stationary process as described above. Then for any S > 0, as
u→∞,

P

(
sup
t∈[0,S]

Xt > u

)
∼ SHBα/2

u2/αΨ(u).

The first step in its proof is an important lemma in the theory of asymptotics for Gaussian
processes. It is often called Pickands’ lemma; see Lemma D.1 of Piterbarg [257]. A proof is
omitted, as we prove a more general version in Lemma 5.9.

Lemma 3.6 For any T > 0, as u→∞,

P

(
sup

t∈[0,Tu−2/α]

Xt > u

)
∼ HBα/2

(T )Ψ(u).

Write ITk (u) := [kTu−2/α, (k + 1)Tu−2/α]. The ‘upper bound’ part of Theorem 3.5 uses
Pickands’ lemma and exploits the stationarity of X:

P

(
sup
t∈[0,S]

Xt > u

)
≤ S

Tu−2/α
P

(
sup

t∈IT
0 (u)

Xt > u

)
∼ S

T
HBα/2

(T )u2/αΨ(u),

yielding the upper bound upon letting T →∞.
More work is needed to prove the ‘lower bound’ part of Theorem 3.5. For this, the idea is

to use the following inequality:

P

(
sup
t∈[0,S]

Xt > u

)
≥ S

Tu−2/α
P

(
sup

t∈IT
0 (u)

Xt > u

)

−
∑

0≤k≤Su2/α/T

P

(
sup

t∈IT
k (u)

Xt > u, sup
t∈[0,S]\IT

k (u)

Xt > u

)
.

As the first term has the ‘right’ asymptotic behavior as u→∞ and then T →∞, it suffices
to show that the second term is o(u2/αΨ(u)) as u→∞ and then T →∞. The k-th summand
does not exceed

P

(
sup

t∈IT
k (u)

Xt > u, sup
t∈[0,(kT−

√
T )u−2/α)∪(((k+1)T+

√
T )u−2/α,S]

Xt > u

)

+ 2P

(
sup

t∈[0,
√
Tu−2/α]

Xt > u

)
,

and it follows again from Lemma 3.6 that the last term is indeed small enough (note that
limT→∞HBα/2

(
√
T )/T = 0).

Therefore, it suffices to study

∑

0≤k<`≤Su2/α/T

2P

(
sup

t∈IT
k (u)

Xt > u, sup
t∈IT

` (u)

Xt > u

)

+ 2
S

Tu−2/α
P

(
sup

t∈IT
0 (u)

Xt > u, sup
t∈[(T+

√
T )u−2/α,(2T+

√
T )u−2/α]

Xt > u

)
. (3.9)
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The double sum in this expression (i.e., the sum over k, `) explains the name of the method.
The summands are estimated from above by

P

(
sup

(s,t)∈IT
k (u)×IT

` (u)

Xs +Xt > 2u

)

≤ P


 sup

(s,t)∈IT
k (u)×IT

` (u)

Xs +Xt√
Var(Xs +Xt)

>
2u√

4− inf(s,t)∈IT
k (u)×IT

` (u) Var(Xs −Xt)


 .

We now briefly indicate how the proof of Theorem 3.5 is completed, and refer to [257] for
details.

It is possible to compare the covariance structure of the standardized random field
(Xs + Xt)/

√
Var(Xs +Xt) to the one of

√
2[θ1(s) + θ2(t)], where the θi are two indepen-

dent standardized stationary processes with a certain covariance structure. With Slepian’s
inequality (Lemma 3.4), this yields an upper bound for which the asymptotics can be found
with a field version of Lemma 3.6. A careful analysis of the behavior of

2u√
4− inf(s,t)∈IT

k (u)×IT
` (u) Var(Xs −Xt)

for large u and small |k − `| is then needed to derive a further upper bound on the double
sum. Borell’s inequality (Lemma 3.3) shows that large values of |k − `| do not contribute to
the double sum. Again, the argument is completed by sending first u→∞ and then T →∞.

The second term in (3.9) is bounded in a similar way; this finishes the ‘proof’ of Theorem 3.5.

Pickands’ constant and alternative approaches

Pickands’ constant Hη introduced in (3.8) appears in many results on tail asymptotics for
Gaussian processes, sometimes in an alternative form. However, not so much is known about
the values of the constant; in fact, Hη is only known if η is a Brownian motion (HB1/2

= 1), a

degenerate Gaussian process (HB1
= 1/

√
π), or an integrated Gaussian process with σ2

η(u) ∼
Gu for some G ∈ (0,∞) (see Kobelkov [193]).

There are some qualitative properties known about the constant. Most notably in this
respect is Dȩbicki [88], who proves that HBH

is continuous as a function of H. The papers
by Shao [287] and Dȩbicki et al. [94] show that it is even nontrivial (yet possible) to bound
Pickands’ constant.

Different approaches to extremes of Gaussian processes often lead to alternative descriptions
of Pickands’ constant. Apart from the double sum method, we mention the method of refined
grids, which is based on extremes for discrete-time stochastic processes, see Leadbetter et
al. [211, Ch. 12]. In this context, we also refer to Hüsler [162], who uses triangular arrays to
interpret Pickands’ constant as a clustering index.

Another approach is based on high-level crossings. Due to sample-path irregularities, some
care is needed to define such crossings, see Piterbarg [257]. For Gaussian processes that are
sufficiently smooth, the Rice formula is an indispensable tool; recent contributions include Azäıs
and Wschebor [31] and Kobelkov [193]. Interestingly, high-level crossings occur approximately
according to a Poisson process; see, for instance, Leadbetter et al. [211, Sec. 13.6] and Piterbarg
and Stamatovic [261].

This Poissonian character connects high-level crossings to Berman’s sojourn approach [41].
Aldous [8] explains this heuristically and also gives intuition behind other fundamental results
in extreme-value theory.
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Finally, we mention a Laplace-transform approach to extremes; see Lifshits [219, Sec. 13].
Although the underlying assumptions are mild, a drawback of this method is that the tail
asymptotics are expressed in terms of the asymptotic behavior of an unknown Laplace trans-
form.

3.4 Outline of Part A

In Chapter 4, we study a centered Gaussian process Y with stationary increments. Under
some assumptions on the variance function σ2(t) := VarYt of Y , we prove the convergence
in distribution (see Definition 2.9) of Yαt/σ(α) in an appropriate space. With Theorem 3.2,
this immediately yields a number of LDPs, which are useful to derive two conditional limit
theorems for Gaussian queues. The first conditional limit theorem describes the behavior of Y
if the steady-state buffer content exceeds u; the logarithmic asymptotics of the corresponding
tail probability are also found. The second deals with the length of the steady-state busy
period in a Gaussian queue. Again, we also establish the logarithmic tail asymptotics.

Chapter 5 further investigates the tail asymptotics for the steady-state buffer content.
As opposed to Chapter 4, where the logarithmic asymptotics are found as a corollary of an
LDP, Chapter 5 focuses on exact asymptotics. Using a variant of the double sum method of
Section 3.3, we also relax the assumption that the increments of Y be stationary. The case
where Y is self-similar (see Section 1.3) is worked out in detail.

In Chapter 6, we apply the results of Chapter 5 to study reduced-load equivalence. That is,
we consider a Gaussian queue for which the input A can be written as a sum ofM (independent)
Gaussian processes. We present a necessary and sufficient condition for a subset S of these M
Gaussian processes to dominate the tail behavior of the steady-state buffer-content distribution.
This analysis relies extensively on de Haan theory, as introduced in Section 2.1.

The results of Chapter 4, 5, and 6 have been published as [106], [107], and [108] respectively.



CHAPTER 4

Conditional limit theorems

In this chapter, we study a fluid queue fed by a stationary Gaussian source. By
proving conditional limit theorems, we investigate how a high buffer level is typically
achieved. The underlying large-deviation analysis also enables us to establish the
logarithmic tail asymptotics for the buffer content. In addition, we study how a
long busy period typically occurs, and we find the corresponding logarithmic tail
asymptotics.

The study relies on weak convergence in an appropriate space of {Yαt/σ(α) :
t ∈ R} to a fractional Brownian motion with Hurst parameter H as α→∞. Here
Y is a separable centered Gaussian process with stationary increments. We assume
that its variance function σ2 : t 7→ VarYt is regularly varying with index 2H, for
some 0 < H < 1.

We prove this weak convergence under a fairly general condition on σ2, sharp-
ening recent results of Kozachenko et al. [201]. The core of the proof is a new
uniform convergence theorem for regularly varying functions with positive index.

4.1 Introduction

When studying a buffered queueing system, one is often interested in the following two ques-
tions:

Q1: How is a high buffer level achieved?

Q2: If the buffer is nonempty for a long time, how does this event occur?

This chapter considers these questions for a fluid queue with stationary Gaussian input.
There are good reasons to investigate the above questions in a Gaussian framework. First,

Gaussian processes can model both short-range dependence (as in, e.g., an integrated Ornstein-
Uhlenbeck process) and long-range dependence (as in, e.g., a fractional Brownian motion with
Hurst parameter exceeding 1/2). This flexibility is particularly relevant in view of the above
questions, since fundamentally different answers can be expected in the short-range and long-
range dependent case. Moreover, as argued in Section 1.3.2, the normality assumption is
motivated by a central limit-type result. A third, pragmatic reason to study Gaussian processes
is that a vast body of literature facilitates their investigation.

The behavior of a queue conditioned on the occurrence of a rare event has been studied
in different contexts. Hooghiemstra [160] studies waiting times if a long busy period occurs,
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and obtains in the (weak) limit a Brownian excursion. A different type of limit theorem is
found by Anantharam [10]. He studies how a queue must have evolved when the waiting time
has become large. By underlying independence assumptions, this occurs by ‘staying close’ to
a piecewise linear path. We also mention Bertoin and Doney [46], who focus on the initial
behavior of a random walk conditioned to stay nonnegative.

In the literature, the typical behavior of a queue has already been studied in connection
to the first question Q1. Due to the close relationship between queueing processes and risk
processes (see Section 1.1.5), it is equivalent to ask how ruin occurs in the corresponding risk
model. In a compound Poisson setting, this is addressed in Chapter IV.7 of Asmussen [18] (see
also [13]). It turns out that the path is linear for this risk process (and similarly for processes
with a weak dependence, see Nyrhinen [245]). However, as a result of possible correlations in
the system input, this need not be the case in the Gaussian setting.

Although the second question Q2 has not been investigated explicitly in the literature, there
is some related work. In queueing language, the question deals with the length of the steady-
state busy period. Norros [244] considers a queue with fractional Brownian motion input, and
studies the probability that the length of the busy period exceeds T as T →∞. He formulates a
variational problem for which the solution determines the logarithmic asymptotics. This result
is generalized by Kozachenko et al. [201], who also allow for other Gaussian input processes.
In the present chapter, we considerably widen the class of Gaussian processes for which these
logarithmic asymptotics are valid.

As answers to the above questions, we provide two conditional limit theorems. As for
Q1, we identify a path x∗ such that, under a certain condition, the (scaled) distribution of
the Gaussian process Y given that the buffer content reaches a high level u converges (in a
sense that will be made precise) to a Dirac mass δx∗ at x∗. In other words, even though the
probability that the buffer content exceeds u becomes increasingly rare as u→∞, it becomes
easier to predict the behavior of a (scaled) sample path of Y . Formally, we prove that for every
regular set of paths A, as u→∞,

P

({
1

u
Yut : t ∈ R

}
∈ A

∣∣∣∣sup
t≥0

Yt − t ≥ u
)
→
{

1 if x∗ ∈ A;
0 otherwise.

A similar conditional limit theorem is given for the busy-period problem.

A weak convergence approach

In order to explain the contributions of this chapter, we need to formalize our framework.
Let Y denote a centered separable Gaussian process with stationary increments. The

central assumption is that the variance function σ2 : t ∈ R → VarYt ∈ [0,∞) is continuous
and regularly varying with index 2H for some 0 < H < 1, i.e.,

lim
α→∞

σ2(αt)

σ2(α)
= |t|2H .

Note that the function σ2 characterizes the finite-dimensional distributions of Y .
Interestingly, by a powerful theorem of Chevet (see Theorem 3.2), the proofs of the con-

ditional limit theorems rely only on a (sufficiently strong) type of weak convergence of the
processes Y α as α→∞, with

Y αt :=
Yαt
σ(α)

.

We now precisely describe the type of weak convergence that we show; it is explained in
Section 4.3.3 that other types of weak convergence are not strong enough to provide satisfactory
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answers to the above questions. For γ ≥ 0, set

Ωγ :=

{
x : R→ R such that x continuous, x(0) = 0, lim

t→±∞
x(t)

1 + |t|γ = 0

}
,

and equip Ωγ with the topology generated by the norm

‖x‖Ωγ := sup
t∈R

|x(t)|
1 + |t|γ ,

under which Ωγ is a separable Banach space. Endow Ωγ with the Borel σ-field induced
by this topology, denoted by B(Ωγ). As pointed out in Section 4.4.2, under the condition
limt→0 σ

2(t)| log |t||1+ε < ∞ for some ε > 0, Y α takes almost surely values in Ωγ for γ > H
and the law of Y α in (Ωγ ,B(Ωγ)) exists; it is denoted by νγα. Hence, it is legitimate to ask
whether νγα has a weak limit for α→∞.

By considering the finite-dimensional distributions, it is readily seen that the only candidate
weak limit is the law L(BH) in Ωγ of a fractional Brownian motion BH with Hurst parameter
H. Recall that a fractional Brownian motion BH is a continuous centered Gaussian process
with stationary increments and variance function VarBH(t) = |t|2H ; for H = 1/2, it reduces
to ordinary Brownian motion. We write Y α ⇒ BH and νγα ⇒ L(BH) for convergence in
distribution and weak convergence respectively, cf. Section 2.2; when this notation is used, we
also specify the space (and topology) in which this convergence takes place.

Comparison with previous results

Conditions for the weak convergence of Y α in Ω1 have been derived by Kozachenko et al. [201].
Their conditions are based on the majorizing variance

σ2(t) = sup
0<s<t

sup
α≥1

σ2(αs)

σ2(α)
. (4.1)

Unfortunately, apart from some special cases, σ2(t) is difficult to bound or compute.
By taking a different approach than Kozachenko et al. [201], we show that Y α converges

weakly to BH in Ωγ for γ > H under the same condition that we use to guarantee the existence
of νγα: limt→0 σ

2(t)| log |t||1+ε < ∞ for some ε > 0. This not only relaxes the condition in
Proposition 2.9 of [201], but is also easier to check. As in [201], we rely on metric entropy
techniques. However, we first exploit the regular variation of the variance function before
applying these techniques. Specifically, we present a new type of uniform convergence theorem
for regularly varying functions with positive index.

To illustrate the advantage of the condition developed in this chapter, consider the situ-
ation that the process Y is the superposition of a finite number m of independent Gaussian
process with stationary increments. The variance functions of the m individual Gaussian
processes are denoted by σ2

1 , . . . , σ
2
m, and the σi are assumed to be regularly varying with

index Hi ∈ (0, 1). The variance function σ2 =
∑
i σ

2
i of Y is then regularly varying with

index 2maxiHi, but it is in general impossible to compute the majorizing variance (4.1). In
contrast, limt→0 σ

2(t)| log |t||1+ε < ∞ for some ε > 0 if and only if the same is true for the
individual variance functions σ2

1 , . . . , σ
2
m. This situation is further investigated in Chapter 6;

see also Ganesh and Wischik [141].

The outline of the chapter is as follows. In Section 4.2, we introduce the two queue-
ing problems in more detail, and we state the theorems that provide answers to the above
questions. Section 4.3 provides preliminaries on notions that are crucial in the proofs of these
theorems, including the new uniform convergence result for regularly varying functions (proven
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in Section 4.6). The convergence in distribution of Y α to a fractional Brownian motion is the
subject of Section 4.4; we present both a necessary and a sufficient condition. With these
weak-convergence results at our disposal, the proofs of the claims in Section 4.2 are given in
Section 4.5.

4.2 Queueing results

In this section, we present the two conditional limit theorems that serve as answers to the two
questions raised in the introduction. As indicated there, a key role in the proofs of the results
is played by the convergence in distribution of Y α to BH in Ωγ . Since this convergence is the
subject of Section 4.4, we defer all proofs for the present section to Section 4.5.

4.2.1 Conditional limit theorem for high buffer level

Before presenting the announced conditional limit theorem, it is insightful to first have a closer
look at the probability

P

(
sup
t≥0

Yt − ctβ ≥ u
)

(4.2)

for β > H and c > 0, as u → ∞. In case β = 1, this probability equals the steady-state
probability that the buffer content exceeds u when the input process A is given by At = Yt+µt
the drain rate r is c + µ; this situation is described in Section 1.1. Since we allow β > H,
we analyze the problem slightly more generally. We note that studying u → ∞ is known as
considering the large-buffer asymptotic regime.

There exists a vast body of literature dealing with the logarithmic asymptotics of (4.2),
under different levels of generality (Duffield and O’Connell [123], Dȩbicki et al. [93], and
Kozachenko et al. [201]). An important contribution in this setting was made by Dȩbicki [85],
who establishes the logarithmic asymptotics for β = 1 under the technical requirement that
limu→∞ P(supt≥0 Yt − εt > u) = 0 for ε > 0. However, this condition is automatically satisfied
in case Y has stationary increments, since Yt/t → 0 almost surely (see Lemma 4.13). In [85]
it is also assumed that σ2 increases, but this assumption can be avoided by invoking the uni-
form convergence theorem (UCT) for regularly varying functions (Theorem 2.3) in Lemma 3.1.
Hence, only assuming continuity of the sample paths of Y and regular variation of the variance
function suffice to establish the logarithmic asymptotics of (4.2).

We remark that the exact asymptotics of (4.2) have been studied extensively in the past
few years. Recall from Section 2.3 that exact asymptotics are more powerful than logarithmic
asymptotics. Since exact asymptotics are discussed in Chapter 5, we refer to that chapter for
background and references.

We now return to logarithmic asymptotics. It was already noted that these are known to
hold under the condition that Y has continuous sample paths. However, the proof given in
this chapter relies on the weak convergence of the processes Y α, and we therefore require the
(stronger) condition limt→0 σ

2(t)| log |t||1+ε <∞ for some ε > 0; see Section 4.5.

Proposition 4.1 If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then for β > H,

lim
u→∞

σ2(u1/β)

u2
log P

(
sup
t≥0

Yt − ctβ ≥ u
)

= −1

2
c2H/β

(
H

β −H

)−2H/β (
β

β −H

)2

.

One of the advantages of using the weak convergence approach is that one can analyze
the large deviations on a path level. This large-deviation study yields a path x∗ that can be
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interpreted as the ‘most likely’ path. In the setting of this subsection, the path is given by

x∗(t) =
1 + (t∗)β

2(t∗)2H
Cov(BH(t), BH(t∗))

=
β

2(β −H)

(
1 +

∣∣∣∣
t

t∗

∣∣∣∣
2H

−
∣∣∣∣1−

t

t∗

∣∣∣∣
2H
)
, (4.3)

for t ∈ R, where t∗ = (H/[β − H])1/β ; see Addie et al. [2] for a detailed derivation, and
Wischik [308] for a general approach. We now formalize the intuition that x∗ (suitably scaled)
is the most likely trajectory of Y when Yt − ctβ reaches u. For convenience, the law of the
stochastic process Z(u) given the event Au is said to be the law of Z(u)|Au.

Theorem 4.2 If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then for any β > H, the law of

σ([u/c]1/β)

u
Y (u/c)1/β

∣∣∣∣ sup
t≥0

Yt − ctβ ≥ u

converges weakly in Ωβ to the Dirac measure δx∗ at x∗ as u→∞.

Note that the weak convergence stated in the theorem implies, for instance, that for any η > 0,
β > H,

lim
u→∞

P

(
sup
t∈R

∣∣ 1
uYu1/βt − x∗(c1/βt)

∣∣
1 + c|t|β ≥ η

∣∣∣∣sup
t≥0

Yt − ctβ ≥ u
)

= 0.

For β = 1, the most likely time epoch for Yt − ct to hit u is ut∗ and hence linear in u.

Interestingly, according to Theorem 4.2, if Yt − ctβ reaches u, σ([u/c]1/β)
u Y (u/c)1/β

is typically
‘close’ to x∗, which is only a straight line when H = 1/2. See Addie et al. [2] for ‘most likely
paths’ in the many-sources asymptotic regime; Chapter 10 addresses this regime in the context
of simulation.

4.2.2 Conditional limit theorem for the length of a busy period

In this subsection, we gain some insight into the steady-state distribution of the length of a
so-called busy period. We start by introducing some notation.

For x ∈ Ω1, define the function s : Ω1 → RR as

s(x)(t) := sup
s≤t

x(t)− x(s)− (t− s). (4.4)

While x(t) (or −x(−t)) represents the amount of work arriving in the interval [0, t] (or [−t, 0])
for t ≥ 0, s(x)(t) can be thought of as the amount of work in the buffer at time t when the
system ‘input’ is x, cf. Section 1.1.3. We set

t−(x) := sup{t ≤ 0 : s(x)(t) = 0}, t+(x) := inf{t ≥ 0 : s(x)(t) = 0},

i.e., t−(x) (t+(x)) is the last (first) time s(x) hits zero before (after) time zero. We say that
zero is contained in a busy period, since an imaginary server is constantly draining the buffer
during the time interval [t−(x), t+(x)].

Note that t−(x) has the following alternative interpretation in terms of x. By definition,
t−(x) is the largest t ≤ 0 such that sups≤t s−x(s) = t−x(t), i.e., it is the epoch where s−x(s)
attains its maximum on (−∞, 0] (assuming its uniqueness for simplicity). In Chapter 13, this
is made precise in a network context with the help of Skorokhod problems.
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We write KT for the set of paths in Ω1 for which the busy period straddling zero is strictly
longer than T , i.e.,

KT := {x ∈ Ω1 : t−(x) < 0 < t+(x), t+(x)− t−(x) > T}.

It is our aim to find the logarithmic asymptotics of P(Y ∈ KT ) as T →∞.
Norros [244] considers this setting in case Y = BH , and his results are generalized by

Kozachenko et al. [201] to allow for more general input processes. The next proposition gen-
eralizes their findings. A key role in the result is played by a separable Hilbert space HH , the
Cameron-Martin space associated with the law of BH ; see Definition 3.1. The norm induced
by the inner product on HH is denoted by ‖ · ‖HH

.

Proposition 4.3 If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then

lim
T→∞

σ2(T )

T 2
log P(Y ∈ KT ) = −1

2
inf

x∈K1∩HH

‖x‖2HH
. (4.5)

Let us stress the fact that HH is the Cameron-Martin space associated with the law of BH ;
the right-hand side of (4.5) does not depend on the specific form of σ2, but only on its index
of variation.

Proposition 4.3 can also be used to derive the logarithmic asymptotics in case c(t − s)
is subtracted from x(t) − x(s) in the definition of s(x) in (4.4). Equation (4.4) shows that
we essentially replace the distribution of Y by the distribution of Ỹ = Y/c. Evidently, the
variance function σ̃2 of Ỹ then equals σ̃2 = σ2/c2. We conclude that the following logarithmic
asymptotics apply:

lim
T→∞

σ2(T )

T 2
log P(Ỹ ∈ KT ) = −c

2

2
inf

x∈K1∩HH

‖x‖2HH
.

The constant infx∈K1∩HH
‖x‖2HH

is generally difficult to identify, except for the case

H = 1/2; in that case, it equals one. An expression for the path x ∈ K1 ∩ HH with
infx∈K1∩HH

‖x‖2HH
= ‖x‖2HH

in the complementary case H 6= 1/2 has been found recently
by Mandjes et al. [224]. Even without this knowledge, it is possible to formulate the analogue
of Theorem 4.2.

Theorem 4.4 If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then the law of

σ(T )

T
Y T
∣∣∣∣Y ∈ KT

converges for γ > H weakly in Ωγ to the Dirac measure δx at x as T →∞.

4.3 Preliminaries

In this section, we discuss a property of regularly varying functions and introduce the notion
of metric entropy. We also address the topological issues raised in Section 4.1.

Before we start, we introduce the notation

C([−T, T ]) := {x : [−T, T ]→ R such that x continuous, x(0) = 0} ,

and equip C([−T, T ]) with the topology of uniform convergence, i.e., the topology generated
by the norm ‖x‖T := supt∈[−T,T ] |x(t)|. Note that C([−T, T ]) equipped with this topology is a
separable Banach space. We write B(C([−T, T ])) for the Borel σ-field on C([−T, T ]) generated
by the topology of uniform convergence.
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4.3.1 A property of regularly varying functions

The results in this chapter, particularly those in Section 4.4, rely extensively on a property
of regularly varying functions (for the definition and background, see Section 2.1) that is
intimately related to the UCT (Theorem 2.3). To formulate this property, first define Lε : R→
[0,∞) as

Lε(t) :=

{
| log |t||1+ε if |t| ≤ 1/e;

1 otherwise.
(4.6)

Proposition 4.5 Let f be regularly varying with index ρ > 0. If fLε is bounded on each
interval (0, ·] for some ε > 0, then we have

lim
α→∞

f(αt)

f(α)
Lε(t) = tρLε(t),

uniformly in t on each (0, ·].

Proof. The proof is given in Section 4.6. ¤

Note that the requirement that fLε be bounded on intervals of the form (0, ·] is equivalent
to local boundedness of f and lim supt↓0 f(t)| log t|1+ε < ∞. Alternatively, one can replace
the Lε by another continuous positive function with the following two properties: on compact
subsets of (0,∞), it is bounded away from zero and bounded from above, and near zero it is
equivalent to Lε. An example of such a function is (log(1 + 1/t))1+ε.

4.3.2 Metric entropy

Metric entropy is an important tool in studying continuity and boundedness of trajectories of
Gaussian processes, see for instance [3, 4, 52]. In order to introduce the main ideas of the
concept, let X be a centered Gaussian process on a set T ⊂ R and define the semimetric

d(s, t) :=
√

E|Xs −Xt|2, s, t ∈ T.

For simplicity, we suppose that d is continuous on T×T; in the context of the present chapter,
this is guaranteed by the fact that σ2 is continuous. We say that S ⊂ T is a ϑ-net in T with
respect to the semimetric d, if for any t ∈ T there exists an s ∈ S such that d(s, t) ≤ ϑ.

Definition 4.6 The metric entropy Hd(T, ϑ) is defined as logNd(T, ϑ), where Nd(T, ϑ) de-
notes the minimal number of points in a ϑ-net in T with respect to d.

The quantity
∫∞
0

√
Hd(T, ϑ)dϑ is called the Dudley integral.

If T is completely bounded with respect to d, then Hd(T, ϑ) = 0 for ϑ large enough, so that
the convergence of the Dudley integral is equivalent to its convergence at zero.

A useful fact is that X has an almost-surely continuous modification if the Dudley integral
converges, see, e.g., Lemma 1.3.1 and Theorem 1.3.5 of Adler and Taylor [4], or Corollary 4.15
of Adler [3]. A simple sufficient condition for this is given in the next lemma; it is satisfied by
many processes.

Lemma 4.7 Let T = [−T, T ] for some T > 0. If there exist ε, κ, C > 0 such that for any
s, t ∈ T with |s− t| < κ,

E|Xs −Xt|2 ≤
C

Lε(s− t)
,

then there exists a probability measure ν on (C([−T, T ]),B(C([−T, T ]))) such that for any finite
sequence {t1, . . . , tn} ⊂ [−T, T ] and sets Ai ∈ B(R),

P(Xt1 ∈ A1, . . . , Xtn ∈ An) = ν (x ∈ C([−T, T ]) : x(t1) ∈ A1, . . . , x(tn) ∈ An) .



40 Chapter 4 Conditional limit theorems

Proof. We adopt the (mostly standard) terminology on stochastic processes (see, e.g., Revuz
and Yor [271]). Without loss of generality, we may suppose that X is the coordinate mapping
on the canonical probability space (R[−T,T ],B(R)[−T,T ], P̃ ), where B(R) denotes the usual Borel
σ-field on R, and the superscripts indicate that we deal with product spaces and product σ-
fields. We refer to Section I.3 of [271] for more details.

Since the metric entropy Hd([−T, T ], ϑ) is upper bounded by C0ϑ
− 2

1+ε for some constant
C0 > 0 and for ϑ > 0 small, the Dudley integral converges and there exists a continuous modifi-
cation ofX. One can now construct a probability space (C([−T, T ]),B(R)[−T,T ]∩C([−T, T ]), ν)
with the required property. The claim follows by noting that B(R)[−T,T ] ∩ C([−T, T ]) =
B(C([−T, T ])) (see, e.g., Theorem VII.2.1 of Parthasarathy [249]). ¤

In Section 4.4.1, we establish tightness of a sequence of probability measures on C([−T, T ])
in a similar way. However, instead of using the convergence of the Dudley integral, we then
carefully derive upper bounds in order to obtain the desired uniformity. A key tool in this
analysis is Proposition 4.5.

4.3.3 Topological issues

In this subsection, we motivate the choice for the space Ωγ and its topology. As pointed out in
the introduction, convergence in distribution of Y α to BH in Ωγ is only useful in applications
if the topology on Ωγ is strong enough. For explanatory reasons, we suppose in this subsection
that Y has continuous sample paths.

The most natural path space to work with is the space C(R) of continuous functions on R;
it is usually equipped with the topology induced by the metric

dp(x, y) =

∞∑

n=1

2−n sup
t∈[−n,n]

min(|x(t)− y(t)|, 1).

This (product) topology is also referred to as the topology of uniform convergence on compacts.
Note that convergence of a sequence in (C(R), dp) is equivalent to uniform convergence in
C([−T, T ]) for any T > 0. A similar statement holds for weak convergence of measures on
C(R): a sequence of measures converges weakly in (C(R), dp) if and only if the image measure
under the projection mapping pT : C(R)→ C([−T, T ]) converges weakly in C([−T, T ]) for any
T > 0.

However, for many applications the product topology is not strong enough; the weaker
the topology, the less information is contained by stating that measures converge weakly. In
fact, the topology of uniform convergence on compacts cannot be used in either of the settings
studied in Section 4.2. To illustrate this, we introduce a set Aβ that is used in the first
application. For β > 0, we set

Aβ := {x ∈ C(R) : sup
t≥0

x(t)− tβ ≥ 1}, (4.7)

Aβo := {x ∈ C(R) : sup
t≥0

x(t)− tβ > 1}.

Suppose we have an LDP in the space (C(R), dp). As this provides an upper bound for closed
sets, it is desirable that Aβ is closed in (C(R), dp). However, this is not the case; construct a
sequence {xn} ⊂ Aβ as follows:

xn(t) =





(1 + nβ)(t− n+ 1) t ∈ [n− 1, n]
−(1 + nβ)(t− n− 1) t ∈ (n, n+ 1]

0 otherwise.
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It is readily seen that xn converges in (C(R), dp) to zero, but 0 6∈ Aβ .
This example indicates that the ‘tail’ of the sample paths in (C(R), dp) may cause problems.

However, the topology in Ωγ is sufficiently strong to make Aβ closed, as the following lemma
shows. The lemma is used in the proofs of Proposition 4.1 and Theorem 4.2.

Lemma 4.8 For β ≥ γ, Aβ ∩Ωγ is closed in (Ωγ , ‖ ·‖Ωγ ), and Aβo ∩Ωγ is open in (Ωγ , ‖ ·‖Ωγ ).

Proof. To prove the first claim, we consider an arbitrary sequence {xn} ⊂ Aβ ∩Ωγ converging
in Ωγ to some x ∈ Ωγ ; we show that x ∈ Aβ ∩ Ωγ . We derive a contradiction by supposing
that this is not the case. Note that Aβ can be written as

Aβ =

{
x ∈ C(R) : sup

t≥0

x(t)

1 + tβ
≥ 1

}
,

and define

η := 1− sup
t≥0

x(t)

1 + tβ
> 0. (4.8)

As xn → x in Ωγ , we can select an n0 such that for n ≥ n0,

sup
t≥0

|xn(t)− x(t)|
1 + tβ

< η/2. (4.9)

We combine (4.8) with (4.9) to see that

sup
t≥0

xn(t)

1 + tβ
≤ sup

t≥0

xn(t)− x(t)
1 + tβ

+ sup
t≥0

x(t)

1 + tβ
< η/2 + 1− η < 1,

implying xn 6∈ Aβ ; a contradiction.
A similar argument can be given to see that Aβo ∩ Ωγ is open in Ωγ . ¤

4.4 Weak convergence results

This section is devoted to necessary and sufficient conditions for the convergence in distribution
of Y α to a fractional Brownian motion. For background and references on weak convergence,
see Section 2.2. After dealing with weak convergence on compact intervals (Section 4.4.1), we
extend the results to weak convergence in Ωγ for γ > H (Section 4.4.2).

Throughout, σ2
α denotes the variance function of Y α, i.e.,

σ2
α(t) :=

σ2(αt)

σ2(α)
.

There is a specific reason why the candidate weak limit is self-similar in the sense of (1.12);
see Lamperti [209].

4.4.1 Weak convergence on compacts

Fix some time horizon T > 0 throughout this subsection and consider the compact interval
[−T, T ]. We slightly abuse notation by restricting Y α to [−T, T ] while keeping the notation
Y α. Under the condition that limt→0 σ

2(t)| log |t||1+ε <∞ for some ε > 0, Lemma 4.7 implies
that the distribution of Y α is equivalent to a probability measure να on the measurable space
(C([−T, T ]),B(C([−T, T ]))).

To get some feeling for the necessity of this condition, we note that continuity of the
sample paths of Y imply that limt→0 σ

2(t)| log |t|| <∞ under an extremely weak condition on
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σ. Indeed, the following theorem, based on Sudakov’s inequality, provides a simple necessary
condition for continuity of the sample paths. We omit a proof, since one can repeat the
arguments in van der Vaart and van Zanten [300, Cor. 2.7].

Theorem 4.9 (necessity) Suppose that σ is strictly increasing on some neighborhood of zero.
If Y has continuous sample paths, then limt→0 σ

2(t)| log |t|| <∞.

We now turn to a sufficient condition for the weak convergence of Y α. Since C([−T, T ])
is a separable and complete metric space, as a result of Prokhorov’s theorem (Lemma 2.10),
weak convergence in C([−T, T ]) to a fractional Brownian motion is equivalent to convergence
of finite-dimensional distributions in conjunction with tightness of {να}.

With (3.3) and the fact that σ2 is regularly varying, it is easy to see that the finite-
dimensional distributions of Y α converge in distribution to BH . Therefore, weak convergence
of Y α in C([−T, T ]) is equivalent to tightness of {να} in C([−T, T ]). By Theorem 7.3 of [50],
this is in turn equivalent to

lim
δ→0

lim sup
α→∞

P


 sup

|s−t|≤δ
s,t∈[−T,T ]

|Y αs − Y αt | ≥ ζ


 = 0, (4.10)

for any ζ > 0. For notational convenience, we leave out the requirement s, t ∈ [−T, T ] explicitly
in the remainder.

Theorem 4.10 (sufficiency) If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then Y α ⇒ BH

in C([−T, T ]).

Proof. Our objective is to prove (4.10). Since σ2 is assumed to be continuous, the condition in
the theorem implies the boundedness of σ2Lε on intervals of the form (0, ·] (recall the definition
of Lε in (4.6)). Therefore, as a consequence of Proposition 4.5, we have for any δ > 0, and α
large enough, uniformly in t ∈ [−δ, δ]\{0} (obviously, σ2

α(0) = 0):

σ2
α(t) ≤ 2δ2H

Lε(δ)

Lε(t)
. (4.11)

Use the fact that Lε is nonincreasing and (4.11) to see that, for any ζ > 0 and α sufficiently
large,

P

(
sup

|s−t|≤δ
|Y αs − Y αt | ≥ ζ

)
= P

(
sup

{(s,t):2δ2HLε(δ)/Lε(s−t)≤2δ2H}
|Y αs − Y αt | ≥ ζ

)

≤ P

(
sup

σ2
α(|s−t|)≤2δ2H

|Y αs − Y αt | ≥ ζ
)

≤ 1

ζ
E

(
sup

σ2
α(|s−t|)≤2δ2H

|Y αs − Y αt |
)
.

Define Hα(T, ·) as the metric entropy of T ⊂ R under the semimetric induced by σ2
α; see Sec-

tion 4.3.2 for definitions. Motivated by the proof of Lemma 4.7, we set H(T, ϑ) = C0ϑ
−2/(1+ε)

for some constant C0 depending on the Lebesgue measure of T; it can be regarded as the
metric entropy under the semimetric induced by Lε, being only valid for small ϑ > 0.

We use Corollary 1.3.4 of [4] to see that there exists a constant C > 0 such that

E

(
sup

σ2
α(|s−t|)≤2δ2H

|Y αs − Y αt |
)
≤ C

∫ 2δ2H

0

√
Hα([−T, T ], ϑ)dϑ.
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Another application of (4.11) shows that for ϑ > 0,

Hα([−T, T ], ϑ) ≤ H

(
[−T, T ],

ϑ√
2δ2HLε(δ)

)
,

so that

∫ 2δ2H

0

√
Hα([−T, T ], ϑ)dϑ ≤

√
2δ2HLε(δ)

∫ 2δ2H/
√

2δ2HLε(δ)

0

√
H([−T, T ], ϑ)dϑ.

To summarize, we have

lim sup
α→∞

P

(
sup

|s−t|≤δ
|Y αs − Y αt | ≥ ζ

)
≤ C

√
2δ2HLε(δ)

ζ

∫ δH/
√
Lε(δ)/2

0

√
H([−T, T ], ϑ)dϑ.

As
∫∞
0

√
H([−T, T ], ϑ)dϑ <∞, we obtain (4.10) by letting δ → 0. ¤

The remainder of this subsection is devoted to easy corollaries of the sufficient condition in
Theorem 4.10. We first show the relation with Lemma 4.2 of [98].

Corollary 4.11 Suppose that σ2 is regularly varying at zero with index λ ∈ (0, 2], and that σ2

is continuous. Then we have Y α ⇒ BH in C([−T, T ]).

Proof. Since σ2 is regularly varying at zero with index λ, t 7→ σ2(1/t) is regularly varying at
infinity with index −λ. With (2.2), we conclude that σ2(1/t)|t|λ/2 → 0 as t→∞. Equivalently,
σ2(t)|t|−λ/2 → 0 as t→ 0, implying the condition in Theorem 4.10. ¤

Similarly, one proves the following Kolmogorov-type criterion for tightness.

Corollary 4.12 If limt→0 σ
2(t)|t|−λ <∞ for some λ ∈ (0, 2], then Y α ⇒ BH in C([−T, T ]).

4.4.2 Weak convergence on Ωγ

In this subsection, we focus on the weak convergence of Y α to BH in Ωγ for γ > H. Obviously,
this convergence can only take place when the laws νγα of Y α in Ωγ exist.

Lemma 4.13 If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then the probability measures νγα

on (Ωγ ,B(Ωγ)) exist for γ > H.

Proof. We first note that, by the assumption on σ2Lε, Y has almost surely continuous
trajectories as detailed in the proof of Lemma 4.7. Therefore, in order to show that Y α ∈ Ωγ

almost surely, it suffices to prove that limt→±∞ Y αt /t
γ = 0 almost surely. We use the reasoning

in Section 2.1 of Addie et al. [2], to which we add an essential argument.
Since σ2 is supposed to be regularly varying with index 2H, we have σ2(t)/tγ+H → 0,

which can be exploited to see that for ε > 0,
∑
k P(Yk/k

γ > ε) < ∞. By the Borel-Cantelli
lemma, Yk/k

γ → 0 almost surely. Note that, for Zk := sups∈[k,k+1] |Ys − Yk|,

|Yt| ≤ |Ybtc|+ Zbtc,

so that it suffices to show that Zk/k
γ → 0 almost surely. For this, we first remark that

E exp(αZ2
k) = E exp(αZ2

1 ) <∞ for α > 0 small enough, as a consequence of Borell’s inequality
(Lemma 3.3). Note that we used the continuity to ensure that this inequality can be applied.
By Chernoff’s bound, we have for any ε > 0,

∑

k

P (Zk/k
γ > ε) ≤

∑

k

P
(
Z2
k > ε2k2γ

)
≤
∑

k

exp(−αε2k2γ)E exp(αZ2
1 ) <∞.
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Another application of the Borel-Cantelli lemma proves that Zk/k
γ → 0 and therefore Y αt /t

γ →
0 almost surely.

The measure νγα can now be constructed as in Lemma 4.7; it only remains to show that
B(R)R ∩ Ωγ = B(Ωγ). It is easy to see that this holds for γ = 0, and Ωγ is isometrically
isomorphic to Ω0. ¤

We now investigate the probabilistic meaning of weak convergence in Ωγ . While the weak
convergence in the uniform topology on compacts is obtained by applying Theorem 4.10, the
convergence in Ωγ is substantially stronger (see Section 4.3.3). Therefore, an additional condi-
tion is needed to strengthen the convergence. Such a condition is given in Lemma 3 of Buldygin
and Zaiats [65, cited according to [201]]. Lemma 4.14 below is closely related to this key re-
sult; only ‘sup’ has been replaced by ‘lim sup’. See also Majewski [222] for a related result in
a large-deviation setting.

Lemma 4.14 Let a family of probability measures {µn} on Ωγ be given. Suppose that the
image of {µn} under the projection mapping pT : Ωγ → C([−T, T ]) is tight in C([−T, T ]) for
all T > 0. Then {µn} is tight in Ωγ if and only if for any ζ > 0,

lim
T→∞

lim sup
n→∞

µn

(
x ∈ Ωγ : sup

|t|≥T

|x(t)|
1 + |t|γ ≥ ζ

)
= 0. (4.12)

Proof. To prove necessity, let {µn} be tight in Ωγ and fix ζ > 0. Given η > 0, choose an
Ωγ-compact set K such that µn(K) > 1 − η for all n. We denote an Ωγ-ball centered at x
with radius ζ by Bζ(x), so that {Bζ/2(x) : x ∈ K} is an Ωγ-open cover of K. Since K is
Ωγ-compact, one can select m < ∞ and x1, . . . , xm such that {Bζ/2(xi) : i = 1, . . . ,m} also
covers K. Let Ti be such that sup|t|≥Ti

|xi(t)|/(1 + |t|γ) < ζ/2, and set

Aζ,T :=

{
x ∈ Ωγ : sup

|t|≥T

|x(t)|
1 + |t|γ < ζ

}
.

Note that for T := maxi Ti, K ⊂ Aζ,T . We have now shown that for any η > 0 one can find
T > 0 such that

sup
n≥1

µn(A
c
ζ,T ) ≤ η. (4.13)

Obviously, this implies (4.12).
For sufficiency, instead of supposing (4.12), we may suppose without loss of generality that

for any η > 0 there exists a T > 0 such that (4.13) holds. Indeed, since Ωγ is separable
and complete, any probability measure on Ωγ is tight (Lemma 2.10). In particular, the above
reasoning used to prove necessity implies that for any η > 0 and n ≥ 1, one can find Tn > 0
such that µn(A

c
ζ,Tn

) ≤ η. As a consequence of (4.12), there exists a T ′ > 0 and n0 such that
supn≥n0

µn(A
c
ζ,T ′) ≤ η. Hence we have (4.13) for T := max(T ′,maxn≤n0

Tn).
Suppose the image of {µn} under the projection mapping is tight in C([−T, T ]) for all T > 0.

We can then choose a set K that is compact in the topology of uniform convergence on compact
intervals such that supn µn(K

c) ≤ η/2. For brevity, we call K U-compact. Using (4.13), we
can select for any m ∈ N a Tm > 0 such that supn≥1 µn(A

c
1/m,Tm

) ≤ η/2m+1. Set K ′ := K ∩⋂
m∈N

A1/m,Tm
and note that infn≥1 µn(K

′) ≥ 1− η. Therefore, we have established the claim
once we have shown that the Ωγ-closure of K ′ is Ωγ-compact. For this, let {x`} be a sequence in
K ′, and let δ > 0 be arbitrary. Since K is U-compact, we can find a subsequence {x`k} of {x`}
that converges uniformly on compact intervals, say, to x. Moreover, {x`k} ⊂

⋂
m∈N

A1/m,Tm

implies that we can find a T > 0 such that supk≥1 sup|t|≥T |x`k(t)|/(1 + |t|) < δ/2. As x ∈ Ωγ ,
we can also choose T ′ > 0 such that sup|t|≥T ′ |x(t)|/(1 + |t|γ) ≤ δ/2. From the convergence of
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x`k to x on compacts we deduce that sup|t|≤max(T,T ′) |x`k(t) − x(t)|/(1 + |t|γ) ≤ δ. We now
readily infer that ‖x`k − x‖Ω ≤ δ, i.e., K ′ is Ωγ-compact. ¤

Having a characterization of weak convergence in Ωγ at our disposal, we now specialize
to the framework of the present chapter. The main result of this section is that the family
{νγα} is tight in Ωγ under the conditions of Theorem 4.10. It may seem rather surprising that
it is possible to establish this tightness in Ωγ without an additional condition on long-term
behavior of sample paths. Apparently, the fact that the variance function varies regularly with
an index 2H < 2γ, in conjunction with the Gaussian nature, suffice to control the process over
large time periods.

Theorem 4.15 (sufficiency) If limt→0 σ
2(t)| log |t||1+ε <∞ for some ε > 0, then Y α ⇒ BH

in Ωγ for any γ > H.

Proof. Having Lemma 4.14 at our disposal, we need to establish (4.12) for the family {νγα},
or, equivalently, for any ζ > 0,

lim
T→∞

lim sup
α→∞

P

(
sup
t≥T

|Y αt |
1 + tγ

≥ ζ
)

= 0.

An upper bound for the probability in the preceding display is based on Markov’s inequality
and some elementary considerations (see [3, Lem. 3.1]): for ζ > 0, α, k ≥ 1,

P

(
sup
t≥ek

|Y αt |
1 + tγ

≥ ζ
)
≤

∞∑

j=k

P

(
sup

t∈[ej ,ej+1]

|Y αt |
1 + tγ

≥ ζ
)
≤ 1

ζ

∞∑

j=k

E supt∈[ej ,ej+1] |Y αt |
1 + ejγ

≤ 1

ζ

∞∑

j=k

E|Y αej |
1 + ejγ

+
2

ζ

∞∑

j=k

E supt∈[ej ,ej+1] Y
α
t

1 + ejγ
. (4.14)

As a consequence of the UCT in Corollary 2.4 applied to σ(t)/t(γ−H)/2, the first term is (at
least for large k) of the order

∞∑

j=k

σ(αej)

ejγσ(α)
≤

∞∑

j=k

e−j(H+γ)/2,

and the resulting upper bound tends to zero as k →∞.
As in the proof of Theorem 4.10, we use metric entropy techniques to find an upper bound

on the second term in (4.14). Recall the notation Hα(T, ·) and H(T, ·) that we used in the
proof of Theorem 4.10. By Theorem 14.1 of Lifshits [219], there exists a constant C > 0 such
that E supt∈[ej ,ej+1] Y

α
t ≤ C

∫ √
Hα([ej , ej+1], ϑ)dϑ.

We now derive a bound on
∫ √

Hα([ek, ek+1], ϑ)dϑ for k large, uniformly in α. The first
step is to bound the variance σ2

α. As a consequence of Proposition 4.5, we have for α→∞,

sup
|t|≤1/e

σ2
α(t)Lε(t)→ sup

|t|≤1/e

t2HLε(t) = e−2H .

Moreover, by the UCT, for large α, we have σ2
α(t) ≤ 2eγ−HtH+γ for all |t| ≥ 1/e. Therefore,

the function Mε given by

Mε(t) :=

{
2e−2H/Lε(t) if |t| ≤ 1/e;
2eγ−HtH+γ otherwise.

majorizes σ2
α uniformly in (large) α. It is important to note that Mε is continuous and strictly

increasing for t ∈ R+.
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Using the stationarity of the increments and the fact that the inverse of 1/
√
Lε(·) is given

by ϑ 7→ exp
(
−ϑ−2/(1+ε)

)
for ϑ ∈ [0,

√
2e−H ], we see that for large j,

∫ √
2e−H

0

√
Hα([ej , ej+1], ϑ)dϑ =

∫ √
2e−H

0

√
Hα([0, ej(e− 1)], ϑ)dϑ

≤
√

2e−H
∫ 1

0

√√√√log

(
ej(e− 1)

2 exp
(
−ϑ−2/(1+ε)

) + 1

)
dϑ

≤ e−H log[ej(e− 1)] + 1 +
1

ε
,

implying that

lim
k→∞

∞∑

j=k

∫√
2e−H

0

√
Hα([ej , ej+1], ϑ)dϑ

1 + ejγ
= 0,

so that it remains to show a similar statement for the integration interval [
√

2e−H ,∞). For
this, observe that, for some constant C > 0,

∫ ∞

√
2e−H

√
Hα([ej , ej+1], ϑ)dϑ

≤
∫ eH(j+1)

√
2e−H

√
log

(
ej(e− 1)

21−1/(H+γ)e(H−γ)/(H+γ)ϑ2/(H+γ)

)
+ 1dϑ

≤ (eH(j+1) −
√

2e−H)

√
log

( Cej
(2e−2H)1/(H+γ)

)
,

from which the claim is readily obtained. ¤

We now relate Theorem 4.15 to Proposition 2.9 of Kozachenko et al. [201]. The criterion
given in Proposition 2.9 of [201] states that

sup
t∈R+

σ2(t)(log(1 + 1/t))1+ε <∞ (4.15)

for some ε ∈ (0, 1) (recall the definition of σ2 in (4.1)). Since we already noted that
limt→0(log(1 + 1/t))1+ε/Lε(t) = 1, this condition implies that limt→0 σ

2(t)| log |t||1+ε < ∞
for some ε > 0. Although the continuity of σ is not stated explicitly in [201], it is necessary
to obtain continuity of the sample paths of Y . Indeed, if Y has continuous sample paths and
σ2 is locally bounded (as implied by (4.15)), then the dominated convergence theorem implies
the continuity of σ2.

In conclusion, the condition in Theorem 4.15 improves this result of [201] in two ways: the
condition is both easier to check and weaker.

We get the following important corollary by combining Theorem 4.15 with Chevet’s theo-
rem 3.2.

Corollary 4.16 Let {aα} be a sequence of positive real numbers tending to infinity as α→∞.
If limt→0 σ

2(t)| log |t||1+ε <∞ for some ε > 0, then the distributions in Ωγ (γ > H) of Y α/aα
satisfy the LDP in Ωγ with the scale sequence {a2

α} and rate function I given by (3.6), where
HH is the Cameron-Martin space associated with fractional Brownian motion on Ωγ .
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4.5 Proofs for Section 4.2

4.5.1 Proof of Proposition 4.1

For Aβ be given by (4.7), we note

P

(
sup
t≥0

Yt − ctβ ≥ u
)

= P

(
sup
t≥0

Y(u/c)1/βt − utβ ≥ u
)

= P

(
sup
t≥0

1

u
Y(u/c)1/βt − tβ ≥ 1

)

= νβ
(u/c)1/β

(
u

σ([u/c]1/β)
Aβ ∩ Ωβ

)
.

Since Aβ ∩ Ωβ is closed in Ωβ by Lemma 4.8, we have by Corollary 4.16,

lim sup
u→∞

σ2(u1/β)

u2
log P

(
sup
t≥0

Yt − ctβ ≥ u
)

= lim sup
u→∞

c2H/β
σ2([u/c]1/β)

u2
log P

(
sup
t≥0

Yt − ctβ ≥ u
)

≤ −c2H/β inf
x∈Aβ∩Ωβ

I(x),

where I is given by (3.6). It remains to calculate the quantity infx∈Aβ∩Ωβ I(x), or equivalently
inft≥0 inf{x∈Ωβ :x(t)−tβ≥1} I(x). It is left to the reader to repeat the argument in the proof
of Proposition 2 in Addie et al. [2] to see that, also for β 6= 1, 2 inf{x∈Ωβ :x(t)−tβ≥1} I(x) =

(1 + tβ)2/t2H . Straightforward calculus shows that the (unique) infimum over t is attained
at t = (H/[β − H])1/β . The analysis in [2] also shows that the minimizing argument x∗ of
infx∈Aβ∩Ωβ I(x) is indeed given by (4.3).

For the lower bound, note that Aβ ⊃ Aβo , and that Aβo ∩ Ωβ is Ωβ-open by Lemma 4.8.
Therefore,

lim inf
u→∞

σ2(u1/β)

u2
log P

(
sup
t≥0

Yt − ctβ ≥ u
)
≥ −c2H/β inf

x∈Aβ
o∩Ωβ

I(x).

An elementary argument shows that infx∈Aβ
o∩Ωβ I(x) = infx∈Aβ∩Ωβ I(x), so that the claim is

proven.

4.5.2 Proof of Theorem 4.2

By the portmanteau theorem (Theorem 2.11), it suffices to show that for all Ωβ-closed sets F ,

lim sup
u→∞

P

(
1

u
Y(u/c)1/β · ∈ F

∣∣∣∣ sup
t≥0

Yt − ctβ ≥ u
)
≤ δx∗(F ). (4.16)

Since this assertion is trivial if x∗ ∈ F , we suppose that x∗ 6∈ F . Denote the probability on the
left-hand side of (4.16) by pu, so that

log pu = log νβ
(u/c)1/β

(
u

σ([u/c]1/β)

(
Aβ ∩ F

))
− log νβ

(u/c)1/β

(
u

σ([u/c]1/β)
Aβ ∩ Ωβ

)

and by Corollary 4.16, as both F and Aβ ∩ Ωβ are closed,

lim sup
u→∞

σ2(u1/β)

u2
log pu ≤ −c2H/β inf

x∈Aβ∩F
I(x) + c2H/β inf

x∈Aβ
o∩Ωβ

I(x). (4.17)
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We proceed by showing that

inf
x∈Aβ∩F

I(x) > inf
x∈Aβ∩Ωβ

I(x). (4.18)

For this, we suppose that we have equality, so that we can find a sequence {xn} ⊂ Aβ ∩
F with I(xn) < I(x∗) + 1/n. Without loss of generality, we may suppose that xn is (1 +
tβn)/(2t

2H
n )Cov(BH(·), BH(tn)) for some tn ≥ 0, since the minimizer of the rate function over

the set {x : x(tn) − tβn ≥ 1} has this form, cf. (4.3). Moreover, by uniqueness of t∗, we
must have tn → t∗ in order to ensure that (1 + tβn)

2/(2t2Hn ) = I(xn) < I(x∗) + 1/n. An easy
calculation shows that then xn converges in Ωβ to x∗ 6∈ F , which contradicts the fact that F
is closed.

The claim follows by combining (4.17) with (4.18) and observing that infx∈Aβ
o∩Ωβ I(x) =

infx∈Aβ∩Ωβ I(x).

4.5.3 Proof of Proposition 4.3

Corollary 4.16 implies that Y·T /T satisfies the large-deviation principle in Ω1 with the rate
function I and scale sequence σ2(T )/T 2. Having observed this, the remainder of the proof is
a combination of the arguments contained in Kozachenko et al. [201] and Norros [244]; we do
not repeat them. The idea is to use P(Y ∈ KT ) = P(Y·T /T ∈ K1), and then justify the limit
in (4.5) by showing that K1 is open and that infx∈K1

I(x) = infx∈K1
I(x).

4.5.4 Proof of Theorem 4.4

We first show the existence and uniqueness of x. For this, note that the large-deviation principle
for Y·T /T is governed by a strictly convex rate function. Both existence and uniqueness follow
from Proposition 4.4 of [244], since infx∈K1

I(x) can be written as an infimum of the rate
function over a convex set. Note that Proposition 4.3 and Proposition 4.4 of [244] together
imply that infx∈K1

I(x) = I(x).
By a similar reasoning as in the proof of Theorem 4.2 and the fact that K1 is open [244],

the claim follows after showing that for Ωγ-closed sets F with x 6∈ F ,

inf
x∈K1∩F

I(x) > inf
x∈K1

I(x) = I(x),

cf. (4.18). Suppose we have equality in the preceding display. For every n ∈ N, one can then
select an xn ∈ K1 ∩ F such that I(xn) ≤ I(x) + 1/n. Now define the sets

Mn := {x ∈ Ω : I(x) ≤ I(x) + 1/n}.

By the goodness of the rate function, these sets are Ωγ-compact. Since {xn} ⊂ M1, one can
select a subsequence of {xn} that converges (in Ωγ) to some x. As the Mn decrease, one then
has that x ∈ Mn for every n ∈ N, implying that I(x) = I(x). By construction we also have
x ∈ K1 ∩ F as the latter set is closed in Ωγ . Uniqueness yields x = x, contradicting x ∈ F .

4.6 Proof of Proposition 4.5

The proof is modeled after the proof of the UCT; see Theorem 1.5.2 in Bingham et al. [51].
We start with some notation. Let η > 0 be arbitrary and let T = T (η) < 1 be such that

sup
t∈[0,T ]

tρLε(t) <
1

9
η. (4.19)
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Since f is regularly varying with index ρ > 0, we can find A1 so that for α ≥ A1,

f(α)

f(α/T )
≤ 2T ρ. (4.20)

Define
M := sup

0<α≤A1

f(α)Lε(α),

which is finite by assumption. Using (2.2), we pick A2 so that for α ≥ A2,

(logA1)
1+ε + (logα)1+ε

f(α)
≤ η

21+εM
. (4.21)

Without loss of generality, we may suppose that A2 ≥ eA1 and A1 ≥ e.
The outline of the proof is as follows. In the first step, we show

sup
t∈(0,T ]

sup
α≥A1/t

∣∣∣∣
f(αt)

f(α)
Lε(t)− tρLε(t)

∣∣∣∣ < η, (4.22)

and then we show that

sup
t∈(0,A1/A2]

sup
A2≤α≤A1/t

∣∣∣∣
f(αt)

f(α)
Lε(t)− tρLε(t)

∣∣∣∣ < η. (4.23)

In the third and last step, we use (4.22) and (4.23) to establish the claim.

Step 1: Proof of (4.22)

Apply Theorem 1.5.4 of [51] to the regularly varying function f(α)α−ρ to see that

f(α) = c(α)αρ/2φ(α),

where c(α)→ 1 as α→∞, and φ is nondecreasing. Without loss of generality, we may assume
that A1 is such that 1/2 ≤ c(α) ≤ 2 for α ≥ A1. For fixed t ∈ (0, T ], we have t ≤ 1 (since
T < 1), so that

sup
α≥A1/t

f(αt)

f(α)
Lε(t) = sup

α≥A1

f(α)

f(α/t)
Lε(t)

= sup
α≥A1

f(α)

c(α/t)αρ/2φ(α/t)
tρ/2Lε(t)

≤ 2 sup
α≥A1

f(α)

αρ/2φ(α/t)
tρ/2Lε(t).

Since both tρ/2Lε(t) and (for any α) f(α)α−ρ/2/φ(α/t) are nondecreasing in t on (0, T ], we
conclude with (4.20) that

sup
t∈(0,T ]

sup
α≥A1/t

f(αt)

f(α)
Lε(t) ≤ 2 sup

α≥A1

f(α)

αρ/2φ(α/T )
T ρ/2Lε(T )

≤ 4 sup
α≥A1

f(α)

c(α/T )αρ/2φ(α/T )
T ρ/2Lε(T )

= 4 sup
α≥A1

f(α)

f(α/T )
Lε(T )

≤ 8T ρLε(T )

≤ 8 sup
t∈[0,T ]

tρLε(t).

Inequality (4.22) is an easy consequence of combining this with (4.19).
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Step 2: Proof of (4.23)

Note that, since t ∈ [0,∞) 7→ |t|1+ε is convex, we have for t/α ≤ 1/e

Lε(t/α) = | log t/α|1+ε ≤ (| log t|+ logα)1+ε ≤ 21+ε

(
1

2
| log t|1+ε +

1

2
(logα)1+ε

)

= 2ε(| log t|1+ε + (logα)1+ε).

Observe that t/α ≤ 1/e for t ∈ [0, A1] and α ≥ A2, so that

sup
t∈(0,A1/A2]

sup
A2≤α≤A1/t

f(αt)

f(α)
Lε(t) = sup

α≥A2

sup
t∈(0,A1/α]

f(αt)

f(α)
Lε(t)

= sup
α≥A2

sup
t∈(0,A1]

f(t)

f(α)
Lε(t/α)

≤ 2ε sup
α≥A2

sup
t∈(0,A1]

f(t)

f(α)

(
| log t|1+ε + (logα)1+ε

)
.

Since A1 ≥ e, we can bound f(t)| log t|1+ε as follows on (0, A1]:

sup
t∈(0,A1]

f(t)| log t|1+ε ≤ max

(
sup

t∈(0,1/e]

f(t)Lε(t), sup
t∈(1/e,A1]

f(t)| logA1|1+ε
)

≤ max(M,M(logA1)
1+ε)

= M(logA1)
1+ε.

By combining the two preceding displays, we obtain

sup
t∈(0,A1/A2]

sup
A2≤α≤A1/t

f(αt)

f(α)
Lε(t) ≤ 2εM sup

α≥A2

(logA1)
1+ε + (logα)1+ε

f(α)
≤ 1

2
η,

where the last inequality is (4.21). Inequality (4.23) readily follows by using (4.19).

Step 3: Proof of the claim

It is readily checked that the first two steps imply that for any (small) η > 0 we can find a
(small) κ and (large) A2 such that

sup
α≥A2

sup
t∈(0,κ]

∣∣∣∣
f(αt)

f(α)
Lε(t)− tρLε(t)

∣∣∣∣ < η. (4.24)

In this last step, we establish the uniform convergence on each interval (0, ·].
Let T > 0 be arbitrary, and set M ′ := supt∈(0,T ] t

ρLε(t) <∞. By the UCT (Theorem 2.3),
it is possible to select A3 so that for α ≥ A3, uniformly in t ∈ [κ, T ],

∣∣∣∣
f(αt)

f(α)tρ
− 1

∣∣∣∣ <
η

M ′ .

Now, for α ≥ A3, we have

sup
t∈[κ,T ]

∣∣∣∣
f(αt)

f(α)
Lε(t)− tρLε(t)

∣∣∣∣ = sup
t∈[κ,T ]

tρLε(t)

∣∣∣∣
f(αt)

f(α)tρ
− 1

∣∣∣∣ < η.

Combining this with (4.24) yields the claim.



CHAPTER 5

Extremes of Gaussian processes

In this chapter, we continue the investigation of the tail asymptotics for the
buffer content as started in Chapter 4. Again, we rely on the representation of the
buffer-content distribution as the maximum of the free process.

This naturally leads to the following setup. Let Y be a centered separable
Gaussian process with a variance function that is regularly varying at infinity with
index 2H ∈ (0, 2). Moreover, let φ be a ‘drift’ function that is strictly increasing,
regularly varying at infinity with index β > H, and vanishing at the origin. We
examine the exact asymptotics of the probability P(supt≥0 Yt−φ(t) > u) as u→∞.

To obtain these asymptotics, we tailor the celebrated double sum method (see
Section 3.3) to our general framework. Two different families of correlation struc-
tures are studied, leading to four qualitatively different types of asymptotic be-
havior. Our results cover both processes with stationary increments (including
Gaussian integrated processes) and self-similar processes.

5.1 Introduction

Let Y be a centered separable Gaussian process, and let φ be a strictly increasing ‘drift’ function
with φ(0) = 0. Motivated by applications in telecommunications engineering and insurance
mathematics, the probability

P

(
sup
t≥0

Yt − φ(t) > u

)
(5.1)

has been analyzed under different levels of generality as u → ∞. In these applications, Y0 is
supposed to be degenerate, i.e., Y0 = 0. Letting u tend to infinity is known as investigating the
large-buffer regime, since u can be interpreted as a buffer level of a fluid queue, see Section 1.1.
Note that (5.1) can be rewritten as

P

(
sup
t≥0

Yµ(ut)

1 + t
> u

)
, (5.2)

where µ is the inverse of φ. Special attention has been paid to the case where Y has stationary
increments (e.g., [71, 72, 85, 86, 87, 93, 96, 123, 164, 201, 225, 241]), and to the case where Y
is self-similar or ‘almost’ self-similar [163].

The main contribution of the present chapter is that we extend the known results on the
exact asymptotics of (5.1). For this, we introduce a wide class of local correlation structures,
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covering both processes with stationary increments and ‘almost’ self-similar processes. A mo-
tivation for studying the problem in this generality is to gain insight into the case where Y is
the sum of a number of independent Gaussian processes, e.g., the sum of a Gaussian integrated
process and a number of fractional Brownian motions with different Hurst parameters. We
study this situation in detail in the next chapter.

Some words for the technical aspects of this chapter. We use the double sum method to
establish the asymptotics of (5.2). In Section 3.3, it has been sketched how this method can
be applied to find the asymptotics of P(supt∈[0,S]X(t) > u), where X is a stationary Gaussian
process. These asymptotics have also been investigated if X is a Gaussian process with a
unique point of maximum variance [260], and there also exist analogues for fields [257, Sec. 8].
However, these results cannot be applied to establish the asymptotics of (5.1).

In this chapter, we approach the double sum method differently. The idea in [260] is to
first establish the tail asymptotics for the maximum of some stationary Gaussian process on
a subinterval of [0, S]. Then a comparison inequality is applied to see that the asymptotics of
P(supt∈[0,S]X(t) > u) equal the asymptotics of this stationary field. Here, we do not make a
comparison to stationary processes, but we apply the ideas underlying the double sum method
directly to the processes Yµ(ut)/(1 + t). Given our results, it can be seen immediately that
the comparison approach cannot work in the generality of this chapter: a so-called generalized
Pickands’ constant appears, which is not present in the stationary case. It is also obtained in
the analysis of extremes of Gaussian integrated processes, see Dȩbicki [87]. The appearance
of this constant in the present study is not surprising, since our results also cover Gaussian
integrated processes. We refer to Kobelkov [193] for recent results on generalized Pickands’
constants.

Several related problems appear in the vast body of literature on asymptotics for Gaussian
processes. For instance, Dȩbicki and Rolski [97] and Duncan et al. [125] study the asymptotics
of (5.1) over a finite horizon, i.e., the supremum is taken over [0, S] for some S > 0. These
asymptotics differ qualitatively from the asymptotics established in the present chapter. We
also mention the work of Zeevi and Glynn [312] and Piterbarg [258]. In queueing terminology,
they examine the maximum of the stationary buffer-content process for a Gaussian queue (see
Section 1.1.3), while we study its marginal distribution (i.e., the steady-state buffer-content
distribution).

Another problem closely related to the present setting is where Y has the form Z/
√
n for

some Gaussian process Z independent of n. One then fixes u and studies the probability
(5.1) as n → ∞. The resulting asymptotics were studied by Dȩbicki and Mandjes [90]; these
asymptotics are often called many-sources asymptotics, since convolving identical Gaussian
measures amounts to scaling a single measure. The many-sources asymptotic regime is studied
in Chapter 10.

It is also worthwhile to compare our results with those of Berman [39] on extremes of
Gaussian processes with stationary increments. Berman studies the probability P(supt∈B Y t >
u) for u → ∞, where Y is constructed from Y by standardization (so that its variance is
constant) and B is some fixed compact interval. The problem of finding the asymptotics of
(5.2) does not fit into Berman’s framework: our assumptions will imply that Yµ(ut)/(1+ t) has
a point of maximum variance, which is asymptotically unique. Another difference is that this
point depends (asymptotically) linearly on u, so that it cannot belong to B for large u.

The chapter is organized as follows. The main result and its assumptions are described in
Section 5.2. In Section 5.3, we work out two cases of special interest: processes with stationary
increments and self-similar processes. Furthermore, we relate our formulas with the literature
by giving some examples. Interestingly, these examples show that the tail asymptotics for the
buffer content in a Gaussian fluid queue are qualitatively different if the input is short-range
dependent or long-range dependent.

Sections 5.4–5.7 are devoted to proofs. In Section 5.4, the classical Pickands’ lemma
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(Lemma 3.6) is generalized. Section 5.5 distinguishes four instances of this lemma. The
resulting observations are key to the derivation of the upper bounds, which is the topic of
Section 5.6. Lower bounds are given in Section 5.7, where we use a double sum-type argument
to see that the upper and lower bounds coincide asymptotically.

To slightly reduce the length of the proofs and make them more readable, details are often
omitted when a similar argument has already been given, or when the argument is standard.
We then use curly brackets (e.g., {T1}) to indicate which assumptions are needed to make the
claim precise.

The results in this chapter rely on standard results for regularly varying functions, see
Section 2.1. Specifically, the uniform convergence theorem (Theorem 2.3) and its corollary
(Corollary 2.4) are used extensively. For convenience, we call both results the UCT and we
apply these two results without reference to the specific version that is used.

5.2 Description of the results and assumptions

This section presents our main theorem. Since many (yet natural and weak) assumptions
underly our result, we defer a detailed description of these assumptions to Section 5.2.2.

5.2.1 Main theorem

The supremum in (5.2) is asymptotically ‘most likely’ attained at a point where the variance is
close to its maximum value. Let t∗u denote a point that maximizes the variance σ2(µ(ut))/(1+
t)2 (existence will be ensured by continuity conditions). Our main assumptions are that σ2

(defined as σ2(t) := VarYt) and µ (defined as the inverse of φ in (5.1)) are regularly varying
at infinity with indices 2H ∈ (0, 2) and 1/β < 1/H respectively. Note that the UCT implies
that t∗u converges to t∗ := H/(β −H). In this sense, t∗u is asymptotically unique.

For an appropriately chosen δ with δ(u)/u→ 0 and σ(µ(u))/δ(u)→ 0, (5.1) and (5.2) are
asymptotically equivalent to

P

(
sup

t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)
,

see Lemma 5.14. Hence, in some sense, the variance σ2(µ(ut)) of Yµ(ut) determines the length
of the ‘most likely’ hitting interval by the requirement that σ(µ(u))/δ(u)→ 0.

Not only the length of this interval plays a role in the asymptotics of (5.2). There is
one other important element: the local correlation structure of the process on [t∗u ± δ(u)/u].
Traditionally, it was assumed that Var

(
Yµ(us)/σ(µ(us))− Yµ(ut)/σ(µ(ut))

)
behaves locally like

|s−t|α for some α ∈ (0, 2], as in Section 3.3. It was soon realized that |s−t|α can be replaced by
a regularly varying function (at zero) with minimal additional effort [267]; see also [41, 87, 163],
to mention a few recent contributions.

However, by imposing such a correlation structure, it is impossible to find the asymptotics
of (5.1) for a general Gaussian process with stationary increments, for instance. We solve this
problem by introducing two wide classes of correlation structures, resulting in qualitatively
different asymptotics in four cases. These specific structures must be imposed to be able to
perform explicit calculations. The main novelty of this chapter is that the local behavior may
depend on u. Our framework is specific enough to derive generalities, yet general enough
to include many interesting processes as special cases (to our best knowledge, all processes
are covered for which the asymptotics of (5.1) appear in the literature; see the examples in
Section 5.3.3).

Often there is a third element that plays a role in the asymptotics: the local variance
structure of Yµ(ut)/(1+ t) near t = t∗u. By the structure of the problem and the differentiability
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assumptions that we will impose on σ and µ, this third element is only implicitly present in
our analysis. However, if one is interested in the asymptotics of some probability different from
(5.1), it may play a role. In that case, the reasoning of the present chapter is readily adapted.

We now introduce the first family of correlation structures, leading to three different types
of asymptotics. Suppose that the following holds:

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣∣∣∣∣∣

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

Dτ2(|ν(us)− ν(ut)|)/τ 2(ν(u))
− 1

∣∣∣∣∣∣
→ 0, (5.3)

as u → ∞, where D is some constant and τ and ν are suitable functions. It is assumed that
τ and ν are regularly varying at infinity with indices ιτ ∈ (0, 1) and ιν > 0 respectively. To
gain some intuition, suppose that ν is the identity, and write τ(t) = `(t)tιτ for some slowly
varying function at infinity `. The denominator in (5.3) then equals D|s−t|2ιτ `2(u|s−t|)/`2(u).
From the analysis of the problem it follows that one must consider |s − t| ≤ ∆(u)/u, where
∆ is some function satisfying ∆(u) = o(δ(u)). As a result, the denominator is of the order
[∆(u)/u]2ιτ `2(∆(u))/`2(u); due to the term `2(∆(u)), three cases can now be distinguished: ∆
tends to infinity, to a constant, or to zero. Interestingly, the Pickands’ constant appearing in
the asymptotics is determined by the behavior of τ at infinity in the first case, and at zero in
the last case (one needs an additional assumption on the behavior of τ at zero). The second
‘intermediate’ case is special, resulting in the appearance of a so-called generalized Pickands’
constant.

The second family of correlation structures, resulting in the fourth type of asymptotics, is
given by

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣∣∣∣∣∣

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

τ2(|ν(us)− ν(ut)|/ν(u)) − 1

∣∣∣∣∣∣
→ 0, (5.4)

where ν is regularly varying at infinity with index ιν > 0 and τ is regularly varying at zero with
index ι̃τ ∈ (0, 1) (the tilde emphasizes that we consider regular variation at zero). A detailed
description of the assumptions on each of the functions are given in Section 5.2.2. Here, if ν
is the identity, the denominator equals `2(|s− t|)|s− t|2ι̃τ for some slowly varying function at
zero `. Therefore, it cannot be written in the form (5.3) unless ` is constant.

Having introduced the four cases informally, we now present them in more detail. The
cases are referred to as case A, B, C, and D; the precise underlying assumptions are given in
Section 5.2.2. We set

G := lim
u→∞

σ(µ(u))τ(ν(u))

u
, (5.5)

assuming the limit exists.

A. Case A applies when (5.3) holds and G =∞.

B. Case B applies when (5.3) holds and G ∈ (0,∞).

C. Case C applies when (5.3) holds and G = 0. We then also suppose that τ be regularly
varying at zero with index ι̃τ ∈ (0, 1).

D. Case D applies when (5.4) holds.

In order to formulate the main result of this chapter, it is convenient to introduce the
notation

CH,β,ιν ,ιτ :=
√

21−1/ιτπιν

(
β

H

)1/ιτ ( H

β −H

)ιν+ H
β − 1

2+ 1
ιτ

(1−H
β )
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and, for case B,

M :=
β2

2G2H2H/β(β −H)2−2H/β
,

where G ∈ (0,∞) is defined as in (5.5). Recall the definitions of Ψ and Hη in (3.1) and (3.8).
Here is our main result; the assumptions are detailed in Section 5.2.2.

Theorem 5.1 Let µ and σ satisfy assumptions M1–M4 and S1–S4 below for some β > H.
In case A, i.e., when A1, A2, T1, T2, N1, N2 below hold, we have

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBιτ

CH,β,ιν ,ιτ

√
D1/ιτ

σ(µ(u))ν(u)

u←−τ
(
σ(µ(u))τ(ν(u))

u

)Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

In case B, i.e., when B1, B2, T1, T2, N1, N2 below hold, then HDMτ2 exists and we have

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HDMτ2

√
2πιν

(
H

β −H

)ιν+ H
β − 1

2 σ(µ(u))ν(u)

u
Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

In case C, i.e., when C1–C3, T1, N1, N2 below hold, we have

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBι̃τ

CH,β,ιν ,ι̃τ

√
D1/ι̃τ

σ(µ(u))ν(u)

u←−τ
(
σ(µ(u))τ(ν(u))

u

)Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

In case D, i.e., when D1, D2, N1, N2 below hold, we have

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBι̃τ

CH,β,ιν ,ι̃τ
σ(µ(u))

u←−τ
(
σ(µ(u))

u

)Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

Observe that ←−τ is an asymptotic inverse of τ at infinity in case A, and at zero in case
C and D (see Section 2.1 for definitions). Hence, the factors preceding the function Ψ are
regularly varying with index (H/β + ινιτ − 1)(1 − 1/ιτ ) + (1 − ιτ )ιν in case A, with index
H/β+ ιν−1 in case B, with index H/β+ ιν−1− (H/β+ ιτ ιν−1)/ι̃τ in case C, and with index
(H/β − 1)(1− 1/ι̃τ ) in case D. Note that case B is special in a number of ways: a nonclassical
Pickands’ constant is present and no inverse appears in the formula.

We now formally state the underlying assumptions.

5.2.2 Assumptions

Two types of assumptions are distinguished: general assumptions and case-specific assump-
tions. The general assumptions involve the variance σ2 of Y , the time-change µ, and the
functions ν and τ appearing in (5.3) and (5.4). The case-specific assumptions formalize the
four regimes introduced in the previous subsection.

General assumptions

We start by stating the assumptions on µ.

M1 µ is regularly varying at infinity with index 1/β,

M2 µ is strictly increasing, µ(0) = 0,

M3 µ is ultimately continuously differentiable and its derivative µ̇ is ultimately monotone,
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M4 µ is twice continuously differentiable and its second derivative µ̈ is ultimately monotone.

Assumption M2 is needed to ensure that the probabilities (5.1) and (5.2) be equal. The re-
maining conditions imply that βuµ̇(u) ∼ µ(u) and β2u2µ̈(u) ∼ (1−β)µ(u), see Exercise 1.11.13
of Bingham et al. [51]. In particular, µ̇ and µ̈ are regularly varying with index 1/β − 1 and
1/β − 2 respectively.

Now we formulate the assumptions on σ and one assumption on both µ and σ.

S1 σ is continuous and regularly varying at infinity with index H for some H ∈ (0, 1),

S2 σ2 is ultimately continuously differentiable and its first derivative σ̇2 is ultimately mono-
tone,

S3 σ2 is ultimately twice continuously differentiable and its second derivative σ̈2 is ultimately
monotone,

S4 there exist some T, ε > 0, γ ∈ (0, 2] such that

1. lim supu→∞ sups,t∈(0,(1+ε)T 1/β ] Var(Yus − Yut)σ−2(u)|s− t|−γ <∞ and

2. lim supu→∞
σ2(µ(u))

u2 log P

(
supt≥T

Yµ(ut)

1+t > u
)
< − 1

2
(1+t∗)2

(t∗)H/β .

We emphasize that σ̇2 denotes the derivative of σ2, and not the square derivative of σ. As
before, conditions S1–S3 imply that uσ̇2(u) ∼ 2Hσ2(u) and u2σ̈2(u) ∼ 2H(2H−1)σ2(u). The
first point of S4, which is Kolmogorov’s weak convergence criterion, ensures the existence of a
modification with continuous sample paths, as in Lemma 4.7; we always assume to work with
this modification. The second point of S4 ensures that the probability P(supt≥uT Yµ(t)−t > u)
cannot dominate the asymptotics. We choose to formulate this as an assumption, although it
is possible to give sharp conditions for S4.2 to hold. However, these conditions look relatively
complicated, while the second point is in general easier to verify on a case by case basis. In the
next section, we show that it holds for processes with stationary increments and self-similar
processes.

Note that if M1–M4 and S1–S4 hold, the first and second derivative of σ2(µ(·)) are also
regularly varying, with indices 2H/β−1 and 2H/β−2 respectively. It is this fact that guarantees
the existence of the limits that are implicitly present in the notation ‘∼’ in Theorem 5.1.

The function ν appearing in (5.3) and (5.4) also has to satisfy certain assumptions, which
are similar to those imposed on µ.

N1 ν is regularly varying at infinity with index ιν > 0,

N2 ν is ultimately continuously differentiable and its derivative ν̇ is ultimately monotone.

Finally, we formulate the assumptions on τ in (5.3) or (5.4).

T1 τ is continuous and regularly varying at infinity with index ιτ for some ιτ ∈ (0, 1),

T2 τ(t) ≤ Ctγ′
on a neighborhood of zero for some C, γ ′ > 0.

Assumption T2 is essential to prove uniform tightness at some point in the proof, which
yields the existence of the Pickands’ constants.
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Case-specific assumptions

We now formulate the case-specific assumptions in each of the cases A, B, C, and D. These
assumptions are also mentioned in the introduction, but it is convenient to label them for
reference purposes. If we write that the correlation structure is determined by (5.3) or (5.4),
the function δ is supposed to satisfy δ(u) = o(u) and σ(µ(u)) = o(δ(u)) as u→∞.

After recalling the definition of G in (5.5), we start with case A.

A1 The correlation structure is determined by (5.3),

A2 G =∞.

Similar conditions are imposed in case B.

B1 The correlation structure is determined by (5.3),

B2 G ∈ (0,∞).

In case C, we need an additional condition (C3). Note that the index of variation in C3
appears at several places in the asymptotics, cf. Theorem 5.1. It also implies the existence of
an asymptotic inverse ←−τ at zero, cf. Lemma 2.6.

C1 The correlation structure is determined by (5.3),

C2 G = 0,

C3 τ is regularly varying at zero with index ι̃τ ∈ (0, 1).

Case D is slightly different from the previous three cases. As in case C, regular variation
of τ at zero plays a role.

D1 The correlation structure is determined by (5.4),

D2 τ is regularly varying at zero with index ι̃τ ∈ (0, 1).

5.3 Special cases: processes with stationary increments
and self-similar processes

In this section, we apply Theorem 5.1 to calculate the asymptotics of (5.2) for two specific
cases: (i) Y has stationary increments and (ii) Y is self-similar. In both examples, the imposed
assumptions imply that σ2(0) = 0, so that Y0 = 0 almost surely.

In case Y has stationary increments, the finite-dimensional distributions are completely
determined by the variance function σ2. For self-similar processes, (5.2) has been studied
by Hüsler and Piterbarg [163]. We show that their results are reproduced and even slightly
generalized by Theorem 5.1.

We conclude this section with some examples that have been studied in the literature.

5.3.1 Stationary increments

Since σ determines the finite-dimensional distributions of Y , it also fixes the local correlation
structure; we record this in the next proposition. To get some feeling for the result, observe
that for s, t ∈ [t∗u ± δ(u)/u],

Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
≈ Var

(
Yµ(us) − Yµ(ut)

)

σ2(µ(ut∗))
=
σ2(|µ(us)− µ(ut)|)

σ2(µ(ut∗))
.

This intuitive reasoning is now made precise. Note the proposition also entails that case D
does not occur in this setting.
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Proposition 5.2 Let S1–S2, M1–M3 hold for some β > H. Let δ be regularly varying with
index ιδ ∈ (1− 1/β, 1). Then (5.3) holds with τ = σ, ν = µ and D = (t∗)−2H/β.

Proof. Since s, t ∈ [t∗u ± δ(u)/u], we have by the UCT {S1, M1},

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣∣∣∣
σ2(µ(u))

Dσ(µ(us))σ(µ(ut))
− 1

∣∣∣∣ = 0.

Moreover, the stationarity of the increments implies that

2
[
σ(µ(us))σ(µ(ut))− Cov

(
Yµ(us), Yµ(ut)

)]
= σ2(|µ(us)− µ(ut)|)− [σ(µ(us))− σ(µ(ut))]2.

Hence, it suffices to prove that

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

σ2(|µ(us)− µ(ut)|) = 0. (5.6)

For this, observe that the left-hand side of (5.6) is majorized by t1(u)t2(u), where

t1(u) := sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

[µ(us)− µ(ut)]2
,

t2(u) := sup
s,t∈[t∗u±δ(u)/u]

s6=t

[µ(us)− µ(ut)]2

σ2(|µ(us)− µ(ut)|) .

As for t1(u), by the mean value theorem {S2, M3} there exist t∧(u, s, t), t∨(u, s, t) such that,
for u large enough,

t1(u) = sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ̃µ(ut
∧(u, s, t))]2

[µ̇(ut∨(u, s, t))]2
≤
(

supt∈[t∗u±δ(u)/u] σ̃µ(ut)

inft∈[t∗u±δ(u)/u] µ̇(ut)

)2

,

where σ̃µ(·) denotes the derivative of σ(µ(·)). As a consequence of the UCT {M1, M3, S1,
S2}, t1(u) can therefore be upper bounded by C ′σ2(µ(u))/µ2(u) for some constant C ′ <∞.

We now turn to t2(u). A substitution {M2} shows that

t2(u) = sup
s,t∈[µ(ut∗u−δ(u)),µ(ut∗u+δ(u))]

s>t

(s− t)2
σ2(s− t) = sup

0<t≤µ(ut∗u+δ(u))−µ(ut∗u−δ(u))

t2

σ2(t)
.

Observe that, again by the mean value theorem and the UCT {M1, M3},

µ(ut∗u + δ(u))− µ(ut∗u − δ(u)) ≤ 2 sup
t∈[t∗u±δ(u)/u]

µ̇(ut)δ(u) ∼ 2

β
(t∗)1/β−1µ(u)δ(u)/u,

which tends to infinity by the assumption on ιδ.
Suppose for the moment that the mapping x 7→ x2/σ2(x) is bounded on sets of the form

(0, ·]. Since it is regularly varying with index 2− 2H > 0 {S1}, we have by the UCT and the
assumption that ιδ > 1− 1/β, for u large enough,

t2(u) ≤ sup
0<t≤3/β(t∗)1/β−1

[µ(u)δ(u)/u]2t2

σ2(µ(u)δ(u)/ut)
∼
(

3

β
(t∗)1/β−1

)2−2H
[µ(u)δ(u)/u]2

σ2(µ(u)δ(u)/u)
.
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In conclusion, there exists a constant K <∞ such that

sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

σ2(|µ(us)− µ(ut)|) ≤ Kσ
2(µ(u))δ2(u)/u2

σ2(µ(u)δ(u)/u)
,

which is regularly varying with index 2(1−H)(ιδ − 1) < 0, so that (5.6) follows.
It remains to show that x 7→ x2/σ2(x) is locally bounded. To see this, we use an argument

introduced by Dȩbicki [87, Lem. 2.1]. By S2, one can select some (large) s ≥ 0 such that σ2 is
continuously differentiable at s. Then, for some small x > 0,

σ2(s)− σ2(s− x) ≤ σ2(s) + σ2(x)− σ2(s− x) = 2Cov(Ys, Yx) ≤ 2σ(s)σ(x),

and by the mean value theorem there exists some ρx ∈ [s− x, s] such that σ2(s)− σ2(s− x) =
σ̇2(ρx)x. By continuity of σ̇2 at s, we have

lim sup
x↓0

x

σ(x)
≤ lim sup

x↓0
2
σ(s)

σ̇2(ρx)
= 2

σ(s)

σ̇2(s)
<∞.

The claim follows upon combining this observation with S1. ¤

Lemma 5.3 Let Y have stationary increments, and suppose that S1 and M1 hold. If σ2(t) ≤
Ctγ on a neighborhood of zero for some C, γ > 0, then S4 holds.

Proof. By the stationarity of the increments, the first point of S4 follows immediately from
the UCT for t 7→ σ2(t)t−γ (this mapping is locally bounded by the condition in the lemma).
In fact, it holds for all T, ε > 0.

To check the second requirement of S4, select some ω such that H/β < ω < 1. By the
UCT {M1},

lim
T→∞

lim
u→∞

sup
t≥T

utω

←−µ (µ(u)t1/β)
= lim
T→∞

Tω−1 = 0.

Hence, we may suppose without loss of generality that T is such that ←−µ (µ(u)t1/β)/u ≥ tω for
every t ≥ T and large u. This implies that

P

(
sup
t≥T

Yµ(ut)

1 + t
> u

)
≤ P

(
sup

t≥[µ(uT )/µ(u)]β

Yµ(u)t1/β

1 + tω
> u

)
≤ P

(
sup
t≥T/2

Yµ(u)t1/β

1 + tω
> u

)
.

We now apply some results from Chapter 4. By Corollary 4.16 and the arguments in the proof
of Proposition 4.1, we have

lim sup
u→∞

σ2(µ(u))

u2
log P

(
sup
t≥T

Yµ(ut)

1 + t
> u

)
≤ −1

2
inf

t≥T/2

(1 + tω)2

t2H/β
.

Note that we have used the continuity of the functional x 7→ supt≥(T/2)1/β x(t)/(1 + tωβ) in

the topology on Ωωβ , cf. Lemma 4.8 and Corollary 4.16. The claim is obtained by choosing T
large enough, which is possible since t2ω/t2H/β →∞ as t→∞. ¤

With Proposition 5.2 and Lemma 5.3 at our disposal, we readily find the asymptotics of
(5.1) when Y has stationary increments.

Proposition 5.4 Let Y have stationary increments. Suppose that S1–S3 hold, and that
σ2(t) ≤ Ctγ on a neighborhood of zero for some C, γ > 0. Moreover, suppose that M1–M4
hold for some β > H.
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If σ2(µ(u))/u→∞, then

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBH

CH,β,1/β,H

(
β −H
H

) 1
β σ(µ(u))µ(u)

u←−σ
(
σ2(µ(u))

u

)Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

If σ2(µ(u))/u→ G ∈ (0,∞), then

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ H(2/G2)σ2

√
π/2

H

σ(µ(u))µ(u)

u
Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

If σ2(µ(u))/u→ 0 and σ is regularly varying at zero with index λ ∈ (0, 1), then

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBλ

CH,β,1/β,λ

(
β −H
H

) H
βλ σ(µ(u))µ(u)

u←−σ
(
σ2(µ(u))

u

)Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

)
.

Proof. Directly from Theorem 5.1. For the case σ2(µ(u))/u → G ∈ (0,∞), observe that
necessarily 2H = β. ¤

5.3.2 Self-similarity

We now suppose that Y is a self-similar process with Hurst parameter H, i.e., Var(Yt) = t2H

and for any α > 0 and s, t ≥ 0,

Cov (Yαt, Yαs) = α2HCov (Yt, Ys) , (5.7)

cf. (1.12). The self-similarity property has been observed statistically in several types of data
traffic, see Section 1.3 for more details. Two examples of self-similar Gaussian processes are
the fractional Brownian motion and the Riemann-Liouville process.

Another (undoubtedly related) reason why self-similar processes are interesting is that the
weak limit obtained by scaling a process both in time and space must be self-similar (if it
exists); see Lamperti [209]. In the setting of Gaussian processes with stationary increments, a
strong type of weak convergence is studied in Chapter 4. We also mention the interesting fact
that self-similar processes are closely related to stationary processes by the so-called Lamperti-
transformation; see [7] for more details.

We make the following assumption about the behavior of the (standardized) variance of Y
near t = t∗: for some function τ which is regularly varying at zero with index ι̃τ ∈ (0, 1),

lim
s,t→t∗

Var
(
Y

s1/β

sH/β −
Y

t1/β

tH/β

)

τ2(|s− t|) = 1. (5.8)

By the self-similarity, one may equivalently require that a similar condition holds for s, t tending
to an arbitrary strictly positive number; see [163]. In the proof of Proposition 5.5 below we
show that (5.8) implies that self-similar processes are covered by case D.

We also need the following assumption on the variance structure of Y : for some γ > 0,

sup
s,t∈(0,1]

Var(Ys − Yt)|s− t|−γ <∞. (5.9)

This Kolmogorov criterion ensures that there exists a continuous modification of Y . Notice
that without loss of generality it suffices to take the supremum over any interval (0, ·] by the
self-similarity.
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The following proposition generalizes Theorem 1 of Hüsler and Piterbarg [163]; it is left
to the reader to check that the formulas indeed coincide when φ(t) = ctβ for some c > 0.
Although no condition of the type (5.9) appears in [163], it is implicitly present; the process
Z̃ in [163] is claimed to satisfy condition (E3) on page 19 of [257].

Proposition 5.5 Let Y be self-similar with Hurst parameter H, and let µ satisfy M1–M4
for some β > H. If (5.8) and (5.9) hold, then

P

(
sup
t≥0

Yµ(t) − t > u

)
∼ HBι̃τ

CH,β,1,ι̃τ
µ(u)H

u←−τ
(
µ(u)H

u

)Ψ

(
inf
t≥0

u(1 + t)

µ(ut)H

)
.

Proof. Note that by (5.8), for δ with δ(u) = o(u),

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

∣∣∣∣∣∣

Var
(

Yµ(us)/µ(u)

(µ(us)/µ(u))H − Yµ(ut)/µ(u)

(µ(ut)/µ(u))H

)

τ2(|µ(us)β − µ(ut)β |/µ(u)β)
− 1

∣∣∣∣∣∣
= 0.

The self-similarity implies

Var

(
Yµ(us)/µ(u)

(µ(us)/µ(u))H
− Yµ(ut)/µ(u)

(µ(ut)/µ(u))H

)
= Var

(
Yµ(us)

µ(us)H
− Yµ(ut)

µ(ut)H

)
,

so that (5.4) holds for ν(t) = µ(t)β and the τ of (5.8); then we have N1 and N2 as a consequence
of the assumption that M1–M3 hold. Moreover, it is trivial that σ2(t) = t2H satisfies S1–S3.
We now show that S4 holds. By the self-similarity, for any T > 0,

sup
s,t∈(0,T ]

Var(Yus − Yut)
u2H |s− t|γ = T 2H−γ sup

s,t∈(0,1]

Var(Ys − Yt)
|s− t|γ ,

so that the first condition of S4 is satisfied due to (5.9). As for the second point, by the
self-similarity and the reasoning in the proof of Lemma 5.3, it suffices to show that for large T

lim sup
u→∞

µ(u)2H

u2
log P

(
sup
t≥T/2

Yt1/β

1 + tω
>

u

µ(u)H

)
< −1

2

(1 + t∗)2

(t∗)H/β
,

for some ω satisfying H/β < ω < 1. This follows from Borell’s inequality (Lemma 3.3) once it
has been shown that Yt/t

ωβ → 0 as t→∞. We use a reasoning as in Lemma 4.13 to see that
this is the case. First, one can exploit the fact that ωβ > H to establish limk→∞ Y2k/2kωβ = 0
by the Borel-Cantelli lemma. It then suffices to show that also Zk/2

kωβ → 0, where Zk :=
sups∈[2k,2k+1] |Ys−Y2k |. Note that Zk has the same distribution as 2kHZ0 by the self-similarity
of Y . The almost sure convergence follows again from the Borel-Cantelli lemma: for α, ε > 0,

∑

k

P(Zk/2
kωβ > ε) ≤

∑

k

P(Z0 > ε2k(ωβ−H)) ≤
∑

k

exp
(
−αε222k(ωβ−H)

)
E exp

(
αZ2

0

)
.

If one chooses α > 0 appropriately small, E exp
(
αZ2

0

)
is finite as a consequence of Borell’s

inequality (Lemma 3.3; it can be applied since Y is continuous).
In conclusion, case D applies and the asymptotics are given by Theorem 5.1. ¤

Hüsler and Piterbarg [163, Sec. 3] also consider a class of Gaussian processes that behave
somewhat like self-similar processes. Although we do not work this out, this class is also
covered by (case D of) Theorem 5.1; note that their condition (18) is a special case of (5.4),
for ν(t) = t.
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5.3.3 Examples

We now work out some examples that appear in the literature. In all examples, we obtain
extensions of what is known already. For Gaussian integrated processes (Section 5.3.3), we
also remove some technical conditions.

Fractional Brownian motion

In some sense, fractional Brownian motion (fBm) is the easiest instance of a process Y that fits
into the framework of Proposition 5.4. Indeed, the variance function σ2 of fBm is the canonical
regularly varying function, σ2(t) = t2H for some H ∈ (0, 1).

A fractional Brownian motion BH is self-similar in the sense of (5.7). Therefore, it can
appear as a weak limit of a time- and space-scaled process; for examples, see Chapter 4 and
[306]. The increments of a fractional Brownian motion are long-range dependent if and only
if H > 1/2, i.e., the covariance function of the increments on an equispaced grid is then
nonsummable. For more details on long-range dependence and an extensive list of references,
see Doukhan et al. [122].

As fBm is both self-similar and has stationary increments, the asymptotics can be obtained
by applying either Proposition 5.4 or Proposition 5.5. Interestingly, this implies that it should
be possible to write the formulas in the three cases of Proposition 5.4 as a single formula for
fBm. The proof given below is based on Proposition 5.4, but the reader easily verifies that
Proposition 5.5 yields the same formula; one then uses the fact that

(
β −H
β

)1/β

CH,β,1/β,H =
β −H
βH

CH,β,1,H .

Note that fBm is the only process for which both Proposition 5.4 and 5.5 can be applied: it is
the only Gaussian self-similar process with stationary increments.

Corollary 5.6 Let BH be a fractional Brownian motion with Hurst parameter H ∈ (0, 1). If
µ satisfies conditions M1–M4 for some β > H, then

P

(
sup
t≥0

BH(µ(t))− t > u

)
∼ HBH

CH,β,1/β,H

(
β −H
H

)1/β
u1/H−1

µ(u)1−H
Ψ

(
inf
t≥0

u(1 + t)

µ(ut)H

)
.

Proof. First note that µ(u)2H/u has a limit in [0,∞] as a consequence of M2. If µ(u)2H/u
tends to either zero or infinity, the formula follows readily from Proposition 5.4 by setting
σ2(t) = t2H (so that λ = H in case C). In case µ(u)2H/u → G ∈ (0,∞), the generalized
Pickands’ constant can be expressed in a classical one by exploiting the self-similarity of BH ;
one easily checks that H(

√
2/G)BH

= (
√

2/G)1/HHBH
. Now note that β = 2H and that

µ(u)H+1

u
∼ G1/H u1/H−1

µ(u)1−H
,

and the assertion follows. ¤

For a standard Brownian motion (H = 1/2), Pickands’ constant equals HB1/2
= 1, so that

the formula reduces to

P

(
sup
t≥0

Bµ(t) − t > u

)
∼ 2
√

2πβ(2β − 1)
1
2 (1/β−3) u√

µ(u)
Ψ

(
inf
t≥0

u(1 + t)√
µ(ut)

)
. (5.10)

This probability has been extensively studied in the literature; the whole distribution of
supt≥0Bµ(t) − t is known in a number of cases. We refer to some recent contributions
[82, 128, 158] for background and references.
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The tail asymptotics for supt≥0Bµ(t) − t are studied in Dȩbicki [86], but we believe that
formula (5.10) does not appear elsewhere in the literature.

Gaussian integrated process

A Gaussian integrated process Y has the form

Yt =

∫ t

0

Zsds, (5.11)

where Z is a centered stationary Gaussian process with covariance function R, see Section 3.3.
We suppose that R be ultimately continuous and that R(0) > 0. It is easy to see that

σ2(t) = 2

∫ t

0

∫ s

0

R(v)dvds.

In the literature, µ is assumed to be of the form µ(t) = t/c for some c > 0, so that M1–M4
obviously hold. For an easy comparison, we also adopt this particular choice for µ here (ele-
mentary scaling arguments show that we may have assumed c = 1 without loss of generality).
Evidently, the results of this chapter allow for much more general drift functions, and the
reader has no difficulties to write out the corresponding formula.

The structure of the problem ensures that S2 and S3 hold, and that σ(t) ≤ Ctγ for some

C, γ > 0 since σ2(t)/t2 = 2
∫ 1

0

∫ s
0
R(tv)dvds tends to R(0) as t ↓ 0.

Short-range dependent case

A number of important Gaussian integrated processes have short-range dependent charac-
teristics. Perhaps the most well-known example is an Ornstein-Uhlenbeck process, for which
R(t) = exp(−αt), where α > 0 is a constant. Dȩbicki and Rolski [96] study the more general
case where Z = r′X for some k-vector r and X is the stationary solution of the stochastic
differential equation

dXt = AXtdt+ σdWt,

for k× k matrices A, σ (satisfying certain conditions) and a standard k-dimensional Brownian
motion W . Then R(t) = r′ΣetA

′
r for some covariance Σ.

By stating that a Gaussian integrated process is short-range dependent, we mean that
R := limt→∞

∫ t
0
R(s)ds exists as a strictly positive real number and that R is integrable, i.e.,∫∞

0
|R(s)|ds <∞. We can now specialize Proposition 5.4 to this case.

Corollary 5.7 Let Y be a Gaussian integrated process with short-range dependence. Then

P

(
sup
t≥0

Yt − ct > u

)
∼ H c√

2RY
√
π

2
√
R

c3/2
√
uΨ


inf
t≥0

u(1 + ct)√
2
∫ ut
0

∫ s
0
R(v)dvds


 . (5.12)

Proof. By the existence of R, continuity of t 7→
∫ t
0
R(s)ds, and bounded convergence, we have

lim
t→∞

σ2(t/c)

t
=

2

c
lim
t→∞

∫ 1

0

∫ st

0

R(v)dvds =
2R
c
<∞,

so that S1 holds with H = 1/2 and we are in the second case of Proposition 5.4 with G =
2R/c. ¤
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Notice that Corollary 5.7 is a modest generalization of the results of Dȩbicki [87]. To see
this, note that (5.12) is asymptotically equivalent with

H c√
2RY
R
c2

exp

(
−1

4
inf
t≥0

u2(1 + ct)2∫ ut
0

∫ s
0
R(v)dvds

)
,

since t∗ = H/(β − H) = 1 and
√
uσ(u) ∼

√
2Ru. Proposition 6.1 of [87] shows that this

expression is in agreement with the findings of [87]. In the present context, we also mention
the recent contribution of Kobelkov [193].

Long-range dependent case

Consider a Gaussian integrated process as in (5.11), but now with a covariance function R
that is regularly varying at infinity with index 2H−2 for some H ∈ (1/2, 1) (in addition to the
regularity assumptions above). Since there is so much long-term correlation that

∫∞
0
|R(t)|dt =

∞, the process is long-range dependent. The motivation for studying this long-range dependent
case stems from the fact that it arises as a limit in heavy traffic of ON/OFF fluid models with
heavy-tailed ON-periods or OFF-periods, see Section 1.3.2.

By the direct half of Karamata’s theorem (Lemma 2.5), we have for t→∞,

σ2(t) = 2

∫ t

0

∫ s

0

R(v)dvds ∼ t
∫ t
0
R(v)dv

H
∼ t2R(t)

H(2H − 1)
.

Therefore, since H > 1/2, we have σ2(t)/t→∞ and we are in the first case of Proposition 5.4.

Corollary 5.8 Let Y be a Gaussian integrated process with long-range dependence. Then

P

(
sup
t≥0

Yt − ct > u

)
∼ HBH

ĈH
u
√
R(u)

←−τ (uR(u))
Ψ


inf
t≥0

u(1 + ct)√
2
∫ ut
0

∫ s
0
R(v)dvds


 ,

where←−τ denotes an asymptotic inverse of t 7→ t
√
R(t) (at infinity) and the constant ĈH equals

CH,1,1,Hc
1−H 1−H

H [H(2H − 1)]
1

2H − 1
2 .

The case of a Gaussian integrated process with long-range dependence is also studied by
Hüsler and Piterbarg [164]. The reasoning following Equation (7) of [164] shows that the
formulas are the same (up to the constants; we leave it to the reader to check that these
coincide).

5.4 A variant of Pickands’ lemma

In this section, we present a generalization of Pickands’ lemma (Lemma 3.6). As we need
a field version of this lemma, we let time be indexed by Rn for some n ≥ 1, and we write
t = (t1, . . . , tn).

Given an even functional ξη : Rn → R (i.e., ξη(t) = ξη(−t) for t ∈ Rn), we define the
centered Gaussian field η by its covariance

Cov(ηs, ηt) = ξη(s) + ξη(t)− ξη(s− t), (5.13)

provided it is a proper covariance in the sense that the field η exists.
A central role in the lemma is played by functions gk, ξη, and θk. These functions are in

principle arbitrary, but they are assumed to satisfy certain conditions, which we now formu-
late. To get some feeling for these conditions, the reader may want to look in the proof of
Lemma 5.10, for instance, to see how the functions are chosen in a particular situation.
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Throughout, {Ku} denotes a nondecreasing family of countable sets (say Ku ⊂ Z), and

{X(u,k)
t

: t ∈ [0, T ]n}, u ∈ N, k ∈ Ku denotes a collection of centered continuous Gaussian
fields on [0, T ]n for some fixed T > 0. We suppose that X (u,k) has unit variance. It is important
to note that we do not assume stationarity of the X (u,k). The following conditions are imposed.

P1 infk∈Ku
gk(u)→∞ as u→∞,

P2 for some even functional ξη, supk∈Ku
|θk(u, s, t)− 2ξη(s− t)| → 0 for any s, t ∈ [0, T ]n,

P3 for some γ1, . . . , γn > 0,

lim sup
u→∞

sup
k∈Ku

sup
s,t∈[0,T ]n

θk(u, s, t)∑n
i=1 |si − ti|γi

<∞,

P4 t 7→ g2
k(u)Cov

(
X

(u,k)
t

, X
(u,k)
0

)
is uniformly continuous in the sense that

lim
ε→0

lim sup
u→∞

sup
k∈Ku

sup
|s−t|<ε

s,t∈[0,T ]n

g2
k(u)Cov

(
X(u,k)

s −X(u,k)
t

, X
(u,k)
0

)
= 0.

We use the following lemma in Section 5.6 for n = 1 to establish the upper bound, and in
Section 5.7 for n = 2 to establish the lower bound. The main assumption of the lemma is that

Cov
(
X

(u,k)
s , X

(u,k)
t

)
tends uniformly to 1 at rate 2θk(u, s, t)/g

2
k(u) as u→∞.

Lemma 5.9 Suppose there exist functions gk, ξη, and θk satisfying P1–P4. If

lim
u→∞

sup
k∈Ku

sup
s,t∈[0,T ]n

s6=t

∣∣∣∣∣∣
g2
k(u)

Var
(
X

(u,k)
s −X(u,k)

t

)

θk(u, s, t)
− 1

∣∣∣∣∣∣
= 0, (5.14)

then for any k ∈ ⋃uKu, as u→∞,

P

(
sup

t∈[0,T ]n
X

(u,k)
t

> gk(u)

)
∼ Hη([0, T ]n)Ψ(gk(u)), (5.15)

where

Hη([0, T ]n) = E exp

(
sup

t∈[0,T ]n

√
2ηt − ξη(t)

)
.

Moreover, we have

lim sup
u→∞

sup
k∈Ku

P

(
supt∈[0,T ]n X

(u,k)
t

> gk(u)
)

Ψ(gk(u))
<∞. (5.16)

Proof. The proof is based on a standard approach in the theory of Gaussian processes; see
for instance (the proof of) Lemma D.1 of Piterbarg [257].

First note that

P

(
sup

t∈[0,T ]n
X

(u,k)
t

> gk(u)

)

=
1√

2πgk(u)
exp

(
−1

2
g2
k(u)

)∫

R

exp(w) exp

(
−1

2

w2

g2
k(u)

)

× P

(
sup

t∈[0,T ]n
X

(u,k)
t

> gk(u)

∣∣∣∣X
(u,k)
0

= gk(u)−
w

gk(u)

)
dw.
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For fixed w, we set χu,k(t) := gk(u)[X
(u,k)
t

− gk(u)] + w, so that the conditional probability
that appears in the integrand equals P(supt∈[0,T ]n χu,k(t) > w|χu,k(0) = 0).

We first study the field χu,k|χu,k(0) = 0 as u → ∞, starting with the finite-dimensional
(cylinder) distributions. These converge uniformly in k ∈ Ku to the corresponding distributions

of
√

2η − ξη. To see this, we set vu,k(s, t) := Var(X
(u,k)
s − X(u,k)

t
), so that by P1, P2, and

(5.14), uniformly in k ∈ Ku,

E[χu,k(t)|χu,k(0) = 0] = −1

2
g2
k(u)vu,k(0, t) +

1

2
wvu,k(0, t)

= −1

2
θk(u,0, t)(1 + o(1)) + o(1)→ −ξη(t),

and similarly, also uniformly in k ∈ Ku,

Var(χu,k(s)− χu,k(t)|χu,k(0) = 0)

= g2
k(u)vu,k(s, t)−

1

4
g2
k(u) [vu,k(0, t)− vu,k(0, s)]2

= θk(u, s, t)(1 + o(1)) + o(1)→ 2ξη(s− t).

Denoting the law of a field X by L(X), we next show that the family {L(χu,k|χu,k(0) = 0) :
u ∈ N, k ∈ Ku} is tight. Since t 7→ E(χu,k(t)|χu,k(0) = 0) is uniformly continuous in the sense
that P4 holds, it suffices to show that the family of centered distributions is tight. We denote
the centered χu,k by χ̃u,k, i.e., χ̃u,k(t) := χu,k(t) − E[χu,k(t)|χu,k(0) = 0]. It is important to
notice that L(χ̃u,k|χ̃u,k(0) = 0) does not depend on w.

To see that {L(χ̃u,k|χ̃u,k(0) = 0) : u ∈ N, k ∈ Ku} is tight, observe that for u large enough,
uniformly in s, t ∈ [0, T ]n and k ∈ Ku, we have

Var(χ̃u,k(s)− χ̃u,k(t)|χ̃u,k(0) = 0) ≤ g2
k(u)vu,k(s, t) ≤ 2θk(u, s, t).

By P3, there exist constants γ1, . . . , γn, C
′ > 0 such that, uniformly in s, t ∈ [0, T ]n and

k ∈ Ku,

Var(χ̃u,k(s)− χ̃u,k(t)|χ̃u,k(0) = 0) ≤ C ′
n∑

i=1

|si − ti|γi ,

provided u is large enough. As a corollary of Theorem 1.4.7 in Kunita [204], we have the
claimed tightness.

Since the functional x ∈ C([0, T ]n) 7→ supt∈[0,T ]n x(t) is continuous in the topology of
uniform convergence, the continuous mapping theorem yields for w ∈ R,

lim
u→∞

P

(
sup

t∈[0,T ]n
χu,k(t) > w

∣∣∣∣∣χu,k(0) = 0

)
= P

(
sup

t∈[0,T ]n

√
2ηt − ξη(t) > w

)
.

Using
∫

R
ewP(supt∈[0,T ]n

√
2ηt− ξη(t) > w)dw = Hη([0, T ]n) and (3.2), this proves (5.15) once

it has been shown that the integral and limit can be interchanged.
The dominated convergence theorem and Borell’s inequality (Lemma 3.3) are used to see

that this can indeed be done. For arbitrary δ > 0 and u large enough,

sup
k∈Ku

sup
t∈[0,T ]n

E[χu,k(t)|χu,k(0) = 0] ≤ δ|w|,

sup
k∈Ku

sup
t∈[0,T ]n

Var[χu,k(t)|χu,k(0) = 0] ≤ 2 sup
k∈Ku

sup
t∈[0,T ]n

θk(u, t,0),
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and the latter quantity remains bounded as u → ∞ as a consequence of P3; let ξη denote an
upper bound. Observe that for a ∈ R, again by the continuous mapping theorem, we have

lim
u→∞

sup
k∈Ku

P

(
sup

t∈[0,T ]n
χ̃u,k(t) > a

∣∣∣∣∣χu,k(0) = 0

)
= P

(
sup

t∈[0,T ]n

√
2ηt > a

)
.

Since η is continuous (as remarked below), one can select an a independent of w, u, k such
that the conditions for applying Borell’s inequality (Lemma 3.3) are fulfilled. Hence, for every
u, k, w,

P

(
sup

t∈[0,T ]n
χu,k(t) > w

∣∣∣∣∣χu,k(0) = 0

)
≤ 2Ψ

(
w − δ|w| − a

3ξη

)
.

When multiplied by exp(w) exp(− 1
2w

2/g2
k(u)), this upper bound is integrable with respect to

w for large u. This not only shows that the dominated convergence theorem can be applied, it
also implies (5.16). Indeed, using P1, we have

lim
u→∞

sup
k∈Ku

e−
1
2 g

2
k(u)

gk(u)Ψ(gk(u))
=
√

2π

by standard bounds on Ψ. ¤

One observation in the proof deserves to be emphasized, namely the existence and continuity
of η. If θk satisfies (5.14) and converges uniformly in k to some 2ξη as in P2, the analysis of the
finite-dimensional distributions shows that there automatically exists a field η with covariance
(5.13). Moreover, η has continuous sample paths as a consequence of P3 and P4 (i.e., the
tightness).

A number of special cases of Lemma 5.9 appear elsewhere in the literature. The best known
example is Lemma 3.6; it is obtained by letting Ku consist of only a single element for every

u, and by setting g(u) = u, X
(u)
t = Xu−2/αt, η = Bα/2 and ξη(t) = |t|α.

A generalization of Lemma D.1 in [257] to a stationary field {X(t) : t ∈ Rn} is given in
Lemma 6.1 of Piterbarg [257], and we now compare this generalization to Lemma 5.9. We use
the notation of [257]. Lemma 5.9 deals with the case A = 0 and T (in the notation of [257])
equal to [0, T ]n (in our notation). Again, let Ku consist of only a single element for every u,

and set g(u) = u, X
(u)
t

= Xg−1
u t

, and ξη(t) = |t|E,α. As the ideas of the proof are the same,
Lemma 5.9 can readily be extended to also generalize Lemma 6.1 of [257]. However, we do not
need this to derive the results of the present chapter.

Theorem 2.1 of Dȩbicki [87] can also be considered to be a special case of Lemma 5.9. There,

again, Ku consists of a single element, and X
(u)
(t1,...,tn) = 1√

n

∑n
i=1X

(u)
i (ti) for independent

processes X
(u)
i satisfying a condition of the type (5.14), but where θ does not depend on u.

Lemma 5.9 has some interesting consequences for the properties of Pickands’ constant. For
instance, Pickands’ constant is readily seen to be subadditive, i.e., for T1, T2 > 0 and n = 1,

Hη([0, T1 + T2]) ≤ Hη([0, T1]) +Hη([0, T2]),

with appropriate generalizations to the multidimensional case. This property guarantees that
the limit in (3.8) exists. For further properties of Pickands’ constant and references, we refer
to Section 3.3.

5.5 Four cases

We now specialize Lemma 5.9 to the four types of correlation structures introduced in Sec-
tion 5.2. Throughout this section, we suppose that S1 and M1 hold.



68 Chapter 5 Extremes of Gaussian processes

Let T > 0 be fixed, and write ITk (u) for the intervals [t∗u+kT∆(u)/u, t∗u+(k+1)T∆(u)/u],
where ∆ is some function that depends on the correlation structure, and ∆(u) = o(δ(u)).

5.5.1 Case A

We say that case A applies if A1, A2, T1, T2, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
←−τ
(√

2τ(ν(u))√
D

σ(µ(ut∗))

u(1 + t∗)

)
, (5.17)

where ←−τ denotes an asymptotic inverse of τ at infinity (this exists when T1 holds, see
Lemma 2.6). Note that the argument of ←−τ tends to infinity as a consequence of A2, and
that therefore ν(u)∆(u)/u → ∞. It is easy to check that ∆ is regularly varying with index
(H/β − 1)/ιτ + 1 < 1.

The next lemma shows that this particular choice of ∆ ‘balances’ the correlation structure
on the intervals ITk (u) (note that the interval ITk (u) depends on ∆).

Lemma 5.10 Let S1 and M1 hold and suppose that case A applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ ITk (u).

Then we have for u→∞,

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
∼ HBιτ

(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

where HBιτ
(T ) is defined as in (3.8). Moreover,

lim sup
u→∞

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

P

(
supt∈IT

k (u)
Yµ(ut)

σ(µ(ut)) >
u(1+t◦k(u))
σ(µ(ut◦k(u)))

)

Ψ
(
u(1+t◦k(u))

σ(µ(ut◦k(u)))

) <∞. (5.18)

Proof. The main argument in the proof is, of course, Lemma 5.9. Set

κk(u) :=

√
D
2

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

τ(ν̇(ut∗)∆(u))

τ(ν(u))

and note that by the UCT and (5.17),

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

sup
s,t∈IT

k (u)

∣∣κ2
k(u)− 1

∣∣→ 0.

Equation (5.3) implies that {A1}

sup
s,t∈[t∗u±δ(u)/u]

|s−t|≤T∆(u)/u

∣∣∣∣∣∣
2κ2

k(u)τ
2(ν(u))

Dτ2(ν̇(ut∗)∆(u))

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

2τ2(|ν(us)− ν(ut)|)/τ 2(ν̇(ut∗)∆(u))
− 1

∣∣∣∣∣∣
→ 0. (5.19)

The preceding display suggests certain choices for the functions gk and θk of Lemma 5.9, cf.
(5.14); we now show that P1–P4 are indeed satisfied.

As for P1, one readily checks that

gk(u) :=

√
2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))
=

u(1 + t◦k(u))

σ(µ(ut◦k(u)))
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tends to infinity uniformly in k. We set for s, t ∈ [0, T ] and − δ(u)
T∆(u) ≤ k ≤

δ(u)
T∆(u)

θk(u, s, t) := 2
τ2(|ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|)

τ2(ν̇(ut∗)∆(u))
.

To check that θk(u, s, t) converges uniformly in k as u → ∞, we note that by the mean value
theorem {N2} there exists some t∧k (u, s, t) ∈ [0, T ] such that

ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u)) = ∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])(s− t).

Now observe that we have for s, t ∈ [0, T ],

sup
k
|θk(u, s, t)− 2|s− t|2ιτ |

≤ sup
k

∣∣∣∣∣θk(u, s, t)− 2

(
ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)

)2ιτ

|s− t|2ιτ
∣∣∣∣∣

+ 2 sup
k

∣∣∣∣∣

(
ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)

)2ιτ

− 1

∣∣∣∣∣ |s− t|
2ιτ

=: I(u) + II(u).

As a consequence of the UCT {N1, N2}, we have

lim
u→∞

sup
s,t∈[0,T ]

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)
(s− t) = T. (5.20)

Since ν̇(u)∆(u) tends to infinity {A2}, this shows that I(u) is majorized by

sup
t∈[0,2T ]

∣∣∣∣
τ2(ν̇(ut∗)∆(u)t)

τ2(ν̇(ut∗)∆(u))
− t2ιτ

∣∣∣∣→ 0.

The term II(u) also tends to zero by the UCT. Hence, P2 holds with ξη(t) = |t|2ιτ , so that η
is a fractional Brownian motion with Hurst parameter ιτ .

A similar reasoning is used to check P3. Note that τ2(t)t−2γ′
is bounded on intervals of

the form (0, ·] {T2}, and that we may suppose that γ ′ < ιτ without loss of generality. Again
using (5.20) and the UCT, we observe that for large u,

sup
k

sup
s,t∈(0,T ]

s>t

θk(u, s, t)(s− t)−2γ′

= sup
k

sup
s,t∈(0,T ]
s>t

2
τ2 (∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])(s− t))

τ2(ν̇(ut∗)∆(u))
(s− t)−2γ′

≤ 2 sup
t∈
h
0,( 3

2 )
1/(2ιτ −2γ′)

T
i
τ2(ν̇(ut∗)∆(u)t)

τ2(ν̇(ut∗)∆(u))
t−2γ′

≤ 4T 2ιτ−2γ′
,

which is clearly finite (the factor 4 appears again in the proof of Lemma 5.18 below).
It remains to check P4. For this, it suffices to show that

lim sup
u→∞

sup
s,s′,t∈[t∗u±δ(u)/u]

sup
|s−t|<εT∆(u)/u

|s′−t|<εT∆(u)/u

g2
k(u)Cov

(
Yµ(us)

σ(µ(us))
− Yµ(us′)

σ(µ(us′))
,
Yµ(ut)

σ(µ(ut))

)
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vanishes as ε→ 0, and hence that

lim
ε→0

lim sup
u→∞

sup
s,t∈[t∗u±δ(u)/u]

|s−t|<ε∆(u)/u

g2
k(u)Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
= 0. (5.21)

For large u, by (5.19) and the mean value theorem, uniformly in s, t ∈ [t∗u ± δ(u)/u], we have

sup
|s−t|<ε∆(u)/u

g2
k(u)Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
≤ 4 sup

|s−t|<ε∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν̇(ut∗)∆(u))

≤ 4 sup
t<2ε∆(u)/u

τ2(uν̇(ut∗)t)

τ2(ν̇(ut∗)∆(u))

≤ 8(2ε)2ιτ → 0,

as ε→ 0.
Having checked that Lemma 5.9 can be applied, we use the definition of ∆(u) to see that

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
= P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

√
2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))

)

∼ HBιτ
(T )Ψ

(√
2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))

)

= HBιτ
(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

as claimed. ¤

5.5.2 Case B

Case B differs from the other cases in the sense that no (asymptotic) inverse is involved in the
definition of ∆. As a consequence, a nonclassical Pickands’ constant appears in the asymptotics.

We say that case B applies when B1, B2, T1, T2, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
. (5.22)

Moreover, we set

F :=
D(1 + t∗)2

2G2(t∗)2H/β
.

Under these assumptions, limu→∞ ν(u)∆(u)/u exists in (0,∞).

Lemma 5.11 Let S1 and M1 hold and suppose that case B applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤

δ(u)
T∆(u) , pick some t◦k(u) ∈ ITk (u). For

T large enough, we have for u→∞,

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
∼ HFτ2(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

where HFτ2(T ) is defined as in (3.8). Moreover, (5.18) holds.
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Proof. Define

κk(u) :=

√
D
2F

u(1 + t◦k(u))

τ(ν(u))σ(µ(ut◦k(u)))
,

which converges uniformly in k to 1 as a consequence of the fact that by B2,

2Fτ2(ν(u))

D =
(1 + t∗)2

G2(t∗)2H/β
τ2(ν(u)) ∼ u2(1 + t∗)2

σ2(µ(ut∗))
.

Therefore, as in Lemma 5.10, we have by (5.3),

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

k∈Z

sup
s,t∈IT

k (u)

∣∣∣∣∣∣
2Fκ2

k(u)τ
2(ν(u))

D
Var

(
Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

2Fτ2(|ν(us)− ν(ut)|) − 1

∣∣∣∣∣∣
→ 0.

Again, this should be compared to (5.14). Set gk(u) :=
√

2F/Dκk(u)τ(ν(u)), and

θk(u, s, t) := 2Fτ2(|ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|).
Obviously, P1 holds. We now check that P2 holds with ξη(t) = Fτ2(|t|). Let s, t ∈ [0, T ],
and observe that by the mean value theorem there exist t∧k (u, s, t) ∈ [0, T ] such that for every
ε > 0,

sup
k
|θk(u, s, t)− 2Fτ2(s− t)|

= 2 sup
k
|Fτ2(∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])|s− t|)−Fτ 2(|s− t|)|

≤ 2F sup
s∈[1−ε,1+ε]

sup
t∈[0,T ]

|τ2(st)− τ2(t)|

≤ 2F sup
s,t∈[0,2T ]

|s−t|≤εT

|τ2(s)− τ2(t)|,

where we used the definition of ∆ and the UCT. By continuity of τ {T1}, this upper bound
(which is a modulus of continuity) tends to zero as ε → 0. As for P3, the same arguments
show that for large T (by the UCT) {T1, T2}

sup
k

sup
s,t∈[0,T ]

θk(u, s, t)

|s− t|2γ′ ≤ 2F sup
t∈
h
0,( 3

2 )
1/(2ιτ −2γ′)

T
i
τ2(t)

t2γ′ ≤ 4FT 2(ιτ−γ′).

It remains to verify P4. As in the proof of Lemma 5.10, it suffices to show that (5.21) holds.
By again applying the UCT, one can check that for s, t ∈ [t∗u ± δ(u)/u],

sup
k

sup
|s−t|<ε∆(u)/u

g2
k(u)Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
≤ 2F sup

t∈[0,2ε]

τ2(t),

showing P4 since τ2 is continuous at zero.
In conclusion, Lemma 5.9 can be applied and therefore

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
= P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

√
2F
D κk(u)τ(ν(u))

)

∼ HFτ2(T )Ψ

(√
2F
D κk(u)τ(ν(u))

)

= HFτ2(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

as claimed. ¤
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5.5.3 Case C

We say that case C applies when C1–C3, T1, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
←−τ
(√

2τ(ν(u))√
D

σ(µ(ut∗))

u(1 + t∗)

)
, (5.23)

where ←−τ denotes an asymptotic inverse of τ at zero (which exists due to T1, see Lemma 2.6).
Here, the argument of←−τ tends to zero as a consequence of C2, and therefore ν(u)∆(u)/u→ 0.
Note that we do not impose T2, since it is automatically satisfied once C3 holds.

The following lemma is the analogue of Lemma 5.10 and Lemma 5.11 for case C.

Lemma 5.12 Let S1 and M1 hold and suppose that case C applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ ITk (u).

Then we have for u→∞,

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
∼ HBι̃τ

(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

where HBι̃τ
(T ) is defined as in (3.8). Moreover, (5.18) holds.

Proof. The proof is exactly the same as the proof of Lemma 5.10, except that now ιτ is
replaced by ι̃τ . ¤

5.5.4 Case D

We say that case D applies when D1, D2, N1, N2 hold and ∆ is given by

∆(u) :=
u

ιν(t∗)ιν−1
←−τ
(√

2σ(µ(ut∗))

u(1 + t∗)

)
. (5.24)

The local behavior is described by the following lemma.

Lemma 5.13 Let S1 and M1 hold and suppose that case D applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ ITk (u).

Then we have for u→∞,

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
∼ HBι̃τ

(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

where HBι̃τ
(T ) is defined as in (3.8). Moreover, (5.18) holds.

Proof. The arguments are similar to those in the proof of Lemma 5.10. Therefore, we only
show how the functions in Lemma 5.9 should be chosen in order to match (5.4) with (5.14).

Define for − δ(u)
T∆(u) ≤ k ≤

δ(u)
T∆(u) ,

κk(u) :=
uτ(ιν(t

∗)ιν−1∆(u)/u)(1 + t◦k(u))√
2σ(µ(ut◦k))

, gk(u) :=

√
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)
,

and

θk(u, s, t) := 2
τ2(ν(|ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|/ν(u))

τ2(ιν(t∗)ιν−1∆(u)/u)
.
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It follows from Lemma 5.9 with η = Bι̃τ that

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
= P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

√
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)

)

∼ HBι̃τ
(T )Ψ

( √
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)

)

= HBι̃τ
(T )Ψ

(
u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)
,

as claimed. ¤

5.6 Upper bounds

In this section, we prove the ‘upper bound’ part of Theorem 5.1 in each of the four cases. Since
the proof is almost exactly the same for each of the regimes, we only give it once by using the
following notation in both the present and the next section.

We denote the Pickands’ constants HBιτ
(T ), HDMτ2(T ), and HBι̃τ

(T ) by H(T ). The
abbreviation H := limT→∞H(T )/T is used for the corresponding limits. The definition of
∆ also depends on the regime; it is defined in (5.17), (5.22), (5.23), and (5.24) for the cases
A, B, C, and D, respectively. Note that the dependence on ∆ is suppressed in the notation

ITk (u) = [t∗u + kT∆(u)/u, t∗u + (k + 1)T∆(u)/u]. It is convenient to define tTk (u) and t
T
k (u) as

the left and right end of ITk (u) respectively. In the proofs of the upper and lower bounds, we
write

C :=
1

2

d2

dt2
(1 + t)2

t2H/β

∣∣∣∣
t=t∗

= (t∗)−2H/β−1. (5.25)

We start with an auxiliary lemma, which shows that it suffices to focus on local behavior
near t∗u. This observation is important since the lemmas of the previous section only yield local
uniformity (note that ITk (u) ⊂ [t∗u ± δ(u)/u] and δ(u) = o(u)).

Lemma 5.14 Suppose that S1–S4, and M1–M4 hold for some β > H. Let δ be such that
δ(u) = o(u) and σ(µ(u)) = o(δ(u)). Then we have

P

(
sup

t6∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)
= o

(
σ(µ(u))

∆(u)
Ψ

(
inf
t≥0

u(1 + t)

σ(µ(ut))

))
. (5.26)

Proof. The proof consists of three parts: we show that the intervals [0, ω], [ω, T ]\[t∗u± δ(u)/u]
and [T,∞] play no role in the asymptotics, where ω, T > 0 are chosen appropriately.

We start with the interval [T,∞). If T is chosen as in S4, this interval is asymptotically
negligible by assumption.

As for the remaining intervals, by S4 we can find some ε, C ∈ (0,∞), γ ∈ (0, 2] such that
for each s, t ∈ [0, (1 + ε)T 1/β ]

Var (Yus − Yut) ≤ Cσ2(u)|s− t|γ , (5.27)

where u is large. Starting with [0, ω], we select ω so that for large u,

sup
t∈[0,ω]

σ(µ(ut))

1 + t
≤ 1

2

σ(µ(ut∗u))

1 + t∗u
. (5.28)
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The main argument is Borell’s inequality, but we first have to make sure that it can be applied.
For a > 0, there exists constants cγ , C independent of u and a such that for large u, {M2}

P

(
sup
t∈[0,ω]

Yµ(ut)

σ(µ(u))(1 + t)
> a

)
≤ P


 sup
t∈
h
0,(µ(uω)

µ(u) )
β
i
Yµ(u)t1/β

σ(µ(u))
> a




≤ P

(
sup

t∈[0,2ω]

Yµ(u)t1/β

σ(µ(u))
> a

)

≤ 4 exp

(
−cγa

2

C

)
,

where the last inequality follows from (5.27) and Fernique’s lemma [211, p. 219] as γ ∈ (0, 2].
By choosing a sufficiently large, we have by Borell’s inequality (Lemma 3.3)

P

(
sup
t∈[0,ω]

Yµ(ut)

1 + t
> u

)
≤ 2Ψ


 1− aσ(µ(u))/u

supt∈[0,ω]
σ(µ(ut))
u(1+t)


 .

Since (5.28) holds, there exist constants K1,K2 <∞ such that

P

(
sup
t∈[0,ω]

Yµ(ut)

1 + t
> u

)
≤ K1 exp

(
−2

u2(1 + t∗u)
2

σ2(µ(ut∗u))
+K2

u(1 + t∗u)

σ(µ(ut∗u))

)
.

This shows that the interval [0, ω] is asymptotically negligible in the sense of (5.26).
We next consider the contribution of the set [ω, T ]\[t∗u± δ(u)/u] to the asymptotics. Define

σ(u) = sup
t∈[ω,T ]\[t∗u±δ(u)/u]

σ(µ(ut))

1 + t
= max

(
σ(µ(ut∗u − δ(u)))
1 + t∗u − δ(u)/u

,
σ(µ(ut∗u + δ(u)))

1 + t∗u + δ(u)/u

)
,

where the last equality holds for large u. Now observe that by the UCT {M1}, for large u,

P

(
sup

t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)
≤ P

(
sup

t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

σ(µ(ut))
>

u

σ(u)

)

≤ P


 sup
t∈[ω1/β/2,2T 1/β]

Yµ(u)t

σ(µ(u)t)
>

u

σ(u)


 .

In order to further bound this quantity, we use (5.27) and the inequality 2ab ≤ a2 + b2: for
s, t ∈

[
ω1/β/2, 2T 1/β

]
, {M2}

Var

(
Yµ(u)s

σ(µ(u)s)
− Yµ(u)t

σ(µ(u)t)

)
≤ Var

(
Yµ(u)s − Yµ(u)t

)

σ(µ(u)s)σ(µ(u)t)

≤ sup
v∈[ω1/β/2,2T 1/β ]

Var
(
Yµ(u)s − Yµ(u)t

)

σ2(µ(u)v)

≤ 21+2Hω−2H/β

σ2(µ(u))
Var

(
Yµ(u)s − Yµ(u)t

)

≤ K′|s− t|γ ,
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where K′ <∞ is some constant (depending on ω and T ). Hence, by Theorem D.4 of Piterbarg
[257] there exists a constant K′′ depending only on K′ and γ such that

P

(
sup

t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)
≤ TK′′

(
u

σ(u)

)2/γ

Ψ

(
u

σ(u)

)
.

Consider the expression

u2

C

(
(1 + t∗u + δ(u)/u)2

σ2(µ(ut∗u + δ(u)))
− (1 + t∗u)

2

σ2(µ(ut∗u))

)/[
δ(u)

σ(µ(u))

]2
, (5.29)

where C is given by (5.25). By Taylor’s mean value theorem {S3, M4}, there exists some
t# = t#(u) ∈ [t∗u, t

∗
u + δ(u)/u] such that this expression equals

δ2(u)

2C
d2

dt2
(1 + t)2

σ2(µ(ut))

∣∣∣∣
t=t#

/[
δ(u)

σ(µ(u))

]2
.

Recall that σ2(µ(·)) is regularly varying with index 2H/β > 0, and that (under the present
conditions) both its first and second derivative are regularly varying with respective indices
2H/β − 1 and 2H/β − 2. The UCT now yields

lim
u→∞

σ2(µ(u))

2

d2

dt2
(1 + t)2

σ2(µ(ut))

∣∣∣∣
t=t#

= C.

Since σ(µ(u)) = o(δ(u)), the expression in (5.29) converges to 1 as u→∞. Hence, we have

Ψ
(

u
σ(u)

)

Ψ
(
u(1+t∗u)
σ(µ(ut∗u))

) = exp

(
−1

2
C δ2(u)

σ2(µ(u))
(1 + o(1))

)
(1 + o(1)),

showing that the interval [ω, T ]\[t∗u ± δ(u)/u] plays no role in the asymptotics. ¤

We can now prove the upper bounds. In the proof, it is essential that σ(µ(u))/∆(u)→∞
in all four cases. To see that this holds, note that this function is regularly varying with index
(1 −H/β)(1/ιτ − 1) > 0 in case A and B (use ιν = (1 −H/β)/ιτ in the latter case). In case
C, the index of variation is

H

β
+ ιν − 1 +

1− ιτ ιν −H/β
ι̃τ

>

(
1− ιτ ιν −

H

β

)(
1

ι̃τ
− 1

)
> 0.

Finally, it is regularly varying with index (1−H/β)(1/ι̃τ − 1) > 0 in case D.
The upper bounds are stated in the following proposition.

Proposition 5.15 Let µ and σ satisfy assumptions M1–M4 and S1–S4 for some β > H.
Moreover, let case A, B, C, or D apply. We then have

lim sup
u→∞

P
(
supt≥0 Yµ(t) − t > u

)

σ(µ(u))
∆(u) Ψ

(
inft≥0

u(1+t)
σ(µ(ut))

) ≤ H
√

2π

C .

Proof. Select some δ such that δ(u) = o(u), σ(µ(u)) = o(δ(u)), ∆(u) = o(δ(u)), and u =
o(δ(u)ν(u)). While the specific choice is irrelevant, it is left to the reader that such δ exists in
each of the four cases. In view of Lemma 5.14, we need to show that

lim sup
u→∞

P

(
supt∈[t∗u±δ(u)/u]

Yµ(ut)

1+t > u
)

σ(µ(u))
∆(u) Ψ

(
u(1+t∗u)
σ(µ(ut∗u))

) ≤ H
√

2π

C .
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For this, note that by definition of t∗u and continuity of σ and µ, for large u,

P

(
sup

t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≤
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u

)

≤
∑

0≤k≤ δ(u)
T∆(u)

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + tTk (u))

σ(µ(utTk (u)))

)

+
∑

− δ(u)
T∆(u)

≤k<0

P

(
sup

t∈IT
k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t
T
k (u))

σ(µ(ut
T
k (u)))

)
. (5.30)

By Lemmas 5.10–5.13, the UCT, and (3.2), as u→∞,

∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)

P

(
supt∈IT

k (u)
Yµ(ut)

σ(µ(ut)) >
u(1+t

T
k (u))

σ(µ(ut
T
k (u)))

)

Ψ
(
u(1+t∗u)
σ(µ(ut∗u))

)

= H(T )
∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)




Ψ
(
u(1+t

T
k (u))

σ(µ(ut
T
k (u)))

)

Ψ
(
u(1+t∗u)
σ(µ(ut∗u))

) (1 + o(1))




= H(T )
∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)




exp
(
− 1

2
u2(1+t

T
k (u))2

σ2(µ(ut
T
k (u)))

)

exp
(
− 1

2
u2(1+t∗u)2

σ2(µ(ut∗u))

) (1 + o(1))


 . (5.31)

As in the proof of Lemma 5.14, one can show that, uniformly in k by the UCT,

u2

(
(1 + t

T
k (u))2

σ2(µ(ut
T
k (u)))

− (1 + t∗u)
2

σ2(µ(ut∗u))

)/
C
[
(k + 1)T∆(u)

σ(µ(u))

]2
→ 0,

where C is given in (5.25). Hence, (5.31) can be written as

H(T )

T

T∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)

[
exp

(
−1

2
C [(k + 1)T∆(u)]2

σ2(µ(u))
(1 + o(1))

)
(1 + o(1))

]
.

By Lemmas 5.10–5.13, the fact that σ(µ(u)) = o(u), and the dominated convergence theorem,
this tends to

H(T )

T

∫ ∞

0

exp

(
−1

2
Cx2

)
dx =

H(T )

T

√
π/2

C .

The second term in (5.30) is bounded from above similarly. Hence, we have shown that for
any T > 0,

lim sup
u→∞

∆(u)

σ(µ(u))

P

(
supt∈[t∗u+δ(u)/u]

Yµ(ut)

1+t > u
)

Ψ
(
u(1+t∗u)
σ(µ(ut∗u))

) ≤ H(T )

T

√
2π

C .

The claim is obtained by letting T →∞. ¤
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5.7 Lower bounds

In this section, we prove the ‘lower bound’ part of Theorem 5.1 using an appropriate modifi-
cation of the corresponding argument in the double sum method. For notational conventions,
see Section 5.6.

Proposition 5.16 Let µ and σ satisfy assumptions M1–M4 and S1–S4 for some β > H.
Moreover, let case A, B, C, or D apply. We then have

lim inf
u→∞

P
(
supt≥0 Yµ(t) − t > u

)

σ(µ(u))
∆(u) Ψ

(
inft≥0

u(1+t)
σ(µ(ut))

) ≥ H
√

2π

C .

The proof of this proposition requires some auxiliary observations, resulting in a bound on
probabilities involving the maximum on a two-dimensional field. The first step in establishing
those bounds is to study the variances; for this, it is convenient to introduce the notation

σ2
k,`(u) := inf

(s,t)∈IT
k (u)×IT

` (u)
Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)

and

σ2
k,`(u) := sup

(s,t)∈IT
k (u)×IT

` (u)

Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
.

Lemma 5.17 Suppose that one of the cases A, B, C, or D applies, and that both δ(u) = o(u)
and ∆(u) = o(δ(u)). Then there exist constants ζ ∈ (0, 2) and K ∈ (0,∞), independent of T ,
such that for large T the following holds. Given ε > 0, there exists some u0 such that for all

u ≥ u0 and all − δ(u)
T∆(u) ≤ k, ` ≤

δ(u)
T∆(u) with |`− k| > 1,

σ2
k,`(u) ≥ (1− ε)3K

[(
T (|k − `| − 1)

2

)ζ
− ε
]
σ2(µ(u))

u2
.

Moreover,
sup

− δ(u)
T∆(u)

≤k,`≤ δ(u)
T∆(u)

|k−`|>1

σ2
k,`(u)→ 0.

Proof. Let ε > 0 be given. By (5.3), the first claim is proven for case A, B, and C once it has

been shown that for large u, uniformly in α ∈
[
1, δ(u)

T∆(u)

]
,

inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν(u))

≥ (1− ε)2KD

[(
αT

2

)ζ
− ε
]
σ2(µ(u))

u2
,

since one can then set α = |k − `| − 1. By the mean value theorem {N2} we have, for certain
t∧(u, s, t) ∈ [t∗u ± δ(u)/u],

inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν(u))

= inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(uν̇(ut∧(u, s, t))|s− t|)
τ2(ν(u))

≥ inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥ 1
2αT∆(u)/u

τ2(uν̇(ut∗)|s− t|)
τ2(ν(u))

≥ inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
,
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where the first inequality follows from the UCT {N1}; the details are left to the reader.
We investigate the lower bound in each of the three cases. In case A, ν̇(ut∗)∆(u) tends to

infinity. By the UCT and the definition of ∆, we have for any α ≥ 1,

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ (1− ε)τ

2(ν̇(ut∗)∆(u))

τ2(ν(u))

[(
αT

2

)2ιτ

− ε
]

≥ (1− ε)2 2

D(1 + t∗)2
σ2(µ(ut∗))

u2

[(
αT

2

)2ιτ

− ε
]
.

Case C is similar, except that now ν̇(ut∗)∆(u) tends to zero (so that one can apply the UCT
as τ is continuous and regularly varying at zero):

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ (1− ε)2 2

D(1 + t∗)2
σ2(µ(ut∗))

u2

[(
αT

2

)2ι̃τ

− ε
]
.

In case B, we note that σ(µ(u))τ(ν(u)) ∼ Gu implies that for small ζ > 0, there exists some t0
such that for t ≥ t0, τ2(t) ≥ tζ . Therefore, for T large enough, since ν̇(ut∗)∆(u) = 1, uniformly
in α ≥ 1,

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ inf
t≥αT/2

tζ

τ2(ν(u))
=

(αT/2)ζ

τ2(ν(u))
≥ (1− ε)2

(
αT

2

)ζ
1

G2

σ2(µ(u))

u2
,

implying the stated.
We leave the proof of the assertion for case D to the reader; one then exploits the regular

variation of τ at zero and uses the definition of ∆.
To prove the second claim of the lemma in case A, B, and C, we use the mean value theorem

and the UCT: {N1, N2}

sup
s,t∈[t∗u±δ(u)/u]

Var

(
Yµ(us)

σ(µ(us))
− Yµ(ut)

σ(µ(ut))

)
∼ sup

s,t∈[t∗u±δ(u)/u]

Dτ2(|ν(us)− ν(ut)|)
τ2(ν(u))

≤ sup
s,t∈[t∗u±2δ(u)/u]

Dτ2(uν̇(ut∗)|s− t|)
τ2(ν(u))

= sup
t∈[0,2]

Dτ2(δ(u)ν̇(ut∗)t)

τ2(ν(u))
.

Since δ(u)ν̇(ut∗) tends to infinity by assumption, T1 implies that the latter expression is of
order τ2(δ(u)ν̇(u))/τ2(ν(u)). In particular, it tends to zero as u→∞.

We do not prove the claim for case D, since the same arguments apply. ¤

The next lemma exploits the two statements of Lemma 5.17 on the correlation structure.

Let κk,` be arbitrary functions of u which converge uniformly in − δ(u)
T∆(u) ≤ k, ` ≤ δ(u)

T∆(u) to

2(1 + t∗).

Lemma 5.18 Suppose that one of the cases A, B, C, or D applies, and that δ(u) = o(u).
There exist constants α,K′ < ∞, independent of k, `, such that for large u, uniformly in k, `
with |k − `| > 1,

P

(
sup

(s,t)∈IT
k (u)×IT

` (u)

Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))
>

uκk,`(u)

σ(µ(ut∗))

)
≤ K′TαΨ




uκk,`(u)
σ(µ(ut∗))√
4− σ2

k,`(u)


 . (5.32)



5.7 Lower bounds 79

Proof. Define

Y ∗
(s,t)(u) :=

Yµ(us)

σ(µ(us)) +
Yµ(ut)

σ(µ(ut))√
Var

(
Yµ(us)

σ(µ(us)) +
Yµ(ut)

σ(µ(ut))

) , u∗k,` =

uκk,`(u)
σ(µ(ut∗))√
4− σ2

k,`(u)
,

so that the left-hand side of (5.32) is majorized by

P

(
sup

(s,t)∈IT
k (u)×IT

` (u)

Y ∗
(s,t)(u) > u∗k,`

)
. (5.33)

As a consequence of (the second claim in) Lemma 5.17, we have for large u

inf
k,`

inf
(s,t)∈IT

k (u)×IT
` (u)

Var

(
Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))

)
≥ 2.

The remainder of the proof closely follows the reasoning on page 102 of Piterbarg [257]. In
particular, for (s, t), (s′, t′) ∈ ITk (u)× IT` (u), we have

Var
(
Y ∗

(s,t)(u)− Y ∗
(s′,t′)(u)

)

≤ 4Var

(
Yµ(us)

σ(µ(us))
− Yµ(us′)

σ(µ(us′))

)
+ 4Var

(
Yµ(ut)

σ(µ(ut))
− Yµ(ut′)

σ(µ(ut′))

)
. (5.34)

Define

υ(u) :=

{ √
2τ(ν(u))σ(µ(ut∗))

u(1+t∗) in case A, C and D;
1
2

√
2D in case B.

Now we have to distinguish between case D and the other cases. First we focus on the cases
A, B, and C; then one can use (5.3) to see that (5.34) is asymptotically at most

4
Dτ2(|ν(us)− ν(us′)|)

τ2(ν(u))
+ 4
Dτ2(|ν(ut)− ν(ut′)|)

τ2(ν(u))
. (5.35)

As shown in the proofs of Lemmas 5.10–5.12,

lim sup
u→∞

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

sup
(s,t)∈IT

k (u)

Dτ2(|ν(us)− ν(ut)|)
υ2(u)

(
u

∆(u)
(s− t)

)−2γ′

≤ 2Tα
′
,

where α′ = 2(ιτ − γ′) in case A and B, and α′ = 2(ι̃τ − γ′) in case C. Therefore, we find the
following asymptotic upper bound for (5.35) and hence for (5.34):

8Tα
′ υ2(u)

τ2(ν(u))

[(
u

∆(u)
(s− s′)

)2γ′

+

(
u

∆(u)
(t− t′)

)2γ′]
. (5.36)

We now show that (5.36) is also an asymptotic upper bound in case D. For this, we note that
in this case (5.34) is asymptotically at most

4τ2

( |ν(us)− ν(us′)|
ν(u)

)
+ 4τ2

( |ν(ut)− ν(ut′)|
ν(u)

)
,

and the reader can check with the mean value theorem and the UCT that (5.36) holds for
γ′ = ι̃τ/2 and α′ = ι̃τ (say).
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For any u, we now introduce two independent centered Gaussian stationary processes ϑ
(u)
1

and ϑ
(u)
2 . These processes have unit variance and covariance function equal to

r
(u)
ϑ (t) := Cov

(
ϑ

(u)
i (t), ϑ

(u)
i (0)

)
= exp

(
−32

υ2(u)

τ2(ν(u))
t2γ

′
)
.

Observe that υ2(u)/τ2(ν(u))→ 0 in each of the four cases, so that for s, t, s′, t′ ∈ [0, T ] and u
large enough,

Var

(
1√
2

[
ϑ

(u)
1 (s) + ϑ

(u)
2 (t)− ϑ(u)

1 (s′)− ϑ(u)
2 (t′)

])

= 2− exp

(
−32

υ2(u)

τ2(ν(u))
|s− s′|2γ′

)
− exp

(
−32

υ2(u)

τ2(ν(u))
|t− t′|2γ′

)

≥ 16
υ2(u)

τ2(ν(u))
|s− s′|2γ′

+ 16
υ2(u)

τ2(ν(u))
|t− t′|2γ′

.

We now apply Slepian’s inequality (Lemma 3.4) to compare the suprema of the two fields Y ∗

and 2−1/2
[
ϑ

(u)
1 + ϑ

(u)
2

]
: for − δ(u)

T∆(u) ≤ k, ` ≤
δ(u)
T∆(u) , (5.33) is majorized by

P

(
sup

(s,t)∈[0,T ]2

1√
2

[
ϑ

(u)
1 (Tα

′/(2γ′)s) + ϑ
(u)
2 (Tα

′/(2γ′)t)
]
> u∗k,`

)

= P

(
sup

(s,t)∈[0,Tα′/(2γ′)+1]2

1√
2

[
ϑ

(u)
1 (s) + ϑ

(u)
2 (t)

]
> u∗k,`

)
. (5.37)

Lemma 5.9 is used to investigate the asymptotics of (5.37), yielding the desired bound. For
notational convenience, we set T ′ = Tα

′/(2γ′)+1. Observe that the mapping

(α1, α2) 7→ [2− exp(−α1)− exp(−α2)]/[α1 + α2]− 1

is nonpositive and that the minimum over the set [0, θ]2 is achieved at (α1, α2) = (θ, θ).
Therefore,

sup
(s,t),(s′,t′)∈[0,T ′]2

∣∣∣∣∣∣
2− r(u)

ϑ (|s− s′|)− r(u)
ϑ (|t− t′|)

32 υ2(u)
τ2(ν(u)) [|s− s′|2γ′ + |t− t′|2γ′ ]

− 1

∣∣∣∣∣∣
= 1− 2− r(u)

ϑ (T ′)− r(u)
ϑ (T ′)

64 υ2(u)
τ2(ν(u)) (T

′)2γ′
,

which tends to zero if u→∞. Moreover, we have

sup
− δ(u)

T∆(u)
≤k,`≤ δ(u)

T∆(u)

∣∣∣∣∣
σ2(µ(ut∗))(u∗k,`)

2

u2(1 + t∗)2
− 1

∣∣∣∣∣→ 0.

To see that Lemma 5.9 can be applied, set gk,`(u) = u∗k,`, and

θk,`(u, s, s
′, t, t′) := 32(1 + t∗)2

u2υ2(u)

σ2(µ(ut∗))τ2(ν(u))

[
|s− s′|2γ′

+ |t− t′|2γ′
]
.

Condition P1 clearly holds, and θk,`(u, s, s
′, t, t′) tends to

2ξη(s, s
′, t, t′) :=





64
[
|s− s′|2γ′

+ |t− t′|2γ′
]

in case A, C, and D;

16(1+t∗)2

(t∗)2H/βG2

[
|s− s′|2γ′

+ |t− t′|2γ′
]

in case B,
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showing that P2 also holds. As P3 is immediate, it remains to investigate P4. The reasoning
in the proof of Lemma 5.10 shows that it suffices to have

lim
ε→0

lim sup
u→∞

sup
k,`

sup
|s−s′|2γ′+|t−t′|2γ′<ε

θk,`(u, s, s
′, t, t′) <∞,

which is trivial. Define for s, t ∈ [0, T ′],

η(s, t) := B1
γ′(s) +B2

γ′(t),

where B1
γ′ and B2

γ′ are independent fractional Brownian motions with Hurst parameter γ ′.
Then, the probability in (5.37) is asymptotically equivalent to




E exp
(
sup(s,t)∈[0,T ′]2 8η(s, t)− 32s2γ

′ − 32t2γ
′
)

Ψ(u∗k,`) in case A, C, D;

E exp
(
sup(s,t)∈[0,T ′]2

4(1+t∗)
(t∗)H/βG η(s, t)−

8(1+t∗)2

(t∗)2H/βG2

[
s2γ

′
+ t2γ

′
])

Ψ(u∗k,`) in case B.

By exploiting the self-similarity of fractional Brownian motion one can see that the expectation
equals (T ′)2K′ for some constant K′ <∞. ¤

Proof of Proposition 5.16. Note that

P

(
sup

t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≥
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
≤ u

)

=
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u

)

−
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
> u

)
. (5.38)

A similar reasoning as in the proof of Proposition 5.15 can be used to see that

lim
T→∞

lim inf
u→∞

∑
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

P

(
supt∈IT

k (u)
Yµ(ut)

1+t > u
)

σ(µ(u))
∆(u) Ψ

(
u(1+t∗u)
σ(µ(ut∗u))

) ≥ H
√

2π

C .

It remains to find an appropriate upper bound for the second term in (5.38). For this, observe
that

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
> u

)

≤ P


 sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u−
δ(u)

u ,tTk (u)−
√
T

∆(u)
u )∪(tTk (u)+

√
T

∆(u)
u ,t∗u+

δ(u)
u ]

Yµ(ut)

1 + t
> u




+ P


 sup
t∈[tTk (u)−

√
T

∆(u)
u ,tTk (u))

Yµ(ut)

1 + t
> u


+ P


 sup
t∈(tTk (u),t

T
k (u)+

√
T

∆(u)
u ]

Yµ(ut)

1 + t
> u




=: p1(u, k, T ) + p2(u, k, T ) + p3(u, k, T ).
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One can apply the arguments that are detailed in the proof of Proposition 5.15 to infer that

lim sup
u→∞

∑
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

p2(u, k, T )

σ(µ(u))
∆(u) Ψ

(
u(1+t∗u)
σ(µ(ut∗u))

) ≤
H
(√

T
)

T

√
2π

C ,

which converges to zero as T →∞. The term p3(u, k, T ) is bounded from above similarly.
We now study

∑
k p1(u, k, T ) in more detail; for this we need the technical lemmas that

were established earlier. Observe that it is majorized by

∑

− δ(u)
T∆(u)

≤k<`≤ δ(u)
T∆(u)

2P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈IT
` (u)

Yµ(ut)

1 + t
> u

)

+
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P


 sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t
k
u+

√
T

∆(u)
u ,t

k
u+(T+

√
T )

∆(u)
u ]

Yµ(ut)

1 + t
> u




+
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P


 sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[tku−(T+
√
T )

∆(u)
u ,tku−

√
T

∆(u)
u ]

Yµ(ut)

1 + t
> u




=: I(u, T ) + II(u, T ) + III(u, T ).

By symmetry, I(u, T ) is bounded from above by

2
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1,sup
t∈IT

k
(u)

σ(µ(ut))
1+t ≤sup

t∈IT
`

(u)
σ(µ(ut))

1+t

P

(
sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈IT
` (u)

Yµ(ut)

1 + t
> u

)
.

Each of the summands cannot exceed

P

(
sup

(s,t)∈IT
k (u)×IT

` (u)

Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))
> inf
t∈IT

k (u)

2u(1 + t)

σ(µ(ut))

)
,

and we are in the setting of Lemma 5.18. Hence, there exist constants K′, α such that I(u, T )
is majorized by

2K′Tα
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

Ψ


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k (u)
2u(1+t)
σ(µ(ut))√

4− σ2
k,`(u)


 . (5.39)

Since

−
inft∈IT

k (u)
u2(1+t)2

σ2(µ(ut))

1− 1
4σ

2
k,`(u)

≤ −1

4
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t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2
k,`(u)− inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
,

the summand in (5.39) is bounded from above by

exp

(
−1

8
inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2
k,`(u)

)
Ψ

(
inf

t∈IT
k (u)

u(1 + t)

σ(µ(ut))

)
(1 + o(1)),
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where the o(1) term is uniformly in k, ` as a consequence of the second claim of Lemma 5.17,
cf. Equation (3.2). By the first claim of Lemma 5.17 for ε = 1/2, say, and the UCT, there
exist constants K′′,K′′′, ζ such that

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

exp

(
−1

8
inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2
k,`(u)

)

≤
∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

exp
(
−K′′ [T ζ(|k − `| − 1)ζ − 2ζ−1

])

≤ 2eK
′′2ζ−1

∞∑

j=1

exp
(
−K′′T ζjζ

)

≤ K′′′ exp
(
−T ζ

)
.

Therefore, (5.39) cannot be not larger than

2K′K′′′Tα exp
(
−T ζ

) ∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

Ψ

(
inf

t∈IT
k (u)

u(1 + t)

σ(µ(ut))

)
(1 + o(1))

= 2

√
2π

C H(T )K′K′′′Tα exp
(
−T ζ

) σ(µ(u))

∆(u)
Ψ

(
u(1 + t∗u)

σ(µ(ut∗u))

)
(1 + o(1)),

where the last equality was shown in the proof of Proposition 5.15. Now first send u → ∞,
and then T → ∞ to see that I(u, T ) plays no role in the asymptotics. One can also see that
II(u, T ) and III(u, T ) can be neglected, but one needs suitable analogues of Lemma 5.17 and
Lemma 5.18 to see this. Except that there is no summation over `, the arguments are exactly
the same as for I(u, T ). Since it is notationally more involved, we leave this to the reader. ¤





CHAPTER 6

Reduced-load equivalence

In this chapter, we consider a queue fed by a number of independent heteroge-
neous Gaussian sources. We study under which conditions a reduced-load equiva-
lence holds, i.e., when a subset of the sources becomes asymptotically dominant as
the buffer size increases. For this, the results on extremes of Gaussian processes of
Chapter 5 are combined with de Haan theory. We explain how the results of this
chapter relate to square-root insensitivity and moderately heavy tails.

6.1 Introduction

Consider a fluid queue fed by the superposition of M independent stationary Gaussian sources
with mean input rate µ > 0. As seen in Section 1.1.3, if the buffer is drained at some constant
rate r > µ, the steady-state probability that the buffer content exceeds u is given by

P

(
sup
t≥0

M∑

i=1

Yi(t)− (r − µ)t > u

)
, (6.1)

where Yi is a centered separable Gaussian process with stationary increments, and the Yi are
independent. In Chapter 5, the asymptotics of this probability for u → ∞ have been found
under some regularity conditions.

As explained in Section 1.1.5, the probability (6.1) plays not only a role in queueing theory.
It is well-known that it can be interpreted alternatively as the ruin probability of an insurance
company with total premium rate r, initial capital u, and cumulative claim process

∑
i Yi(t)+

µt. The case M > 1 has recently attracted attention in the insurance literature under the name
‘perturbed risk models’. We mention in particular Huzak et al. [166], who study the influence
of a perturbation with stationary independent increments on the classical Cramér-Lundberg
process. We study this model in Section 12.4; see also [285, 310] for further examples and
references.

In this chapter, we consider a slightly more general setting than (6.1): we replace the ‘drift’
(r − µ)t by ctβ for some β, c > 0. We study the question in which cases only a subset of the
M input sources contribute to a high value of supt≥0

∑
i Yi(t)− ctβ , i.e., when for u→∞,

P

(
sup
t≥0

M∑

i=1

Yi(t)− ctβ > u

)
∼ P

(
sup
t≥0

∑

i∈S
Yi(t)− ctβ > u

)
, (6.2)
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where S ⊆ {1, . . . ,M}. We present necessary and sufficient conditions for (6.2), and we say
that we have reduced-load equivalence when (6.2) holds for some S 6= {1, . . . ,M}.

To explain the term ‘reduced-load equivalence’, consider two Gaussian sources with mean
input rates µ1 and µ2, and suppose the buffer is drained at rate r > µ1 + µ2. In the interval
[0, t], the input to the system is Y1(t) + µ1t+ Y2(t) + µ2t and the output is rt. Hence, if (6.2)
holds for c = r − µ1 − µ2, β = 1, and S = {1}, the system behaves asymptotically as if only
the first source is present and the buffer is drained at rate r − µ2. It is easy to see that the
new load µ1/(r − µ2) is smaller than the old load (µ1 + µ2)/r. The same reasoning applies if
one has more than two sources.

Our main assumptions are the following. First, the variance function σ2 of
∑
i Yi is supposed

to be regularly varying at infinity with index 2H ∈ (0, 2); see Section 2.1. Moreover, we must
impose that β ∈ (H, 2H); otherwise (6.2) cannot hold, since the key ingredient from Chapter 5,
Proposition 6.1 below, cannot be applied. As before, we write UCT for uniform convergence
theorem, which refers to either Theorem 2.3 or Corollary 2.4.

The motivation for pursuing our analysis stems from recent results on certain non-Gaussian
queueing models [5, 172, 175]. An interesting special case of the results in [175] is M = 2 and
Y1, Y2 being ON/OFF sources with exponentially distributed ON and OFF periods, except for
Y2; the latter process is supposed to have activity periods with a general distribution G. It
is then known that if the tail P (G > x) of G is heavier than exp(−x−1/2), the buffer content
behaves asymptotically as if the second source produces traffic at a constant rate equal to its
load. This does not hold if the tail of G is lighter than exp(−x−1/2). In a slightly different
setting, Zwart et al. [315] examine various scenarios that may then occur.

In our opinion, it is instructive to study the Gaussian case in detail for two reasons. First,
there is a vast body of literature on Gaussian processes, which makes this case relatively easy
to study; in the present context, we rely on the results given in Chapter 5. Moreover, one can
use the Gaussian case to ‘predict’ reduced-load-type behavior in other models. For instance,
the aforementioned critical exponent 1/2 also arises in the Gaussian framework, and a simple
formula shows how this quantity changes if the underlying source characteristics are altered,
cf. Theorem 6.2. We remark that this phenomenon plays no role when studying logarithmic
asymptotics, as seen in Chapter 4.

Our results are closely related to those of Zwart et al. [314]. While we present a condition
that is both necessary and sufficient, it is not clear that the sufficient condition for reduced-load
equivalence of [314] coincides with their necessary condition. Another difference is that only
the superposition of two Gaussian sources (M = 2) is studied in [314]. In conclusion, we prove
a condition that is at least as good as the condition of [314], but our condition is extremely
simple and easy to check.

Another related paper is Hüsler and Schmid [165]. They establish exact asymptotics of (6.1)
for M = 2. The difference with the present chapter is that we assume stationary increments
and allow general variance functions, while Hüsler and Schmid restrict the variance function
to be of the form

∑
i αit

2Hi but do not require stationarity of the increments. Another, more
fundamental, difference is the type of question we pose. Exact asymptotics for (6.1) have
already been established in Chapter 5 in the present setting, but here we focus on the reduced-
load equivalence (6.2).

The results in this chapter are readily adapted if ctβ is replaced by a regularly varying
function φ; the only reason for considering ctβ is to avoid cumbersome notation, cf. Assumptions
M1–M4 in Chapter 5. The case β 6= 1 may also be relevant in a queueing context; see [194].

Some words for the organization of this chapter. Section 6.2 describes the results, and
Section 6.3 gives some examples. The required proofs, which rely extensively on de Haan
theory (see Section 2.1), can be found in Section 6.4.
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6.2 Description of the result

We first introduce some notation. Let Y1, . . . , YM be independent centered Gaussian processes
with stationary increments. As indicated in Chapter 3, the finite-dimensional distributions are
then completely determined by their respective variance functions σ2

1 , . . . , σ
2
M : for s, t ≥ 0,

Cov(Yi(s), Yi(t)) =
1

2

[
σ2
i (s) + σ2

i (t)− σ2
i (|t− s|)

]
.

The sum of these processes is denoted by Y , so that Y has stationary increments and variance
function σ2 =

∑M
i=1 σ

2
i .

Given a subset S of {1, . . . ,M}, we set

σ2
S(t) :=

∑

i∈S
σ2
i (t),

and Sc := {1, . . . ,M}\S.
Now we formulate the assumptions on the variance functions.

S1 For i = 1, . . . ,M , σ2
i is continuous and regularly varying at infinity with index 2Hi for

some Hi ∈ (0, 1),

S2 for i = 1, . . . ,M , σ2
i is ultimately continuously differentiable and its first derivative σ̇2

i is
ultimately monotone,

S3 for i = 1, . . . ,M , σ2
i is ultimately twice continuously differentiable and its second deriva-

tive σ̈2
i is ultimately monotone,

S4 σ(t) ≤ Ctγ on a neighborhood of zero for some C, γ > 0.

Note that S1 implies that the variance function σ2 of the sum Y is regularly varying with
index 2H, with H := maxMi=1Hi. Define

S∗ := {i ∈ {1, . . . ,M} : σ2
i is regularly varying with index 2H},

as the family of indices with maximum index of variation.
We start with a simple consequence of Proposition 5.2. Note that for β = 1 the condition

β ∈ (H, 2H) is equivalent to H ∈ (1/2, 1).

Proposition 6.1 Let the σ2
i and σ2 satisfy S1–S4. For H ∈ (0, 1) and β ∈ (H, 2H), we have

for any S ⊇ S∗,

P
(
supt≥0 Y (t)− ctβ > u

)

supt≥0 P (Y (t)− ctβ > u)
∼

P
(
supt≥0

∑
i∈S Yi(t)− ctβ > u

)

supt≥0 P
(∑

i∈S Yi(t)− ctβ > u
) .

Proposition 6.1 shows that (6.2) holds if and only if

sup
t≥0

P

(
M∑

i=1

Yi(t)− ctβ > u

)
∼ sup

t≥0
P

(∑

i∈S
Yi(t)− ctβ > u

)
. (6.3)

The following theorem, which is the main result of this chapter, gives a simple necessary and
sufficient condition for this to hold. We emphasize that the theorem gives a statement for
any set S ⊇ S∗, but that one usually tries to find the smallest S for which a reduced-load
equivalence holds. The theorem is proven in Section 6.4.
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Theorem 6.2 Let S ⊇ S∗. Under the conditions of Proposition 6.1, the reduced-load equiva-
lence (6.2) holds if and only if

lim
u→∞

uσSc(u1/β)

σ2
S(u1/β)

= 0. (6.4)

To intuitively understand this result, it is important to gain insight into the optimizers on
both sides of (6.3). As for the left-hand side, we have

arg sup
t≥0

P

(
M∑

i=1

Yi(t)− ctβ > u

)
= arg inf

t≥0

u+ ctβ

σ(t)
=

(
u arg inf

t≥0

σ(u1/β)(1 + ct)

σ([ut]1/β)

)1/β

,

and by the regular variation of σ, it is plausible that the optimizer in the latter expression
tends to t∗ := arg inft≥0(1 + ct)/tH/β . The same reasoning applies to the right-hand side of

(6.3). Hence, suppose that both suprema in (6.3) be attained for t∗u = (ut∗)1/β , where t∗ > 0
is fixed. We then have a reduced-load equivalence if and only if

Ψ

(
u(1 + ct∗)

σ((ut∗)1/β)

)
∼ Ψ

(
u(1 + ct∗)

σS((ut∗)1/β)

)
,

where Ψ denotes the complementary distribution function of the standard normal distribution,
see (3.1). Standard estimates on Ψ show that this is equivalent to

lim
u→∞

[
u2(1 + ct∗)2

σ2
S((ut∗)1/β)

− u2(1 + ct∗)2

σ2((ut∗)1/β)

]
= lim
u→∞

u2(1 + ct∗)2

σ2
S((ut∗)1/β)

σ2
Sc((ut∗)1/β)

σ2((ut∗)1/β)
= 0,

which is readily seen to hold if and only if (6.4) holds.

6.3 Examples

In this section, we present two examples to illustrate Theorem 6.2. While the first deals with
two sources, the second shows that one may need a strictly larger set than S∗ for a reduced-load
equivalence to hold. In both examples we set β = 1.

6.3.1 An example with M = 2

The first example is related to Corollary 3.1 of [314]. Consider the sum of two processes, i.e.,
M = 2. Suppose that the variance functions satisfy σ2

1(u) ∼ C1u
2H1 and σ2

2(u) ∼ C2u
2H2 for

some constants C1, C2 > 0 and H1 > H2. Also suppose that H1 > 1/2. For instance, the first
process is a fractional Brownian motion with long-range dependent characteristics, and the
second process a standard Brownian motion or a short-range dependent Gaussian integrated
process (see Sections 1.3.2 and 5.3.3). Theorem 6.2 implies that a reduced-load equivalence
holds if and only if 2H1 > 1 +H2.

Of special interest is the case H2 = 1/2, in which the condition reduces to H1 > 3/4. Since
the tail of the probability on the right-hand side of (6.2) can be written as exp(−`(u)u2−2H1)
for some slowly varying function `, a reduced-load equivalence then holds if and only if the
exponent in this expression is smaller than 1/2. This is the connection with the discussion in
Section 6.1 on a model with ON/OFF sources. It illustrates that square-root insensitivity or
moderately heavy tails play an important role in situations with both short-range dependent
processes on the one hand and long-range dependent processes or subexponential variables on
the other hand; see, e.g., [5, 25, 56, 135, 174, 173, 175].
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It is interesting to note that the condition H1 > 3/4 also plays a role in a different problem
related to the superposition of two independent processes. Indeed, set σ2

1(u) := u2H1 and
σ2

2(u) := u for some H1 > 1/2; the distribution in C[0, T ] of Y1 + Y2 is absolutely continuous
to the distribution of Y1 (and vice versa) if and only if H1 > 3/4; otherwise they are singular.
These assertions are due to Cheridito [69]. From recent results of van Zanten [302], we conclude
that the appearance of 3/4 in both problems is not caused by some underlying principle.

6.3.2 The set S∗ is not always the dominant set

We now illustrate the fact that one may actually need a larger set than S∗ for a reduced-load
equivalence to hold. For simplicity, set M = 3 and suppose that Y1 is a fractional Brownian
motion BH1

with Hurst parameter H1, Y2 a fractional Brownian motion BH2
with Hurst

parameter H2, and Y3 a standard Brownian motion B (all mutually independent). Let H1 and
H2 satisfy

3

4
< H2 < H1 <

H2 + 1

2
.

It is easy to verify that Theorem 6.2 implies that the following does not hold:

P

(
sup
t≥0

BH1
(t) +BH2

(t) +B(t)− t > u

)
∼ P

(
sup
t≥0

BH1
(t)− t > u

)
.

Hence, BH1
alone does not determine the asymptotics, although S∗ = {1}. However, Theo-

rem 6.2 also shows that the following does hold:

P

(
sup
t≥0

BH1
(t) +BH2

(t) +B(t)− t > u

)
∼ P

(
sup
t≥0

BH1
(t) +BH2

(t)− t > u

)
,

i.e., the first two processes are asymptotically dominant.

6.4 Proof of Theorem 6.2

The proof consists of three steps. We first present an ‘intermediate’ necessary and sufficient
condition, which is not so explicit. In the second step, this condition is shown to be necessary
for (6.4), and the last step shows sufficiency.

For notational convenience, we set µ(t) := t1/β/c. Moreover, we let t∗ denote the argument
of the infimum of (1 + t)2/t2H/β over R+, i.e., t∗ = H/(β −H).

Step 1: auxiliary necessary and sufficient condition

Proposition 6.1 implies that (6.2) holds if and only if

lim
u→∞

[
inf
t≥0

u2(1 + t)2

σ2
S(µ(ut))

− inf
t≥0

u2(1 + t)2

σ2(µ(ut))

]
≤ 0. (6.5)

Let ε > 0 be small. In the first step of the proof, we show that the condition in the preceding
display is equivalent to

lim
u→∞

[
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

]
≤ 0, (6.6)

where we denoted the interval [t∗ − ε, t∗ + ε] by [t∗ ± ε]. We only show this for the second
infimum; a similar reasoning applies to the first.
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Select some (large) T > 0 such that

1

4
T 1−H/β ≥ 1 + t∗

(t∗)H/β
.

We start by showing that the infima in (6.5) can be taken over the interval [0, T ]. To see this,
note that for large u,

inf
t≥T

1 + t

σ(µ(ut))
≥ inf
t≥T

t

σ(µ(ut))
≥ 1

2

T 1−H/β

σ(µ(u))
≥ 2

1 + t∗

σ(µ(u))(t∗)H/β
≥ 1 + t∗

σ(µ(ut∗))
,

where the second inequality is a consequence of the UCT of Corollary 2.4 (indeed, the mapping
t 7→ t/σ(µ(t)) is locally bounded on [1,∞) and regularly varying with index 1 − H/β > 0).
The last inequality follows from the definition of regular variation.

Now we show that infima cannot be attained on [0, T ]\[t∗ ± ε] for large u. Choose some
η > 0 such that

(1 + η)

[
sup

t∈[0,T ]\[t∗±ε]

tH/β

1 + t
+ η

]
≤ (t∗)H/β

1 + t∗
,

which is possible since ε > 0. Again exploiting the local boundedness of σ2, by the UCT, we
have for large u,

inf
t∈[0,T ]\[t∗±ε]

1 + t

σ(µ(ut))
≥ inf

t∈[0,T ]\[t∗±ε]

1 + t

σ(µ(u))[tH/β + η]

≥ 1

σ(µ(u))
[
supt∈[0,T ]\[t∗±ε]

tH/β

1+t + η
]

≥ (1 + η)
1 + t∗

σ(µ(u))(t∗)H/β
,

which majorizes inft∈[t∗±ε](1 + t)/σ(µ(ut)) again by the UCT.

Step 2: (6.4) implies (6.6)

Before proving that (6.6) is equivalent to (6.4) by combining Step 2 and 3, we first make an
observation concerning the second-order behavior of the function σ2

S(µ(·))/σ2(µ(·)).
Observe that σ2 = σ2

Sc + σ2
S and that σ2

Sc(u)/σ2
S(u) → 0 since S ⊇ S∗, so that the

function σ2
S(µ(·))/σ2(µ(·)) lies in the de Haan class of σ2

Sc(µ(·))/σ2
S(µ(·)) with index 2(H −

maxi∈Sc Hi)/β, i.e., for t > 0,

σ2
S(µ(ut))

σ2(µ(ut))
− σ2

S(µ(u))

σ2(µ(u))
∼
(
1− t2(maxi∈Sc Hi−H)/β

) σ2
Sc(µ(u))

σ2
S(µ(u))

. (6.7)

We refer to Section 2.1 for more details.
Now we prove the sufficiency of (6.4). By (6.7), we have

inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

= inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

[
σ2
S(µ(u))

σ2(µ(u))
+ (1 + o(1))

(
1− t2(maxi∈Sc Hi−H)/β

) σ2
Sc(µ(u))

σ2
S(µ(u))

]
(6.8)

≥ σ2
S(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

+
σ2
Sc(µ(u))

σ2
S(µ(u))

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

(
1− t2(maxi∈Sc Hi−H)/β

)
(1 + o(1))

=: I(u) + II(u),
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and o(1) is uniform in t ∈ [t∗±ε] by the UCT for de Haan functions, see Theorem 2.8. Observe
that

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− I(u) =

(
1− σ2

S(µ(u))

σ2(µ(u))

)
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

=
σ2
Sc(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

=
u2σ2

Sc(µ(u))

σ4
S(µ(u))

σ2
S(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

.

The infimum tends to a constant in (0,∞) by the UCT, and the other terms tend to zero as a
consequence of (6.4). Step 2 is complete once it has been shown that II(u) tends to zero, or
equivalently that

lim
u→∞

σ2
Sc(µ(u))

σ2
S(µ(u))

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

(
1− t2(maxi∈Sc Hi−H)/β

)
= 0.

For this, note that the left-hand side equals

lim
u→∞

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

(
1− t2(maxi∈Sc Hi−H)/β

)

= lim
u→∞

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

(1 + t)2

t2H/β

(
1− t2(maxi∈Sc Hi−H)/β

)
,

by the UCT and the fact that 1 − t2(maxi∈Sc Hi−H)/β is bounded away from ±∞ on [t∗ ± ε].
Evidently, (6.4) implies that the limits in the preceding display are equal to zero.

Step 3: (6.6) implies (6.4)

Now suppose that (6.4) does not hold. Observe that

1− t2(maxi∈Sc Hi−H)/β ≤ 1− 1

2
(t∗)2(maxi∈Sc Hi−H)/β =: α < 1

for t ∈ [t∗ ± ε] if ε > 0 is small enough. Hence, for large u,

inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))
≤ inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

[
σ2
S(µ(u))

σ2(µ(u))
+ (α+ o(1))

σ2
Sc(µ(u))

σ2
S(µ(u))

]
,

so that by (6.8), for large u,

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

≥ u2σ2
Sc(µ(u))

σ4
S(µ(u))

[
σ2
S(µ(u))

σ2(µ(u))
− α+ o(1)

]
inf

t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

≥ 1− α
2

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

(1 + t)2

t2H/β
,

which does not converge to zero.
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CHAPTER 7

Background on simulation

In Part B of the thesis, we are interested in the simulation of probabilities that
arise from the large-deviation principle (LDP). Direct Monte Carlo simulation is
unsuitable in this context, since these probabilities are typically small. Importance
sampling is a technique that can resolve these difficulties by simulating under an
alternative measure, but the inherent problem is that an appropriate change of
measure should be selected. To do so, we give a criterion that ‘asymptotically’
minimizes the number of simulation replications, subject to a fixed, predefined
required accuracy (width of the confidence interval).

In this chapter, we introduce the basic notions that we use throughout Part B.
Moreover, we work out examples that illustrate the interplay between large-
deviation theory and rare-event simulation.

Suppose that the family {νε} satisfies the LDP with rate function I (see Section 2.3), and
let some rare event A ∈ B be given, where infx∈Ao I(x) > 0. We are interested in the simulation
of ν(A) := νε0(A) for some small ε0 > 0. Direct Monte Carlo simulation of ν(A) is based on the
proportion of samples for which the rare event A occurs under ν. The general rule is that, for
an estimate with a fixed relative precision, the required number of simulation runs is inversely
proportional to the probability to be estimated. Therefore, since νε(A) decays exponentially as
ε→ 0, this approach is unsuitable if ε0 is small. Indeed, much time is then spent by sampling
the uninteresting part of the sample space, i.e., the complement of A.

The idea of importance sampling is to sample from a different distribution, under which A
occurs more frequently. An unbiased estimator is obtained by weighing the simulation output
by likelihood ratios. However, it is usually nontrivial to select a good importance-sampling
distribution, and the challenge is to find the distribution that is in some sense ‘most effi-
cient’. A widely accepted efficiency criterion for discriminating between importance-sampling
distributions is asymptotic efficiency.

We start in Section 7.1 by reviewing importance sampling and asymptotic efficiency. By
giving two random-walk examples in Section 7.2, we explain how large-deviation theory can
help to select a good importance-sampling distribution.
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7.1 Importance sampling and asymptotic efficiency

7.1.1 Importance sampling

Let X be a topological space, equipped with some σ-field B containing the Borel σ-field. Given
a probability measure ν on (X ,B), we are interested in the simulation of the ν-probability of a
given event A ∈ B, where ν(A) is small. The main idea of importance sampling is to speed up
the simulation by working under a new probability measure λ on (X ,B), for which A occurs
more frequently. This is done by specifying a measurable function dλ/dν : X → [0,∞] and by
setting

λ(B) :=

∫

B

dλ

dν
dν.

Since λ must be a probability measure, dλ/dν should integrate to one with respect to ν.
In order to obtain an unbiased estimator of the desired rare event A, the samples (drawn

from λ) are weighed by the likelihood ratio (or Radon-Nikodym derivative) as follows. Assuming

the equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)
−1

and note that

ν(A) =

∫

A

dν

dλ
dλ =

∫

X
1A

dν

dλ
dλ,

where 1A is the indicator function of the event A. The importance-sampling estimator ν̂λ(A)
of ν(A) is found by drawing N independent samples X (1), . . . , X(N) from λ; then

ν̂λ(A) :=
1

N

N∑

i=1

1{X(i)∈A}
dν

dλ
(X(i)).

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A). However, since one has
the freedom to choose the importance-sampling distribution λ, it is of interest to select the
distribution that minimizes the variance of the resulting estimator, or, equivalently,

∫

A

(
dν

dλ

)2

dλ =

∫

X
1A

(
dν

dλ

)2

dλ =

∫

A

dν

dλ
dν.

A zero-variance estimator is found by letting λ be equal to ν conditioned on the rare event A
(see, e.g., Heidelberger [157]), but it is intractable since dν/dλ then depends on the unknown
probability ν(A). This motivates the use of another optimality criterion, asymptotic efficiency,
which is discussed in the next subsection.

We end this subsection by noting that importance sampling is not the only way to achieve
variance reduction (or to gain ‘efficiency’). For surveys on other techniques, we refer to
Glynn [149] and L’Ecuyer [212]. Interesting results have also been obtained with a splitting
method (sometimes called RESTART); see Glasserman et al. [145].

7.1.2 Asymptotic efficiency

Asymptotic efficiency is related to the so-called relative error. Consider an i.i.d. sample

X
(1)
λε
, . . . , X

(N)
λε

from an importance-sampling distribution λε. We define the relative error
ηN (λε, A) of the importance-sampling estimator

ν̂λε
(A)N :=

1

N

N∑

i=1

1n
X

(i)
λε

∈A
o dνε
dλε

(
X

(i)
λε

)
(7.1)
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as

ηN (λε, A) :=

√
Varλε

ν̂λε
(A)N

νε(A)
=

1√
N

√
Varλε

ν̂λε
(A)1

νε(A)
.

The relative error is proportional to the width of a confidence interval relative to the (expected)

estimate itself; hence, it measures the variability of ν̂λε
(A)N .

For asymptotic efficiency, the number of samples required to obtain a prespecified relative
error is not allowed to grow exponentially in 1/ε as ε→ 0. Set N ∗

λε
:= inf{N ∈ N : ηN (λε, A) ≤

ηmax}, for some given maximal relative error 0 < ηmax <∞.

Definition 7.1 An importance-sampling family {λε} is called asymptotically efficient if

lim
ε→0

ε logN∗
λε

= 0.

When an importance-sampling family is asymptotically efficient, we also say that the estimator
and the simulation method are asymptotically efficient. In the literature, asymptotic efficiency
is sometimes referred to as asymptotic optimality, logarithmic efficiency, or weak efficiency.
The following lemma provides an equivalent criterion, which is more convenient to work with.
Note that it also shows that the specific value of ηmax is irrelevant for asymptotic efficiency.

Lemma 7.2 An importance-sampling family {λε} is asymptotically efficient if and only if

lim
ε→0

ε log

∫
A

(
dνε

dλε

)2

dλε

νε(A)2
= 0. (7.2)

Proof. First note that by Jensen’s inequality, we have

∫

A

(
dνε
dλε

)2

dλε ≥ νε(A)2,

meaning that (7.2) is equivalent to lim supε→0 ε log
R

A( dνε
dλε

)
2
dλε

νε(A)2 ≤ 0. Using the definition of

ηN (λε, A), we obtain

N∗
λε

=

⌈
Varλε

ν̂λε
(A)1

η2
maxνε(A)2

⌉
.

Since N∗
λε
≥ 1, we have

lim sup
ε→0

ε log

∫
A

(
dνε

dλε

)2

dλε

νε(A)2
= lim sup

ε→0
ε log

(
N∗
λε

+
1

η2
max

)
= lim sup

ε→0
ε logN∗

λε
,

establishing the claim. ¤

Let us now discuss another characterization of asymptotic optimality, which applies under
a weak additional assumption. For this, note that

lim sup
ε→0

ε log

∫
A

(
dνε

dλε

)2

dλε

νε(A)2
≤ lim sup

ε→0
ε log

∫

A

(
dνε
dλε

)2

dλε − 2 lim inf
ε→0

ε log νε(A), (7.3)

with an equality if the limit limε→0 ε log νε(A) exists. It is sufficient for the existence of
this limit that A be an I-continuity set, as defined in Section 2.3. In that case, we have
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limε→0 ε log νε(A) = − infx∈A I(x). In many applications, A is indeed an I-continuity set, so
that asymptotic efficiency is equivalent to

lim sup
ε→0

ε log

∫

A

(
dνε
dλε

)2

dλε ≤ −2 inf
x∈A

I(x). (7.4)

In turn, this can be reformulated as limε→0 ε log
∫
A

(
dνε

dλε

)2

dλε = −2 infx∈A I(x) by Jensen’s

inequality. A closely related equivalent criterion is based on the relative efficiency

Eε :=
log
∫
A

(
dνε

dλε

)2

dλε

log νε(A)
. (7.5)

Whenever A is an I-continuity set, asymptotic efficiency is equivalent to limε→0Eε = 2.
Although the definition of asymptotic efficiency used here is mathematically convenient,

several other criteria for discriminating between estimators have been proposed. Notably, the
amount of time (or work) required to generate one simulation replication is not taken into
account in our definition of asymptotic efficiency. Glynn and Whitt [151] give a definition into
which this is incorporated; see also Glynn [149].

More details on importance sampling can be found in the fundamental paper by Glynn
and Iglehart [150] and in the survey papers by Asmussen and Rubinstein [30], and Heidel-
berger [157].

It is not always possible to study a system analytically and obtain a good importance-
sampling distribution as a result. In some situations, it is easier to find a good importance-
sampling distribution numerically. The cross-entropy method calculates such a distribution
iteratively by performing a simulation experiment in each iteration. We refer to Rubinstein
and Kroese [277] for an extensive account.

7.2 Examples: random walks

In this section, we discuss two examples for which the large-deviation theory of Section 2.3
is a powerful guide for choosing an importance-sampling family. This illustrates the close
connection between efficient simulation and large-deviation techniques. Both examples are
related to random walks; an introduction to their large-deviation behavior has been given in
Sections 2.3.1 and 2.3.2, and we use the same notation.

Let {Xn} be a sequence of i.i.d. centered random variables taking values in R, each with
distribution PX . We set S0 := 0 and, for n ≥ 1, Sn :=

∑n
i=1Xi. The process S := {Sn} is

called a random walk; more details can be found in Chapter 9 and Section 11.1.
We define the running-maximum process {Sn} of {Sn} as Sn := max0≤k≤n Sk. The global

maximum supn≥0 Sn is denoted by S; note that it is almost surely finite if EX1 < 0.

7.2.1 Cramér probabilities

Under the ‘light-tail’ assumption that 0 ∈ (dom ΛX)
o
, Cramér’s LDP (Proposition 2.16)

gives the (exponential) decay rate of the probability P(Sn ≥ γn) for some γ > EX1: if
γ ∈ (dom Λ∗

X)
o
, then [γ,∞) is a Λ∗

X -continuity set, and the LDP yields

lim
n→∞

1

n
log P(Sn ≥ γn) = −Λ∗

X(γ).

We remark that the assumption γ ∈ (dom Λ∗
X)

o
is not necessary for the existence of the above

limit; see Corollary 2.2.19 of Dembo and Zeitouni [100].
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However, it may occur that exp (−nΛ∗
X(γ)) or Lemma 2.17 give unsatisfactory approxima-

tions of P(Sn ≥ γn), for instance because n is ‘moderately large’ (see, e.g., Ganesh et al. [140,
Ch. 10]). In that case, one can resort to estimating this probability with importance sampling.

The observation that Sn/n satisfies the LDP suggests a useful importance-sampling distri-
bution, which we now describe. For any twist ξ ∈ R, we first define the exponentially twisted
distribution as

λξn(dx) := exp (nξx− nΛX(ξ)) P(Sn/n ∈ dx).
That is, λξn is the distribution of Sξn/n, where Sξn is a random walk with step-size distribution

λξ1(dx) = eξx−ΛX(ξ)PX(dx). Since γ ∈ (dom Λ∗
X)

o
, there exists a (unique) ξ∗ such that Λ∗

X(γ) =
ξ∗γ − ΛX(ξ∗). The next lemma shows the importance of the twist ξ∗; note that the mean of
Sξ

∗
n /n equals γ.

Lemma 7.3 Let γ ∈ (dom Λ∗
X)

o
. The importance-sampling family {λξ∗n } is asymptotically

efficient.

Proof. Since γ is a Λ∗
X -continuity set, we have

lim sup
n→∞

1

n
log

∫

[γ,∞)

exp (nΛX(ξ∗)− nξ∗x) P(Sn/n ∈ dx)

≤ lim sup
n→∞

1

n
log exp (nΛX(ξ∗)− nξ∗γ) P(Sn ≥ nγ) = −2nΛ∗

X(γ),

which is equivalent to asymptotic efficiency of {λξ∗n }, as observed in (7.4). ¤

For an in-depth study of stability issues related to the family {λξ∗n }, we refer to Sad-
owsky [278]. This lemma has been generalized into several directions: if X1, X2, . . . have a
special Markovian structure, the result is established by Bucklew et al. [64]. For generally
distributed Sn, Sadowsky and Bucklew [280] show that there exists an asymptotically efficient
exponential twist if the so-called Gärtner-Ellis theorem applies to {Sn/n}; this is also observed
by Szechtman and Glynn [292].

We now turn to a conditional limit theorem in the spirit of Section 4.2, which explains why
the exponentially twisted distribution λξ

∗
n is a good importance-sampling distribution. Recall

that δy denotes the Dirac measure at y.

Lemma 7.4 Let γ ∈ (dom Λ∗
X)

o
. The law 1

n

∑n
i=1 δXi

given Sn ≥ nγ converges weakly to λξ
∗

1

as n→∞.

Proof. Similar to the proof of Theorem 4.2 in Section 4.5.2. It relies on Sanov’s theorem, see
Theorem 6.2.10 in Dembo and Zeitouni [100]. Sanov’s theorem is an extension of Cramér’s
theorem (Proposition 2.16). A full proof does not fall within the scope of this chapter. ¤

Hence, intuitively, the step-size distribution is approximately λξ
∗

1 given that the rare event
{Sn ≥ nγ} occurs. In other words, it is highly likely that the sample path {Sk/n : k ≤ n}
is ‘close’ to {x∗(k/n) : k ≤ n}, where the deterministic path x∗ is given by x∗(t) = γt for
t ∈ [0, 1]. This is called the most likely path. As observed in Chapter 4, the most likely path is
not necessarily a straight line.

Interestingly, if Cramér’s condition 0 ∈ (dom ΛX)
o

fails, the simulation of P(Sn ≥ x)
is significantly harder, even for fixed n and X1 ≥ 0. We emphasize that there is a wide
class of distributions for which Cramér’s condition does not hold, such as the subexponential
distributions of Section 2.4. One of the earliest investigations of the problem in this heavy-
tailed context is the paper by Asmussen et al. [21]. A technique somewhat akin to exponential
twisting, hazard rate twisting, has also been investigated [54, 177]. It is still an active research
area; see Asmussen and Kroese [26] for a recent contribution.
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7.2.2 Level-crossing probabilities

In this subsection, we consider the simulation of the level-crossing probability P(S ≥ γn) for
γ > 0, where again n→∞. Suppose that EX1 < 0 and ΛX(ξ) <∞ for every ξ ∈ R. Note that
this requirement is stronger than Cramér’s condition 0 ∈ (dom ΛX)

o
, which becomes clear by

taking exponentially distributed step sizes. However, as argued in Section 2.3.2, this stronger
assumption can often be replaced by Cramér’s condition. To avoid trivialities, we also assume
that PX([0,∞)) > 0.

It can be seen that S/n satisfies the LDP in R+ with the good rate function I(x) :=
infτ>0 τΛ

∗
X(x/τ) and scale sequence {n}. This statement is a consequence of Mogul′skĭı’s

theorem (Proposition 2.18), the contraction principle (Lemma 2.15), and Theorem 1 of Ganesh
and O’Connell [139]; for more details we refer to [140, Ch. 6] and Section 9.2. An interesting
alternative characterization of the rate function I is I(x) = ξ0x, where

ξ0 := sup{ξ > 0 : ΛX(ξ) ≤ 0},
see Rockafellar [273, Thm. 13.5] or Ganesh et al. [140, Lem. 1.7].

Motivated by the asymptotic efficiency of an exponentially twisted distribution in the pre-
vious subsection, we further assume that ΛX(ξ0) = 0, and consider a random walk {S0

n} with

step-size distribution λξ
0

1 . Write τ0(x) := inf{n : S0
n ≥ x}. The convexity of ΛX implies that

this random walk has a positive drift, meaning that τ 0(γn) < ∞ almost surely. A natural
importance-sampling estimator arises by simulating the random walk {S0

n} until the level γn
is hit. This estimator has likelihood ratio

exp
(
−ξ0S0

τ0(γn)

)
. (7.6)

Although it seems that this choice is not covered by the framework of Section 7.1.2, this
problem can be circumvented by considering sample-path large deviations; Chapter 9 contains
a detailed discussion of this issue.

Lemma 7.5 Let ΛX(ξ0) = 0. The estimator with likelihood ratio (7.6) is asymptotically effi-
cient.

Proof. Observe that

1

n
log E exp

(
−2ξ0S0

τ0(γn)

)
≤ −2ξ0γ = −2I(γ),

and use again (7.4). ¤

This lemma has first been proven (with different techniques) by Lehtonen and Nyrhi-
nen [216]; they also study the simulation of P(Sn ≥ γn). Related results in a more general
Markovian setting are obtained by Asmussen [14] and Lehtonen and Nyrhinen [215]. Asmussen
and Rubinstein [30] have shown that ξ0 is the only choice that yields asymptotic efficiency.
Finally, for the simulation of multidimensional level-crossing probabilities, we refer to Collam-
ore [80].

We next present an analogue of the conditional limit theorem in Lemma 7.4.

Lemma 7.6 Let ΛX(ξ0) = 0. The law 1
τ(x)

∑τ(x)
i=1 δXi

given τ(x) <∞ converges weakly to λξ
0

1

as x→∞.

Proof. This is a consequence of Proposition 17.9 in [30] (see also [13]). ¤

For further conditional limit theorems, we refer to Section IV.7 of Asmussen [18] or Sec-
tion 3.6 of Robert [272].

Simulation of level-crossing probabilities in the context of heavy-tailed random variables
has been much less investigated; we refer to Boots and Shahabuddin [54] and Asmussen et
al. [27] for more details.
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7.3 Outline of Part B

In each of the three chapters of Part B, we study the simulation of large-deviation probabilities.
Chapter 8 contains general results for the simulation of these probabilities, and two specific
problems are considered in Chapter 9 and 10.

We first describe the results in Chapter 8. Departing from the statement in Lemma 7.2,
we give further necessary and sufficient conditions for asymptotic efficiency. These conditions
are important, since it is not always possible to find an asymptotically efficient twist. The
necessary and sufficient conditions are based on Varadhan’s integral lemma (Lemma 2.14),
and we therefore call them the Varadhan conditions. Interestingly, these elementary conditions
are shown to improve upon the conditions established by Sadowsky [279].

The Varadhan conditions are used in Chapter 9 to further examine the level-crossing prob-
abilities of Section 7.2.2. The probability P(Sk ≥ e(k/n)n for some k ≤ n) is studied, where
e : [0, 1]→ (0,∞] is some ‘smooth’ function. Note that the choice e(t) := γ leads to the prob-
ability P(Sn ≥ γn), which is studied in [216]. We investigate two estimators for simulating
the aforementioned probability with general e: the first relies on a change of measure on the
sample-path level, and the second on the step level. For both estimators, we obtain necessary
and sufficient conditions for asymptotic efficiency, and subsequently compare these conditions.

In Chapter 10, our aim is to simulate a Cramér-type probability as in Section 7.2.1. The
step-size distribution PX of the random walk is a multidimensional Gaussian distribution, with
a possible strong correlation between the components. This situation arises in the study of a
Gaussian fluid queue (see Part A) fed by a large number of Gaussian sources; for a discrete-time
system, we estimate the steady-state probability that a buffer threshold is exceeded. Using the
results of Chapter 8, we prove that, even if the cumulative input of the sources constitutes a
(Gaussian) random walk, the natural exponentially twisted importance-sampling distribution
does not yield asymptotic efficiency. Three alternative efficient methods are discussed and
evaluated, and a detailed numerical comparison is made.

Chapters 8, 9, and 10 are based on [112], [113], and [111] respectively. All chapters in
Part B are joint work with Michel Mandjes.





CHAPTER 8

Conditions for asymptotic
efficiency

In this chapter, we study the simulation of νε0(A) for some fixed event A
and some ε0 > 0, under the assumption that {νε : ε > 0} satisfies a large-
deviation principle. We investigate the circumstances under which an exponen-
tially twisted importance-sampling distribution yields an asymptotically efficient
estimator. Varadhan’s lemma yields necessary and sufficient conditions, and these
are shown to improve upon the conditions of Sadowsky [279].

8.1 Introduction

In the previous chapter, we have argued that direct Monte Carlo methods are unsuitable for
simulating probabilities that arise from a large-deviation principle. A family of probability
measures {νε : ε > 0} is said to satisfy a large-deviation principle (LDP) if νε(A) decays
exponentially as ε → 0 for a wide class of sets A, cf. Definition 2.13. Given such a family, we
refer to a probability of the form νε0(A) for some ε0 > 0 and some event A as a large-deviation
probability. Probabilities of this type are encountered in many fields, e.g., statistics, risk theory,
operations research, information theory, and financial mathematics.

As explained in Section 7.1.1, a technique that is widely used to estimate rare-event prob-
abilities is importance sampling. In importance sampling, one samples from a probability
measure λ different from νε0 , such that the νε0 -rare event becomes λ-likely. Often, one chooses
a so-called exponentially twisted distribution for λ, but within this class there is still freedom
to select a specific twisted distribution. To evaluate the changes of measure, efficiency criteria
have been developed. In this chapter, we use the asymptotic efficiency criterion.

Research initiated in the seminal paper of Siegmund [289] has shown that exponentially
twisting is asymptotically efficient in specific cases. We mention, in particular, the Cramér
and level-crossing probabilities of Section 7.2. In these two examples, large-deviation theory
suggests a specific exponentially twisted importance-sampling distribution.

However, it has been noted that a successful application of an importance-sampling es-
timator based on large-deviation theory critically depends on the specific problem at hand.
Glasserman and Wang [148] give variations on both the Cramér problem and the level-crossing
problem, and show that exponential twists can be inefficient if the rare event A is irregular.
In fact, they obtain the stronger result that the relative error (see Section 7.1.2) can even
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become unbounded in these examples. Similar observations have been made by Glasserman
and Kou [146] in a queueing context.

Given the examples of efficient and inefficient simulation with exponentially twisted
importance-sampling distributions, it is natural to ask whether there exist necessary and
sufficient conditions for asymptotic efficiency. This question is addressed here. In case the
Gärtner-Ellis theorem applies, this question is studied by Sadowsky and Bucklew [280], while
Sadowsky [279] extends their findings to a general abstract large-deviation setting.

The necessary and sufficient conditions presented in this chapter have two advantages over
those in [279]. The first is that the proof is elementary; the conditions follow straightforwardly
from an application of Varadhan’s integral lemma. Therefore, we refer to these conditions as
Varadhan conditions. Note that this elementary lemma has previously been applied to derive
efficiency properties of certain rare event estimators, see Glasserman et al. [144], Dupuis and
Wang [127], and Glasserman and Li [147].

A second advantage the Varadhan conditions is that they improve upon the conditions
of Sadowsky [279]. This is the main result of the present chapter. To explain the improve-
ments, it is important to realize that each set of conditions (the Varadhan conditions and
Sadowsky’s conditions) applies only under certain assumptions. The assumptions underlying
the Varadhan conditions are less restrictive than those underlying Sadowsky’s, meaning that
the Varadhan conditions apply in more situations. Notably, convexity of the large-deviation
rate function is not required. Furthermore, the Varadhan conditions themselves are ‘better’
than Sadowsky’s conditions, i.e., the Varadhan sufficiency condition is implied by Sadowsky’s
sufficiency condition, and vice versa for the necessary condition.

The chapter is organized as follows. We state the Varadhan conditions in Section 8.2,
and show in Section 8.3 that these conditions improve upon those of Sadowsky. Section 8.4
addresses the uniqueness of efficient twists. In Section 8.5, we illustrate the use of the Varadhan
conditions with an example to which Sadowsky’s results cannot be applied. Still, asymptotically
efficient simulation is possible.

8.2 The Varadhan conditions for efficiency of exponential
twisting

In this section, we investigate the asymptotic efficiency exponentially twisted importance-
sampling families. After formalizing the imposed assumptions, we state necessary and sufficient
conditions based on Varadhan’s lemma (Lemma 2.14).

Let X be a topological space and B be a σ-field on X containing the Borel σ-field. We also
assume that X is a vector space, but not necessarily a topological vector space. Throughout
this section, we fix a rare event A ∈ B and a continuous linear functional ξ : X → R. Having
a topological vector space in mind, we write 〈ξ, ·〉 for ξ(·). We are given a family {νε} of
probability measures on (X ,B).

Assumption 8.1 (Varadhan assumptions) Assume that

(i) X is a vector space endowed with some regular Hausdorff topology,

(ii) {νε} satisfies the LDP with a good rate function I, and

(iii) it holds that

lim
M→∞

lim sup
ε→0

ε log

∫

{x∈X :〈ξ,x〉≥M}
exp[〈ξ, x〉/ε]νε(dx) = −∞, (8.1)

and similarly with ξ replaced by −ξ.
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A simple sufficient condition for (8.1) to hold is lim supε→0 ε log
∫

exp[γ〈ξ, x〉/ε]νε(dx) <∞
for some γ > 1, see also (2.5). A similar condition can be given for −ξ.

A new family of probability measures {λξε} is defined as

dλξε
dνε

(x) := exp

(
〈ξ, x〉/ε− log

∫

X
exp[〈ξ, y〉/ε]νε(dy)

)
(8.2)

=
exp[〈ξ, x〉/ε]∫

X exp[〈ξ, y〉/ε]νε(dy)
.

The measures {λξε} are called exponentially twisted with twist ξ; cf. Section 7.2.1. If the family
{λξε} is asymptotically efficient, we simply call the twist ξ asymptotically efficient.

The following proposition plays a key role in the proofs of this section.

Proposition 8.2 Let dλξε/dνε be given by (8.2), and let B ∈ B. Under Assumption 8.1, we
have

lim inf
ε→0

ε log

∫

B

(
dνε

dλξε

)2

dλξε ≥ − inf
x∈X

[I(x)− 〈ξ, x〉]− inf
x∈Bo

[I(x) + 〈ξ, x〉],

lim sup
ε→0

ε log

∫

B

(
dνε

dλξε

)2

dλξε ≤ − inf
x∈X

[I(x)− 〈ξ, x〉]− inf
x∈B

[I(x) + 〈ξ, x〉].

Proof. Fix B ∈ B and note that

ε log

∫

B

(
dνε

dλξε

)2

dλξε = ε log

∫

B

dνε

dλξε
dνε

= ε log

∫

X
exp (〈ξ, x〉/ε) νε(dx) + ε log

∫

B

exp (−〈ξ, x〉/ε) νε(dx). (8.3)

By Assumption 8.1 and the continuity of the functional ξ, Varadhan’s integral lemma
applies (see Lemma 2.14 and the remarks that follow it). Thus, the limit of the first term
exists and equals

lim
ε→0

ε log

∫

X
exp (〈ξ, x〉/ε) νε(dx) = sup

x∈X
[〈ξ, x〉 − I(x)].

A similar argument can be applied to the second term in (8.3). Indeed, we apply a variant
of Varadhan’s integral lemma (see, e.g., Exercise 4.3.11 of Dembo and Zeitouni [100]) to the
continuous functional −ξ: for any open set G and any closed set F

lim inf
ε→0

ε log

∫

G

exp (−〈ξ, x〉/ε) νε(dx) ≥ − inf
x∈G

[I(x) + 〈ξ, x〉],

lim sup
ε→0

ε log

∫

F

exp (−〈ξ, x〉/ε) νε(dx) ≤ − inf
x∈F

[I(x) + 〈ξ, x〉].

In particular, these inequalities hold for Bo and B. The claim follows by letting ε→ 0 in (8.3)
(using the fact that the limit of the first term exists). ¤

The necessary and sufficient conditions, stated in the next theorem, follow almost immedi-
ately from Proposition 8.2.

Theorem 8.3 (Varadhan conditions) Let Assumption 8.1 hold. The exponential twist ξ is
asymptotically efficient if

inf
x∈X

[I(x)− 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈Ao

I(x). (8.4)
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Let Assumption 8.1 hold and let A be an I-continuity set. If the exponential twist ξ is
asymptotically efficient, then

inf
x∈X

[I(x)− 〈ξ, x〉] + inf
x∈Ao

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈A

I(x). (8.5)

Proof. Sufficiency follows from Lemma 7.2, the upper bound of Proposition 8.2, and the LDP
of Assumption 8.1(ii):

lim sup
ε→0

ε

∫
A

(
dνε

dλξ
ε

)2

dλξε

νε(A)2
≤ lim sup

ε→0
ε log

∫

A

(
dνε

dλξε

)2

dλξε − 2 lim inf
ε→0

ε log νε(A)

≤ − inf
x∈X

[I(x)− 〈ξ, x〉]− inf
x∈A

[I(x) + 〈ξ, x〉] + 2 inf
x∈Ao

I(x).

For necessity the argument is similar. First, the lower bound of Proposition 8.2 implies that

lim sup
ε→0

ε log

∫

A

(
dνε

dλξε

)2

dλξε ≥ − inf
x∈X

[I(x)− 〈ξ, x〉]− inf
x∈Ao

[I(x) + 〈ξ, x〉].

Furthermore, by the large-deviation upper bound,

lim inf
ε→0

ε log νε(A) ≤ − inf
x∈A

I(x).

Combining these observations with the assumption that A is an I-continuity set, we have
equality in (7.3), so that by Lemma 7.2,

0 = lim sup
ε→0

ε log

∫

A

(
dνε

dλξε

)2

dλξε − 2 lim
ε→0

ε log νε(A)

≥ − inf
x∈X

[I(x)− 〈ξ, x〉]− inf
x∈Ao

[I(x) + 〈ξ, x〉] + 2 inf
x∈A

I(x),

as desired. ¤

As suggested by the form of Theorem 8.3, the sufficient condition is also necessary under
a weak condition on the set A. We formalize this in the following corollary, which follows
straightforwardly from Theorem 8.3.

Corollary 8.4 Let Assumption 8.1 hold, and assume that A is both an I-continuity set and
an (I + ξ)-continuity set. Exponentially twisting with ξ is asymptotically efficient if and only
if

inf
x∈X

[I(x)− 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] = 2 inf
x∈A

I(x).

We remark that Sadowsky [279] uses a more general notion than asymptotic efficiency,
namely ν-efficiency. Given an I-continuity set A, the importance-sampling distribution λξε is
said to be ν-efficient if

lim sup
ε→0

ε log

∫

A

(
dνε

dλξε

)ν
dλε ≤ −ν inf

x∈A
I(x).

In this terminology, we have established conditions for 2-efficiency (see the remarks after Def-
inition 7.1). To obtain conditions for ν-efficiency with general ν ≥ 2, the statements in this
section are readily modified. As an example, when A is an (I + (ν − 1)ξ)-continuity set and
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Figure 8.1: Efficient simulation with twist ξγ (left) and inefficient simulation with twist ξγ
(right).

when Assumption 8.1(iii) holds with ξ replaced by both (ν−1)ξ and −(ν−1)ξ, the exponential
twist ξ is ν-efficient if and only if

inf
x∈X

[I(x)− (ν − 1)〈ξ, x〉] + inf
x∈A

[I(x) + (ν − 1)〈ξ, x〉] = ν inf
x∈A

I(x).

We now illustrate the Varadhan conditions in a simple example. Let ν be the distribution
of a random variable X on Rd, and denote the distribution of the sample mean of n i.i.d. copies
of X by νn. Let ν be such that Cramér’s theorem holds (note that 1/n plays the role of ε in
this example; see Proposition 2.16).

For instance, νn is a zero-mean bivariate Gaussian distribution with covariance of the form
Σ/n for some diagonal matrix Σ; see Figure 8.1. We are interested in νn(A) for two different
sets A; these are drawn in the left- and right-hand diagrams of Figure 8.1. Note that the rate
function has the form I(x1, x2) = C1x

2
1 +C2x

2
2 for some constants C1, C2 > 0. As indicated by

the dashed level curve of I, the ‘most likely point’ in A is in both cases γ, i.e., arg infx∈A I(x) =
I(γ). We can see that there is only one exponential twist ξγ ∈ R2 interesting for simulation
purposes, namely the conjugate point of γ. The level curve of I + ξγ + infx∈X [I(x)− ξ′γx] that
goes through γ is depicted as a solid line. Since both sets A are I- and (I + ξγ)-continuity
sets, the twist ξγ is asymptotically efficient if and only if A lies entirely ‘outside’ the solid
level curve (see Corollary 8.4). Hence, in the left-hand diagram the twist ξγ is asymptotically
efficient twist and in the right-hand diagram it is not.

In the literature, sufficient conditions for asymptotic efficiency have been given in terms of
dominating points and convexity of A in case the rate function is convex (see, e.g., Sadowsky
and Bucklew [280] and references therein). Using Figure 8.1, we explain how it can be seen
that the Varadhan conditions improve upon these dominating-point conditions (convexity of
A implies the existence of a dominating point, so we focus on dominating points). Every
I-continuity set that touches γ and that is contained in the halfspace above the dotted line
has dominating point γ. Obviously, such a set lies outside the solid level curve, and one can
therefore estimate νn(A) asymptotically efficiently by an exponential twist. However, Figure 8.1
indicates that the dominating-point condition is not necessary: neither of the sets A have a
dominating point, while an efficient twist exists in the left-hand diagram.

8.3 Comparison with Sadowsky’s conditions

General necessary and sufficient conditions for asymptotic efficiency have been developed by
Sadowsky [279]. In this section, we compare the conditions of Theorem 8.3 with Sadowsky’s
conditions. We show that the assumptions underlying Varadhan’s conditions are less restrictive
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than Sadowsky’s assumptions. Moreover, the sufficient condition in Theorem 8.3 improves upon
Sadowsky’s sufficiency condition, and the same holds for the necessary condition.

We first introduce some further notation. Let X ∗ denote the space of linear continuous
functionals ξ : X → R on X . Given a convex function f : X → (−∞,∞], a point x ∈ X is
called an exposed point of f if there exists a δ ∈ X ∗ such that f(y) > f(x) + 〈δ, y − x〉 for all
y 6= x. δ is then called an exposing hyperplane of I at x.

To compare the Varadhan conditions to Sadowsky’s, we first recall Sadowsky’s assumptions;
shortly, these assumptions are compared to Assumption 8.1.

Assumption 8.5 (Sadowsky’s assumptions) Assume that

(i) X is a locally convex Hausdorff topological vector space,

(ii) {νε} satisfies the LDP with a convex good rate function I,

(iii) for every δ ∈ X ∗,

Λ(δ) := lim sup
ε→0

ε log

∫

X
exp[〈δ, x〉/ε]νε(dx) <∞, (8.6)

and

(iv) A satisfies
0 < inf

x∈Ao∩F
I(x) = inf

x∈A
I(x) = inf

x∈A
I(x) <∞,

where F denotes the set of exposed points of I.

Although Assumption 8.5 looks similar to Assumption 8.1, there are crucial differences.
To start with, X is not assumed to be a topological vector space in Assumption 8.1(i). To

see the importance of this difference for applications, note that the space D([0, 1],R) of càdlàg
functions on [0, 1] with values in R is a (regular, Hausdorff) vector space but no topological
vector space when equipped with the Skorokhod topology. We stress that the regularity of X
assumed in Assumption 8.1(i) is implicit in Assumption 8.5(i): any real Hausdorff topological
vector space is regular.

Moreover, the convexity of the large-deviation rate function is not assumed in Assump-
tion 8.1(ii). Note that this convexity is a given when an LDP is derived using an (abstract)
Gärtner-Ellis-type theorem, but nonconvex rate functions also arise naturally in applications;
see Section 8.5 for a discussion. Assumption 8.5(iii) implies Assumption 8.1 since γξ is a con-
tinuous linear functional for any γ ∈ R, while the fourth part of Assumption 8.5 is slightly
stronger than requiring that A be an I-continuity set.

In the above comparison between Assumption 8.1 and Assumption 8.5, we have shown the
following.

Proposition 8.6 Assumption 8.5 implies that Assumption 8.1 holds and that A is an I-
continuity set.

In the remainder of this section, we compare the conditions of Theorem 8.3 to the conditions
in Sadowsky [279]. Such a comparison is only possible when Sadowsky’s assumption holds, i.e.,
we must impose the (stronger) Assumption 8.5. We start by repeating Sadowsky’s conditions.
Given that Assumption 8.5(iv) holds for A, we call γ ∈ A a point of continuity if I(γ) =
infx∈A I(x) and if there exists a sequence {γn} ⊂ Ao ∩ F such that γn → γ.

Theorem 8.7 (Sadowsky’s conditions) Let Assumption 8.5 hold. The exponential twist ξ
is asymptotically efficient if
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(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ),

(b) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ A, and

(c) either 〈ξ, x〉 ≥ 〈ξ, γ〉 for all x ∈ A, or there exists an x ∈ F such that ξ is an exposing
hyperplane of I at x.

Let Assumption 8.5 hold. If the twist ξ is asymptotically efficient, then

(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ), and

(b̃) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ Ao ∩ F .

Proposition 8.8 Let Assumption 8.5 hold. The sufficient condition in Theorem 8.7 implies
the sufficient condition in Theorem 8.3.

Proof. By condition (a) of Theorem 8.7, there exists a point of continuity γ ∈ A such that
I(γ) = infx∈A I(x) = 〈ξ, γ〉 − Λ(ξ). Since we assume that the LDP holds with some convex
I (Assumption 8.5(ii)) and that Assumption 8.7(iii) holds, by Theorem 4.5.10(b) in [100] we
have I(x) = supδ∈X∗ [〈δ, x〉 − Λ(δ)], and hence I(x) ≥ 〈ξ, x〉 − Λ(ξ). Combining this with
I(γ) = 〈ξ, γ〉 − Λ(ξ), we conclude that

inf
x∈X

[I(x)− 〈ξ, x〉] ≥ −Λ(ξ) = I(γ)− 〈ξ, γ〉,

where the inequality may obviously be replaced by an equality.
It is immediate from condition (b) of Theorem 8.7 that infx∈A[I(x)+ 〈ξ, x〉] = I(γ)+ 〈ξ, γ〉.

Since infx∈Ao I(x) = I(γ), this implies the sufficient condition (8.4) in Theorem 8.3. ¤

The above proof shows that part (c) of Sadowsky’s sufficient condition is redundant.

Proposition 8.9 Let Assumption 8.5 hold. The necessary condition in Theorem 8.7 is implied
by the necessary condition in Theorem 8.3.

Proof. Let the twist ξ be asymptotically efficient. We start by showing that a point of
continuity exists under Assumption 8.5. First note that infx∈Ao∩F I(x) = infx∈A I(x) (As-
sumption 8.5(iv)) implies that, for any n ∈ N, we can find some γn ∈ Ao ∩ F ∩Kn, where

Kn :=

{
x ∈ X : I(x) ≤ inf

y∈A
I(y) + 1/n

}
.

Since infx∈A I(x) < ∞ and the rate function is good (Assumption 8.5(ii)), Kn is a compact
subset of X and, hence, also necessarily sequentially compact. Since Kn decreases in n, we
obviously have {γn} ⊂ K1. Hence, we can subtract a subsequence that converges to γ ∈ K1,
say. Since Kn is closed for every n and {γ·} is eventually in Kn, we must also have that γ ∈ Kn

for every n. As a consequence, we have I(γ) ≤ infx∈A I(x). Moreover, since {γn} ⊂ Ao ∩ F ,

we also see that γ ∈ Ao ∩ F ⊂ A. Therefore, I(γ) = infx∈Ao∩F I(x) = infx∈A I(x), and, so, γ
is a point of continuity.

The necessary condition in Theorem 8.3 implies

2 inf
x∈A

I(x) ≤ [I(γ)− 〈ξ, γ〉] + lim
n→∞

[I(γn) + 〈ξ, γn〉] = 2I(γ).

As a result, the inequalities can be replaced by equalities, and we obtain

sup
x∈X

[〈ξ, x〉 − I(x)] = 〈ξ, γ〉 − I(γ) and inf
x∈Ao

[I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉.

By Theorem 4.5.10(a) of [100], we also have supx∈X [〈ξ, x〉−I(x)] = Λ(ξ) under Assumption 8.5.

Hence, I(γ) = 〈ξ, γ〉 − Λ(ξ) and part (a) of Sadowsky’s necessary condition follows. Part (b̃)
is immediate by noting that infx∈Ao [I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉 implies that I(x) + 〈ξ, x〉 ≥
I(γ) + 〈ξ, γ〉 for all x ∈ Ao. ¤
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8.4 Uniqueness of the exponential twist

One of the available tools to establish LDPs is the Gärtner-Ellis theorem, see Section 4.5.3 of
Dembo and Zeitouni [100]. Apart from being lower semicontinuous, the rate function governing
the LDP is then convex. In that case, we can derive some further properties of exponentially
twisted importance-sampling estimators.

Throughout this section, we assume that I be a convex good rate function and that (8.6)
holds for every δ ∈ X ∗. Therefore, we are essentially in the framework described in the previous
section. By Theorem 4.5.10 of [100], we have

Λ(ξ) = sup
x∈X

[〈ξ, x〉 − I(x)] and I(x) = sup
ξ∈X∗

[〈ξ, x〉 − Λ(ξ)]. (8.7)

In the next theorem, we formalize the intuition that a typical sample (path) from an
importance-sampling distribution should have a lowest possible rate.

Theorem 8.10 Let Λ be strictly convex, and let A be an I-continuity set. There exists at
most one asymptotically efficient twist.

Proof. As seen in the proof of Proposition 8.9, there exists a γ ∈ A such that infx∈A I(x) =
I(γ) and infx∈Ao [I(x)+〈ξ, x〉] ≤ I(γ)+〈ξ, γ〉 for any ξ ∈ X ∗. As a result of the strict convexity
of Λ and (8.7), there exists at most one ξγ ∈ X ∗ such that I(γ) = 〈ξγ , γ〉−Λ(ξγ). For all other
twists ξ ∈ X ∗, we have I(γ) > 〈ξ, γ〉 − Λ(ξ), and therefore

inf
x∈X

[I(x)− 〈ξ, x〉] = − sup
x∈X

[〈ξ, x〉 − I(x)] = −Λ(ξ) < I(γ)− 〈ξ, γ〉.

Such ξ cannot be asymptotically efficient, since then

inf
x∈X

[I(x)− 〈ξ, x〉] + inf
x∈Ao

[I(x) + 〈ξ, x〉] < 2I(γ),

and (8.5) is violated.
In other words, ξγ is the only candidate twist for asymptotic efficiency (if ξγ exists). ¤

Under the assumptions of Theorem 8.10 and in the notation of its proof, the exponential
twist ξγ is asymptotically efficient if infx∈A[I(x) + 〈ξγ , x〉] = I(γ) + 〈ξγ , γ〉; condition (8.4) is
thus neatly rewritten. The necessary condition (8.5) can be rephrased in a similar way.

It is interesting to apply the previous theorem if there are multiple most likely elements in
A. Under additional strict-convexity assumptions, we can conclude that any exponential twist
is asymptotically inefficient.

Corollary 8.11 Let both Λ and I be strictly convex, and A be an I-continuity set. If there
exist γ, η ∈ A with I(γ) = I(η) = infx∈A I(x) and γ 6= η, there is no asymptotically efficient
exponential twist.

Proof. The argument in the proof of Theorem 8.10 applies both to γ and η. Therefore, there
is nothing to prove if either I(γ) > 〈ξ, γ〉 − Λ(ξ) for all ξ ∈ X ∗, or I(η) > 〈ξ, η〉 − Λ(ξ) for all
ξ ∈ X ∗. Consequently, we may assume the existence of the two candidate exponentially twists,
i.e., that the supremum over ξ in (8.7) is attained both for γ and η. The two twists are called
ξγ and ξη, and we have to show that ξγ 6= ξη.

Suppose ξγ = ξη. Since

〈ξγ , γ〉 − Λ(ξγ) = I(γ) = I(η) = 〈ξη, η〉 − Λ(ξη),

we have for 0 ≤ α ≤ 1,

I(γ) = α[〈ξγ , γ〉 − Λ(ξγ)] + (1− α)[〈ξη, η〉 − Λ(ξη)] = 〈ξγ , αγ + (1− α)η〉 − Λ(ξγ).

From this follows that Λ(ξγ) = 〈ξγ , αγ + (1 − α)η〉 − I(γ). Since we already know that this
equality holds for α = 1, we obtain a contradiction with (8.7) and the strict convexity of I. ¤
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8.5 An example

In this section, we provide an example showing how Corollary 8.4 is typically used. The
conditions of Sadowsky [279] do not apply to this example, since the rate function is nonconvex.
Despite this nonconvexity, we show that an exponential twist may still be asymptotically
efficient.

Nonconvex rate functions arise naturally in several large-deviation settings. Notably, certain
large deviations of Markov chains and Markov processes (such as diffusions) are governed by
rate functions that need not be convex; see, e.g., Feng and Kurtz [133]. Intuitively, analyzing
the rate of convergence of random functions to a nonlinear (deterministic) function causes the
rate function to be nonconvex. Nonconvex rate functions also appear when investigating the
rate of convergence to a nondegenerate measure; the example of this section is of the latter
type.

For our example, it appears that the event under consideration can be cut into disjoint
‘subevents’ that comply with Sadowsky’s conditions. However, such a cut approach might be
impossible in other cases, or lead to a large number of subevents (that need to be estimated
separately). This is especially relevant for the simulation of hitting probabilities of stochastic
processes, as in Collamore [80]. Such hitting probabilities are closely related to extremes.
In the next chapter, we investigate under which circumstances a single twist works in a one-
dimensional random-walk setting. Chapter 10 analyzes both a single twist and the cut approach
in a specific situation.

To avoid irrelevant technicalities, we do not illustrate the Varadhan conditions in a sample-
path setting. Instead, we discuss a relatively simple example, which nevertheless gives a good
idea in what situations the Varadhan conditions are more useful than Sadowsky’s conditions.

Let us first give some background on our example. Recall that a phase-type distribution
is a distribution associated to a finite Markov process, which can be characterized by three
quantities (E,α,T ), see, e.g., Asmussen [19, Sec. III.4]. Given an arbitrary distribution ν on
(0,∞), there exists a sequence {νn} of phase-type distributions that converges weakly to ν [19,
Thm. III.4.2]. By Theorem 2.11, this implies that νn(A)→ 0 for a large number of sets A; in
fact, νn(A) then vanishes at an exponential rate. We are interested in νn(A) for fixed n.

We consider a particularly simple distribution, namely one with ν concentrated on {1, 5}.
We write α := ν({1}) = 1 − ν({5}). It is notationally cumbersome to describe a sequence of
phase-type distributions that converges weakly to ν in the (E,α,T )-notation; a direct descrip-
tion is more appropriate here. Define νn as the distribution of Yn, where Yn has an Erlang(n, n)
distribution with probability α and an Erlang(n, n/5) distribution with probability 1−α. Re-
call that the sum of k independent exponentially distributed random variables with parameter
λ has an Erlang(k, λ) distribution, and observe that νn converges weakly to ν.

The sequence of approximating phase-type distributions {νn} are special cases of mixtures,
and the phenomena that we observe in our example are typically also encountered in the
mixture setting. Indeed, the large deviations of some mixtures are governed by nonconvex
rate functions. This holds in particular for finite mixtures (in our case, νn is a mixture of
two distributions), for which the large deviations are readily analyzed. The infinite case is
nontrivial; see Dinwoodie and Zabell [116, 117], Chaganty [66], and Biggins [48]. Importantly,
mixtures also arise naturally in connection with conditional probabilities, see, e.g., [147].

Consider the simulation of νn(A), where A := [0, 1/10) ∪ (10,∞). It is easy to see that νn
equals the distribution of

{
1
n

∑n
i=1Xi with probability α;

5
n

∑n
i=1Xi with probability 1− α,

where X1, X2, . . . have a standard exponential distribution. Using Cramér’s theorem (Proposi-
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tion 2.16), it is readily seen that {νn} satisfies the LDP with the nonconvex good rate function

I(x) :=





x− 1− log x if x ∈ (0, 5
4 log 5],

x
5 − 1− log x

5 if x > 5
4 log 5,

∞ otherwise.

In order to avoid simulation, one could try to compute νn(A) by calculating ν1
n(A) and ν5

n(A)
numerically, where ν1

n is the law of 1
n

∑n
i=1Xi and ν5

n is the law of 5
n

∑n
i=1Xi. Indeed, both

probabilities are readily expressed in terms of (incomplete) gamma functions. However, nu-
merical problems arise already for moderate values of n, since it is necessary to divide an
incomplete gamma function by (n− 1)!.

Therefore, it is natural to attempt the estimation of νn(A) using simulation techniques,
for which there are several possibilities. Since α is known, it suffices to simulate ν1

n(A) and
ν5
n(A) separately. However, ν1

n(A) cannot be simulated efficiently by twisting exponentially;
see Glasserman and Wang [148] for related examples. To see that problems arise, we apply
Corollary 8.4 for the simulation of ν1

n(A), i.e., with the rate function I1(x) := x − 1 − log x.
First note that infx∈A I1(x) = I1(1/10); one can readily check that the twist ξ = −9 is
the only candidate twist for asymptotic efficiency. However, this twist cannot be used for
simulation, because the condition in Corollary 8.4 is violated: although infx∈R I

1(x) + 9x =
I1(1/10) + 9/10, one also has infx∈A I1(x)− 9x < I1(1/10) − 9/10. In this example, this can
readily be overcome at some additional computational costs: one can simulate ν1

n((10,∞)) and
ν1
n([0, 1/10)) separately. This is the aforementioned cut approach. These two probabilities and
ν5
n(A) can be simulated efficiently with an exponential twist, so that a reliable estimate of
νn(A) is found by simulating three different probabilities.

However, it is more efficient to take a direct approach in this case: the reader immediately
checks that the twist ξ = 1/10 is asymptotically efficient as a direct consequence of Corollary 8.4
(applied to the rate function I). For the direct approach to be more efficient than cutting, it
is essential that one can easily sample from the ξ-twisted distribution.

The ξ-twisted measure is λn, where for Borel sets A,

λn(A) =
α
∫
A

exp (nξx) ν1
n(dx) + (1− α)

∫
A

exp (nξx) ν5
n(dx)

α
∫

exp (nξy) ν1
n(dy) + (1− α)

∫
exp (nξy) ν5

n(dy)
(8.8)

= αn

∫
A

exp (nx/10) ν1
n(dx)(

10
9

)n + (1− αn)
∫
A

exp (nx/10) ν5
n(dx)

2n
, (8.9)

with
αn =

α

α+ (1− α)
(

9
5

)n .

Representation (8.9) shows how we can sample from λn: with probability αn, we draw from
an Erlang(n, 10

9 n) distribution, and with probability 1− αn, we draw from an Erlang(n, 10n)
distribution. Observe that αn → 0; this is quite natural as the mean of the twisted distribution
then tends to 10 = arg infx∈A I(x). The likelihood ratio can be written as follows, cf. (8.8):

dλn
dνn

(x) =
exp(nx/10)

α
(

10
9

)n
+ (1− α)2n

.

Therefore, in the direct approach only one probability is simulated instead of three as in the
cut approach. A drawback is that one has to sample from the distribution (αn, 1− αn).



CHAPTER 9

Random walks exceeding a
nonlinear boundary

In this chapter, we study a boundary-crossing probability for random walks. Let
Sn : [0, 1] → R denote the polygonal approximation of a random walk with zero-
mean increments, where both time and space are scaled by n. We are interested in
the estimation of the probability that, for fixed n ∈ N, Sn exceeds some positive
function e.

As a result of the scaling, this probability decays exponentially in n, and impor-
tance sampling can be used to achieve variance reduction. Two simulation methods
are considered: path-level twisting and step-level twisting. We give necessary and
sufficient conditions for both methods to be asymptotically efficient as n → ∞,
partly relying on the results in Chapter 8. We subsequently compare the condi-
tions.

9.1 Introduction

Let X1, X2, . . . be a sequence of i.i.d. zero-mean random variables taking values in R, with
distribution PX . For 0 ≤ t ≤ 1, let the scaled polygonal approximation for the partial sums of
Xi be given by

Sn(t) :=
1

n

bntc∑

i=1

Xi +

(
t− bntc

n

)
Xbntc+1, (9.1)

where btc denotes the largest integer smaller than or equal to t.
We consider the estimation of a ‘time-varying level-crossing probability’. That is, we are

interested in estimating P(Sn(·) ∈ A) efficiently, where

A := {x ∈ C([0, 1]) : x(t) ≥ e(t) for some t ∈ [0, 1]}, (9.2)

for some lower semicontinuous function e : [0, 1] → (0,∞]. As ESn(t) = 0 for any n ∈ N and
t ∈ [0, 1], the probability P(Sn(·) ∈ A) clearly corresponds to a rare event, i.e., it vanishes as
n → ∞. In fact, since we know from Section 2.3.2 that the large deviations of Sn(·) are
governed by Mogul′skĭı’s large-deviation principle, the theory of Chapter 8 becomes available.

We remark that it is possible to consider the (more general) problem with noncentered
random variables X and with Sn defined on [0, T ] for some T > 0. If one imposes that
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e : [0, T ] → (−∞,∞] satisfies e(t)/t > EX1 for all t ∈ [0, T ], it is easy to see that we may
restrict ourselves without loss of generality to the above simpler setup.

Only in special cases, explicit expressions are available for P(Sn(·) ∈ A). When these are
not known, one may resort to simulation. As the probability of interest is small, direct simula-
tion can be extremely time-consuming. Unfortunately, the development of efficient simulation
methods is usually nontrivial. For the special case that e is affine, i.e., e(t) = a+ bt for some
a, b ≥ 0, P(Sn(·) ∈ A) corresponds to a ruin probability for the finite-horizon case. Simulation
of this probability is studied by Lehtonen and Nyrhinen [216], while Asmussen [18, Sec. X.4]
and Asmussen et al. [23] consider the analogue in continuous time; then, a Lévy process
replaces the random walk. Lévy processes are discussed in more detail in Part C.

This chapter investigates the asymptotic efficiency of two approaches for simulating of
P(Sn(·) ∈ A), both based on importance sampling. Recall from Section 7.1.1 that samples
are thus drawn from a probability measure under which A is not rare anymore, and that the
simulation output is corrected with likelihood ratios to retrieve an unbiased estimate. For both
methods, the importance sampling is based on sampling steps from an exponentially twisted
distribution PθX(dz) = eθzE(eθX1)−1PX(dz) for some θ > 0.

In the first approach, which we call path-level twisting, typical sample paths under the
importance-sampling measure have the form of the ‘most likely’ path to exceedance under the
original measure; let τ̃ be the epoch where this most likely path exceeds e. This results in
the following procedure: (i) Sample the Xi from PθX for i = 1, . . . , nτ̃ (with θ chosen such
that these Xi get a positive mean). Then (ii) sample Xi from the original distribution PX for
i = nτ̃ + 1, . . . , n. It is important to note that in this approach the importance sampling is
‘turned off’ at an a priori determined epoch nτ̃ .

In the second approach, which we call step-level twisting, we always draw the Xi from PθX ,
and each simulation run is stopped at the random moment that Sn exceeds e for the first time.
This, quite natural, method has been considered in [18, 216]. However, it does not correspond
to exponentially twisting in a path space, which makes it somewhat more difficult to handle
from a theoretical point of view.

Sadowsky [279] was the first to consider the above two simulation methods for estimating
P(Sn(·) ∈ A). The results of Chapter 8 and the ideas used in the proofs make it possible to
improve upon the results of [279] for both simulation methods. Specifically, for the first method
(path-level twisting), we correct Sadowsky’s claim that it is never asymptotically optimal. For
the second method (step-level twisting), we give a sufficient condition for asymptotic efficiency
that is sharper than Sadowsky’s. We exemplify this by establishing a closely related necessary
condition.

The chapter is organized as follows. We start with some preliminaries on sample-path large
deviations in Section 9.2. Section 9.3 discusses path-level twisting, and finds necessary and
sufficient conditions for its asymptotic efficiency. Step-level twisting is studied in Section 9.4;
also here conditions for asymptotic efficiency are derived. We compare the efficiency conditions
of the two methods in Section 9.5.

9.2 Sample-path large deviations and exceedance proba-
bilities

In Section 2.3.2, we have described the large deviations of Sn(·) with Mogul′skĭı’s large-
deviation principle (LDP). Since this result is crucial for the present chapter, we first provide
some further background on this LDP in the context of exceedance probabilities.

Let us first recall some notation from Section 2.3. The cumulant-generating function of
X1 is defined as ΛX(θ) := log E(eθX1) for θ ∈ R, and its Fenchel-Legendre transform is given
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by Λ∗
X(z) = supξ∈R[ξz − ΛX(ξ)]. Throughout, we suppose that ΛX is everywhere finite; in

Section 9.3, we discuss this assumption in detail.
Mogul′skĭı’s LDP (Proposition 2.18) states that {Sn(·)} satisfies the LDP in C([0, 1]) with

scale sequence {n} and the good rate function

I(x) :=

{ ∫ 1

0
Λ∗
X(ẋ(t))dt if x ∈ AC;
∞ otherwise,

if C([0, 1]) is equipped with the topology of uniform convergence. Recall that AC is the space
of absolutely continuous functions, as defined in (2.6). It is important to remark that the level
sets of I are compact, which is used in the sequel to apply some results from Chapter 8.

Since we are interested in exceedance probabilities, it is of interest to know how to minimize
the rate function I over ‘exceedance sets’. To this end, fix some τ ∈ [0, 1] and set Aτ := {x ∈
C([0, 1]) : x(τ) ≥ e(τ)}. It follows from Jensen’s inequality that

inf
x∈Aτ

∫ 1

0

Λ∗
X(ẋ(t))dt ≥ inf

x∈Aτ

τ
1

τ

∫ τ

0

Λ∗
X(ẋ(t))dt ≥ inf

x∈Aτ

τΛ∗
X

(∫ τ

0

ẋ(s)ds/τ

)

= τΛ∗
X(e(τ)/τ).

Consequently, the unique minimizing argument x̃τ of infx∈Aτ
I(x) is a piecewise straight line

given by

γτ (t) :=

{
t(e(τ)/τ) if 0 ≤ t ≤ τ ;
e(τ) if τ < t ≤ 1.

(9.3)

Let us now consider the minimizer of I on A as defined in (9.2). Note that A =
⋃
τ∈[0,1]Aτ ,

and define
τ̃ := arg inf

τ∈(0,1]

τΛ∗
X(e(τ)/τ), (9.4)

which exists by lower semicontinuity of t 7→ e(t)/t, but is not necessarily unique. A minimizer
over the set A is then given by arg infx∈A I(x) = arg infx∈Aτ̃

I(x) = γτ̃ .
It is also useful to define an ‘ε-perturbed’ version of γτ . For τ ∈ [0, 1] and ε > 0, define γετ

by

γετ (t) :=

{
(e(τ) + ε)t/τ if 0 ≤ t ≤ τ ;
e(τ) + ε if τ < t ≤ 1.

(9.5)

9.3 Path-level twisting

In this section, we study the simulation of P(Sn(·) ∈ A) by path-level twisting, where A is
defined in (9.2):

A = {x ∈ C([0, 1]) : x(t) ≥ e(t) for some t ∈ [0, 1]}.
This analysis culminates in a necessary and sufficient condition for efficiency of this simulation
method.

We start with the formulation of the underlying assumptions:

Assumption 9.1 We assume that

(i) ΛX(θ) <∞ for all θ ∈ R,

(ii) PX is nondegenerate, and

(iii) 0 < inft∈[0,1] e(t) <∞.
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Note that Assumption 9.1(i) implies that Mogul′skĭı’s LDP (Proposition 2.18) applies. This
assumption can be considerably relaxed for a Mogul′skĭı-type large-deviation principle to hold;
one then uses other spaces, other topologies, and slightly modified rate functions. For instance,
Mogul′skĭı [234] allows the cumulant-generating function to be finite only in a neighborhood
of zero and uses the space of càdlàg functions D endowed with the (completed) Skorokhod
topology; see also Mogul′skĭı [235]. Although Mogul′skĭı’s rate function is slightly different
from I, the infima over exceedance sets are attained by straight lines as in Section 9.2, which
is its only essential property for this chapter. Dembo and Zajic [99] and de Acosta [84] work
under the hypothesis of a finite cumulant-generating function of |X|. However, in the simulation
framework of the present chapter, it is more convenient to impose Assumption 9.1(i).

Let us first cast the definition of an exponentially twisted distribution into the present
‘path’ framework, cf. Section 8.2. For a twist ξ, we introduce the measure λξn by setting for
any Borel set B in C([0, 1]),

λξn(B) =

∫

B

exp

(
nξ(x)− log

∫

C([0,1])

exp[nξ(y)]P(Sn ∈ dy)
)

P(Sn ∈ dx).

The measure λξn is said to be exponentially twisted with twist ξ. Since λξn is a measure on the
path-space C([0, 1]), ξ is a path-level twist.

Before formulating a condition that is equivalent to asymptotic efficiency, we show in the
next lemma that there is at most one asymptotically efficient twist. Furthermore, the unique-
ness of τ̃ , as defined in (9.4), is necessary for a path-level twist to be asymptotically efficient.

For these assertions to hold, A has to be an I-continuity set; recall from Section 2.3 that
this means infx∈A I(x) = infx∈Ao I(x). At the end of this section we give sharp conditions for
A to satisfy this and related conditions. We write dom Λ∗

X := {z ∈ R : Λ∗
X(z) <∞}.

Lemma 9.2 Let Assumption 9.1 hold, and let A be an I-continuity set.

(i) There is at most one asymptotically efficient path-level twist.

(ii) If τ̃ is unique, the only path-level exponential twist that can achieve asymptotic efficiency
is ξτ̃ (x) := αx(τ̃), where α = arg supθ∈R[θ(e(τ̃)/τ̃)− ΛX(θ)].

(iii) If there are two points τ̃1, τ̃2 ∈ arg infτ∈(0,1] τΛ
∗
X(e(τ)/τ) satisfying e(τ̃i)/τ̃i ∈ (dom Λ∗

X)o

and τ̃1 6= τ̃2, there is no asymptotically efficient path-level twist.

Proof. We start with some elementary observations. Define

Λ(ξ) := lim
n→∞

1

n
log

∫

C([0,1])

exp[nξ(x)]P(Sn ∈ dx),

and note that this function is finite (in particular, the limit exists) for every functional ξ on
C([0, 1]) as shown in Sadowsky [279, p. 407]. Moreover, Λ is strictly convex whenever ΛX is
strictly convex; this follows from Assumption 9.1(ii) as one easily deduces from the proof of
Hölder’s inequality (see, e.g., Royden [276]). Therefore, the first claim immediately follows
from Theorem 8.10.

For claim (ii) we have to show that I(γτ̃ ) = ξτ̃ (γτ̃ )−Λ(ξτ̃ ), where τ̃ is now unique. Observe
that the minimizer in infx∈A I(x) is γτ̃ , and that ξτ̃ is a continuous linear functional on C([0, 1]).
We first calculate Λ(ξτ̃ ).

Let τ̃n := bnτ̃c/n, so that τ̃n → τ̃ as n→∞. We then have by independence,

∫

C([0,1])

exp(nαx(τ̃))P(Sn ∈ dx)
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=

∫

Rn

exp


α

nτ̃n∑

i=1

zi + α(τ̃ − τ̃n)znτ̃n+1


PX(dz1) · · ·PX(dzn)

=

∫

R

exp(α(τ̃ − τ̃n)z)PX(dz)

(∫

R

exp(αz)PX(dz)

)nτ̃n

.

Observe that ΛX(θ) < ∞ for all θ ∈ R by Assumption 9.1(i), and that ΛX is continuous due
to its convexity. Consequently, the first integral of the last expression converges to one. Using
the definition of ξτ̃ , we conclude that

Λ(ξτ̃ ) = lim
n→∞

1

n
log

∫

C([0,1])

exp(nαx(τ̃))P(Sn ∈ dx) = τ̃ΛX(α),

implying ξτ̃ (γτ̃ )−Λ(ξτ̃ ) = αe(τ̃)−τ̃ΛX(α). By definition of α, this equals τ̃Λ∗
X(e(τ̃)/τ̃) = I(γτ̃ ).

We now proceed with the proof of (iii). Recall the definition of γετ in (9.5). Observe that

{γ1/n
τ̃i
} ⊂ Ao, and that both γ

1/n
τ̃i
→ γτ̃i

and, as a consequence of the assumption imposed on

the τ̃i, I(γ
1/n
τ̃i

) → I(γτ̃i
). Therefore, the reasoning that established the first claim shows that

the only candidate path-level twists are ξτ̃1 and ξτ̃2 . It suffices to observe that these twists are
unequal since τ̃1 6= τ̃2. ¤

Motivated by Lemma 9.2, we often assume the uniqueness of the minimizer τ̃ of τ 7→
τΛ∗

X(e(τ)/τ) in the remainder of this chapter. We now state the main theorem of this section.

Theorem 9.3 Let Assumption 9.1 hold, and suppose that τΛ∗
X(e(τ)/τ) has a unique mini-

mizer τ̃ . Moreover, let A be both an I-continuity set and an (I + ξτ̃ )-continuity set.
The path-level twist ξτ̃ defined as ξτ̃ (x) = αx(τ̃) is asymptotically efficient if and only if

τ̃Λ∗
X

(
e(τ̃)

τ̃

)
+ αe(τ̃) (9.6)

≤ min

{
inf

τ∈(0,τ̃)

(
τΛ∗

X

(
e(τ)

τ

)
+ inf
β∈R

[
(τ̃ − τ)Λ∗

X

(
β − e(τ)
τ̃ − τ

)
+ αβ

])
,

inf
τ∈(τ̃ ,1]

inf
β∈R

[
τ̃Λ∗

X

(
β

τ̃

)
+ (τ − τ̃)Λ∗

X

(
e(τ)− β
τ − τ̃

)
+ αβ

]}
.

Proof. We prove the claim by invoking Corollary 8.4. Note that the underlying assumptions
hold. Hence, the path-level twist ξτ̃ is asymptotically efficient if and only if

inf
x∈C([0,1])

[I(x)− ξτ̃ (x)] + inf
x∈A

[I(x) + ξτ̃ (x)] = 2 inf
x∈A

I(x). (9.7)

The rest of the proof consists of rewriting condition (9.7).
The first term on the left-hand side of (9.7) is

inf
x∈C([0,1])

[I(x)− ξτ̃ (x)] = −Λ(ξτ̃ ) = −τ̃ΛX(α) = τ̃Λ∗
X(e(τ̃)/τ̃)− αe(τ̃),

so the left-hand side of (9.6) equals 2 infx∈A I(x) − infx∈C([0,1])[I(x) − ξτ̃ (x)]. Since clearly
τ̃Λ∗

X(e(τ̃)/τ̃) + αe(τ̃) ≥ infx∈A[I(x) + αx(τ̃)], the condition

τ̃Λ∗
X(e(τ̃)/τ̃) + αe(τ̃) ≤ inf

x∈A
[I(x) + αx(τ̃)] (9.8)

is necessary and sufficient for asymptotic efficiency. It remains to investigate the right-hand
side of this inequality.
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Figure 9.1: Two possibilities for the minimizing argument of infx∈A[I(x) + αx(τ̃)].

Jensen’s inequality shows that a minimizing argument of infx∈A[I(x)+αx(τ̃)] is a piecewise
straight line, which must exceed e in [0, 1], say at time τ , and has some value β ∈ R at time
τ̃ . The right-hand side of (9.8) is the infimum over β and τ when these paths are substituted
in the expression I(x) + αx(τ̃). Since τ̃Λ∗

X(e(τ̃)/τ̃) + αe(τ̃) = I(γτ̃ ) + αe(τ̃), we may assume
that τ 6= τ̃ in order to derive a condition that is equivalent with (9.8).

Two possibilities arise. First, x can exceed e for the first time at some τ < τ̃ , then assumes
some value β ∈ R at τ̃ , and is constant on [τ̃ , 1]. This path is denoted by x̌β,τ . Another
possibility is that x has some value β at τ̃ , exceeds e for some τ > τ̃ , and then becomes
constant. This path is denoted by x̂β,τ . These two possible cases are illustrated by the solid
lines in Figure 9.1.

It is immediate that x̌β,τ satisfies for τ < τ̃

I(x̌β,τ ) + αx̌β,τ (τ̃) = τΛ∗
X

(
e(τ)

τ

)
+ (τ̃ − τ)Λ∗

X

(
β − e(τ)
τ̃ − τ

)
+ αβ.

This corresponds to the left-hand diagram in Figure 9.1. The same argument shows that for
τ > τ̃ ,

I(x̂β,τ ) + αx̂β,τ (τ̃) = τ̃Λ∗
X

(
β

τ̃

)
+ (τ − τ̃)Λ∗

X

(
e(τ)− β
τ − τ̃

)
+ αβ,

which finishes the proof. ¤

We remark that Equation (9.6) can be slightly simplified using ΛX . Note that

inf
β∈R

[
(τ̃ − τ)Λ∗

X

(
β − e(τ)
τ̃ − τ

)
+ αβ

]

= −(τ̃ − τ) sup
β∈R

[
−αβ − e(τ)

τ̃ − τ − Λ∗
X

(
β − e(τ)
τ̃ − τ

)]
+ αe(τ),

and that the sup-term in this expression equals ΛX(−α) by the duality lemma (Lemma 4.5.8
of [100]). Thus, (9.6) is equivalent to

τ̃Λ∗
X

(
e(τ̃)

τ̃

)
+ αe(τ̃)

≤ min

{
inf

τ∈(0,τ̃)

(
τΛ∗

X

(
e(τ)

τ

)
− (τ̃ − τ)ΛX(−α) + αe(τ)

)
,

inf
τ∈(τ̃ ,1]

inf
β∈R

[
τ̃Λ∗

X

(
β

τ̃

)
+ (τ − τ̃)Λ∗

X

(
e(τ)− β
τ − τ̃

)
+ αβ

]}
.
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To illustrate Theorem 9.3, we now work out an example. Let the Xi have a standard
normal distribution, i.e., ΛX(ξ) = Λ∗

X(ξ) = 1
2ξ

2. Set e(τ) = 1 + |2τ − 1|. It is easy to
check that τΛ∗

X(e(τ)/τ) = e(τ)2/(2τ) is minimized for τ̃ = 1/2, showing that α = 2. It is
also immediate that e(τ)2/(2τ) + 2τ − 1 + 2e(τ) ‘attains’ its minimum value over (0, 1/2) as
τ ↑ 1/2. The second minimizing β in (9.6) is then 1/(2τ), and the minimum value over (1/2, 1]
of the resulting function is attained for τ ↓ 1/2. Consequently, we can estimate the desired
probability efficiently by path-level twisting. Therefore, this example corrects the unproven
claim of Sadowsky [279, p. 408] that no path-level twist is asymptotically efficient.

Different behavior is observed if e(τ) = 1+ |τ −1/2|. Again, τ̃ = 1/2 and α = 2, but now it
turns out that the infimum in (9.6) is attained for τ = 1. Therefore, the same twist as before
is now asymptotically inefficient.

To implement the simulation procedure, the path-level twist ξτ̃ should be translated into
an importance sampling distribution for (X1, . . . , Xn). Sadowsky [279] shows that the expo-
nentially step-level θ-twisted distribution of X,

PθX(dz) := exp(θz − ΛX(θ))PX(dz),

are the ‘building blocks’ for the required path-level exponential twist. Indeed, the step sizes

X1, . . . , Xbnτ̃c should be sampled from PαX , Xdnτ̃e from P
α(nτ̃−bnτ̃c)
X , and Xdnτ̃e+1, . . . , Xn from

PX ; the Xi should also be mutually independent. Using the realizations of the Xi, one can
construct a sample path with (9.1). The resulting paths are samples from the path-level twisted
distribution λξτ̃

n .

Both Lemma 9.2 and Theorem 9.3 require certain continuity properties of A. The remainder
of this section is devoted to sharp conditions for these to hold.

Continuity properties of A

We start by showing that A is closed. In fact, for later use, we prove this in slightly more
generality. Consider the set

AMm := {x ∈ C([0, 1]) : x(t) ≥M(t) for some t ∈ [0, 1] or x(t) ≤ m(t) for some t ∈ [0, 1]},

where M : [0, 1] → (−∞,∞] is lower semicontinuous and m : [0, 1] → [−∞,∞) is upper
semicontinuous with m ≤ M on [0, 1]. We prove that AMm is closed, which implies that A is
closed by choosing m = e and M ≡ −∞.

Lemma 9.4 AMm is closed in C([0, 1]).

Proof. Let {xn} be a sequence in AMm converging in sup-norm to some x ∈ C([0, 1]). Suppose
that x 6∈ AMm , and set ε := min(inft∈[0,1][M(t) − x(t)], inft∈[0,1][x(t) −m(t)])/2. Since [0, 1] is
compact, the infima in this expression are attained, so that ε > 0. From the convergence in
sup-norm it follows that |xn(t)−x(t)| ≤ ε for all t ∈ [0, 1] and n large enough. By construction
of ε, a contradiction is obtained by noting that this would imply xn 6∈ AMm . ¤

We now give a sharp condition for A to be an I-continuity set, for which we do not require
uniqueness of τ̃ .

Lemma 9.5 If e(τ̃)/τ̃ ∈ (dom Λ∗
X)o for some τ̃ with τ̃Λ∗

X(e(τ̃)/τ̃) = infx∈A I(x), then A is
an I-continuity set.

Proof. Similar arguments as in the proof of Lemma 9.4 show that Ao = {x ∈ C([0, 1]) : x(t) >
e(t) for some t ∈ [0, 1]}. As A is closed, it suffices to prove that infx∈A I(x) = infx∈Ao I(x). Let
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τ̃ be such that τ̃Λ∗
X(e(τ̃)/τ̃) = infx∈A I(x). With γετ̃ as in (9.5), we have γετ̃ ∈ Ao and I(γετ̃ ) =

τ̃Λ∗
X([e(τ̃) + ε]/τ̃). By convexity of Λ∗

X and the fact that there is a neighborhood of e(τ̃)/τ̃ on
which Λ∗

X is finite, Λ∗
X is continuous on this neighborhood, and therefore Λ∗

X([e(τ̃) + ε]/τ̃) ↓
Λ∗
X(e(τ̃)/τ̃) as ε ↓ 0; note that inf t∈(0,1] e(t)/t > 0 as a consequence of Assumption 9.1(iii). By

the monotone convergence theorem, I(γετ̃ ) converges to I(γτ̃ ). ¤

It is also of interest to give a condition for A to be an (I + ξτ̃ )-continuity set. This is the
content of the next lemma, but we omit the proof since it is a variation on the ε-argument given
in the proof of Lemma 9.5. The perturbed paths are drawn as the dashed lines in Figure 9.1.
Recall the definitions of x̌β,τ and x̂β,τ in the proof of Theorem 9.3.

Lemma 9.6 Let τ̃ be given. If one of the following two conditions holds, then A is an (I+ξτ̃ )-
continuity set:

(i) There exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̌β,τ for some β ∈ R and τ ≤ τ̃ ,
for which e(τ)/τ ∈ (dom Λ∗

X)o,

(ii) There exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̂β,τ for some β ∈ R and τ > τ̃ ,
for which (e(τ)− x(τ̃))/(τ − τ̃) ∈ (dom Λ∗

X)o.

9.4 Step-level twisting

This section is devoted to a simplification of the simulation scheme (i.e., the measure λξτ̃
n )

studied in Section 9.3. The new scheme overcomes an intuitive difficulty with a path-level
twisted change of measure. If a path sampled from λξτ̃

n remains below e on [0, dnτ̃e/n], it has
little chance of exceeding e after dnτ̃e/n. Indeed, since the original measure PX is then used for
sampling, e is rarely exceeded after dnτ̃e/n. By the form of the estimator (7.1), a sample path
that does not exceed e does not contribute to the resulting estimate, so that it is undesirable
to have too many of such paths in the simulation.

The idea of the simplified simulation scheme is to sample every random variable Xi from
PαX , until e has been exceeded. The simulation is then stopped and the likelihood is calculated.
We refer to this setup, which has first been studied in [279], as step-level twisting. Note that
this contrasts with path-level twisting as described in the preceding section, since there the
step-size distribution is twisted up to a fixed twist-horizon nτ̃ . In the setting of this section,
this horizon is sample-dependent.

Since both path-level twisting and step-level twisting are algorithms for estimating the
same probability, it is legitimate to ask which procedure is better. To answer this question
rigorously, it is our aim to develop necessary and sufficient conditions for asymptotic efficiency
of step-level twisting. These conditions are the ‘step analogue’ of Theorem 9.3. A comparison
of the two sets of conditions is the subject of Section 9.5.

Intuitively, it depends on the specific form of e if the probability of exceeding e on [dnτ̃e/n, 1]
is small enough for the simplification to work. Sadowsky [279, Prop. 2] finds a sufficient
condition in terms of a saddle-point inequality. The sufficient condition of Theorem 9.8 below
improves upon this result significantly: our necessary condition is extremely ‘close’ to the
sufficiency condition.

Throughout this section, we adopt the setup and notation of the previous section. It is
worthwhile to specify the exact assumptions that we impose.

Assumption 9.7 We assume that

(i) Assumption 9.1 holds,

(ii) τ̃ = arg inf τΛ∗
X(e(τ)/τ) is unique, and
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(iii) e(τ̃)/τ̃ ∈ (dom Λ∗
X)o.

In the previous section, we have seen that this set of assumptions guarantees that
Mogul′skĭı’s large-deviation principle holds, and that A is an I-continuity set, see Lemma 9.5.
Lemma 9.2 shows that the uniqueness of τ̃ in Assumption 9.7(ii) is required to have a unique
twist α for the distribution of the Xi.

The next theorem generalizes the findings of Lehtonen and Nyrhinen [216] to nonlinear
boundaries e.

Theorem 9.8 Let Assumption 9.7 hold, and let e be lower semicontinuous. Step-level twisting
is asymptotically efficient if

inf
τ∈(0,1]

[
τΛ∗

X

(
e(τ)

τ

)
+ αe(τ)− τΛX(α)

]
≥ 2τ̃Λ∗

X

(
e(τ̃)

τ̃

)
. (9.9)

Let Assumption 9.7 hold, and let e be upper semicontinuous. If step-level twisting is asymptot-
ically efficient, then

inf
{τ∈(0,1]: e(τ)/τ∈(dom Λ∗

X)o}

[
τΛ∗

X

(
e(τ)

τ

)
+ αe(τ)− τΛX(α)

]
≥ 2τ̃Λ∗

X

(
e(τ̃)

τ̃

)
. (9.10)

Proof. As seen in Section 7.1.2, since A is an I-continuity set, asymptotic efficiency is equiv-
alent to

lim sup
n→∞

1

n
logE(2)

n ≤ −2 inf
x∈A

I(x),

where E
(2)
n denotes the second moment of the estimator.

We introduce some notation used throughout the proof.
Notation. Let g : [0, 1] → [0,∞] be given by g(t) := tΛ∗

X(e(t)/t) for t > 0 and g(0) := 0,
and define f : [0, 1]→ [−∞,∞) as

f(t) := −αe(t) + tΛX(α).

We also set for τ ∈ (0, 1],

Ãτ := {x ∈ C([0, 1]) : x(t) < e(t) for t ∈ [0, τ), x(τ) ≥ e(τ)},

i.e., Ãτ are the paths that exceed e for the first time at τ . Note that the Ãτ are disjoint and
that

⋃
τ∈[0,1] Ãτ = A.

Paths generated by the step-level-twisting procedure are in general no elements of C([0, 1]),
since the simulation is stopped at some random time, not necessarily at time 1. To overcome
this, note that stopping a simulation run amounts to continuing the simulation by drawing
from PX . In other words, importance sampling is ‘turned off’ in the sense that the sampling
distribution becomes PX after exceeding e. Therefore, the distribution in C([0, 1]) of sample
paths generated by step-level twisting is well-defined; we denote it by µn. The ‘original’
distribution of Sn in C([0, 1]) is denoted by νn. One can readily check that on Ãτ , we have
(for x in the support of νn)

dνn
dµn

(x) = exp(−nαx(τ) + nτΛX(α)).

In the proof of the sufficient condition, we use the function ζ : C([0, 1]) → [−∞,∞) given
by

ζ(x) :=

{
f(τ) if x ∈ Ãτ ;
−∞ otherwise.
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Since ζ is in general not upper semicontinuous, we cannot apply Varadhan’s integral lemma to
prove the sufficient condition. However, it is quite fruitful to use some ideas of its proof (see
Theorem 4.3.1 in Dembo and Zeitouni [100]).

The sufficient condition. In the proof it is essential that the functions involved have spe-
cific continuity properties. Obviously, f is upper semicontinuous under the assumption that e
is lower semicontinuous. We now prove that g is lower semicontinuous. For this, let {tn}
be a sequence in [0, 1] converging to some t ∈ [0, 1]. For t = 0, it certainly holds that
lim infn→∞ g(tn) ≥ 0 = g(0). Therefore, we assume t > 0. Since inf t∈(0,1] e(t)/t > 0 and
Λ∗
X is nondecreasing on [0,∞) (X1 is centered), we observe that

lim inf
n

tnΛ
∗
X(e(tn)/tn) = t lim inf

n
Λ∗
X(e(tn)/tn) ≥ tΛ∗

X(lim inf
n

e(tn)/tn)

= tΛ∗
X(lim inf

n
e(tn)/t) ≥ tΛ∗

X(e(t)/t),

where the last inequality uses the lower semicontinuity of e. Hence, g is lower semicontinuous.
Let ε > 0. For any t ∈ [0, 1], by semicontinuity we know that there exists an open neigh-

borhood Tt of t with

inf
τ∈Tt

g(τ) ≥ g(t)− ε and sup
τ∈Tt

f(τ) ≤ f(t) + ε. (9.11)

Since
⋃
t∈[0,1] Tt is an open cover of the compact space [0, 1], one can find N and t1, . . . , tN ∈

[0, 1] such that
⋃N
i=1 Tti = [0, 1].

As dνn/dµn ≤ exp(nζ) on each of the sets Ãτ , the cover-argument implies that (see
Lemma 1.2.15 of [100])

lim sup
n→∞

1

n
log

∫

A

dνn
dµn

dνn ≤ lim sup
n→∞

1

n
log

∫

A

exp(nζ(x))νn(dx)

=
N

max
i=1

lim sup
n→∞

1

n
log

∫
S

τ∈Tti
Ãτ

exp(nζ(x))νn(dx).

The integral in this expression can be bounded by noting that ζ is majorized on
⋃
τ∈Tti

Ãτ

using (9.11):

∫
S

τ∈Tti
Ãτ

exp(nζ(x))νn(dx) ≤ exp[f(ti) + ε]νn


 ⋃

τ∈Tti

Ãτ


 .

Although
⋃
τ∈Tti

Ãτ is in general not closed, it is a subset of {x : x(t) ≥ e(t) for some t ∈ Tti}.
This set is closed by Lemma 9.4 for M = e on Tti and M =∞ on [0, 1]\Tti . Therefore, by the
large-deviation upper bound, Jensen’s inequality, and (9.11),

lim sup
n→∞

1

n
log νn


 ⋃

τ∈Tti

Ãτ


 ≤ − inf

{x:x(t)≥e(t) for some t∈Tti
}
I(x) = − inf

t∈Tti

g(t)

≤ −g(ti) + ε.

Combining the preceding three displays, we obtain

lim sup
n→∞

1

n
log

∫

A

dνn
dµn

dνn ≤ N
max
i=1

[f(ti)− g(ti)] + 2ε

≤ sup
t∈[0,1]

[f(t)− g(t)] + 2ε.
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The sufficient condition follows by letting ε→ 0.
The necessary condition. We now turn to the necessary condition. Since A is an I-continuity

set and we suppose that step-level twisting is asymptotically efficient, we have

lim sup
n→∞

1

n
log

∫

A

dνn
dµn

dνn ≤ −2τ̃Λ∗
X

(
e(τ̃)

τ̃

)
. (9.12)

Let ε > 0. The upper semicontinuity of e implies that for all t ∈ (0, 1] there exists some
δ ∈ (0, t) such that

sup
τ∈(t−δ,t]

e(τ) ≤ e(t) + ε. (9.13)

Fix t ∈ (0, 1], and define

Aδ,εt :=

{
x : x(τ) < e(τ) for τ ∈ [0, t− δ];x(t) > e(t);

x(τ) < sups∈(t−δ,t] e(s) + ε for τ ∈ (t− δ, t]

}
.

Note that Aδ,εt ⊂ A and that it is open by the fact that AMm in Lemma 9.4 is closed. Indeed,
set m(t) = e(t) and m = −∞ on [0, 1]\{t}; M = e on [0, t − δ] and M = sups∈(t−δ,t] e(s) + ε
on (t− δ, t].

We deduce that by definition of Aδ,εt ,

1

n
log

∫

A

dνn
dµn

dνn ≥ 1

n
log

∫

Aδ,ε
t

dνn
dµn

dνn

≥ 1

n
log

∫

Aδ,ε
t

exp

(
−nα

[
sup

τ∈(t−δ,t]
e(τ) + ε

]
+ ntΛX(α)

)
νn(dx)

≥ −α[e(t) + 2ε] + tΛX(α) +
1

n
log νn(A

δ,ε
t ),

where we used (9.13) for the last inequality.
Recall the definition of γτ and γετ in (9.3) and (9.5). Now two cases are distinguished.
Case 1: γt and e do not intersect before t.
Let t be such that γt and e do not intersect before t. Choose δ such that (9.13) is met, and

set

η :=
1

2
min

(
inf

τ∈[0,t−δ]
[e(τ)− γt(τ)] , ε

)
.

By the usual arguments, it is readily seen that η > 0 and γηt ∈ Aδ,εt . Since I(γηt ) = tΛ∗
X([e(t)+

η]/t), we have by monotonicity of Λ∗
X on [0,∞) and the large-deviation lower bound,

lim inf
n→∞

1

n
log

∫

A

dνn
dµn

dνn ≥ f(t)− 2αε− inf
x∈Aδ,ε

t

I(x)

≥ f(t)− 2αε− tΛ∗
X([e(t) + η]/t)

≥ f(t)− 2αε− tΛ∗
X([e(t) + ε/2]/t).

Since ε was arbitrary, we obtain a nontrivial lower bound if e(t)/t ∈ (dom Λ∗
X)o.

An auxiliary result. Before proceeding with the complementary case, we first prove an
auxiliary result: asymptotic efficiency implies that for any t ∈ (0, 1] with e(t)/t ∈ (dom Λ∗

X)o,

α
e(t)

t
− ΛX(α) + Λ∗

X

(
e(t)

t

)
≥ 0. (9.14)
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We work towards a contradiction by supposing that (9.14) is not satisfied for some t̂ with
e(t̂)/t̂ ∈ (dom Λ∗

X)o. Without loss of generality, we may suppose that γt̂ does not intersect
with e before t̂. By the above derived lower bound for ‘Case 1’,

lim sup
n→∞

1

n
log

∫

A

dνn
dµn

dνn ≥ lim inf
n→∞

1

n
log

∫

A

dνn
dµn

dνn

≥ f(t̂)− t̂Λ∗
X

(
e(t̂)

t̂

)

> 0.

Since −2τ̃Λ∗
X(e(τ̃)/τ̃) ≤ 0, this contradicts the assumption that step-level twisting is asymp-

totically efficient.
Case 2: γt intersects e before t. We now suppose that γt intersects e before t, and the first

time that this occurs is denoted by t̄ < t. Use e(t)/t = e(t̄)/t̄ and the ‘auxiliary result’ to see
that

−f(t) + tΛ∗
X

(
e(t)

t

)
= t

[
α
e(t)

t
− ΛX(α) + Λ∗

X

(
e(t)

t

)]

≥ t̄

[
α
e(t̄)

t̄
− ΛX(α) + Λ∗

X

(
e(t̄)

t̄

)]

= −f(t̄) + t̄Λ∗
X

(
e(t̄)

t̄

)
.

Hence, the infimum in (9.10) is not attained by t for which γt intersects with e before t.
Therefore, if step-level twisting is asymptotically efficient, we must have by (9.12)

inf
{t∈(0,1]:e(t)/t∈(dom Λ∗

X)o}

[
tΛ∗
X

(
e(t)

t

)
− f(t)

]
≥ − lim inf

n→∞
1

n
log

∫

A

dνn
dµn

dνn

≥ − lim sup
n→∞

1

n
log

∫

A

dνn
dµn

dνn

≥ 2τ̃Λ∗
X

(
e(τ̃)

τ̃

)
,

which proves the claim. ¤

As a result of the sufficient condition in Theorem 9.8, step-level twisting is asymptotically
efficient if the saddle-point inequality

αe(t)− tΛX(α) ≥ τ̃Λ∗
X(e(τ̃)/τ̃)

holds for all t ∈ [0, 1]. This is Sadowsky’s sufficient condition [279].

9.5 A comparison

In Theorems 9.3 and 9.8, we have provided necessary and sufficient conditions for asymptotic
efficiency of path-level twisting and step-level twisting respectively. It is our present aim to
compare these conditions, and we start by showing that the conditions must be different.

Consider the example given on page 119, in which e(τ) = 1 + |τ − 1/2|. We saw already
that τ̃ = 1/2 and α = 2. The infimum on the left-hand side of (9.9) is attained at τ = 1/2,
implying that step-level twisting is asymptotically efficient. Note that path-level twisting was
not asymptotically efficient.

This raises the question how the conditions for the two methods are related.
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Corollary 9.9 Condition (9.6) for path-level efficiency implies both the sufficient condition
(9.9) and the necessary condition (9.10) for step-level efficiency.

Proof. Since the sufficient condition (9.9) implies the necessary condition (9.10), it suffices to

compare (9.6) and (9.9). The first step is to note that τ̃Λ∗
X

(
e(τ̃)
τ̃

)
> 0 and that

αe(τ̃)− τ̃ΛX(α) = τ̃Λ∗
X

(
e(τ̃)

τ̃

)
,

so that (9.9) is equivalent to

τ̃Λ∗
X

(
e(τ̃)

τ̃

)
+ αe(τ̃)

≤ min

{
inf

τ∈(0,τ̃)

(
τΛ∗

X

(
e(τ)

τ

)
+ αe(τ) + (τ̃ − τ)ΛX(α)

)
, (9.15)

inf
{τ∈(τ̃ ,1]: αe(τ)−τΛX(α)≥0}

(
τΛ∗

X

(
e(τ)

τ

)
+ αe(τ)− (τ − τ̃)ΛX(α)

)}
.

We now prove that the right-hand side of (9.6) cannot exceed the right-hand side of (9.15).
Clearly, the last term in the minimum of (9.15) cannot be smaller than

inf
τ∈(τ̃ ,1]

(
τΛ∗

X

(
e(τ)

τ

)
+
τ̃

τ

[
αe(τ)− τΛX(α)

])
+ τ̃ΛX(α).

Since ΛX(α) ≥ 0 as a result of the fact that X1 has zero mean, this immediately yields that
the right-hand side of (9.15) cannot be smaller than

min

{
inf

τ∈(0,τ̃ ]

(
τΛ∗

X

(
e(τ)

τ

)
+ αe(τ)

)
, inf
τ∈(τ̃ ,1]

(
τΛ∗

X

(
e(τ)

τ

)
+ ατ̃

e(τ)

τ

)}
.

To see that the right-hand side of (9.6) does not exceed this quantity, choose e(τ) and τ̃ e(τ)/τ
for the first and second β in (9.6) respectively. ¤





CHAPTER 10

Simulation of a Gaussian queue

In this chapter, we study a queue fed by a large number n of independent
discrete-time Gaussian processes with stationary increments. We consider the
many-sources asymptotic regime, in which the drain rate is also scaled with n.

We discuss four methods for simulating the steady-state probability that the
buffer content exceeds nb > 0: the single-twist method (suggested by large-
deviation theory), the cut-and-twist method (simulating timeslot by timeslot), the
random-twist method (the twist is sampled from a discrete distribution), and the
sequential-twist method (simulating source by source).

The asymptotic efficiency of these four methods is analytically investigated for
n → ∞. A necessary and sufficient condition is derived for the efficiency of the
single-twist method, indicating that it is nearly always asymptotically inefficient.
The other three methods are asymptotically efficient. We numerically evaluate
the four methods by performing a detailed simulation study, where it is our main
objective to compare the three efficient methods in practical situations.

10.1 Introduction

In Chapter 8, we have studied conditions for asymptotic efficiency on a rather abstract level.
It is the main objective of the present chapter to apply these conditions to a concrete setting,
which is closely related to Part A of this thesis. That is, we consider a fluid queue with sta-
tionary Gaussian input, meaning that the input process is Gaussian and that it has stationary
increments. In Section 1.3.2, we have argued why Gaussian fluid queues are particularly in-
teresting. The present chapter focuses on fast simulation techniques to estimate (the tail of)
the steady-state buffer-content distribution. A key element in our analysis is the equality in
distribution of the steady-state buffer content and the maximum of the free process.

It is notoriously hard to calculate the full buffer-content distribution of a queue with Gaus-
sian input, but some limiting regimes allow explicit analysis; we refer to Part A for a detailed
investigation of Gaussian queues in the large-buffer regime. The present chapter focuses on
the so-called many-sources regime, which has been generally accepted as a framework that is
particularly suitable for studying large multiplexing systems. In the many-sources regime, we
suppose that there are n i.i.d. Gaussian input sources, and that the drain rate is also scaled
with n, i.e., it equals nr for some r > 0. The probability that the steady-state buffer con-
tent exceeds level nb becomes small when n grows large. For fixed but large n, we study this
buffer-content probability pn in a discrete-time model.
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Likhanov and Mazumdar [220] find the asymptotics of pn, i.e., they identify a sequence
{gn} such that pngn → 1 as n → ∞; notably, they find that pn decays roughly exponentially
in n. Based on these asymptotics, one could estimate pn by 1/gn. However, due to the lack
of error bounds one does not know a priori whether these estimates are any good. In fact,
the derivation of pngn → 1 indicates that 1/gn has the undesirable property that it tends to
underestimate pn, cf. Equations (2.1) and (3.4) in [220].

In the absence of analytical results (or asymptotic results that are backed up by error
bounds), one could resort to simulation. When simulating loss probabilities in queues with
Gaussian input, essentially two problems arise. The first is that it is not straightforward
to quickly simulate Gaussian processes, see for instance [110]. Although ‘exact’ methods for
generating (discrete versions of) Gaussian processes are in general quite slow, a sophisticated
simulation technique becomes available by exploiting the stationarity of the input [83]. In the
important case of fBm, this leads to a fast algorithm (order of T log T for a trace of length T )
for generating fBm traces. An inherent difficulty with this algorithm is that the trace length
should be specified before the simulation is started.

The second problem of simulation is that it is typically hard to estimate small probabilities;
we mainly focus on this issue in this chapter, since in our setting pn → 0 as n → ∞. We use
importance sampling to resolve this problem; however, as explained in Section 7.1, the main
difficulty with this technique is that a good importance-sampling family needs to be selected.
It is desirable that the importance-sampling estimator be asymptotically efficient.

Estimators based on large-deviation theory are natural candidates for efficient simulation,
but we have seen in Chapter 8 that the resulting estimators are not always asymptotically
efficient. In this chapter, we state the conditions for asymptotic efficiency (as n → ∞) of the
large-deviation estimator that would apply to our buffer-content probability. It turns out that
this estimator is predominantly asymptotically inefficient for a wide range of Gaussian input
processes, including fBm and (perhaps surprisingly) even standard Brownian motion. Since
we essentially work under path-level twisting in the terminology of Chapter 9, it is interesting
to compare this assertion to Corollary 9.9.

As the large-deviation estimator is inefficient in practice, a different approach needs to be
taken. We present three other methods that can be proven to be asymptotically efficient. The
first uses ideas of Boots and Mandjes [53], and simulates timeslot by timeslot. The second
method is a randomized version of the large-deviation estimator; it is based on the work of
Sadowsky and Bucklew [280]. A third method relies on a recent paper by Dupuis and Wang
[127], and simulates source by source. In the latter approach, the change of measure of the
source under consideration depends on the input generated by the sources that have already
been simulated. We present a detailed performance evaluation of the four resulting approaches,
both analytically and empirically.

Some related results on fast simulation of queues with Gaussian input have been reported
by Michna [227] and by Huang et al. [161]. Michna focuses on fBm input under the large-
buffer scaling of Part A, but does not consider asymptotic efficiency of his simulation scheme.
The study of Huang et al. also relates to the large-buffer asymptotic regime for fBm input.
They empirically assess the variance reduction of their proposed change of measure, but do not
formally derive properties of their estimator (such as asymptotic efficiency); in fact, Lemma 10.5
below entails that their estimator is unnatural from the point of view of asymptotic efficiency.
We would like to stress that the present chapter only focuses on the simulation of (the tail of)
the buffer-content distribution in the many-sources regime (with general Gaussian input, not
necessarily fBm).

This chapter is organized as follows. Section 10.2 formalizes the queueing framework used
in this chapter. It also discusses how the simulation horizon can be truncated, so that we
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can work with traces of prespecified length. Section 10.3 studies the asymptotic efficiency of
the four simulation methods mentioned above from an analytical perspective. Section 10.4
contains a numerical evaluation of these methods, to assess their performance under practical
circumstances. The chapter concludes with a discussion on continuous-time Gaussian fluid
queues in Section 10.5.

10.2 The buffer-content probability

The present section contains the description of our queueing model. In particular, we argue
in Section 10.2.1 that the simulation context is particularly suitable for studying fluid queues
through extremes (see Section 1.1). Recall that this approach translates the buffer-content
probability into an exceedance probability of the free process on an infinite time interval. To
simulate this exceedance probability, this infinite time interval needs to be truncated, where the
neglected probability mass is below a tolerable level. Under the truncation, we can work with
Gaussian traces of prespecified length. This truncation issue is addressed in Sections 10.2.2
and 10.2.3.

10.2.1 Description of the model — many-sources framework

We focus on a discrete-time fluid queue in the spirit of Section 1.1.2; this framework is partic-
ularly suitable in a simulation context.

First we describe the input process. Consider n i.i.d. sources feeding into a buffered resource.
The sources are assumed to be stationary, so that the distribution of the input (‘traffic’)
generated in an interval [s, s+t) only depends on the interval length t (and not on the ‘position’
s). Define An as the aggregate input process, i.e., An(t) denotes the traffic generated by the
superposition of the n sources in the interval {1, . . . , t}. For notational convenience, we set
An(0) := 0.

In this chapter, we assume that the sources are Gaussian, so that the distribution of An(·) is
completely determined by the mean input rate and the covariance structure. Let µ denote the
mean input rate of a single source, i.e., EAn(t) =: nµt. Because the stationarity of the sources
results in stationary increments of the process An, the covariance structure is determined by
the variance function σ2(t) := VarA1(t), see (3.3). We suppose that σ2(t)t−α → 0 as t → ∞
for some α ∈ (0, 2); the Borel-Cantelli lemma then shows that A1(t)/t → µ almost surely, as
seen in the proof of Lemma 4.13.

It is readily deduced that the covariance of An(·) is given by Γn(s, t) = nΓ(s, t), where for
s, t ∈ N,

Γ(s, t) := Cov(A1(s), A1(t)) =
σ2(s) + σ2(t)− σ2(|s− t|)

2
.

An important special case of Gaussian input is fractional Brownian motion (fBm), for which
σ2(t) is (proportional to) t2H .

Now consider a fluid queue with input process An. In this chapter, we scale the queue’s
(deterministic) drain rate with the number of sources: the queue releases fluid at rate nr. To
ensure stability, we assume that µ < c. We are interested in the steady-state probability pn of
the buffer content exceeding some prescribed level nb > 0, which also scales with the number of
sources. As seen in Section 1.1, due to the assumed stationarity of the input, the steady-state
probability pn of the buffer content exceeding nb equals

pn = P

(
sup

t∈{1,2,...,∞}
An(t)− nrt > nb

)
. (10.1)
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We conclude that there are essentially two ways of simulating the buffer-content probability:

• In the first place, one could estimate the buffer-content probability from the evolution
of the reflected process (i.e., the buffer-content process). However, standard simulation
approaches to do this have their intrinsic difficulties: a regenerative approach fails in
the context of Gaussian inputs (note that busy periods are dependent!), whereas in a
‘batch-means’ approach the estimator could suffer from the relatively strong dependencies
between the batches (particularly when the Gaussian process is long-range dependent).

• As an alternative, one could estimate the buffer-content probability from sample paths
of the free process An(t)− nrt. Every run is an independent sample of this free process,
and the corresponding estimator is the fraction of runs in which nb is exceeded (for some
t ∈ N). This approach clearly overcomes the aforementioned problems arising when
estimating pn from the reflected process.

A practical difficulty of the latter ‘extreme-based’ approach, however, relates to the infinite
‘simulation horizon’ involved (it needs to be verified whether the free process exceeds nb for
some t ∈ N); this issue is addressed in the next subsection. Motivated by these arguments,
we use the representation of the buffer-content probability as an exceedance probability of the
free process; in other words: we estimate pn relying on the right-hand side of (10.1).

We remark that the probability pn of the steady-state buffer content being larger than
nb in a system with infinite buffer is often used as an approximation for the loss probability
in a system with finite buffer nb. In some research papers, our buffer-content probability is
therefore called the overflow probability.

The behavior of the probability pn in discrete time is essentially different from continuous
time. The buffer-content probability in continuous time is obtained by replacing N by R+ in
Equation (10.1). Notably, the tail asymptotics for the buffer content in continuous time differ
qualitatively from those of pn, see Dȩbicki and Mandjes [90]. A further discussion of this issue
is relegated to Section 10.5.

10.2.2 The simulation horizon

Representation (10.1) shows that the buffer-content probability equals an exceedance proba-
bility on an infinite time horizon. Hence, to estimate pn through simulation, we first have to
truncate N to {1, . . . , T}, for some finite T , while still controlling the error made. That can be
done as follows.

Suppose we approximate pn by

pTn := P

(
sup

t∈{1,...,T}
An(t)− nrt > nb

)
. (10.2)

This is evidently a probability smaller than pn, but the larger T the smaller the error. We
now analyze how large T should be. Define τn := inf{t ∈ N : An(t) − nrt > nb}, so that
pn = P(τn <∞). As we propose to approximate pn by P(τn ≤ T ), we discard the contribution
of P(T < τn <∞). As in Boots and Mandjes [53], we choose T such that

P(T < τn <∞)

pn
< ε, (10.3)

for some predefined, typically small, ε > 0. When choosing ε small enough, the truncation is
of minor impact. Clearly, the smaller ε, the larger the T required.

The requirement in (10.3) does not directly translate into an explicit expression for the
simulation horizon T as a function of ε and n. Following [53], this problem is tackled by
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establishing tractable bounds on P(T < τn < ∞) and pn: with a lower bound on pn and an
upper bound on P(T < τn < ∞), we can choose T so large that P(T < τn < ∞)/pn < ε. We
write

It :=
(b+ (r − µ)t)2

2σ2(t)
.

A lower bound on pn

For any t ∈ N, application of (10.1) entails

pn ≥ P(An(t) > nb+ nrt)

=

∫ ∞

√
n

b+(r−µ)t
σ(t)

1√
2π

exp

(
−1

2
x2

)
dx

≥ 1√
π

1√
nIt +

√
nIt + 2

e−nIt , (10.4)

where the last inequality is a standard bound for the standard normal cumulative density
function (see [231, p. 177–181] for related inequalities and references).

In order to find the best possible lower bound, we compute t∗ := arg inft∈N It and use
the lower bound (10.4) for t = t∗. The existence of t∗ is guaranteed by the assumption that
σ2(t)t−α → 0 as t→∞ for some α ∈ (0, 2). In case t∗ is unique, it is usually referred to as the
‘most likely’ exceedance epoch: given that the free process An(t)− nrt exceeds nb, it is most
likely that it happens at epoch t∗; see for instance Wischik [308].

An upper bound on P(T < τn <∞)

By a Chernoff-bound argument, we have

P(T < τn <∞) =

∞∑

t=T+1

P(τn = t) ≤
∞∑

t=T+1

P(An(t)− nrt > nb) ≤
∞∑

t=T+1

e−nIt . (10.5)

In the present generality, it is difficult to further bound this sum. We could proceed by focusing
on a specific correlation structure, such as fBm, for which σ2(t) = t2H , for H ∈ (0, 1). Instead,
we focus on the somewhat more general situation that the variance function can be bounded
(from above) by a polynomial: σ2(t) ≤ Ct2H , for some H ∈ (0, 1) and C ∈ (0,∞). For
instance, if σ2(·) is regularly varying (Definition 2.1) with index α, then σ2(t) can be bounded
from above by Ctα+δ, for some C, δ > 0; see (2.2). Obviously, it is desirable to choose the
horizon as small as possible under the restriction that (10.3) holds; for this, C and H should
be chosen as small as possible.

Under σ2(t) ≤ Ct2H we can bound (10.5) as follows:

∞∑

t=T+1

e−nIt ≤
∞∑

t=T+1

exp

(
−n (r − µ)2

2C
t2−2H

)
≤
∫ ∞

T

exp

(
−n (r − µ)2

2C
t2−2H

)
dt.

It turns out that we have to consider the cases H ≤ 1/2 and H > 1/2 separately. For
H ≤ 1/2, the following bound is readily found (its proof is deferred to Appendix 10.A.1). Set
C0 := (r − µ)2/(2C) and q := 1/(2− 2H) for notational convenience.

Lemma 10.1 In case H ≤ 1/2, we have

∫ ∞

T

exp
(
−nC0t

1/q
)
dt ≤ q

C0n
exp

(
−nC0T

1/q
)
. (10.6)
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We now focus on H > 1/2 (and hence q > 1). Let m be the largest natural number such
that q − 1−m ∈ (0, 1]. Moreover, we define

γq := q − 1−m, and βq :=
(q − 1) · · · (q −m)

γmq e
γq

. (10.7)

These quantities play a central role in the following lemma, which is also proven in Ap-
pendix 10.A.1.

Lemma 10.2 In case H > 1/2, we have
∫ ∞

T

exp
(
−nC0t

1/q
)
dt ≤ qβq

Cq0(n− γq)
exp

(
−(n− γq)C0T

1/q
)
.

By combining the upper bounds and the lower bound, we derive the following corollary:

Corollary 10.3 For H ≤ 1/2, let T (n) be the smallest integer larger than
(
− 1

nC0
log

[
1

q
√
π

nC0ε√
nIt∗ +

√
nIt∗ + 2

e−nIt∗

])q
,

and for H > 1/2 let T (n) be the smallest integer larger than
(
− 1

nC0
log

[
1

qβq
√
π

(n− γq)Cq0ε√
nIt∗ +

√
nIt∗ + 2

e−nIt∗

])q
.

Then the error as defined in (10.3) does not exceed ε.
Moreover, T := limn→∞ T (n) = (It∗/C0)

1/(2−2H).

Recall that t∗ could be interpreted as the most likely epoch at which the supremum in
(10.1) is attained. Hence, it is not surprising that T > t∗:

It∗

C0
=

(b+ (r − µ)t∗)2

2σ2(t∗)

/
(r − µ)2

2C
> (t∗)2−2H = (t∗)1/q. (10.8)

10.2.3 Hurst parameter

In this subsection, we investigate the influence of the Hurst parameter on the simulation
horizon. This is of special interest since the computational effort to obtain estimates with the
cut-and-twist method (see Section 10.3.2) is extremely sensitive to this horizon.

As already observed, the limiting value (as n → ∞) of the simulation horizon is given by
(It∗/C0)

1/(2−2H), which equals by definition

T = T (H) =

(
inf

t∈{1,2,...}

b+ (r − µ)t

(r − µ)tH

)1/(1−H)

.

Assuming that the infimum is taken over the whole real halfline, we see that T (H) can be
approximated by

T̃ (H) :=
b

r − µ
HH/(H−1)

1−H .

Clearly, T̃ (H) has a pole at H = 1, but it is insightful to plot T̃ as a function of H and see how
quickly it tends to infinity. Set b/(r − µ) = 1. In Figure 10.1, we have plotted this function
and its derivative.

It is intuitively clear that T̃ (H) increases in H. The higher H is, the more long-term
correlations are present, and more time is needed until unusual behavior is diminished. In
practice, it will hardly be possible to simulate the probability with relative error at most ε if
H > 0.95, cf. (10.3).
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Figure 10.1: T̃ (H) as a function of H (left-hand diagram) and its derivative (right-hand dia-
gram).

10.3 Simulation methods

Using the bounds of Section 10.2.2, the simulation horizon can be truncated. We therefore focus
in the sequel of this chapter on the simulation of this ‘truncated’ buffer-content probability

p
T (n)
n defined in (10.2).

Recall from Section 7.1.2 that asymptotic efficiency corresponds to the performance of
a simulation method for large n. Therefore, by virtue of Corollary 10.3, we can safely set
T (n) = dT e for n large enough; for ease denote T := dT e. Conclude that we can restrict
ourselves to assess asymptotic efficiency of methods for estimating pTn .

In this chapter, we concentrate on four methods for simulating pTn . The first, which we refer
to as the single (exponential) twist method, is the simplest of the four. This method corresponds
to path-level twisting in the terminology of Chapter 9. We present explicit conditions on the
covariance structure of the Gaussian sources under which the method is asymptotically efficient
in the sense of Section 7.1.2. It appears that for important cases the method does not yield
asymptotic efficiency. Therefore, we also discuss three asymptotically efficient alternatives: the
first solves the theoretical difficulties by simulating timeslot by timeslot (which we therefore
call cut-and-twist), the second by randomization of the twist (random twist), and the third by
simulating source by source (sequential twist).

10.3.1 The single-twist method

Large-deviation theory suggests an importance-sampling distribution based on an exponential
change of measure (‘twist’). In a considerable number of simulation settings this alternative
distribution has shown to perform well — in some cases it is asymptotically efficient, see
Section 7.2 for references. However, one has to be careful, as a successful application of such an
exponential twist critically depends on the specific problem at hand, see for instance Chapter 8
or [127, 148]. Before giving conditions for asymptotic optimality of the exponential twist in
the setup of the present chapter, we first provide more background.

We denote

OT := {x ∈ RT : xt + µt ≥ b+ rt for some t ∈ {1, . . . , T}} (10.9)
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=
⋃

t∈{1,...,T}

⋃

{y:y+µt≥b+rt}
{x ∈ RT : xt = y},

so that
pTn = ν(T )

n (OT ),

with ν
(T )
n denoting the distribution of the centered (i.e., zero-mean) process {An(t)/n − µt :

t = 1, . . . , T}. The following lemma states that ν
(T )
n (OT ) decays exponentially in n. We let

Γ(T ) denote the covariance matrix of {A1(t) − µt : t = 1, . . . , T}, i.e., Γ(T ) := {Γ(s, t) : s, t =
1, . . . , T}. All proofs for this subsection are given in Appendix 10.A.2.

Lemma 10.4 We have

lim
n→∞

1

n
log ν(T )

n (OT ) = −1

2
x∗′
(
Γ(T )

)−1

x∗ = −It∗ , (10.10)

where t∗ := arg inft∈N It, and the vector x∗ ∈ RT is given by

x∗t :=
b+ (r − µ)t∗

σ2(t∗)
Γ(t∗, t). (10.11)

The formula for x∗t should be compared to (4.3) in the case of fractional Brownian motion.
Time epoch t∗ can be thought of as the most likely epoch that the free process An(t) − nrt
exceeds nb: as n grows the probability of exceeding nb vanishes, but given that it occurs, with
overwhelming probability it occurs at t∗. Likewise, x∗ can informally be interpreted as the most
likely path to exceedance; note that indeed x∗t∗ = b + (r − µ)t∗. Theorem 4.2 formalizes this
intuition in the large-buffer asymptotic regime. It is important to realize that x∗ is piecewise
linear only in the case of (scaled) Brownian input (i.e., σ2(t) = Ct for some C > 0); in general
x∗ is a ‘curved’ path.

We can now introduce the family {λ(T )
n } of exponentially-twisted probability measures. The

probability mass assigned to a Borel set A ⊂ RT under this new distribution is

λ(T )
n (A) =

∫

A

exp

(
n
b+ (r − µ)t∗

σ2(t∗)
xt∗ − nIt∗

)
ν(T )
n (dx). (10.12)

In the terminology of Chapter 9, this is a path-level twisted distribution. Note that, due to the
possible presence of correlations, it is not clear how a step-level simulation procedure could be
devised in the present context.

We next calculate the mean and covariance structure of vectors (‘sample paths’) drawn

from λ
(T )
n . Observe that by definition of x∗, we have

(Γ(T ))−1x∗ =
b+ (r − µ)t∗

σ2(t∗)
et∗ , (10.13)

where ei is a T -dimensional vector of zeros, except for a one on the i-th position. As a result,

cf. (10.10), we have x∗′
(
Γ(T )

)−1
x∗ = 2It∗ . Also, the density on RT corresponding to λ

(T )
n

reduces to

exp

(
n
b+ (r − µ)t∗

σ2(t∗)
xt∗ − nIt∗

)
1

(
√

2π)T |Γ(T )/n|1/2
exp

(
−n

2
x′
(
Γ(T )

)−1

x

)

=
1

(
√

2π)T |Γ(T )/n|1/2
exp

(
−n

2
(x− x∗)′

(
Γ(T )

)−1

(x− x∗)
)
,

which can immediately be seen by using (10.13) for calculating x′
(
Γ(T )

)−1
x∗. In other words:

the new measure λ
(T )
n corresponds to the distribution of a Gaussian process with mean vector
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{x∗t : t = 1, . . . , T} and covariance matrix Γ(T )/n. Remark that the mean vector of the new
measure is different from the old mean (in fact, the new Gaussian process does not correspond
to stationary sources anymore), while the covariances under the old and new measure coincide.

Since samples from λ
(T )
n tend to follow the most likely path x∗ for large n, we say that this

exponential twist is in accordance with the large-deviation behavior of Lemma 10.4.
The above calculations show that, in the Gaussian setting, exponential twisting amounts

to changing the mean vector, but not the covariance structure. Huang et al. [161] (see their
Equation (16)) and Michna [227] propose to take a straight path as the mean vector, as opposed
to the ‘curved’ most-likely path x∗. The following lemma shows, however, that x∗ is in fact
the ‘best’ way to change the mean (i.e., the only candidate that possibly yields asymptotic
efficiency).

Lemma 10.5 Any mean vector different from x∗ does not yield asymptotic efficiency.

Lemma 10.5 further motivates the verification of the asymptotic efficiency of the twisted

distribution λ
(T )
n , and the following theorem is therefore the main result of this subsection. It

presents sufficient and necessary conditions for asymptotic efficiency of the estimator deter-

mined by (7.1), where ε is replaced by n and λ
(T )
n is given by (10.12).

We recently came across a related theorem by Baldi and Pacchiarotti [35]. An important
difference is that these authors study the continuous-time buffer-content probability. We wish
to remark, however, that our method can be extended to cover continuous time by applying
standard theorems for large deviations of Gaussian measures on Banach spaces, see Section 3.1.
However, we believe that discrete time is more natural in a simulation setting, and refer
to Section 10.5 for a discussion. Another difference with [35] is the proof technique; Baldi
and Pacchiarotti use recent insights into certain Gaussian martingales, while we take a direct
approach based on Chapter 8.

Theorem 10.6 Importance sampling under a ‘single exponential twist’ is asymptotically effi-
cient for simulating pTn if and only if

inf
t∈{1,...,T}

b+ (r − µ)t+ x∗t
σ(t)

= 2
b+ (r − µ)t∗

σ(t∗)
. (10.14)

Clearly, if we set ht := [b+ (r − µ)t+ x∗t ]/σ(t), then Theorem 10.6 states that the change
of measure is asymptotically efficient if and only if ht ≥ ht∗ for all t = 1, . . . , T .

In the above we represented time by the natural numbers N, i.e., we used a grid with a
unit mesh. The same techniques can be used to prove a similar statement for any arbitrary
simulation grid. In the following intermezzo, we analyze the impact of making the grid more
fine-meshed.

Intermezzo: refining the simulation grid

Consider simulation on the grid mN ∩ [0, T ] for some grid mesh m > 0. One can repeat
the proof of Theorem 10.6 to see that the infimum in (10.14) should then be taken over
mN ∩ [0, T ]. Thus, by refining the grid, the left-hand side of (10.14) can be made arbitrarily
close to the infimum over [0, T ]. This motivates an analysis of the function g : R+ → R+ given
by g(t) := [b+(r−µ)t+ x̄∗(t)]/σ(t), where x̄∗ denotes the continuous-time analogue of (10.11):

x̄∗(t) =
b+ (r − µ)t∗

2σ2(t∗)

[
σ2(t∗) + σ2(t)− σ2(|t− t∗|)

]
.

Hence, there is asymptotic optimality for any grid on [0, T ] if and only if g(t) ≥ g(t∗) for all
t ∈ [0, T ]. Suppose that σ2 is twice continuously differentiable with first and second derivative
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denoted by σ̇2 and σ̈2 respectively. Necessary conditions for inf t∈[0,T ] g(t) ≥ g(t∗) are then
ġ(t∗) = 0 and g̈(t∗) > 0. Therefore we compute

lim
t↑t∗

ġ(t) =
1

2

b+ (r − µ)t∗

σ3(t∗)
σ̇2(0),

so that σ̇2(0) > 0 implies that exponential twisting becomes asymptotically inefficient as the
grid mesh m tends to zero. For the complementary case σ̇2(0) = 0, we can certainly find an
‘inefficient’ grid mesh if limt↑t∗ g̈(t) < 0. After some calculations, one obtains

lim
t↑t∗

g̈(t) =
1

4

b+ (r − µ)t∗

σ3(t∗)

[
[σ̇2(t∗)]2

σ2(t∗)
− σ̈2(t∗)− σ̈2(0)

]
, (10.15)

which is negative if [σ̇2(t∗)]2 < σ2(t∗)[σ̈2(t∗) + σ̈2(0)].
Having these conditions at our disposal, we can study some specific cases and ask whether

the single exponential twist becomes inefficient as the mesh tends to zero. For instance, suppose
that the input traffic A1(t) is a fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1), i.e., σ2(t) = t2H . Note that a special case is Brownian motion, which corresponds
to H = 1/2. If H ≤ 1/2, one has σ̇2(0) > 0 and a single exponential twist is therefore
asymptotically inefficient for grid meshes m small enough, in line with the results of [35].
Moreover, if H > 1/2, it follows from (10.15) and σ̈2(0) =∞ that limt↑t∗ g̈(t) < 0, so that we
here have inefficiency as well.

From the above we also see that it could be that the exponential twist is asymptotically
optimal for some grid mesh m, but loses the optimality at some finer threshold grid mesh m∗.

Intuition behind (in-)efficiency of exponential twist

Having seen that a single exponential twist can be asymptotically inefficient, one may wonder

why this occurs. To this end, consider the likelihood term dν
(T )
n /dλ

(T )
n following from (10.12):

exp

(
−nb+ (r − µ)t∗

σ2(t∗)
xt∗ + nIt∗

)
= exp

(
−nb+ (r − µ)t∗

σ2(t∗)
(xt∗ − x∗t∗)− nIt∗

)
,

where xt∗ corresponds to the value of An(t
∗)/n − µt∗, with mean x∗t∗ = b + (r − µ)t∗ under

λ
(T )
n . For asymptotic optimality, this likelihood ratio should be ‘small’ for realizations in the

set OT . If there is exceedance at time t∗, then clearly

dν
(T )
n

dλ
(T )
n

≤ e−nIt∗ (10.16)

(use xt∗ ≥ b+(r−µ)t∗). However, if exceedance occurs at any other time epoch, the likelihood
ratio can take any (positive) value. Obviously, an extremely high value has a dramatic effect
on the variance of the estimator, but the probability of such an extreme value might be low.
Summarizing, condition (10.14) gives a criterion to check whether high values for the likelihood
are probable enough to affect (the exponential decay of) the variance of the estimator.

10.3.2 The cut-and-twist method

We have seen that the likelihood may explode while simulating pTn with a single exponen-
tial twist. This can be overcome by partitioning the event OT into disjoint sub-events, and
simulating these individually. To this end, write

pTn = ν(T )
n


 ⋃

t∈{1,...,T}
OT (t)


 =

∑

t∈{1,...,T}
ν(T )
n (OT (t)),
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where OT (t) corresponds to the event that exceedance occurs for the first time at time t:

OT (t) := {x ∈ RT : xt + µt ≥ b+ rt;xs + µs < b+ rs for all s ∈ {1, . . . , t− 1}}.

Hence, the problem reduces to simulating T probabilities of the type ν
(T )
n (OT (t)). This parti-

tioning approach is also taken by Boots and Mandjes [53], where this idea was exploited for a
queue fed by (discrete-time) ON/OFF sources.

The resulting simulation algorithm, to be called cut-and-twist method, works as follows.

Define the exponentially twisted measure tλ
(T )
n as in (10.12), but with t instead of t∗, and

estimate the probability ν
(T )
n (OT (t)) with the importance-sampling distribution tλ

(T )
n . An

estimate of pTn is found by summing the estimates over t ∈ {1, . . . , T}.
Before discussing the efficiency of this method, we note for the sake of clarity that the

estimator equals

1

N

N∑

k=1

∑

t=1,...,T

1n
X

(k)
t ∈OT (t)

o dν
(T )
n

dλ
(T )
n

(
X

(k)
t

)
, (10.17)

where X
(1)
t , . . . , X

(N)
t is an i.i.d. sample from tλ

(T )
n , and the samples X

(·)
t , t = 1, . . . , T are also

independent.
The following theorem is proven in Appendix 10.A.3. Its proof is based on the property that

the method is such that, when estimating ν
(T )
n (OT (t)), for any x ∈ OT (t) the corresponding

likelihood is uniformly bounded by exp(−nIt), cf. (10.16).

Theorem 10.7 The cut-and-twist method is asymptotically efficient for estimating pTn .

This method is asymptotically optimal, but it has the obvious drawback that it may take
a substantial amount of time to simulate the T probabilities individually.

Summarizing, in this approach the exceedance event is split into disjoint events that cor-
respond to exceedance (for the first time) at time t. The main advantage of this splitting is
that every of these individual events can be ‘controlled’ now (the corresponding likelihoods are
even bounded, see the proof of Theorem 10.7), whereas the single-twist method suffers from
the (potentially large) likelihoods that correspond to exceedance at time epochs different from
the most likely time t∗, as was noted in Section 10.3.1. As a result, the single-twist method is
not necessarily asymptotically efficient, while cut-and-twist is.

10.3.3 The random-twist method

An approach closely related to the cut-and-twist method was proposed by Sadowsky and
Bucklew [280]. In their method, a random T is drawn in each simulation run according to some
(arbitrary) distribution Q = {qt : t = 1, . . . , T} with qt strictly positive for any t = 1, . . . , T ;

subsequently, one does a simulation run under the measure Tλ(T )
n (as defined in Section 10.3.2).

The likelihood ratio becomes

[
T∑

t=1

qt exp

(
n
b+ (r − µ)t

σ2(t)
xt − nIt

)]−1

.

Note that this likelihood ratio depends on the whole path {xt : t = 1, . . . , T}, as opposed to
the previous two methods.

The following result follows from Theorem 2(a) of Sadowsky and Bucklew [280].

Theorem 10.8 (Sadowsky-Bucklew) The random-twist method is asymptotically efficient
for estimating pTn .
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Remarkably, the asymptotic efficiency does not depend on the specific choice of the qt, as
long as they are strictly positive. Hence, a drawback of the method is that it is unclear how the
distribution Q is best chosen. For instance, if Q is ‘almost’ degenerate in t∗, then the method is
similar to the single-twist method; therefore, it may suffer in practice from the same problems
as discussed in Section 10.3.2. The theorem indicates that this effect eventually vanishes (when
n grows large), but this could require extremely large n.

It is not the aim of this chapter to investigate the impact of the choice of Q on the quality
of the estimates; in the sequel, we suppose that the qt correspond to a truncated Poisson
distribution with mean t∗, i.e.,

qt =
(t∗)t/t!

∑T
k=1(t

∗)k/k!
, t = 1, . . . , T.

The reason for this choice is that the Poisson distribution is nicely spread around its mean
value. In addition, it is straightforward to sample from a Poisson distribution, so that one can
sample from Q with a simple acceptance-rejection procedure.

10.3.4 The sequential-twist method

Recently, Dupuis and Wang [127] introduced an intuitively appealing approach to rare-event
simulation. We now give a brief description of their method in the setting of the present paper,
although the method is known to work in a considerably more general setting. Consider a
sequence Ā1, Ā2, . . . of centered i.i.d. random vectors in RT , where the Āj are distributed as

{A1(t)− µt : t = 1, . . . , T}; as a consequence, the vectors Āj have distribution ν
(T )
1 . Note that

pTn can be written as P
(

1
n

∑n
i=1 Āi ∈ OT

)
, with OT defined in (10.9), and hence

pTn =

∫

{(x(1),...,x(n)): 1
n

Pn
i=1 x

(i)∈OT }
ν

(T )
1 (dx(1)) · · · ν(T )

1 (dx(n)). (10.18)

Instead of twisting νTn as in the previous methods, the sequential-twist method twists each copy

of ν
(T )
1 (i.e., each source) in Equation (10.18) differently, exploiting the fact that the sources

behave stochastically independently. Recall that exponential twisting for Gaussian random
variables corresponds to shifts in the mean (and no change in the covariance structure).

This gives rise to the following sequential approach. Suppose Ā1, . . . , Āj (i.e., source 1 up
to j) are already generated, and we are about to twist the traffic generated by source j + 1
(for j = 0, . . . , n − 1). We aim to find the ‘cheapest’ way to reach the exceedance set OT
given Ā1, . . . , Āj . Hence, we do not change the measure if already 1

n

∑j
i=1 Āi ∈ OT (under this

condition reaching OT is not ‘hard’ anymore, as EĀj(t) = 0); otherwise we change the mean
of the distribution of Āj+1 to µj+1 (recall that this is a vector in RT ), where

µj+1 := arg inf
{y∈RT : 1

n

Pj
i=1 Āi+

1
n

Pn
i=j+1 y∈OT}

y′
(
Γ(T )

)−1

y;

an empty sum should be interpreted as zero. The following lemma gives a useful explicit
expression for µj+1. The proof is given in Appendix 10.A.4.

Lemma 10.9 Define for j = 0, . . . , n− 1,

t∗j+1 := arg inf
t∈{1,...,T}

nb+ n(r − µ)t−∑j
i=1 Āi(t)

(n− j)σ(t)
, (10.19)

and denote the corresponding infimum by Jj+1. Then we have

µj+1 =
Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).
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Observe that for j = 0 the formula reduces to the large-deviation most likely path, which
is to be expected since then no information is available on the previously generated sources.
The reader may check that the resulting likelihood ratio is

n∏

j=1

exp

(
− Jj
σ(t∗j )

Āj(t
∗
j ) +

1

2
J2
j

)
.

An estimator is obtained by performing N independent runs, and computing the estimate using
(7.1).

The conditions for the following theorem of Dupuis and Wang [127] are checked in Ap-
pendix 10.A.4.

Theorem 10.10 (Dupuis-Wang) The sequential-twist method is asymptotically efficient for
estimating pTn .

Informally speaking, the idea behind the sequential-twist approach is that, by adapting the
mean µj of every next source j in the way described above, the set OT is reached close to its
most likely point, thus avoiding large likelihood ratios. Apparently, as claimed in the above
theorem, the resulting estimator is asymptotically optimal.

A drawback of this approach is that all sources should be generated individually; one
does not simulate the aggregate input process, as in the previous methods. However, the
sequential approach can also be used with less than n Gaussian vectors while retaining the
property of asymptotic efficiency. This is done by twisting source batches instead of individual
sources. Let M be a batch size such that n/M ∈ N, where M does not depend on n. Define

Ā
(M)
i := 1

M

∑M
j=1 Āj+(i−1)M . It is important that M does not depend on n. We refer to this

approach as the batch sequential-twist method; since

P

(
1

n

n∑

i=1

Āi ∈ OT
)

= P


 1

n/M

n/M∑

i=1

Ā
(M)
i ∈ OT


 ,

Theorem 10.10 also yields the asymptotic efficiency of the batch sequential-twist estimator for
any fixed M .

Although the sequential-twist method and its batch counterpart are both asymptotically
efficient, some practical issues arise when M is made (too) large. The relative efficiency then
converges much slower to 2, so that we might not even be close to efficiency for reasonable n.
This issue is addressed empirically in Section 10.4.4.

10.4 Evaluation

In this section, we evaluate the four methods of Section 10.3 as follows. First, we discuss some
issues related to our implementation of the methods. Based on this, we come to preliminary
conclusions on the time complexity of each of the methods. In Section 10.4.2, we check empir-
ically that our simulations support the claims of Theorems 10.6, 10.7, 10.8, and 10.10. After
this analysis, the reliability of the methods is studied by refining the simulation grid; for this,
we also take the computational effort into account. Further empirical insight into the batch
sequential-twist method is gained by studying the influence of the batch size on the relative
efficiency and the relative error.

While the preceding sections are applicable to general Gaussian processes with stationary
increments (satisfying certain conditions), in this section we focus on the important case of
fractional Brownian motion.
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10.4.1 Implementation and time complexity

Simulation of fractional Brownian motion is highly nontrivial. As the simulation grid is eq-
uispaced, it is best to simulate the (stationary!) incremental process, often called fractional
Gaussian noise. When T is a power of two, the fastest available algorithm for simulating T
points of a fractional Gaussian noise is the method of Davies and Harte [83]. In this approach,
the covariance matrix is embedded in a so-called circulant matrix, for which the eigenvalues can
easily be computed. The Fast Fourier Transform (FFT) is then used for maximum efficiency;
the computational effort is of order T log T for a sample size of length T . For more details on
this method, we refer to Dietrich and Newsam [115] and Wood and Chan [309].

Although we use this fast algorithm, the required number of traces per simulation run
still highly influences the speed of the methods. The single-twist method and the random-
twist method only need one trace (of length T ) for each simulation run, while n such traces
are needed for the sequential-twist method. For the cut-and-twist method, traces of length
t = 1, . . . , T are needed. These considerations indicate that it depends on the parameter
values which method performs best.

We first address the impact of the number of sources n. A clear advantage of the cut-
and-twist method and the random-twist method is that the required simulation time depends
just mildly on n (due to the fact that T (n) → T ), as opposed to sequential-twist (where the
simulation time is roughly proportional to n).

As for the influence on the simulation horizon, we have already observed that T is large
when either b/(r − µ) or H is large, see Section 10.2.3. This badly affects the cut-and-twist
method, since such a sample is needed for each time epoch (of which there are T ). The random-
twist method only needs a single fBm trace, but the computation of the likelihood ratio is of
the order T . Sequential-twist calculates the best twist n times, which amounts to computing
the infimum in (10.19); this computation is of order T .

We raise one further implementation issue, which plays a role for all of the methods. Once
we have calculated the simulation horizon T , we round it off to the smallest power of two T ′

with T ′ ≥ T , and we use this new horizon T ′. Similarly, since traces of length t = 1, . . . , T ′

are needed for the cut-and-twist method, t is rounded off, for every t.

10.4.2 Empirical validation of the theory

In Section 10.3, we studied whether the four discussed simulation methods are asymptotically
efficient. In the present subsection, our aim is to validate these theoretical results by performing
simulation experiments. By doing so, we gain insight into the quality of the methods.

The parameters are chosen as follows: b = 0.3, r − µ = 0.1, H = 0.8, M = 1, ε = 0.05, and
ηmax = 0.1/1.96. Recall from Section 7.1.2 that the simulation is stopped when the relative
error drops below ηmax. It is left to the reader to check that condition (10.14) does not hold, i.e.,
that the single-twist estimator is not asymptotically efficient. The choice H = 0.8 is supported
by several measurement studies, see for instance Leland et al. [217], and ηmax is chosen such
that the width of the confidence interval is 20% of the estimated probability. Reduction of
this value has a significant impact on the simulation time, and the present value yields typical
results within a reasonable time frame.

We first study the asymptotic efficiency of the simulation methods by varying n and an-
alyzing the number of simulation runs N ∗

n needed to achieve the required relative error. In
the left-hand diagram of Figure 10.2, we have plotted logN∗

n for n = 100, 150, . . . , 500 and
all four simulation methods, and in addition the ‘naive’ direct Monte Carlo estimator. The
confidence intervals are not plotted, since they are completely determined by the estimates
themselves and the value of ηmax. Note that under asymptotic efficiency, logN ∗

n should be (ul-
timately) sublinear. Therefore, the plot supports Theorem 10.7, Theorem 10.10, and the fact
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Figure 10.2: Empirical verification of the asymptotic efficiency of the simulation methods.

n = 300 rel. eff. n = 1000 rel. eff.
naive 6.12× 10−4 — — —

single twist 4.84× 10−4 1.68 1.03× 10−10 1.87
cut-and-twist 5.95× 10−4 1.86 1.32× 10−10 1.94
random twist 5.50× 10−4 1.70 1.38× 10−10 1.89

sequential twist 6.39× 10−4 1.86 1.41× 10−10 1.93
‘exact’ 5.8× 10−4 1.38× 10−10

Table 10.1: Two of the estimates corresponding to Figure 10.2.

that the naive estimator is inefficient (in fact, the number of runs grows exponentially, in line
with pn decaying exponentially). However, it is not immediate from the left-hand diagram of
Figure 10.2 that single twist is asymptotically inefficient (cf. Theorem 10.6), and that random
twist is asymptotically efficient (cf. Theorem 10.8). Although the irregular behavior indicates
that this might indeed be the case, we find more convincing evidence by increasing n further.
This is done in the right-hand diagram of Figure 10.2.

It is interesting to see some of the estimated probabilities that correspond to Figure 10.2.
We give these for two different values of n in Table 10.1. To obtain a benchmark, we also
performed a very long simulation, see the row labeled ‘exact’. It was obtained with the cut-
and-twist method, where the simulation is stopped as soon as both ends of the confidence
interval give the same value when rounded off to one digit for n = 300, and to two digits for
n = 1000.

The unstable behavior of the single-twist method (also reflected in a low value of the
relative efficiency in Table 10.1) has been explained theoretically through the interpretation of
a possible failure of the exponential twist, see Section 10.3. As noted there, the supremum is
attained at time epoch t∗ in a ‘typical’ simulation run, but it might also happen at some other
epoch t 6= t∗. Although such a realization is (relatively) rare, it has an impact on both the
estimate and the estimated variance. Since these two estimated quantities determine whether
the simulation is stopped, it may occur that the number of these ‘rare’ realizations is too low, so
that the simulation is stopped too early and the buffer-content probability is underestimated.
Likewise, random twist can lead to underestimation, but this effect vanishes when n grows
large, in line with the theory of Section 10.3.3. The table shows that random twist has a low
relative efficiency for small n.

It is interesting to see that the sequential-twist method and cut-and-twist method have com-
parable performance, both in terms of relative efficiency (Table 10.1) and number of simulation
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runs (Figure 10.2).
Hence, cut-and-twist and sequential twist seem to perform best, although the random-twist

method improves considerably as n grows. However, these methods are also the slowest (i.e.,
the effort per experiment is highest). To obtain a more realistic comparison, one should consider
CPU time, rather than the number of experiments. This is done in the next subsection.

10.4.3 Simulation grid

While the observations in the previous subsection were predicted by theory, we now perform
experiments that relate to the CPU time needed, for which no theory is available. This analysis
provides further insight into the performance of the methods in practice, both in terms of
reliability and speed. As a first step, we investigate the influence of the grid mesh on the
estimated probability.

We evaluate, with again Ān ∈ RT denoting the centered version of An,

αpn := P

(
sup

t∈{α,2α,...}
Ān(t)− n(r − µ)t > nb

)
(10.20)

for a range of α ≥ 0, in such a way that the simulation grid becomes finer. For instance, one
can take α = 1, 1/2, 1/4, 1/8; αpn then increases as α is made smaller, as we only add grid
points, and hence the supremum of the free process becomes larger. Therefore, as a sanity
check, we can test the reliability of the simulation methods by checking whether the estimates
indeed increase when making the grid finer.

Before we can compare the estimated probabilities for different α, we first study the impact
of α on the simulation horizon. We denote this simulation horizon, as a function of α, by
Tα. We now verify whether also αpT

α

n (defined in a self-evident manner) should increase when
decreasing α. Since Ān(t) is a centered fractional Brownian motion by assumption, Ān(αt) has
the same distribution as αHĀn(t), see (1.12). This self-similarity property yields that (10.20)
equals V

P

(
sup
t∈N

αHĀn(t)− nα(r − µ)t > nb

)
= P

(
sup
t∈N

Ān(t)− nα1−H(r − µ)t > nα−Hb

)
.

The above equation entails that a grid mesh α is equivalent to a unit grid mesh if b and r− µ
are replaced by bα := α−Hb and cα := α1−H(r − µ). Note that then

Iαt∗ := inf
t∈{α,2α,...}

(b+ (r − µ)t)2

2t2H
= inf
t∈N

(b+ α(r − µ)t)2

2α2Ht2H
,

so that the (limiting) simulation horizon then becomes, see (10.8),

Tα =
Iαt∗

c2α/2
= inf
t∈N

(b/α+ (r − µ)t)2

c2t2H
,

which is monotonic in α and tends to infinity as α ↓ 0. We conclude that the monotonicity is
preserved: αpT

α

n increases when α ↓ 0, just like αpn does.
In order to investigate whether the estimates indeed decrease in α, we perform some sim-

ulations with parameters n = 150, b = 0.9, r − µ = 0.3, H = 0.8, M = 1, and ε = 0.05. To
obtain each of the estimates, we stop the simulation after exactly five minutes of CPU time. It
would be desirable to do the simulations for grid sizes 20, 21, 22, 23, 24, . . ., but this quickly be-
comes computationally too intensive. Therefore, we focus on four sets of grids; 1/α = 1, 2, 4, 8,
1/α = 3, 6, 12, 1/α = 3, 9, and 1/α = 5, 10.
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Figure 10.3: The influence of the grid mesh on the probability for single twist, cut-and-twist,
random twist, and sequential twist. The solid lines represent the estimates, while the dashed
lines correspond to confidence intervals.

In Figure 10.3, we have plotted these four sets using the four different methods. The dotted
lines correspond to the boundaries of the confidence intervals. Roughly speaking, each of the
plots shows the expected monotonicity, with the only exception of the single-twist method.
This is in line with Theorem 10.6. The behavior of the single-twist confidence intervals also
differs from the other methods, but it is interesting to compare these intervals for the other
three (efficient) methods.

The widths of the confidence intervals do not seem to grow proportionally to the estimates,
most prominently for 1/α = 12. Although the stopping criterion (CPU time) is proportional to
the number of runs, the CPU time per run varies, since the time horizon T depends on α. For
instance, fBm traces of length 1024 are generated if α = 1/10, while this increases to 2048 for
α = 1/12. This is reflected in the plots (especially in the cut-and-twist plot, as anticipated in
Section 10.4.1). Clearly, the random-twist confidence intervals are the smallest, but we have to
keep in mind that the probabilities may be underestimated in view of the previous subsection.

10.4.4 Batch size for the sequential-twist method

The aim of the present subsection is to investigate the influence of the parameter M in the
batch sequential-twist method. That is, the n sources are divided into batches of size M and
each of the batches is considered a single source (using the fact that the sum of independent
Gaussian vectors is again Gaussian). Then one only twists n/M times in one simulation run,
which limits the flexibility of the method (i.e., the probability measure is adapted less often)
and therefore makes it less efficient asM grows. Note that Theorem 10.10 states that sequential
twist is still asymptotically efficient as n→∞, regardless the value of M . In practice, however,
there is a trade-off between the batch size M and the efficiency.
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Figure 10.4: The relative efficiency as a function of M for small M .

If we let the simulation run for a specified time period (here five minutes), there are two
effects as M increases: the efficiency decreases, but the relative error also decreases. It is the
aim of this subsection to study these two opposite effects. The values of the parameters are
the same as in Section 10.4.2, except for the value of M , which now varies.

We measure efficiency by means of the (estimated) relative efficiency. We set n = 3840
and estimate the relative efficiency for M = 2, 4, 6, 8, 10, 12. The resulting plot is given in
Figure 10.4. From the plot, it is not so clear that an increase in M makes the simulation
less efficient, although the relative error seems to decrease. Therefore, we also investigate
what happens if M = 80, 160, 240, 320, 480, 640, 960; the relative efficiency (relative error) is
then estimated as 1.972 (0.0164), 1.969 (0.0135), 1.966 (0.0125), 1.960 (0.0140), 1.956 (0.0139),
1.953 (0.0137), and 1.950 (0.0127) respectively. These values indeed suggest that the simulation
becomes less efficient as M increases, while the relative error decreases.

Although the differences in the relative efficiency look small, one must keep in mind that this
quantity relates to the exponential decay rate of the variance of the estimator. Therefore, small
differences blow up exponentially, and we propose to always choose M as small as possible.

10.5 Concluding remarks

In this section, we explain why the buffer-content probability in discrete time does not neces-
sarily yield a good approximation for its continuous-time counterpart. We illustrate this by
recalling the asymptotics of (10.1) in both discrete and continuous time. Denote the probability

in continuous time by p
R+
n .

In discrete time, there exists a constant K such that [220]

pn ∼
K√
n

exp

(
−1

2
n

(b+ (r − µ)t∗)2

σ2(t∗)

)
,

where t∗ minimizes It over N. However, in continuous time the asymptotics depend on the
behavior of σ near zero. If σ(t) ∼ Ctγ as t→ 0 for constants C ∈ (0,∞) and γ ∈ (0, 2), then,
under suitable regularity assumptions, [90]

pR+
n ∼ K′n

1
γ −1 exp

(
−1

2
n

(b+ (r − µ)t∗)2

σ2(t∗)

)
,
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with t∗ minimizer of It over R+, and for some constant K′ (which involves the so-called
Pickands’ constant for which no explicit representation is available; see Section 3.3). Conclude
that the polynomial term in the above asymptotic expansions is different. To our knowledge,

reliable simulation methods for the continuous-time probability p
R+
n do not exist.

10.A Appendix: proofs

In this appendix, we provide proofs of the assertions in this chapter. We start in Ap-
pendix 10.A.1 with the proofs related to the simulation horizon T , which apply to all methods
discussed in Section 10.3. Appendices 10.A.2 and 10.A.3 deal with the single-twist method and
cut-and-twist method respectively. The proof of Lemma 10.9 is given in Appendix 10.A.4.

10.A.1 Upper bounds on
∫ ∞

T
e−nC0t1/q

dt

We distinguish the cases q ≤ 1 (Lemma 10.1) and q > 1 (Lemma 10.2).

Proof of Lemma 10.1. Since q ≤ 1 and T ∈ N, we can bound the left-hand side of (10.6) as
follows:

∫ ∞

T

exp
(
−nC0t

1/q
)
dt =

q

Cq0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy

≤ q

Cq0

(
C0T

1/q
)q−1

∫ ∞

C0T 1/q

exp(−ny)dy

=
q

Cq0n

(
C0T

1/q
)q−1

exp
(
−nC0T

1/q
)

≤ q

C0n
exp

(
−nC0T

1/q
)
,

as claimed. ¤

Proof of Lemma 10.2. First note that q > 1, which is crucial throughout the proof. Recall
that m ≥ 0 denotes the largest integer such that q − 1 −m ∈ (0, 1]. As before, we have by a
simple substitution,

∫ ∞

T

exp
(
−nC0t

1/q
)
dt =

q

Cq0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy. (10.21)

The idea is to select β, γ ∈ (0,∞) such that

yq−1 ≤ βeγy (10.22)

for all y ∈ R+. We now discuss how these parameters can be chosen.
If q ∈ (1, 2] (i.e., m = 0), then pq : y 7→ yq−1 is concave. Since pq is differentiable at 1 with

derivative q − 1, by Theorem 25.1 of Rockafellar [273] we have for all y ∈ R+,

yq−1 ≤ 1 + (q − 1)(y − 1). (10.23)

Similarly, since y 7→ βeγy is convex and differentiable at 1 with derivative βγeγ , we have for
all y ∈ R+,

βeγy ≥ βeγ + βγeγ(y − 1). (10.24)

By comparing (10.23) to (10.24), we see that yq−1 ≤ βeγy upon choosing γ = q − 1 and
β = e−γ .
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To find β, γ such that (10.22) holds for q ∈ (m+1,m+2] where m > 0, the key observation
is that this inequality is always satisfied for y = 0. Therefore, it suffices to choose β, γ such
that the derivative of the left-hand side of (10.22) does not exceed the right-hand side. By
applying this idea m times, one readily observes that it suffices to require that β, γ satisfy

βγmeγy ≥ (q − 1) · · · (q −m)yq−m−1.

Note that the right-hand side of this expression is concave as a function of y since q−m− 1 ∈
(0, 1], and that the left-hand side is convex as a function of y. Therefore, we are in a similar
situation as we were for m = 0. In this case, we choose β and γ such that

βγmeγ = (q − 1) · · · (q −m)

βγm+1eγ = (q − 1) · · · (q −m)(q −m− 1).

Note that β and γ as defined in (10.7) solve this system of equations uniquely. Again, Theo-
rem 25.1 of Rockafellar [273] is applied twice to see that for y ∈ R+,

(q − 1) · · · (q −m)yq−m−1

≤ (q − 1) · · · (q −m) + (q − 1) · · · (q −m)(q −m− 1)(y − 1)

= βγmeγ + βγm+1eγ(y − 1) ≤ βγmeγy.

Now that we have found simple bounds on yq−1, we combine these bounds with (10.21) to
see that

∫ ∞

T

exp
(
−nC0t

1/q
)
dt ≤ qβ

Cq0

∫ ∞

C0T 1/q

exp(−(n− γ)y)dy

=
qβ

Cq0(n− γ) exp
(
−(n− γ)C0T

1/q
)
,

as claimed. ¤

10.A.2 Proofs for the single-twist method

The key ingredient in the proofs of this subsection is Cramér’s large-deviation principle (LDP),
introduced in Section 2.3.1. In the present finite-dimensional Gaussian setting, Cramér’s the-
orem coincides with Schilder’s theorem, see Section 3.1. We first discuss how these theorems
compile to this framework.

Recall that given some T ∈ N, ν
(T )
n denotes the distribution of the centered process

{An(t)/n − µt : t = 1, . . . , T}. The covariance of ν
(T )
n is given by Γ(T )/n, and this covari-

ance defines an inner product 〈·, ·〉H and norm ‖ · ‖H on RT as follows:

〈x, y〉H := x′
(
Γ(T )

)−1

y, ‖x‖H :=
√
〈x, x〉H.

This inner product sometimes referred to as reproducing kernel Hilbert space inner product or
Cameron-Martin space inner product. It is the finite-dimensional version of the inner product
discussed in Section 3.1.

Theorem 10.11 (Cramér) {ν(T )
n } satisfies the LDP in RT with rate function I : x→ 1

2‖x‖2H
and scale sequence {n}.

Proof. The claim is a consequence of Proposition 2.16, after noting that

sup
θ∈RT

(
〈θ, x〉 − log

∫
e〈θ,y〉ν(T )(dy)

)
= sup
θ∈RT

(
〈θ, x〉 − 1

2
θ′Γ(T )θ

)
,
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which equals 1
2x

′ (Γ(T )
)−1

x = 1
2‖x‖2H. ¤

Now we can prove Lemma 10.4.

Proof of Lemma 10.4. Lemma 10.4 is an application of Theorem 10.11. We have to prove
that

lim
n→∞

1

n
log ν(T )

n (OT ) = −1

2
inf
x∈OT

‖x‖2H = −1

2
‖x∗‖2H. (10.25)

The second equality in (10.25) is due to Addie et al. [2]. We therefore turn to the first equality.
It is readily seen that OT is closed in RT . Cramér’s theorem gives an upper bound on the

decay rate of ν
(T )
n (OT ), as well as a lower bound on the decay rate of ν

(T )
n (OT ), where OT

denotes the interior of OT . The first equality of (10.25) now follows upon combining these
upper and lower bounds with Lemma 10.12 below (applied for y = 0). ¤

Lemma 10.12 For all y ∈ RT , we have

inf
x∈OT

‖x+ y‖2H = inf
x∈OT

‖x+ y‖2H = inf
t∈{1,...,T}

(b+ (r − µ)t+ yt)
2

2σ2(t)
.

Proof. First note that the interior of the exceedance set is given by

OT :=
{
x ∈ RT : xt + µt > b+ rt for some t ∈ {1, . . . , T}

}
.

Also, evidently,
inf
x∈OT

‖x+ y‖2H = inf
x∈OT,y

‖x‖2H,

where
OT,y :=

{
x ∈ RT : xt + µt > b+ rt+ yt for some t ∈ {1, . . . , T}

}
.

A similar reasoning that led to the second equality in (10.25) now yields the desired. ¤

Proof of Lemma 10.5. From the arguments in the proof of Theorem 10.6 below, the claim
is an immediate consequence of Theorem 8.10. ¤

Proof of Theorem 10.6. We want to apply Corollary 8.4. Note that the required continuity
properties of OT follow from Lemma 10.12. Assumption 8.1(ii) holds by Theorem 10.11, and
Assumption 8.1(iii) is implied by the fact that for γ > 1,

lim sup
n→∞

1

n
log

∫

RT

exp

(
−nγ b+ (r − µ)t∗

σ2(t∗)
xt∗

)
ν(T )
n (dx) = γ2 [b+ (r − µ)t∗]2

2σ2(t∗)
<∞,

see (2.5) and use that for a zero-mean normal random variable U (with variance σ2) the
moment-generating function is E exp(θU) = exp(θ2σ2/2).

Since infx∈RT

[
1
2‖x‖2H − 〈x∗, x〉

]
= − 1

2‖x∗‖2H, after applying Corollary 8.4, it remains to
observe that

− inf
x∈OT

[
1

2
‖x‖2H + 〈x, x∗〉H −

1

2
‖x∗‖2H

]

= −
[
1

2
inf
x∈OT

‖x+ x∗‖2H
]

+ ‖x∗‖2H

= −1

2
inf

t∈{1,...,T}

(b+ (r − µ)t+ x∗t )
2

σ2(t)
+

(b+ (r − µ)t∗)2

σ2(t∗)
,

where the last equality is due to Lemma 10.12. ¤
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10.A.3 Proofs for the cut-and-twist method

We now prove Theorem 10.7. Observe that for any j ∈ N, by definition of OT (t),

∫

OT (t)

(
ν

(T )
n

tλ
(T )
n

)j
d tλ(T )

n

=

∫

OT (t)

exp

(
nj

(b+ (r − µ)t)2

2σ2(t)
− nj b+ (r − µ)t

σ2(t)
xt

)
d tλ(T )

n

≤ exp

(
−nj (b+ (r − µ)t)2

2σ2(t)

)
= e−njIt .

As an aside, we mention that this gives (by choosing j = 1), cf. Section 10.2.2,

pTn =
T∑

t=1

ν(T )
n (OT (t)) ≤

T∑

t=1

e−nIt .

The second moment of the cut-and-twist estimator follows from (10.17):

1

N

∫

RT


 ∑

t∈{1,...,T}
1{xt∈OT (t)}

dν
(T )
n

d tλ
(T )
n

(xt)




2

d 1λ(T )
n (x1) · · · d Tλ(T )

n (xT )

=
1

N

∑

t∈{1,...,T}

∫

OT (t)

(
ν

(T )
n

tλ
(T )
n

)2

d tλ(T )
n +

1

N

∑

s,t∈{1,...,T}
s6=t

sλ(T )
n (OT (t)) · tλ(T )

n (OT (t)),

and therefore it is bounded by

1

N


 ∑

t∈{1,...,T}
exp

(
−n (b+ (r − µ)t)2

2σ2(t)

)


2

≤ 1

N
T 2 exp(−2nIt∗),

where the last inequality is due to the definition of t∗ = arg inft It. Now take logarithms, divide
by n, and let n→∞ to see that the relative efficiency equals 2, cf. (7.5). ¤

10.A.4 Proofs for the sequential-twist method

Proof of Lemma 10.9. We have to prove that

arg inf
{y∈RT : 1

n

Pj
i=1 Āi+(1−j/n)y∈OT }

‖y‖2H =
Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).

From Lemma 10.4, we know that the infimum equals J2
j+1. It is not hard to see that µj+1

attains this value (by strict convexity of ‖ · ‖H, the minimizing argument is even unique). ¤

Proof of Theorem 10.10. The two assumptions in Condition 2.1 of Dupuis and Wang [127]
hold: since we are in a multivariate Gaussian setup, we obviously have an everywhere finite
moment-generating function, and Lemma 10.12 implies that

inf
x∈OT

x′
(
Γ(T )

)−1

x = inf
x∈Oo

T

x′
(
Γ(T )

)−1

x.

The claim is Theorem 2.1 of Dupuis and Wang [127]. ¤



Part C
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CHAPTER 11

Background on Lévy processes

Lévy processes are sometimes called random walks in continuous time. Moti-
vated by applications to risk processes and fluid networks, it is our aim in Part C
to study extremes of Lévy processes; in the present context, this is known as fluc-
tuation theory.

The analysis relies extensively on a technique known as splitting at the maxi-
mum, which is closely related to the Wiener-Hopf factorization. In this chapter, we
discuss the relevant theory for random walks and Lévy processes.

A Lévy process X = {X(t) : t ≥ 0} has stationary and independent increments, and is
defined on the probability space of càdlàg functions with the Borel σ-field generated by the
usual Skorokhod topology (see, e.g., [50, Sec. 12] or [170, Ch. VI]). Two standard references
on Lévy processes are the books by Bertoin [43] and Sato [283].

The characteristic function of X(t) necessarily has the form EeiβX(t) = e−tΨX(β), β ∈ R,
where ΨX is the characteristic exponent

ΨX(β) =
1

2
σ2
Xβ

2 + icXβ +

∫

R

(
1− eiβx + iβx1[−1,1](x)

)
ΠX(dx), (11.1)

for some σX ≥ 0, cX ∈ R and a so-called Lévy measure ΠX on R\{0} satisfying
∫

(1 ∧
|x|2)ΠX(dx) < ∞. The Lévy-Khinchine representation of ΨX in (11.1) shows in particular
that X(0) = 0. X is called a compound Poisson process if cX = σX = 0 and ΠX(R) < ∞.
If cX = 0 and ΠX ≡ 0, then X reduces to a (nonstandard) Brownian motion. Moreover, if
σX = 0 and ΠX ≡ 0, then X is a drift.

As a consequence of the stationarity and independence of the increments, Lévy processes
can be regarded as the continuous-time analogues of random walks, which have been briefly
discussed in Sections 2.3 and 7.2. Therefore, before investigating the extremes of a Lévy pro-
cess, it is natural to start by discussing the random-walk setting (Section 11.1). In Section 11.2,
we give the Lévy analogues of some of these results.

11.1 Random walks

The process {Sn} is a random walk if S0 = 0 and Sn :=
∑n
i=1Xi, n ≥ 1, where the step sizes

X1, X2, . . . are i.i.d. random variables, not necessarily centered. Their distribution is denoted
by PX , and we write F (x) := PX((−∞, x]) for their distribution function.

It is the goal of this section to discuss some aspects of fluctuation theory for random walks.
Since the pioneering work of Feller [132], this theory relies extensively on ladder variables.
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11.1.1 Ladder variables

The first strict ascending (descending) ladder epoch τs± is defined as

τs+ = inf {n ≥ 1 : Sn > 0} , τs− = inf {n ≥ 1 : Sn < 0} ,

and the first weak ascending ladder epoch τw± is defined similarly with a weak inequality.
The quantity Hs+ := Sτs+

is known as the first strict ascending ladder height, with similar
terminology for Hs− := Sτs− and the corresponding weak analogues. Note that Hs+ is only
defined on the event {τs+ < ∞}; therefore, its distribution has defect P(τs+ = ∞), which is
strictly positive if S drifts to −∞.

When integrating with respect to defective distributions, we only carry out the integration
over the set where the random variables are both finite and well-defined. For instance, we
write Eρτs+e−βHs+ for E

[
ρτs+e−βHs+ ; τs+ <∞

]
:= E

[
ρτs+e−βHs+1{τs+<∞}

]
in the remainder,

unless indicated otherwise.
The following theorem relates the transforms of (τs+, Hs+) and (τw−, Hw−). A short proof

of this result is given by Kennedy [189]; here, we only give the intuition behind her proof.
Similar arguments are used in Chapter 14.

Theorem 11.1 (Wiener-Hopf) For |ρ| ≤ 1, β ∈ R, we have

1− ρEeiβX1 =
[
1− Eρτs+eiβHs+

] [
1− Eρτw−eiβHw−

]

=
[
1− Eρτw+eiβHw+

] [
1− Eρτs−eiβHs−

]
.

Sketch of the proof. An analytic-continuation argument shows that we only need to prove
the claim for ρ real and ρ ∈ (0, 1]. By introducing the (defective) step-size distribution ρPX ,
we may further suppose that ρ = 1. We only prove the first equality for symmetry reasons.

Write Gs+ for the distribution function of Hs+, and similarly for Gw−. Let x ≤ 0. On the
event {τs+ > 1}, we define

σw− := sup

{
k ≥ 1 : Sk = inf

1≤`<τw−
S`

}
.

Now observe that

Gw−(x) = F (x) + P
(
Sσw− +

[
Hw− − Sσw−

]
≤ x; τs+ > 1

)
, (11.2)

and that Hw− − Sσw− is the first weak descending ladder height if one thinks of (σw−, Sσw−)
as the origin and looks ‘forward’ in time. Similarly, Sσw− is the first strict ascending ladder
height if one looks ‘backward’; this is formalized by time-reversal, a technique that we often
encounter in Part C. This makes it plausible that the second term on the right-hand side of
(11.2) equals Gw− ∗ Gs+(x), which can be made precise by conditioning appropriately. We
refer to Figure 11.1, which is taken from [189], for an intuitive explanation. This results in
the identity Gw−(x) = F (x) + Gw− ∗ Gs+(x) for x ≤ 0, where ‘∗’ denotes convolution, see
Section 2.4.1. A similar argument shows that Gs+(x) = F (x) +Gw− ∗Gs+(x) for x ≥ 0, and
these two statements are summarized by the equality Gw− +Gs+ = F +Gw− ∗Gs+. The claim
is nothing else than a reformulation of this identity. ¤

11.1.2 The distribution of the maximum

Next we study the running-maximum process of the random walk, relying predominantly on
the fact that {Sn} is (strongly) Markov. As indicated in Section 1.1, the maximum plays a
key role in queueing theory, risk theory, and finance. Throughout, let Nρ be geometric on
{0, 1, 2, . . .} with parameter ρ ∈ (0, 1), independent of S.
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Figure 11.1: The intuition behind the Wiener-Hopf factorization.

We first introduce some further notation:

Sn := sup{Sk : 0 ≤ k ≤ n}, Sn := inf{Sk : 0 ≤ k ≤ n},
F
S

n := inf{k ≤ n : Sk = Sn}, G
S

n := sup{k ≤ n : Sk = Sn},
FSn := inf{k ≤ n : Sk = Sn}, GSn := sup{k ≤ n : Sk = Sn}.

We also define the global maximum as S := S∞, and note that it is almost surely finite
whenever S drifts to −∞, for instance if EX(1) < 0.

The next proposition is a first result on splitting at the maximum, which is an important
technique throughout Part C. A proof is not given, but it is important to note that the

statement does not follow immediately from the Markov property, since G
S

Nρ
is not a stopping

time.

Proposition 11.2 The random vectors (G
S

Nρ
, SNρ

) and (Nρ −G
S

Nρ
, SNρ

− SNρ
) are indepen-

dent, and the same holds for (F
S

Nρ
, SNρ

) and (Nρ − F
S

Nρ
, SNρ

− SNρ
).

Moreover, (Nρ −G
S

Nρ
, SNρ

− SNρ
) and (Nρ − F

S

Nρ
, SNρ

− SNρ
) have the same distribution

as (FSNρ
, SNρ

) and (GSNρ
, SNρ

) respectively.

In terms of transforms, the previous proposition implies that for α ≥ 0, β ∈ R,

Ee−αNρ+iβSNρ = Ee
−αGS

Nρ
+iβSNρ Ee

−αFS
Nρ

+iβSNρ = Ee
−αFS

Nρ
+iβSNρ Ee

−αGS
Nρ

+iβSNρ . (11.3)

This identity can be regarded as the Wiener-Hopf factorization for extremes (as opposed to
ladder variables). To see this, we first need an auxiliary lemma. The ‘renewal’ argument in its
proof is used on several occasions in Part C.

Lemma 11.3 For β ≥ 0, ρ ∈ (0, 1), we have

Ee−βSNρ =
1− Eρτs+

1− Eρτs+e−βHs+
, Ee

βSNρ =
1− Eρτw−

1− Eρτw−eβHw−
.

Moreover, if S drifts to −∞, then Ee−βS = P(τs+ =∞)/
(
1− Ee−βHs+

)
. That is, for x ≥ 0,

P
(
S ≤ x

)
= P(τs+ =∞)

∞∑

n=0

P

(
H

(1)
s+ + . . .+H

(n)
s+ ≤ x

)
,

where H
(1)
s+ , H

(2)
s+ , . . . are i.i.d. with the same (defective) distribution as Hs+.
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Proof. A random walk with geometric killing at Nρ can be regarded as a random walk with
defective step-size distribution ρPX . The probability that such a random walk does not have
an ascending ladder epoch is 1 − Eρτs+ . On the other hand, if there is an ascending ladder
epoch, the process ‘restarts’ as a result of the Markov property. Therefore, we have for β ≥ 0,

Ee−βSNρ = 1− Eρτs+ + Eρτs+e−βHs+Ee−βSNρ ,

and the first claim follows. The corresponding identity for the running-minimum process is
proven similarly, and it is also possible to give an expression in terms of strong ladder quantities.

The assertion for S follows by letting ρ→ 1, and the last claim can be checked by applying
the uniqueness theorem for Laplace transforms. ¤

Lemma 11.3 gives expressions for the transforms of SNρ
and SNρ

, and the transform of SNρ

is readily calculated after conditioning on the value of Nρ. This shows that (11.3), hence also
Proposition 11.2, implies that for β ≥ 0, ρ ∈ (0, 1),

1− Eρτs+

1− Eρτs+e−βHs+

1− Eρτw−

1− Eρτw−eβHw−
=

1− ρ
1− ρEeiβS1

.

The Wiener-Hopf factorization for ladder variables (Theorem 11.1) shows why the above iden-
tity can be regarded as the Wiener-Hopf factorization for extremes. Further details can be
found in most textbooks on queueing theory, see Section 1.1.2 for a selection. A particularly
nice account, on which the preceding discussion is based, is given by Borovkov [55].

Exact solutions

As we have seen, determining the distribution of S amounts to studying the distribution of the
first ascending ladder height Hs+ (or, as the reader may check, its weak counterpart Hw+). For
a given step-size distribution PX , this distribution follows in principle from the Wiener-Hopf
factorization and standard arguments from complex analysis. However, there is a large class
of distributions for which the distribution of Hs+ is known more explicitly.

An example that is particularly tractable corresponds to the M/G/1 queue (exponentially
distributed interarrival times) and the G/M/1 queue (exponentially distributed service times).
For the M/G/1 queue, PX = PB ∗ P−A, where B has a general (integrable) distribution on
[0,∞) and A has an exponential distribution. Then, Hs+ has a defect 1 − EB/EA, and
the distribution of Hs+ given Hs+ > 0 has the so-called integrated-tail distribution with
distribution function

∫ x
0

P(B > y)dy/EB. For the G/M/1 queue, PX = PB ∗ P−A, where B is
exponentially distributed and A has a general distribution on [0,∞); then, Hs+ given Hs+ > 0
has the same distribution as B. Moreover, the defect of Hs+ is ηEB, where η > 0 is specified
as the solution to some fixed-point equation.

In these two examples, it is possible to replace the exponential distributions by distributions
with a so-called rational Laplace transform, see Cohen [79, Sec. II.5.10 and II.5.11]. The class
of phase-type distributions, which is discussed in Section 12.3, is an important subclass of these
distributions.

Asymptotics

In the absence of exact results on the distribution of S, one can resort to studying tail
asymptotics for S, i.e., P(S > x) as x → ∞, and local tail asymptotics, i.e., the behavior
of P(S ∈ (x, x+ T ]) for any T > 0 as x→∞.

In the following theorem, we summarize results of Feller [132, Sec. XII.5.(c)] and Igle-
hart [167, Lem. 1] (first part), Bertoin and Doney [47, Thm. 1] (second part), and Veraver-
beke [304, Thm. 2] and Asmussen et al. [22, Thm. 1] (third part). The first assertion in the
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third part is known as Veraverbeke’s theorem, for which a short proof has recently been found
by Zachary [311]. Korshunov [197] discusses this theorem in more detail.

We impose various assumptions on the tail of the step-size distribution, see Section 2.4
for a review of the classes S(δ), S, and S∗. For integrable X, the distribution function FI
is defined as FI(x) :=

∫ x
0
F (y)dy/EX. We restrict our attention to the nonlattice case, but

similar results hold in the lattice case.

Theorem 11.4 Let S be a random walk that drifts to −∞.

(i) Suppose that F is nonlattice, and that there exists some ω ∈ (0,∞) such that EeωX = 1
and EXeωX <∞. Then as x→∞, we have

P(S > x) ∼ e−
P∞

n=1
1
n{P(Sn>0)+E[eωSn ;Sn≤0]} 1

ωEXeωX
e−ωx.

Moreover, for any T > 0, as x→∞, we have

P(S ∈ (x, x+ T ]) ∼ e−
P∞

n=1
1
n{P(Sn>0)+E[eωSn ;Sn≤0]} 1− e−ωT

ωEXeωX
e−ωx.

(ii) Suppose that δ := sup{ω > 0 : EeωX < ∞} > 0 with EeδX < 1. If F ∈ S(δ), then

EeδS <∞, and as x→∞, we have

P(S > x) ∼ EeδS

1− EeδX
F (x).

Moreover, for any T > 0, as x→∞, we have

P(S ∈ (x, x+ T ]) ∼ EeδS

1− EeδX
PX((x, x+ T ]).

(iii) Suppose that E|X| <∞ and FI ∈ S. Then, as x→∞, we have

P(S > x) ∼ −
∫∞
x
F (y)dy

EX
.

Moreover, if F ∈ S∗ and F is nonlattice, then for any T > 0, as x→∞, we have

P(S ∈ (x, x+ T ]) ∼ −
∫ x+T
x

F (y)dy

EX
.

11.2 Lévy processes

Lévy processes can be thought of as continuous-time random walks, but the ladder analysis
of the previous section is not straightforwardly generalized. For instance, different (more
technical) tools are required for a ladder analysis of Brownian motion, as it crosses levels
continuously. The so-called ladder process, which is a two-dimensional Lévy process, replaces
ladder epochs and heights, and it involves the local time of the reflected process. The Wiener-
Hopf factorization for Lévy processes involves the characteristics of this ladder process, but
we do not address this here; however, the reader may look into the proof of Corollary 12.2.
Instead, we content ourselves with an analogue of (11.3).
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We start with some notation. Given a Lévy process X, we define

X(t) := sup{X(s) : 0 ≤ s ≤ t},
F
X

(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)},
G
X

(t) := sup{s < t : X(s) = X(t) orX(s−) = X(t)},
X(t) := inf{X(s) : 0 ≤ s ≤ t},
FX(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)},
GX(t) := sup{s < t : X(s) = X(t) orX(s−) = X(t)}.

Here and throughout Part C, eq denotes an exponentially distributed random variable with
parameter q, independent of X. Knowing the distribution of X(eq) for any q > 0 is equivalent
to knowing the distribution of X(t) for any t > 0, since evaluation at time eq essentially
amounts to taking a Laplace transform. In analogy to the random-walk setting, where S is a
limit of SNρ

as ρ→ 1, the global maximum X can be regarded as a limit of X(eq) as q → 0.
The following identity, referred to as the Pecherskĭı-Rogozin-Spitzer (PRS) factorization

throughout part C, is the analogue of (11.3). It is also called the first factorization identity.
Importantly, since X is time-reversible in the sense that {X(t) − limu↑(t−s)X(u) : 0 ≤ s ≤
t} and {X(s) : 0 ≤ s ≤ t} have the same distribution, (FX(eq), X(eq)) is distributed as

(eq − G
X

(eq), X(eq) −X(eq)). Therefore, the PRS factorization is essentially a Lévy version
of Proposition 11.2, so that it can be regarded as a first illustration of the splitting technique
for Lévy processes. The present transform version is extensively used in the next chapter. For
an account of the history of the PRS factorization, we refer to Bertoin [43].

Proposition 11.5 (Pecherskĭı-Rogozin-Spitzer) We have for α ≥ 0, β ∈ R, and q > 0,

Ee−αeq+iβX(eq) = Ee−αG
X

(eq)+iβX(eq)Ee−αF
X(eq)+iβX(eq)

= Ee−αF
X

(eq)+iβX(eq)Ee−αG
X(eq)+iβX(eq).

This factorization is explicitly known in a number of important cases, for instance if X has
one-sided jumps. We now discuss this class and other special classes of Lévy processes.

Important classes of Lévy processes

Monotonic Lévy processes are called subordinators [44], and they play an important role in the
general theory (e.g., the ladder process is a subordinator). Note that the PRS factorization is
trivial for subordinators.

Other well-studied Lévy processes are Lévy processes with one-sided jumps. If the Lévy
measure of X is concentrated on the negative (or positive) halfline, then we call X a spectrally
negative (or positive) Lévy process. We refer to Bertoin [43, Ch. VII] for results on Lévy
processes in this totally asymmetric case.

If we suppose that X is spectrally negative (or spectrally positive by considering −X), it
is possible to find the PRS factorization of Proposition 11.5 explicitly. Before writing down
the factorization, we exclude the trivial situation that X is a subordinator. Since spectral
negativity implies that ΨX(β) is well-defined and analytic on {=(β) ≤ 0} [43, p. 188], we
introduce the Laplace exponent

ψX(β) := −ΨX(−iβ),

so that EeβX(t) = etψX(β) for <(β) ≥ 0. The mapping ψX : [0,∞) 7→ R is strictly convex, and
ψX(β) → ∞ as β → ∞, since P(X(1) > 0) > 0 (the subordinator case has been excluded).
We denote by ΦX(0) the largest solution to the equation ψX(β) = 0. Since the mapping
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ψX : [ΦX(0),∞)→ [0,∞) is a bijection, we can define the function ΦX : [0,∞)→ [ΦX(0),∞)
as its inverse, i.e., ψX(ΦX(β)) = β, β ≥ 0. This function plays an important role throughout
Part C.

The following proposition is Theorem VII.4.(i) of Bertoin [43]; for a martingale-based proof,
see Kyprianou and Palmowski [208]. It is left to the reader to check that indeed

Ee−αG
X

(eq)+iβX(eq)Ee−αF
X(eq)+iβX(eq) =

q

α+ q + ΨX(β)
= Ee−αeq+iβX(eq).

Proposition 11.6 Let X be spectrally negative, but not a subordinator. We have for any
α, q > 0, β ≥ 0,

Ee−αG
X

(eq)−βX(eq) =
ΦX(q)

ΦX(α+ q) + β
,

Ee−αF
X(eq)+βX(eq) =

q (ΦX(α+ q)− β)

ΦX(q) (α+ q − ψX(β))
,

where the right-hand side should be interpreted as qΦ′
X(β)/ΦX(β) for β = ΦX(α+ q).

As an important special case of this proposition, we obtain the Laplace transform of the vector
(FX(∞), X(∞)), in particular the global minimum. For this, we assume that X is integrable
and drifts to +∞; then, we let q → 0 in Proposition 11.6 and use q/ΦX(q)→ EX.

The α-stable Lévy processes constitute yet another important subclass of Lévy processes,
but it is significantly harder to find the PRS factors, see Doney [118]. We have encountered
α-stable Lévy processes already in Section 1.3.3. A Lévy process is α-stable if for every t > 0,
the variables X(t) and t1/αX(1) have the same law. This is equivalent to saying that X is
self-similar with index 1/α; see (1.12). The Lévy-Khinchine representation shows that we must
have α ∈ (0, 2]. A 2-stable Lévy process is necessarily proportional to Brownian motion, and a
1-stable Lévy process has (up to a drift) Cauchy distributed marginals, i.e., its characteristic
exponent is λ|β| + ciβ for some λ > 0 and c ∈ R. Let us now suppose that X is an α-stable
Lévy process with α ∈ (0, 1)∪ (1, 2). The Lévy measure ΠX is then absolutely continuous with
respect to the Lebesgue measure, with density

ΠX(dx)

dx
=

{
c+x

−α−1 if x > 0;
c−|x|−α−1 if x < 0,

where c−, c+ ≥ 0. Observe that the process of Section 1.3.3 has α ∈ (1, 2) and c− = 0. Hence,
apart from being α-stable, it is also spectrally positive. However, we stress that this process
is not a subordinator, since the drift coefficient is positive. We also remark that an α-stable
Lévy process is not integrable for α ∈ (0, 1].

More details and references on general stable processes (not necessarily Lévy) can be found
in the book by Samorodnitsky and Taqqu [282]; see also Uchaikin and Zolotarev [298].

11.3 Outline of Part C

Chapter 12 gives three applications of an embedding based on Proposition 11.5. The first
application studies the ‘exact solutions’ mentioned in Section 11.1.2 for general Lévy processes.
Specifically, we impose a phase-type form for the Lévy measure on one halfline, while allowing
for a general form on the other halfline. After this, we study a perturbed risk model, which
is a variant of the classical risk model discussed in Section 1.1.5. As a third application, we
establish the analogue of Theorem 11.4 for Lévy processes.
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Chapter 13 continues on the splitting idea, but now within the framework of the fluid
networks of Section 1.2. This naturally leads to splitting for multidimensional processes. We
study the (steady-state) joint Laplace transform of the buffer contents and busy periods in each
of the stations of the network. For a special tandem fluid queue, we also obtain the Laplace
transform of the idle periods.

Chapter 14 investigates the extremes of a spectrally one-sided Lévy process in a random
environment; the resulting process is known as a Markov-additive process. Such a process is
governed by a Markovian background process (the ‘environment’), and behaves like a spectrally
one-sided Lévy process during the sojourn times of this background process; the characteristics
of the Lévy process may differ for each of the background states. We derive analogues of the
identities in Proposition 11.6 for q → 0, and apply these to a fluid queue with Markov-additive
input. We also analyze the networks of Chapter 13 in a random environment.

Chapters 12, 13, and 14 are based on [105], [89], and [114] respectively. Chapter 13 is
joint work with Krzysztof Dȩbicki and Tomasz Rolski, while Chapter 14 is written with Michel
Mandjes.



CHAPTER 12

Factorization embeddings

Using embeddings, we give three applications of the factorization identity in
Proposition 11.5:

• Extremes of a Lévy process with phase-type upward jumps: we find the joint
distribution of the maximum and the epoch at which it is ‘attained’ if a Lévy
process has phase-type upward jumps.

• Perturbed risk models: we establish general properties, and obtain explicit
fluctuation identities in case the Lévy process is spectrally positive.

• Tail asymptotics for the maximum of a Lévy process: we study the tail dis-
tribution of the maximum under different assumptions on the tail of the Lévy
measure.

12.1 Introduction

It is the aim of this chapter to show how embedding and splitting can be used to study the
fluctuations of a Lévy process. For this, we consider the sum Z of an arbitrary one-dimensional
Lévy process X and a compound Poisson process Y with intensity λ, independent of X. Note
that any discontinuous Lévy process Z can be written in this form; in this chapter, we are
not interested in continuous Lévy processes (i.e., Brownian motions with drift), since their
fluctuation theory is well-established. The representation Z = X + Y need not be unique; for
instance, there is a continuum of such representations if the Lévy measure has a nonvanishing
absolutely continuous part. We remark that Y is not necessarily centered in Part C of this
thesis, as opposed to Part A.

Before explaining the idea behind the embedding that we study in this chapter, we first
introduce some notation. Write T1, T2, . . . for the jump epochs of Y , and set T0 = 0. Define
the quantities Gi and Si for i ≥ 1 as follows. Z(Ti−1)+Si stands for the value of the maximum
within [Ti−1, Ti), and Ti−1 + Gi is the last epoch in this interval such that the value of Z at
Ti−1+Gi or (Ti−1+Gi)− is Z(Ti−1)+Si. Although formally incorrect, we say in the remainder
that the maximum of Z over [Ti−1, Ti) is attained at Ti−1 +Gi, with value Z(Ti−1) + Si.

In the left-hand diagram of Figure 12.1, a realization of Z is given. The jumps of Y are
dotted and those of X are dashed. The process Z is killed at an exponentially distributed
random time k independent of Z, say with parameter q ≥ 0 (q = 0 corresponds to no killing).
The right-hand diagram in Figure 12.1 is obtained from the first by replacing the trajectory
of Z between Ti−1 and Ti by a piecewise straight line consisting of two pieces: one from
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Figure 12.1: A realization of the killed Lévy process Z = X+Y and the corresponding embedded
(piecewise-linear) process. Jumps of Y are dotted and jumps of X are dashed.

(Ti−1, Z(Ti−1)) to (Ti−1 + Gi, Z(Ti−1) + Si), and one from the latter point to (Ti, Z(Ti−)).
Obviously, by considering the embedded piecewise-linear process, no information is lost on key
fluctuation quantities like the global maximum of Z and the epoch at which it is attained for
the last time.

The piecewise-linear process, however, has several useful properties. First, by the Markov
property, the ‘hats’ are mutually independent given their starting point. Moreover, obviously,
the jumps of Y are independent of the ‘hats’. More strikingly, the increasing and decreasing
pieces of each ‘hat’ are also independent; indeed, (Ti − Ti−1, Z(Ti−) − Z(Ti−1)) = (Gi, Si) +
(Ti − Ti−1 −Gi, Z(Ti−)−Z(Ti−1)− Si), where the two latter vectors are independent, cf. the
Pecherskĭı-Rogozin-Spitzer factorization for Lévy processes (Proposition 11.5). This explains
the name factorization embedding.

The right-hand diagram in Figure 12.1 can be generated without knowledge of the trajectory
of Z. Indeed, since {Ti : i ≥ 1} is a Poisson point process with intensity λ and killing at rate
q, it is equivalent (in law) to the first N points of a Poisson point process with intensity λ+ q,
where N is geometrically distributed on Z+ with parameter λ/(λ + q) (independent of the
point process).

It is not a new idea to consider an embedded process for studying fluctuations of Lévy
processes. A classical example with q = 0 is when X is a negative drift (X(t) = ct for
some c < 0) and Y only has positive jumps. We then have that Gi ≡ 0 for every i and
(Gi, Si) + (Ti−Ti−1−Gi, Z(Ti−)−Z(Ti−1)−Si) is distributed as (eλ, ceλ), where eλ denotes
an exponentially distributed random variable with parameter λ. Therefore, a random walk
can be studied in order to analyze the fluctuations of Z. To the author’s knowledge, nontrivial
factorization embeddings have only been used to obtain results in the space domain. We
mention the work of Asmussen [16] and Kennedy [188], who study a Wiener-Hopf problem
with Brownian noise, and the work of Mordecki [237], who investigates the maximum of a
Lévy process with phase-type upward jumps and general downward jumps. Recently, a slightly
different form of this embedding has been used by Doney [119] to derive stochastic bounds on
the Lévy processes Z. He defines X and Y such that the supports of ΠX and ΠY are disjoint,
and notes that {Z(Ti−1) + Si} is a random walk with a random starting point, so that it
suffices to establish stochastic bounds on the starting point. Doney then uses these to analyze
the asymptotic behavior of Lévy processes that converge to +∞ in probability. As an aside, we
remark that the factorization embedding is different from the embedding that has been used
in [20, 256], where the authors work with a process in a random environment to replace jumps
by drifts. In Chapter 14, we extensively study Lévy processes in a random environment.
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Outline and contribution of the chapter; three applications

We now describe how this chapter is organized, thereby introducing three problems that are
studied using factorization embeddings. All our results are new, with the only exception of
Theorem 12.11 and the first claim in Theorem 12.13.

Section 12.2 uses the above embedding idea to express fluctuation quantities of Z in terms
of those of X. In Section 12.3, we apply these results to study the case where Z has phase-type
upward jumps and general downward jumps. Then, the Laplace exponent of the bivariate
ladder process κZ can be given; this quantity lies at the heart of fluctuation theory for Lévy
processes, see Chapter VI of Bertoin [43]. In particular, we give the joint law of the maximum
and the epoch at which it is ‘attained’, generalizing Mordecki’s [237] results.

Section 12.4 studies perturbed risk models, a generalization of the classical risk model of
Section 1.1.5 that has drawn much attention in the literature. We prove a general Pollaczek-
Khinchine formula in this framework, but more explicit results can only be obtained under
further assumptions. Therefore, we impose spectral positivity of the Lévy process underlying
the risk model, and extend the recent results of Huzak et al. [166] in the following sense.
While [166] focuses on quantities related to so-called modified ladder heights, we obtain joint
distributions related to both the modified ladder epoch and the modified ladder height. In
particular, we obtain the (transform of the) distribution of the first modified ladder epoch.

Section 12.5 studies the tail of the maximum of Z under three different assumptions on the
Lévy measure. We reproduce known results in the Cramér case and the subexponential case,
but also give a local variant in the latter case, which is new. Our results for the intermediate
case are also new, and complement recent work of Klüppelberg et al. [192].

After finishing this chapter, we learned about recent work of Pistorius [256], and there is
some overlap between his work and Section 12.3 in the special case K = 1. In [256], the Laplace
exponent κZ of the ladder process is characterized in terms of the solutions of the equation
ΨZ(β) = q, where ΨZ is the characteristic exponent of Z, cf. (11.1). Our approach is different,
since we express κZ(q, β) in terms of a vector αq+, for which we give an efficient algorithm.

12.2 On factorization identities

In this section, we consider the process Z = X + Y , where Y is a compound Poisson process
and X is a general Lévy process, independent of Y . We study the extremes of Z and the epoch
at which they are attained for the first (or last) time, in terms of the corresponding distribution
of X. Moreover, the characteristics of the bivariate ladder process of Z are expressed in those
of X.

In order to relate the PRS factors of Z and X, we need an auxiliary random walk. We
write λ ∈ [0,∞) for the intensity of Y , and ξ for its generic jump. For fixed q > 0, let
{Sqn} be a random walk with step-size distribution ξ +X(eλ+q), where the two summands are
independent. For this random walk, we define the first strict ascending (descending) ladder
epoch τ qs± as

τ qs+ := inf {n ≥ 1 : Sqn > 0} , τ qs− := inf {n ≥ 1 : Sqn < 0} ,
and τ qw± is defined similarly with a weak inequality. In analogy to the previous chapter, we
write Hq

w± (Hq
s±) for the ladder height Sq

τq
w±

(Sq
τq

s±
). Recall that the integration is only carried

out over the set where the random variables are both finite and well-defined.
The main result of this section, which we now state, relates the PRS factors of Z and X.

When a specific structure is imposed on X and Y , both factors can be expressed in terms
of solutions to fixed-point equations; see Section 12.3. Intuitively, a PRS factor of Z is the
product of a PRS factor of X and a random-walk PRS factor. The main complication is that
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the random walk is converted to a continuous-time process by ‘stretching’ time, but that this
stretching is not done independently of the step size.

Theorem 12.1 For every α, β, q > 0, we have

Ee−αG
Z

(eq)−βZ(eq) = Ee−αG
X

(eλ+q)−βX(eλ+q)
1− E

(
λ
λ+q

)τq
w+

1− Ee−βH
q+α
w+

(
λ

λ+q+α

)τq+α
w+

,

Ee−αF
Z

(eq)−βZ(eq) = Ee−αF
X

(eλ+q)−βX(eλ+q)
1− E

(
λ
λ+q

)τq
s+

1− Ee−βH
q+α
s+

(
λ

λ+q+α

)τq+α
s+

,

and Ee−αF
Z(eq)+iβZ(eq), Ee−αG

Z(eq)+iβZ(eq) follow by application of these formulas to −Z.

Proof. We only prove the first equality; the argument is easily adapted to obtain the second.
The first factor is a direct consequence of the independence of the first straight line in

the right-hand diagram of Figure 12.1 and the other pieces; see the remarks accompanying
Figure 12.1. Writing for i ≥ 1, wi := Ti−1 + Gi − G1 and Wi := Z(Ti−1 +Gi) − S1, these
arguments also yield that {Wi : i ≥ 1} is a random walk with the same distribution as
{Sqn : n ≥ 0}, except for the killing in every step with probability λ/(λ + q). Therefore, if we
define the first (weak) ascending ladder epoch of this random walk

N := inf{i ≥ 1 : Wi ≥ 0},

we have

P(N <∞) = E

(
λ

λ+ q

)τq
w+

.

Observe that (G
Z
(eq)−G1, Z(eq)−S1) has the same distribution as

∑K
j=1(w

j
N ,W

j
N ), where K

is geometrically distributed on Z+ with parameter P(N <∞), and (wjN ,W
j
N ) are independent

copies of (wN ,WN ), also independent of K. Note that we consider the weak ladder epoch in

the definition of N , since we are interested in G
Z
(eq) (as opposed to F

Z
(eq)). This shows that

Ee
−α

“
G

Z
(eq)−G1

”
+iβ(Z(eq)−S1) =

1− E

(
λ
λ+q

)τq
w+

1− E

(
λ
λ+q

)N
e−αwN+iβWN

,

and it remains to study the denominator in more detail.
For this, we rely on Section I.1.12 of Prabhu [263]. The key observation is that {(wi,Wi)}

is a random walk in the halfplane R+ × R, with step-size distribution characterized by

Ee−αw1+iβW1 = Ee−αeλ+q+iβX(eλ+q)Eeiβξ.

Theorem 27 of [263], which is a Wiener-Hopf factorization for random walks on the halfplane,
shows that we may write for |z| < 1 and α ≥ 0, β ∈ R,

1− zEe−αeλ+q+iβX(eλ+q)Eeiβξ =
[
1− EzNe−αwN+iβWN

] [
1− EzN̄e−αwN̄+iβWN̄

]
,

where the bars refer to (strict) descending ladder variables. Note that Theorem 11.1 is recovered
by setting α = 0. The actual definitions of these quantities are of minor importance to us;
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the crucial point is that this factorization is unique. Indeed, an alternative characterization is
obtained by conditioning on the value of eλ+q:

1− zEe−αeλ+q+iβX(eλ+q)Eeiβξ = 1− (λ+ q)z

λ+ q + α
EeiβX(eλ+q+α)Eeiβξ,

and the Wiener-Hopf factorization for random walks (Theorem 11.1) shows that this can be
written as

[
1− E

(
(λ+ q)z

λ+ q + α

)τq+α
s+

eiβH
q+α
s+

][
1− E

(
(λ+ q)z

λ+ q + α

)τq+α
w−

eiβH
q+α
w−

]
.

This decomposition is again unique, so that the claim follows by substituting z = λ/(λ+ q). ¤

If α = 0, we must have Ee−αG
Z

(eq)−βZ(eq) = Ee−αF
Z

(eq)−βZ(eq), but the formulas in Theo-
rem 12.1 differ in the sense of weak and strict ladder variables. This is not a contradiction, as
Spitzer’s identity shows that the fractions are equal for both τ qw+ and τ qs+.

Let us now verify that the formulas of Theorem 12.1 are in accordance with the PRS
factorization of Proposition 11.5. Indeed, application of Theorems 11.1 and 12.1 (the transform

Ee−αF
Z(eq)+iβZ(eq) is obtained by considering −Z) yields

Ee−αG
Z

(eq)+iβZ(eq)Ee−αF
Z(eq)+iβZ(eq)

= Ee−αeλ+q+iβX(eλ+q)
1− λ

λ+q

1− λ
λ+q+αEeiβX(eλ+q+α)Eeiβξ

.

By conditioning on the value of eλ+q in the first factor, it is readily seen that this equals

q
λ+q+α

EeiβX(eλ+q+α) − λEeiβξ
=

q

λ+ q + α+ ΨX(β)− λEeiβξ
= Ee−αeq+iβZ(eq).

Given Theorem 12.1, one can easily deduce the characteristics of the ladder height process
of Z in terms of those of X; as the notions are standard, we refer to p. 157 of Bertoin [43] for
definitions. The importance of this two-dimensional subordinator has recently been illustrated
by Doney and Kyprianou [121].

The dual processes of Z and X are defined as Ẑ = −Z and X̂ = −X respectively.

Corollary 12.2 For α, β ≥ 0, we have

κZ(α, β) = κX(λ+ α, β)

(
1− Ee−βH

α
s+

(
λ

λ+ α

)τα
s+

)
,

and

κ̂Z(α, β) = kκ̂X(λ+ α, β)

(
1− EeβH

α
w−

(
λ

λ+ α

)τα
w−
)

= k
α+ ΨZ(−iβ)

κX(λ+ α,−β)

[
1− EeβH

α
s+

(
λ

λ+α

)τα
s+

] ,

where k is some meaningless constant.

Proof. It suffices to note that κZ(α,−iβ)κ̂Z(α, iβ) = k(α + ΨZ(β)) by the Wiener-Hopf
factorization for random walks (Theorem 11.1), and to continue κ̂Z analytically. ¤
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12.3 Lévy processes with phase-type upward jumps

In this section, we use the results of the previous section to study Lévy processes with phase-
type upward jumps and general downward jumps. A motivation for investigating this pro-
cess is provided by Boucherie et al. [58]. According to the results in the previous section,

(G
Z
(eq), Z(eq)) can be written as the sum of (G

X
(eλ+q), X(eλ+q)) and an (independent)

random-walk term. In this section, we choose X and Y appropriately, so that the transforms
of both vectors can be computed explicitly.

For this, we let X be an arbitrary spectrally negative Lévy process, and Y is a compound
Poisson process (not necessarily a subordinator), independent of X, for which the upward
jumps have a phase-type distribution. The exact form of the Lévy measure of Y is specified in
(12.1) below.

Apart from their computational convenience, the most important property of phase-type
distributions is that they are dense, in the sense of weak convergence (Definition 2.9), within
the class of probability measures (although many phases may be needed to approximate a
stable distribution, for instance). A phase-type distribution is the absorption time of a Markov
process on a finite state space E. Its intensity matrix is determined by the |E| × |E|-matrix
T , and its initial distribution is denoted by α. For more details on phase-type distributions,
we refer to Asmussen [19, Sec. III.4]. We write t = −T1, where 1 is the vector with ones. All
vectors are column vectors.

Fluctuation theory for Lévy processes with phase-type jumps has recently been studied by
Asmussen et al. [20] and Mordecki [237]; see also Kou and Wang [200]. As a consequence of
the fact that phase-type distributions are dense within the class of probability measures, an
arbitrary Lévy process can be written as the limit of a sequence of Lévy processes with phase-
type jumps (in the Skorokhod topology on D(R+); see, e.g., [170, Ch. VI] for definitions). In
both [20] and [237], the authors obtain expressions for the Laplace transform of Z(eq) if Y is
a compound Poisson process with only positive (phase-type) jumps.

While the class of processes that we analyze here is slightly more general, the main differ-
ence with the aforementioned papers is that we calculate the Laplace transform of the joint

distribution (G
Z
(eq), Z(eq)); see Section 12.3. In particular, if a Lévy process Z has phase-type

upward jumps, one can compute the epoch at which the maximum is attained; the latter is per-
haps more surprising than the fact that it is possible to find an expression for the distribution
of Z(eq). This illustrates why Theorem 12.1 is interesting.

To the author’s knowledge, the results in this section cover any Lévy process for which this
joint distribution is known. The only case for which results are available but not covered here
is when Z is a certain stable Lévy process; see Doney [118]. Then, only the distribution of the
(marginal) law of Z(eq) is known in a semi-explicit form.

The PRS factorization

We begin with a detailed description of the process Y . Given K ∈ N, suppose that we
have nonnegative random variables {Aj : j = 1, . . . ,K} and {Bj : j = 1, . . . ,K}, where the
distribution PBj

of Bj is phase-type with representation (Ej ,αj ,Tj). The distribution P−Aj

of −Aj is general; the only restriction we impose is that P−Aj
∗ PBj

({0}) = 0 for all j, i.e.,
Aj and Bj do not both have an atom at zero. We assume that the process Y is a compound
Poisson process with Lévy measure given by

ΠY := λ

K∑

j=1

πjPBj
∗ P−Aj

, (12.1)
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where λ ∈ (0,∞), 0 ≤ πj ≤ 1 with
∑
πj = 1. In queueing theory, processes of this form arise

naturally, and the B can be interpreted as the service times and the A as interarrival times.
Note that Y is a subordinator if and only if ΠY can be written as (12.1) with K = 1 and
A1 ≡ 0.

Without loss of generality, we may assume that Ej and Tj do not depend on j. Indeed, if

Ej has mj elements, one can construct an E with
∑K
j=1mj elements and T can then be chosen

as a block diagonal matrix with the matrices T1, . . . ,TK on its diagonal. The vectors αj are
then padded with zeros, so that they consist of K parts of lengths m1, . . . ,mK , and only the
j-th part is nonzero.

Fix some q > 0; our first aim is to study the random walk {Sqn} introduced in Section 12.2,
with generic step-size distribution (by the PRS factorization)

PSq
1

:= PX(eλ+q) ∗ PX(eλ+q) ∗ Pξ,

where Pξ = ΠY /λ. We exclude the case for which Z is a subordinator, so that PSq
1

always
assigns strictly positive probability to R+. In that case, there is no distinction between weak
and strict ascending ladder heights, and we therefore write τ q+ for τ qw+ = τ qs+ throughout this
section.

SinceX(eλ+q) is either degenerate or exponentially distributed, the law of Sq1 can be written

as
∑
πjP eBj(q)

∗P eAj(q)
, where B̃j(q) has again a phase-type distribution, say with representation

(Ẽq, α̃j(q), T̃q). It is not hard to express this triple in terms of the original triple (E,αj ,T ):

(Ẽq, α̃j(q), T̃q) = (E,αj ,T ) if X is a nonincreasing subordinator, and otherwise Ẽq can be cho-

sen such that |Ẽq| = |E|+1, and the dynamics of the underlying Markov chain are unchanged,

except for the fact that an additional state is visited before absorption. We set t̃q = −T̃q1.
Motivated by Theorem 12.1, the following lemma calculates the transform of the ladder

variables (Hq
+, τ

q
+); recall that the random variables are only integrated over the subset {τ q+ <

∞} of the probability space.

Lemma 12.3 Let ρ ∈ (0, 1) and β ≥ 0. Then there exists some vector αρ,q+ such that

Eρτ
q
+e−βH

q
+ =

[
α
ρ,q
+

]′
(βI − T̃q)−1t̃q.

Proof. The proof is similar to the proofs of Lemma VIII.5.1 and Proposition VIII.5.11 of
Asmussen [19]; the details are left to the reader. ¤

The above lemma shows that it is of interest to be able to calculate αρ,q+ . Therefore,
we generalize Theorem VIII.5.12 in [19] to the present setting. We omit a proof, as similar
arguments apply; the only difference is that we allow for K > 1 and that the random walk can
be killed in every step with probability ρ.

Proposition 12.4 α
ρ,q
+ satisfies αρ,q+ = ϕ(αρ,q+ ), where

ϕ(αρ,q+ ) = ρ
K∑

j=1

πjα̃
′
j(q)

∫ ∞

0

exp
([
T̃q + t̃q

[
α
ρ,q
+

]′]
y
)
Ãj(q)(dy).

It can be computed as limn→∞α
ρ,q
+ (n), where αρ,q+ (0) = 0 and αρ,q+ (n) = ϕ(αρ,q+ (n − 1)) for

n ≥ 1.

The main result of this section follows by combining Theorem 12.1 with Lemma 12.3 and
the fluctuation identities of Proposition 11.6. Since Theorem 12.1 directly applies if X is a
subordinator, this is excluded to focus on the most interesting case. For notational convenience,

we write αq+ for α
q/(λ+q),q
+ . Recall that ΦX denotes the inverse of the Laplace exponent of X,

see Section 11.2.
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Theorem 12.5 Suppose that both X and Z are no subordinators. Then we have for α, β ≥ 0,

Ee−αG
Z

(eq)−βZ(eq) =
ΦX(λ+ q)

[
1−

[
α
q
+

]′
1
]

[ΦX(λ+ q + α) + β]
[
1−

[
α
q+α
+

]′
(βI − T̃q+α)−1t̃q+α

]

and

Ee−αF
Z

(eq)+βZ(eq) =
q [ΦX(λ+ q + α)− β]

[
1 +

[
α
q+α
+

]′
(βI + T̃q+α)−1t̃q+α

]

ΦX(λ+ q) [q + α+ ΨZ(−iβ)]
[
1−

[
α
q
+

]′
1
] .

While Theorem 12.5 is an immediate consequence of Theorem 12.1, we now state the
corresponding analogue of Corollary 12.2. Note that the expression for κZ(0, β) is already
visible in the work of Mordecki [237]; here, we obtain a full description of κZ .

Corollary 12.6 Under the assumptions of Theorem 12.5, we have for α, β ≥ 0,

κZ(α, β) = [ΦX(λ+ α) + β]
[
1−

[
αα+
]′

(βI − T̃α)−1t̃α

]
,

and

κ̂Z(α, β) = k
α+ ΨZ(−iβ)

[ΦX(λ+ α)− β]
[
1 +

[
αα+
]′

(βI + T̃α)−1t̃α

] ,

where k is a meaningless constant.

12.4 Perturbed risk models

Let X be an arbitrary Lévy process and Y be a compound Poisson process with intensity λ and
generic positive jump ξ. In this section, we suppose that Z = X + Y drifts to −∞. Classical
risk theory studies the maximum of Z in case X is a negative drift, i.e., X(t) = −ct for some
c > λEξ, see Section 1.1.5. Then, its distribution is given by the Pollaczek-Khinchine formula.
In this analysis, a key role is played by ladder epochs and heights, i.e., quantities related to
the event that Z reaches a new record.

In this section, we replace the negative drift X by an arbitrary Lévy process; in the liter-
ature, this is known as a perturbed risk model; see [137, 166, 285] and references therein. We
also refer to Rolski et al. [275, Sec. 13.2] for a textbook treatment. To analyze this model,
the classical ladder epochs and heights are replaced by so-called modified ladder epochs and
heights; these are related to the event that Z reaches a new record as a result of a jump of Y .

In Huzak et al. [166], Y is allowed to be a general subordinator, not necessarily of the
compound Poisson type. Therefore, the perturbed risk models studied here are slightly less
general. However, since any subordinator can be approximated by compound Poisson processes,
one is led to believe that our results also hold in the general case. Since the approximation
argument required for proving this is not in the spirit of this chapter, we do not address this
issue here. Instead, we shall content ourselves with writing the main results (Proposition 12.7,
Theorem 12.8, and Theorem 12.10) in a form that does not rely on Y being compound Poisson,
although this assumption is essential for our proofs.

In Section 12.4.1, we derive a Pollaczek-Khinchine formula for perturbed risk models. Un-
fortunately, the formula is not so explicit. Therefore, we impose further assumptions in Sec-
tion 12.4.2, where we study spectrally positive Z.
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As mentioned already, a central role in perturbed risk models is played by the first time χ
a new maximum is reached by a jump of Y , i.e.,

χ := inf{t > 0 : ∆Yt > Z(t−)− Z(t−)}.

In Figure 12.1, we have χ = T2. On the event {χ = ∞}, we define (G
Z
(χ−), Z(χ−)) as

(G
Z
(∞), Z(∞)).

12.4.1 Generalities

In this subsection, we study the structure of a general perturbed risk model, i.e., we consider
a general Lévy perturbation X. The results that we obtain are new in this generality.

The following proposition is crucial for our analysis.

Proposition 12.7 We have

(i) (G
Z
(χ−), Z(χ−)) is independent of {χ <∞},

(ii) (G
Z
(χ−), Z(χ−)) is distributed as (G

Z
(∞), Z(∞)) given {χ =∞}, and

(iii) (Z(χ)−Z(χ−), Z(χ−)−Z(χ−), χ−GZ(χ−)) is conditionally independent of the vector

(G
Z
(χ−), Z(χ−)) given {χ <∞}.

Proof. We need some definitions related to the piecewise linear (jump) process of Figure 12.1,
in particular to its excursions. Let P̃ denote the law of the piecewise linear process that is
constructed by discarding the first increasing piece (which may not be present if X is a negative
subordinator), and let Ẽ denote the corresponding integration operator. Under P̃, there are
two possibilities for the process to (strictly) cross the axis: it either crosses continuously or it
jumps over it. The event that the first happens is denoted by X , as it is caused by fluctuations
in X. We write Y for the second event. The probability of no crossing (i.e., no new record) is
then given by 1− P̃(X )− P̃(Y). Moreover, by the strong Markov property, we have

P(χ <∞) =
P̃(Y)

1− P̃(X )
. (12.2)

On X and Y, we also define the ‘excursion lengths’ Le and ‘ascending ladder heights’ He in
a self-evident manner (on X , He is strictly positive and equals the maximum within the first
ascending ‘ladder hat’). Moreover, we let Ue be the ‘undershoot’ on Y; see Figure 12.2. The
dotted line is the piece that is discarded under P̃.

For α, β ≥ 0, by the strong Markov property,

E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]

= Ee−αG
X

(eλ)−βX(eλ)P̃(Y) + Ẽ
[
e−αLe−βHe ;X

]
E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]
,

from which we obtain

E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]
= Ee−αG

X
(eλ)−βX(eλ) P̃(Y)

1− Ẽ [e−αLe−βHe ;X ]
.

Along the same lines, one can deduce that

E

[
e−αG

Z
(∞)−βZ(∞);χ =∞

]
= Ee−αG

X
(eλ)−βX(eλ) 1− P̃(X )− P̃(Y)

1− Ẽ [e−αLe−βHe ;X ]
,
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PSfrag replacements

He

Le

Ue

Figure 12.2: The excursion quantities in the proof of Proposition 12.7.

so that E

[
e−αG

Z
(χ−)−βZ(χ−)

∣∣χ <∞
]

equals

E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]
+ E

[
e−αG

Z
(∞)−βZ(∞);χ =∞

]
,

which is Ee−αG
Z

(χ−)−βZ(χ−); this is the first claim. These calculations also show that

E

[
e−αG

Z
(∞)−βZ(∞)

∣∣χ =∞
]

= E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]
+ E

[
e−αG

Z
(∞)−βZ(∞);χ =∞

]
,

which is the second claim.
For the third claim, a variant of the above argument can be used to see that for α, β, γ, δ, ε ≥

0,

E

[
e−αG

Z
(χ−)−βZ(χ−)e−γ[Z(χ)−Z(χ−)]e−δ[Z(χ−)−Z(χ−)]e

−ε
h
χ−GZ

(χ−)
i∣∣∣∣χ <∞

]

= Ee−αG
X

(eλ)−βX(eλ) 1− P̃(X )

1− Ẽ [e−αLe−βHe ;X ]

Ẽ
[
e−γHeeδUee−εLe ;Y

]

P̃(Y)
,

and the claim follows. ¤

The formula in the following theorem can be viewed as a generalized Pollaczek-Khinchine
formula for perturbed risk models. It is a consequence of the preceding proposition and the
observation that by the strong Markov property,

Ee−αG
Z

(∞)−βZ(∞)

=
E

[
e−αG

Z
(∞)−βZ(∞);χ =∞

]

1− E

[
e−αG

Z
(χ−)−βZ(χ−);χ <∞

]
E

[
e
−α

h
χ−GZ

(χ−)
i
−β[Z(χ)−Z(χ−)]

∣∣∣∣χ <∞
] .
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Theorem 12.8 For α, β ≥ 0, we have

Ee−αG
Z

(∞)−βZ(∞)

=
P(χ =∞)Ee−αG

Z
(χ−)−βZ(χ−)

1− P(χ <∞)Ee−αG
Z

(χ−)−βZ(χ−)E

[
e
−α

h
χ−GZ

(χ−)
i
−β[Z(χ)−Z(χ−)]

∣∣∣∣χ <∞
] .

12.4.2 Spectrally positive Z

In this subsection, we analyze the case in which Z has only positive jumps. It turns out that the
transforms in the previous section can then be computed. As indicated below, this generalizes
the results of Huzak et al. [166] (modulo the remarks at the beginning of this section). For
instance, we obtain the transform of the distribution of (χ,Z(χ)). We remark that perturbed
risk models with positive jumps are related to M/G/1 queueing systems with a second service;
see [73].

Throughout, we exclude the case for which X is a (negative) subordinator, i.e., for which
X is a negative drift; the analysis is then classical. By doing so, the fluctuation identities of
Proposition 11.6 can be used for both X and Z. In this subsection, we use these identities
without further reference.

Our analysis is based on Wiener-Hopf theory for Markov-additive processes. Indeed, the
Lévy process can be embedded in a Markov-additive process in discrete time (e.g., [19, Ch. XI]).
To see this, fix some α ≥ 0, and note that Equation (VI.1) of Bertoin [43] implies that for
q > 0 and β ∈ R,

Ee−αG
X

(eq)+iβX(eq) = Ee−αG
X

(eq)EeiβX(eq+α), (12.3)

and similarly for the joint distribution of (FX(eq), X(eq)). In other words, since α is fixed, the
joint distribution can be interpreted as a (defective) marginal distribution. Hence, a ‘killing
mechanism’ has been introduced; a similar technique is used in Section 14.2, where we study
discrete-time Markov-additive processes in detail.

Define a Markov-additive process in discrete time {(Jn, Sn)} as the Markov process with
state space {1, 2, 3} × R, characterized by the transform matrix

F (α, β) :=




0 Ee−αG
X

(eλ)EeiβX(eλ+α) 0

0 0 Ee−αF
X(eλ)EeiβX(eλ+α)

Eeiβξ 0 0


 ,

where, as before, ξ is a generic jump of Y . That is, S0 = 0, and Jn is deterministic given J0:
in every time slot, it jumps from i to i+ 1, unless i = 3; then it jumps back to 1. If Jn−1 = 1,

the process is killed with probability 1−Ee−αG
X

(eλ), and otherwise we set Sn = Sn−1 + ηn−1,
where ηn−1 is independent of Sn−1 and distributed as X(eλ+α). The cases Jn−1 = 2 and
Jn−1 = 3 are similar, except for the absence of killing in the latter case. We also write

τ+ := inf{n > 0 : Sn > 0}, τ− := inf{n > 0 : Sn ≤ 0}.

Expressions of the type P2(Jτ+ = 2) should be understood as P(Jτ+ = 2, τ+ <∞|J0 = 2), and
similarly for E2.

In Wiener-Hopf theory for Markov-additive processes, an important role is played by the
time-reversed process. To define this process, we introduce the Markov chain Ĵ , for which the
transitions are deterministic: it jumps from 3 to 2, from 2 to 1, and from 1 to 3. Hence, it
jumps into the opposite direction of J . We set Ŝ0 = 0, and define the transition structure
of the time-reversed Markov-additive process (Ĵ , Ŝ) as follows. If Ĵn−1 = 2, the process is
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killed with probability 1−Ee−αG
X

(eλ), and otherwise we set Ŝn = Ŝn−1 + η̂n−1, where η̂n−1 is
independent of Ŝn−1 and distributed as X(eλ+α). Similarly, if Ĵn−1 = 3, the process is killed

with probability 1 − Ee−αF
X(eλ), and otherwise the increment is distributed as X(eλ+α). If

Ĵn−1 = 1, the increment is distributed as ξ > 0. The quantities τ̂+ and τ̂− are defined as the
ladder epochs for Ŝ. We write P̂2 for the conditional distribution given Ĵ0 = 2.

Recalling that the dependence on α is ‘absorbed’ in the killing mechanism, we define

G
(k,`)
+ (α, β) := Ek

[
eiβSτ+ ; Jτ+ = `

]

and
Ĝ

(k,`)
− (α, β) := Êk

[
eiβŜτ̂− ; Ĵτ̂− = j

]
.

Note that G
(2,2)
+ = Ẽ

[
e−αLe+iβHe ;X

]
in the notation of the proof of Proposition 12.7, and

similarly for G
(2,1)
+ ; then X is replaced by Y.

The Wiener-Hopf factorization for Markov-additive processes (see, e.g., Asmussen [19,
Thm. XI.2.12] or Prabhu [263, Thm. 5.2]) states that I−F (α, β) (where I denotes the identity
matrix) equals




1 0 0

−Ĝ(1,2)
− 1− Ĝ(2,2)

− −Ĝ(3,2)
−

0 0 1







1 −Ee−αG
X

(eλ)+iβX(eλ) 0

−G(2,1)
+ 1−G(2,2)

+ 0
−Eeiβξ 0 1


 ,

where the arguments α and β of G+ and Ĝ− are suppressed for notational convenience.

We start by computing the first matrix. Note that Ĝ
(3,2)
− (α, β) = Ee−αF

X(eλ)+iβX(eλ),
so that two terms remain. Recall that Φ−X is the inverse of the function β 7→ ψ−X(β) =
−Ψ−X(−iβ), and similarly for Φ−Z .

Proposition 12.9 For β ∈ R, we have

Ĝ
(1,2)
− (α, β) = Ee−Φ−Z(α)ξ Φ−X(λ)

Φ−X(λ+ α) + iβ
,

and

Ĝ
(2,2)
− (α, β) =

Φ−X(λ+ α)− Φ−Z(α)

Φ−X(λ+ α) + iβ
.

Proof. We start with Ĝ
(2,2)
− . By ‘gluing together’ the transitions 2 → 1 and 1 → 3, we see

that the killing probability for going from 2 to itself now equals λ/(λ+α), and the distribution
of a jump from 2 to itself can be written as ξ + X(eλ+α) − eΦ−X(λ+α), where all three com-
ponents are independent. Therefore, by standard results on random walks (e.g., Lemma I.4 of
Prabhu [263]), we have

Ĝ
(2,2)
− (α, β) = Ê2

(
λ

λ+ α

)τ̂−
eiβŜτ̂− =

Φ−X(λ+ α)

Φ−X(λ+ α) + iβ
Ê2

(
λ

λ+ α

)τ̂−
,

and it remains to calculate the mean in this expression, which we denote by ηα. For this, we
repeat the argument that led to Theorem 12.1, but now for the minimum and in terms of ηα.
We see that EeiβZ(eα) equals

Φ−Z(α)

Φ−Z(α) + iβ
=

Φ−X(λ+ α)

Φ−X(λ+ α) + iβ

1− ηα
1− ηα Φ−X(λ+α)

Φ−X(λ+α)+iβ

=
(1− ηα)Φ−X(λ+ α)

(1− ηα)Φ−X(λ+ α) + iβ
,
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so that 1− ηα = Φ−Z(α)/Φ−X(λ+ α).

Now we study Ĝ
(1,2)
− . A descending ladder epoch occurs either at the first time that Ĵ visits

2, or in subsequent visits. The contribution to Ĝ
(1,2)
− of the first term is

Ê1

[
eiβŜ2 ; Ŝ2 < 0

]
= Ee−αF

X(eλ)E

[
eiβ(ξ+X(λ+α)); ξ +X(λ+ α) < 0

]

=

∫ ∞

0

Φ−X(λ)e−(Φ−X(λ+α)+iβ)tE
[
eiβξ; ξ < t

]
dt

= Eeiβξ
∫ ξ

0

Φ−X(λ)e−(Φ−X(λ+α)+iβ)tdt

=
Φ−X(λ)

Φ−X(λ+ α) + iβ
Ee−Φ−X(λ+α)ξ.

To compute the contribution to Ĝ
(1,2)
− of paths for which Ŝ2 is positive, we apply results of

Arjas and Speed [12] on random walks with a random initial point. We also use their notation.

Using the expression for the previously computed Ĝ
(2,2)
− (again, the transform depends on

α through the killing mechanism), we define

w̄z−(β) :=
1

1− Ĝ(2,2)
− (α, β)

=
1

1− Φ−X(λ+α)−Φ−Z(α)
Φ−X(λ+α)+iβ

= 1 +
Φ−X(λ+ α)− Φ−Z(α)

Φ−Z(α) + iβ
.

As in [12], define the projection operator P acting on a Fourier transform f(β) =
∫

R
eiβxF (dx)

as Pf(β) :=
∫
(−∞,0]

eiβxF (dx). Theorem 1(b) of [12] shows that the second contribution to

Ĝ
(1,2)
− equals

1

w̄z−(β)
P
[
Ee−αF

X(eλ)E

[
eiβ(ξ+X(λ+α)); ξ +X(λ+ α) > 0

]
w̄z−(β)

]
. (12.4)

A similar reasoning as before implies that

Ê1

[
eiβŜ2 ; Ŝ2 > 0

]
= Ee−αF

X(eλ)E

[
eiβ(ξ+X(eλ+α)); ξ +X(eλ+α) > 0

]

= Φ−X(λ)

∫ ∞

0

e−(Φ−X(λ+α)+iβ)tE
[
eiβξ; ξ > t

]
dt

= Φ−X(λ)
Eeiβξ − Ee−Φ−X(λ+α)ξ

Φ−X(λ+ α) + iβ
.

As this is the transform of a positive (defective) random variable, the first observation in the
proof of Corollary 1 in [12] yields

P
[
Φ−X(λ+ α)− Φ−Z(α)

Φ−Z(α) + iβ
Ê1

[
eiβŜ2 ; Ŝ2 > 0

]]

=
Φ−X(λ+ α)− Φ−Z(α)

Φ−Z(α) + iβ
Ê1

[
e−Φ−Z(α)Ŝ2 ; Ŝ2 > 0

]
.

Therefore, (12.4) equals

Φ−X(λ+α)−Φ−Z(α)
Φ−Z(α)+iβ

1 + Φ−X(λ+α)−Φ−Z(α)
Φ−Z(α)+iβ

Φ−X(λ)
Ee−Φ−Z(α)ξ − Ee−Φ−X(λ+α)ξ

Φ−X(λ+ α)− Φ−Z(α)

=
Φ−X(λ)

Φ−X(λ+ α) + iβ

[
Ee−Φ−Z(α)ξ − Ee−Φ−X(λ+α)ξ

]
.
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The claim follows by summing the two contributions. ¤

With the preceding proposition at our disposal, the Wiener-Hopf factorization yields that

G
(2,1)
+ (α, β) = Φ−X(λ)

Eeiβξ − Ee−Φ−Z(α)ξ

Φ−Z(α) + iβ
,

and

1−G(2,2)
+ (α, β) =

Φ−X(λ+ α) + iβ − Φ−X(λ)Ee−ΦZ(α)ξEe−αG
X

(eλ)+iβX(eλ)

Φ−Z(α) + iβ
,

where Ee−αG
X

(eλ)+iβX(eλ) is explicitly known in terms of Φ−X .

From these expressions, by choosing α = β = 0, one obtains that P̃(X ) = 1+ Φ−X(λ)
λ EX(1)

and P̃(Y) = Φ−X(λ)Eξ in the notation of the proof of Proposition 12.7. In particular, 1 −
P̃(X )− P̃(Y) = −Φ−X(λ)

λ EZ(1).
Our next goal is to characterize distributions related to modified ladder epochs and heights,

leading to the main result of this subsection. Note that these results are closely related to the
classical Pollaczek-Khinchine formula.

Theorem 12.10 Let X be spectrally positive, but not a negative drift.

(i) For α, β ≥ 0,

Ee−αG
Z

(χ−)−βZ(χ−) = E

[
e−αG

Z
(χ−)−βZ(χ−)

∣∣∣χ <∞
]

= E

[
e−αG

Z
(∞)−βZ(∞)

∣∣∣χ =∞
]

= −EX(1)
Φ−Z(α)− β

α− ψ−X(β)− ψ−Y (Φ−Z(α))
,

which should be interpreted as −EX(1)/ψ′
−Z(β) for β = Φ−Z(α).

In particular, Z(χ−) has the same distribution as X(∞).

(ii) For α, β ≥ 0,

E

[
e
−α

h
χ−GZ

(χ−)
i
−β[Z(χ)−Z(χ−)]

∣∣∣∣χ <∞
]

=
1

EY1

ψ−Y (β)− ψ−Y (Φ−Z(α))

Φ−Z(α)− β ,

which should be interpreted as −ψ′
−Y (β)/EY1 for β = Φ−Z(α).

In particular, for y, z > 0,

P
(
Z(χ)− Z(χ−) > x,Z(χ−)− Z(χ−) > y |χ <∞

)
=

1

Eξ

∫ ∞

x+y

P(ξ > u)du.

(iii) For α, β ≥ 0,

E

[
e−αχ−βZ(χ);χ <∞

]
=

ψ−Y (β)− ψ−Y (Φ−Z(α))

α− ψ−X(β)− ψ−Y (Φ−Z(α))
,

which should be interpreted as −ψ′
−Y (β)/ψ′

−Z(β) for β = Φ−Z(α).

In particular, P(χ <∞) = 1− EZ(1)/EX(1).
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Proof. To compute the transform of the joint distribution of (G
Z
(χ−), Z(χ−)), we use ele-

ments of the proof of Proposition 12.7:

Ee−αG
Z

(χ−)−βZ(χ−) = Ee−αG
X

(eλ)−βX(eλ) 1− P̃(X )

1−G(2,2)
+ (α, iβ)

= −EX(1)
Φ−X(λ)

λ [Φ−Z(α)− β]
Φ−X(λ+α)−β

Ee−αGX (eλ)−βX(eλ)
− Φ−X(λ)Ee−Φ−Z(α)ξ

,

from which the first claim follows.
The second claim is a consequence of the fact that the transform equals G

(2,1)
+ (α, β)/P̃(Y).

The second statement follows by choosing α = 0, and noting that

P
(
Z(χ−)− Z(χ−) > x

∣∣Z(χ)− Z(χ−) = y, χ <∞
)

= P(ξ > x+ y|ξ > y).

The third claim is obtained from the identity

E

[
e−αχ−βZ(χ)

∣∣∣χ <∞
]

= E

[
e−αG

Z
(χ−)−βZ(χ−)

∣∣∣χ <∞
]

E

[
e
−α

h
χ−GZ

(χ−)
i
−β[Z(χ)−Z(χ−)]

∣∣∣∣χ <∞
]
,

and from (12.2). ¤

Let us now calculate the transform of (GZ(∞), Z(∞)) with Theorems 12.8 and 12.10: for
α, β ≥ 0, we have

Ee−αG
Z

(∞)−βZ(∞) =
−EZ(1) Φ−Z(α)−β

α−ψ−X(β)−ψ−Y (Φ−Z(α))

1− ψ−Y (β)−ψ−Y (Φ−Z(α))
α−ψ−X(β)−ψ−Y (Φ−Z(α))

= −EZ(1)
Φ−Z(α)− β

α− ψ−X(β)− ψ−Y (β)
,

in accordance with Proposition 11.6 (for q → 0).
Note that Theorem 4.7 of [166] is recovered upon combining the ‘in particular’-statements

of this theorem with Proposition 12.7, at least if Y is compound Poisson. There is also another
way to see that P(Z(χ−) ≤ x|χ < ∞) = P(X(∞) ≤ x). Indeed, one can ‘cut away’ certain
pieces of the path of Z to see that X(∞) is distributed as Z(∞) given the event {χ < ∞}.
Schmidli [285] makes this argument precise by time reversal of Z. However, this argument

cannot be used to find the distribution of G
Z
(χ−).

We end this subsection by remarking that similar formulas can be derived if ξ is not nec-
essarily positive. However, the system of Wiener-Hopf relations then becomes larger and no
explicit results can be obtained, unless some structure is imposed; for instance, that Z has
downward phase-type jumps.

12.5 Asymptotics of the maximum

In this section, we study the probabilities asymptotics of P(Z(∞) > x) and its local version
P(Z(∞) ∈ (x, x+ T ]) for fixed T > 0 as x→∞, where Z is a Lévy process that drifts to −∞.
It is our main goal to derive the Lévy analogue of Theorem 11.4 by imposing several conditions
on the tail of the Lévy measure. The motivation for studying this problem stems from risk
theory; the probability P(Z(∞) > x) is often called the ruin probability, see Section 1.1.5.

It is our aim to show that the embedding approach is a natural yet powerful method for
studying tail asymptotics for the maximum. Relying on the random-walk results of Theo-
rem 11.4, we study these asymptotics in the Cramér case, the intermediate case, and the
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subexponential case. To our knowledge, this method has not been applied to this problem be-
fore, yet the asymptotics in the Cramér and subexponential case have been obtained elsewhere.
Our results concerning the intermediate case and the ‘local’ subexponential case, however, are
new. More results (and references) on asymptotics for Lévy processes can be found in [121, 192].

In order to apply the embedding approach, we write Z as a sum of two independent processes
X and Y ; one with small jumps (ΠX((1,∞)) = 0), and a compound Poisson process Y with
jumps exceeding 1. This decomposition has recently been used by Doney [119] and Pakes [248]
in the context of asymptotics. Again, we write λ = ΠZ([1,∞)) ∈ [0,∞), and ξ denotes a
generic jump of Y . If λ = 0, we set ξ = 0. The random walk {Sqn} introduced in Section 12.2
plays an important role for q = 0. For notational convenience, we write Sn for S0

n, i.e., S is a
random walk with step-size distribution ξ +X(eλ).

The process X has a useful property: for any η > 0, we have EeηX(eλ),EeηX(eλ) < ∞.
As a result, both P(X(eλ) > x) and P(X(eλ) > x) decay faster than any exponential (by
Chernoff’s inequality). To see that the moment-generating functions are finite, first observe
that for <β = 0, by the PRS factorization,

EeβX(eλ) = EeβX(eλ)EeβX(eλ).

This identity can be extended to <β > 0 by analytic continuation, since on this domain

EeβX(eλ) =
λ

λ+ ΨX(−iβ)
<∞,

where the finiteness follows from the fact that ΠX is supported on (−∞, 1]. It is trivial that
EeβX(eλ) is analytic for <β > 0, hence the claim is obtained.

12.5.1 The Cramér case

First we deal with the Cramér case, i.e., when there exists some ω ∈ (0,∞) for which we have
EeωZ(1) = 1.

Given ω, one can define an associate probability measure Pω, such that Z is a Lévy process
under Pω with Lévy exponent ΨZ(u−iω). This measure plays an important role in the following
result, which is due to Bertoin and Doney [45]. By requiring regularity of 0 for (0,∞), we
exclude the cases for which Z has a discrete ladder structure; random-walk identities then
directly apply.

Theorem 12.11 Let Z be a Lévy process for which 0 is regular for (0,∞). Moreover, suppose
that there is some ω ∈ (0,∞) such that EeωZ(1) = 1, and that EZ(1)eωZ(1) <∞.

Then, as x→∞, we have

P(Z(∞) > x) ∼ Cω
ωEZ(1)eωZ(1)

e−ωx,

where

logCω := −
∫ ∞

0

t−1(1− e−t) [P(Z(t) > 0) + Pω(Z(t) ≤ 0)] dt. (12.5)

Moreover, for any T > 0, we have as x→∞,

P(Z(∞) ∈ (x, x+ T ]) ∼ Cω
ωEZ(1)eωZ(1)

(
1− e−ωT

)
e−ωx.
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Proof. As the reader readily verifies, the second claim follows immediately from the first.
Let us study the random walk Sn under the present assumptions. First note that EeωZ(1) =

1 is equivalent with EeωX(eλ)Eeωξ = 1. Hence, the first part of Theorem 11.4 yields (the step-
size distribution is nonlattice),

P

(
sup
n≥1

Sn > x

)
∼ e−

P∞
n=1

1
n{P(Sn>0)+E[eωSn ;Sn≤0]} 1

ωES1eωS1
e−ωx.

Since X(eλ) has a finite moment-generating function, we have by Lemma 2.19 that

P(Z(∞) > x) = P

(
X(eλ) + sup

n≥1
Sn > x

)

∼ e−
P∞

n=1
1
n{P(Sn>0)+E[eωSn ;Sn≤0]} EeωX(eλ)

ωES1eωS1
e−ωx.

The rest of the proof consists of translating ‘random-walk terminology’ into ‘Lévy terminology’.
For this, we suppose that the ladder process of X is normalized such that for α > 0, β ∈ R,

α+ ΨX(β) = κX(α,−iβ)κ̂X(α, iβ),

and similarly for Z.
The quantity 1 − EeiβS1 = ΨZ(β)/(λ + ΨX(β)) has both a ‘random-walk’ Wiener-Hopf

decomposition and a ‘Lévy’ Wiener-Hopf decomposition, and their uniqueness leads to the
identity

exp

(
−

∞∑

n=1

1

n
E
[
eiβSn ;Sn > 0

]
)

=
κZ(0,−iβ)

κX(λ,−iβ)
.

Similarly, since 1− Ee(ω+iβ)S1 = ΨZ(β − iω)/[λ+ ΨX(β − iω)], we have

exp

(
−

∞∑

n=1

1

n
E

[
e(ω+iβ)Sn ;Sn ≤ 0

])
=
κ̂Z(0, iβ + ω)

κ̂X(λ, iβ + ω)
.

Using the facts that EeωX(eλ) = κX(λ, 0)/κX(λ,−ω) (cf. Equation (VI.1) of Bertoin [43]) and
that (use EeωZ(1) = 1)

ES1e
ωS1 =

EZ(1)eωZ(1)

λEeωξ
=

EZ(1)eωZ(1)

λ+ ΨX(−iω)
=

EZ(1)eωZ(1)

κX(λ,−ω)κ̂X(λ, ω)
,

the claim is obtained with Cω = κZ(0, 0)κ̂Z(0, ω). Corollary VI.10 of Bertoin [43] shows that
logCω is given by (12.5). ¤

12.5.2 The intermediate case

This subsection studies the tail asymptotics for Z(∞) under the condition

δ = sup{θ > 0 : EeθZ(1) <∞} > 0, (12.6)

but we now suppose that we are in the intermediate case, i.e., that δ < ∞ and EeδZ(1) < 1.
These assumptions imply that λ ∈ (0,∞).

If µ is a measure with µ([1,∞)) < ∞, we write µ ∈ S(α) if µ([1, ·])/µ([1,∞)) ∈ S(α);
see Section 2.4 for the definition. We remark that if (12.6) holds and ΠZ ∈ S(α), then α
necessarily equals δ, as the reader readily verifies.
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The following theorem builds upon the second part of Theorem 11.4. It is closely related
to Theorem 4.1 of Klüppelberg et al. [192], where the tail asymptotics are expressed in terms
of the characteristics of the ladder process. Here, it is found directly in terms of the Lévy
measure of Z and the tail asymptotics for Z(1).

Theorem 12.12 Let Z be a Lévy process that drifts to −∞, for which δ ∈ (0,∞) and

EeδZ(1) < 1. If ΠZ ∈ S(δ), then EeδZ(∞) < ∞ and P(Z(∞) ≤ ·) ∈ S(δ); in fact, as x → ∞,
we have

P(Z(∞) > x) ∼ − EeδZ(∞)

log EeδZ(1)
ΠZ((x,∞)) ∼ − EeδZ(∞)

EeδZ(1) log EeδZ(1)
P(Z(1) > x).

Moreover, under these assumptions, we have as x→∞, for any T > 0,

P(Z(∞) ∈ (x, x+ T ]) ∼ − EeδZ(∞)

log EeδZ(1)
ΠZ((x, x+ T ])

∼ − EeδZ(∞)

EeδZ(1) log EeδZ(1)
P(Z(1) ∈ (x, x+ T ]).

Proof. It suffices to prove the first asymptotic equivalences; for the relationship between the
tail of the Lévy measures and the tail of the marginal distribution, we refer to Theorem 3.1 of
Pakes [248].

With the embedding in our mind, we first note that by Lemma 2.19, we have P(ξ+X(eλ) >
x) ∼ EeδX(eλ)P(ξ > x). Since EeδZ(1) < 1 is equivalent with EeδS1 < 1, we may apply the
second part of Theorem 11.4 to see that

P

(
sup
n≥1

Sn > x

)
∼ EeδX(eλ)

1− EeδξEeδX(eλ)
E exp

(
δ sup
n≥1

Sn

)
P(ξ > x).

Some elementary calculations show that

EeδX(eλ)

1− EeδξEeδX(eλ)
=

1
λ+ΨX(−iδ)

λ − Eeδξ
=

λ

ΨZ(−iδ) = − λ

log EeδZ(1)
.

Using the fact that the moment-generating function of X(eλ) is finite, we can again use
Lemma 2.19 to see that

P

(
X(eλ) + sup

n≥1
Sn > x

)
∼ − λ

log EeδZ(1)
EeδX(eλ)E exp

(
δ sup
n≥1

Sn

)
P(ξ > x)

= − λEeδZ(∞)

log EeδZ(1)
P(ξ > x),

as claimed.
The second assertion is a consequence of the first claim and the observations P(Z(∞) >

x+ T ) ∼ e−γTP(Z(∞) > x) and ΠZ((x+ T,∞)) ∼ e−γTΠZ((x,∞)). ¤

It is readily checked that the statements of this theorem are equivalent to

P(Z(∞) > x) ∼ − δEeδZ(∞)

log EeδZ(1)

∫ ∞

x

ΠZ((y,∞))dy.

In this expression, one can formally let δ → 0, so that the pre-integral factor tends to 1/EZ(1).
This naturally leads to the subexponential case.
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12.5.3 The subexponential case

As in the previous subsection, given a measure µ with µ([1,∞)) <∞, we write µ ∈ S (or S∗)
if this property holds for the normalized measure, i.e., if µ([1, ·])/µ([1,∞)) ∈ S (S∗).

In this subsection, we suppose that the integrated tail of the Lévy measure

ΠI((x,∞)) =

∫ ∞

x

ΠZ((y,∞))dy

is subexponential, i.e., ΠI ∈ S. As seen in Section 2.4, it is known that this property is implied
by Π ∈ S∗. In addition, we suppose that Z(1) is integrable. The first assertion in the following
theorem is due to Asmussen [17, Cor. 2.5]; see also Maulik and Zwart [226], Chan [67], and
Braverman et al. [61]. As opposed to the Cramér and intermediate case, a local version of this
theorem does not follow from the integral version, and that part of the theorem is new.

Theorem 12.13 Let Z be a Lévy process that drifts to −∞, for which ΠI ∈ S. Then
P(Z(∞) ≤ ·) ∈ S; in fact, as x→∞, we have

P(Z(∞) > x) ∼ −
∫∞
x

ΠZ((y,∞))dy

EZ(1)
∼ −

∫∞
x

P(Z(1) > y)dy

EZ(1)
.

Moreover, if ΠZ ∈ S∗ and ΠZ is (ultimately) nonlattice, then we have as x → ∞, for any
T > 0,

P(Z(∞) ∈ (x, x+ T ]) ∼ −
∫ x+T
x

ΠZ((y,∞))dy

EZ(1)
∼ −

∫ x+T
x

P(Z(1) > y)dy

EZ(1)
.

Proof. We have ΠZ((x,∞)) ∼ P(Z(1) > x) (see, e.g., [248]); hence, it suffices to prove only
the first equivalences.

Since ΠI ∈ S, it is in particular long-tailed, so that for z ∈ R,
∫∞
x

P(ξ > y + z)dy ∼∫∞
x

P(ξ > y)dy. Fix some η > 0. The latter observation implies that the function x 7→
xη
∫∞
1∨log x

P(ξ > y)dy is locally bounded and regularly varying at infinity with index η (see

Definition 2.1), so that by the uniform convergence theorem (Theorem 2.3), for large x,
∫ ∞

x

P(ξ > y − z)dy ≤ (1 + eηz)

∫ ∞

x

P(ξ > y)dy,

uniformly for z ∈ [0, x− 1]. Since X(eλ) ≤ X(eλ) and EeηX(eλ) <∞, this implies that
∫ ∞

x

P(ξ +X(eλ) > y)dy ≤
∫ ∞

x

P(ξ +X(eλ) > y)dy = O

(∫ ∞

x

P(ξ > y)dy

)

+

∫ ∞

x

∫

(x−1,y−1]

P(ξ > y − z)PX(eλ)(dz)dy

+

∫ ∞

x

P(X(eλ) > y − 1)dy,

and the last two terms are readily seen to be O(P(X(eλ) > x)) and O(e−ηx) respectively. Using
Chernoff’s inequality and the fact that ξ is heavy-tailed, it follows that

∫∞
x

P(ξ + X(eλ) >

y)dy = O
(∫∞
x

P(ξ > y)dy
)
.

This shows that one can apply the third part of Theorem 11.4 and the dominated conver-
gence theorem to see that

P

(
sup
n≥1

Sn > x

)
∼ − 1

E [X(eλ) + ξ]

∫ ∞

x

P(X(eλ) + ξ > y)dy

∼ − 1

E [X(eλ) + ξ]

∫ ∞

x

P(ξ > y)dy.
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By definition of ξ, the right-hand side is equivalent to
∫∞
x

ΠZ((y,∞))dy/|EZ(1)|. Since this is

the tail of a subexponential random variable, the first claim follows from the fact that X(eλ)
has a lighter tail, see Lemma 2.19.

The second assertion is proven similarly, using the second claim of the third part of
Theorem 11.4. The rest of the argument is simpler than for the ‘integral’ version, since
P(X(eλ) + ξ > x) ∼ P(ξ > x) as Π ∈ S∗ ⊂ S. A lattice version can also be given. ¤

A different proof for the first claim can be given based on recent results of Foss and
Zachary [136]. Indeed, as noted in Section 12.4, a discrete-time Markov-additive process is
embedded in the right-hand diagram in Figure 12.1. In order to verify the assumptions of [136]
we suppose that Z is not spectrally positive, so that there exist M− ≤ 0 and M+ ≥ 0 such
that λ± = ΠZ(R\(M−,M+)) < ∞ and

∫
R\(M−,M+)

zΠZ(dz) < 0. One can write Z as a sum

of X and Y , where Y is now a compound Poisson process with Lévy measure ΠZ restricted to
R\(M−,M+). Further details are left to the reader.



CHAPTER 13

Quasi-product forms

This chapter investigates fluid networks driven by a multidimensional Lévy pro-
cess. We are interested in (the joint distribution of) the steady-state content in each
of the buffers, the busy periods, and the idle periods. To investigate these fluid
networks, we relate the above three quantities to fluctuations of the free process
by solving a multidimensional Skorokhod problem. This leads to the analysis of
the distribution of the componentwise maxima, the corresponding epochs at which
they are attained, and the beginning of the first last-passage excursion.

Using splitting techniques, we are able to find their Laplace transforms. It turns
out that, if the components of the Lévy process are ‘ordered’, the Laplace transform
has a so-called quasi-product form. The theory is illustrated by working out special
cases, such as tandem networks and priority queues.

13.1 Introduction

Prompted by a series of papers by Kella and Whitt [180, 182, 186, 187], there has been a
considerable interest in multidimensional generalizations of the classical fluid queue with non-
decreasing Lévy input. In the resulting networks, often called stochastic fluid networks, the
input into the buffers is governed by a multidimensional Lévy process; a special case of these
networks has been briefly discussed in Section 1.2. Recently, motivated by work of Harrison
and Williams on diffusion approximations [155, 156], the presence of product forms has been
investigated [181, 183, 195, 254]. Recall that the stationary buffer-content vector has a prod-
uct form if it has independent components, meaning that the distribution of this vector is a
product of the marginal distributions.

The results in these papers show that, apart from trivial cases, the stationary buffer-content
vector of stochastic fluid networks never has a product form. Despite this ‘negative’ result,
we show that it may still be possible to express the joint distribution of the buffer content in
terms of the marginal distributions. This fact is best visible in the Laplace domain. For certain
tandem queues, for instance, the Laplace transform is a product that cannot be ‘separated’;
we then say that the buffer-content vector has a quasi-product form.

In the literature on stochastic fluid networks, there has been a focus on the stationary
buffer-content vector W or one of its components. Here, we are also interested in the stationary
distribution of vector of ages of the busy periods B and idle periods I. The age of a busy (or
idle) period is the amount of time that the buffer content has been positive (or zero) without
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being zero (positive). Knowing these, it is also possible to find the distribution of the remaining
length of the busy (or idle) period and the total length of these periods.

We are interested in W , B, and I for a class of Lévy-driven fluid networks with a tree
structure, which we therefore call tree fluid networks. Our analysis of these networks relies
on a detailed study of a related multidimensional Skorokhod problem (see, e.g., Robert [272]).
Using its explicit solution, we relate the triplet of vectors (W,B, I) to the fluctuations of a
multidimensional Lévy process X. This is reminiscent of the reasoning in Section 1.1, where
connection between the free and reflected process has been discussed in the (simpler) discrete-
time one-dimensional case. We also prove that the stationary distribution of the buffer-content
vector is unique.

Since our analysis of fluid tree networks is based on fluctuations of the process X, this
chapter also contributes to fluctuation theory for multidimensional Lévy processes. Supposing
that each of the components of X drifts to −∞, we write X for the (vector of) componentwise
maxima of X, F for the corresponding epochs at which they are first attained, and H for
the beginning of the first last-passage excursion. Under a certain independence assumption,
if the components of F are ‘ordered’, we express the Laplace transform of (X,F ) in terms of
the transforms of the marginals (Xj , F j). Since Xj is a real-valued Lévy process, the Laplace
transform of (Xj , F j) is known if Xj has one-sided jumps; let q → 0 in Proposition 11.6.

We also examine the distribution of H under the measure P
↓
k, which is the law of X

given that the process Xk stays nonpositive. There exists a vast body of literature on (one-
dimensional) Lévy processes conditioned to stay nonpositive (or nonnegative), see the recent

paper by Chaumont and Doney [68] for references. Under the measure P
↓
k, we also find the

transform of (X,F ). As a special case, we establish the Laplace transform of the maximum of a
Lévy process conditioned to stay below a subordinator, such as a (deterministic) positive-drift
process.

By exploiting the solution of the aforementioned Skorokhod problem, the results that we
obtain for the process X can be cast immediately into the fluid-network setting. For instance,
the knowledge of (X,F ) allows us to derive the Laplace transform of the stationary distribution
of (W,B) in a tandem network and a priority system if there are only positive jumps, allowing
Brownian input at the ‘root’ station. That is, we characterize the joint law of the buffer-content
vector and the busy-period vector. With the P

↓
k-distribution of H, we establish the transform

of the idle-period vector I for a special tandem network. Our formulas generalize all explicit
results for tandem fluid networks that are known to date (in the Laplace domain), such as those
obtained by Kella [180] and more recently by Dȩbicki et al. [92]. Most notably, quasi-products
appear in our formulas, even for idle periods.

To derive our results, we make use of splitting times. It has been shown in Chapter 11 that
splitting at an extreme is closely related to the PRS identity. For real-valued Markov processes,
splitting times have been introduced by Jacobsen [169]. A splitting time decomposes (‘splits’)
a sample path of a Markov process into two independent pieces. A full description of the
process before and after the splitting time can be given. However, since the splitting time is
not necessarily a stopping time, the law of the second piece may differ from the original law
of the Markov process. We refer to Millar [229, 230] for further details, and to Kersting and
Memişoǧlu [190] for a recent contribution.

The idea to use splitting times in the context of stochastic networks is novel. The known
results to date are obtained with Itô’s formula [195], a closely related martingale [187], or
differential equations [254]. Intuitively, these approaches all exploit a certain harmonicity.
Note that the results of Kyprianou and Palmowski [208] already indicate that there is a relation
between these approaches and splitting. Splitting has the advantage that it is insightful and
that proofs are short. Moreover, it can also be used for studying more complicated systems,
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see Chapter 14.

This chapter is essentially divided into two parts. In the first part, consisting of Sec-
tions 13.2–13.4, we analyze the fluctuations of an n-dimensional Lévy processes X. The notion
of splitting times is formalized in Section 13.2. These splitting times are first used to study
the distribution of (X,F ) in Section 13.3, and then to analyze the distribution of H under P

↓
k

in Section 13.4. The second part of this chapter deals with fluid networks. Section 13.5 ties
these networks to fluctuations of X, so that the theory of the first part can be applied in Sec-
tion 13.6. Finally, in Appendix 13.A, we derive some results for compound Poisson processes
with negative drift. They are used in Section 13.4.

13.2 Splitting times

This chapter relies on the application of splitting times to a multidimensional Lévy process. Af-
ter splitting times have been introduced, we examine splitting at the maximum (Section 13.2.1)
and splitting at a last-passage excursion (Section 13.2.2).

Throughout, let X = (X1, . . . , Xn)
′

be an n-dimensional Lévy process, that is, a càdlàg
process with stationary independent increments such that X(0) = 0 ∈ Rn. Without loss
of generality, as in Bertoin [43], we work with the canonical measurable space (Ω,F) =
(D([0,∞),Rd ∪ {∂}),B), where B is the Borel σ-field generated by the Skorokhod topology,
and ∂ is an isolated point that serves as a cemetery state. In particular, X is the coordinate
process. Unless otherwise stated, ‘almost surely’ refers to P. All vectors are column vectors.

The following assumption is used extensively throughout this chapter:

D Xk(t)→ −∞ almost surely, for every k.

We emphasize that a dependence between components is allowed. In the sequel, Xk(t) (or
Xk(t)) is shorthand for sups≤tXk(s) (or infs≤tXk(s)). Due to D, Xk := Xk(∞) is well-defined

and almost surely finite for every k. Furthermore, we write X = (X1, . . . , Xn)
′
.

The following two definitions are key to further analysis. The second definition is closely
related to the first, but somewhat more care is needed on a technical level. Intuitively, for the
purposes of this chapter, there is no need to distinguish the two definitions.

Definition 13.1 We say that a random time T is a splitting time for X under P if the two
processes {X(t) : 0 ≤ t ≤ T} and {X(T + t)−X(T ) : t ≥ 0} are independent under P. We say
that T is a splitting time from the left for X under P if the two processes {X(t) : 0 ≤ t < T}
and {X(T + t)−X(T−) : t ≥ 0} are independent under P.

We need some notions related to the initial behavior of X. For k = 1, . . . , n, set Rk =
inf{t > 0 : Xk(t) = Xk(t)}. Since Xk −Xk is a Markov process under P with respect to the
filtration generated by X (see Proposition VI.1 of [43]), the Blumenthal zero-one law shows
that either Rk > 0 almost surely (0 is then called irregular for Xk − Xk) or Rk = 0 almost
surely (0 is then called regular for Xk − Xk). We also set Rk = inf{t > 0 : Xk(t) = Xk(t)},
and define regularity of 0 for Xk −Xk similarly as for Xk −Xk. If Rk = 0 almost surely, we
introduce

Sk = S
X

k := inf{t > 0 : Xk(t) 6= Xk(t)}.
Again, either Sk = 0 almost surely (0 is then called an instantaneous point for Xk − Xk) or
Sk > 0 almost surely (0 is then called a holding point for Xk−Xk). One defines instantaneous
and holding points for Xk −Xk similarly if Rk = 0.
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13.2.1 Splitting at the maximum under P

Let F k = F
X

k := inf{t ≥ 0 : Xk(t) = Xk or Xk(t−) = Xk} be the (first) epoch that Xk

‘attains’ its maximum, and write F = (F 1, . . . , Fn)
′
. Observe that F k is well-defined and

almost surely finite for every k by D.

Lemma 13.2 Consider a Lévy process X that satisfies D.

(i) If Rk > 0 P-almost surely or Xk is a compound Poisson process, then F k is a splitting
time for X under P.

(ii) If Rk = 0 P-almost surely but Xk is not a compound Poisson process, then F k is a
splitting time from the left for X under P.

Proof. We use ideas of Lemma VI.6 of Bertoin [43], who proves the one-dimensional case
under exponential killing.

We start with the first case, in which the ascending ladder set is discrete. Set τ0 = 0
and define the stopping times τn+1 = inf{t > τn : Xk(t) > Xk(t−)} for n > 0. Write
N = sup{n : τn <∞}. Note that D implies that N <∞ almost surely.

Let F and K be bounded functionals. Apply the Markov property to see that for n ∈ Z+,

E
[
F (X(t), 0 ≤ t ≤ F k)K(X(F k + t)−X(F k), t ≥ 0);N = n

]

= E

[
F (X(t), 0 ≤ t ≤ τn)1{N≥n}K(X(τn + t)−X(τn), t ≥ 0)1{supt≥τn

Xk(t)=Xk(τn)}
]

= E
[
F (X(t), 0 ≤ t ≤ τn)1{N≥n}

]

× E

[
K(X(τn + t)−X(τn), t ≥ 0)1{supt≥τn

Xk(t)=Xk(τn)}
]

= E
[
F (X(t), 0 ≤ t ≤ τn)1{N≥n}

]
E

[
K(X(t), t ≥ 0)1{supt≥0Xk(t)=0}

]
.

Summing over n shows that the processes {X(t) : 0 ≤ t ≤ F k} and {X(F k+t)−X(F k) : t ≥ 0}
are independent.

The argument in the case Rk = 0 is more technical, but essentially the same. The idea
is to discretize the ladder height structure, for which we use the local time `k at zero of the
process Xk −Xk; see Bertoin [43, Ch. IV] for definitions. Note that `k(∞) <∞ almost surely
by Assumption D.

Therefore, we fix some ε > 0, and denote the integer part of ε−1`k(∞) by n = bε−1`k(∞)c.
A variation of the argument for Rk > 0 (using the additivity of the local time) shows that

{X(t) : 0 ≤ t ≤ `
−1

k (nε)} and {X(`
−1

k (nε) + t) − X(`
−1

k (nε)) : t ≥ 0} are independent.

According to [43, Prop. IV.7(iii)], `
−1

k (nε) ↑ F k as ε ↓ 0, which proves the lemma. ¤

13.2.2 Splitting at a last-passage excursion under P
↓

k

Let Hk = H
X

k := inf{t ≥ 0 : sups≥tXk(s) 6= Xk(t)} be the beginning of the first last-passage

excursion, and write H = (H1, . . . , Hn)
′.

In this subsection, we study the splitting properties of Hk for some fixed k = 1, . . . , n. We
suppose that 0 is a holding point for Xk −Xk, i.e., that Rk = 0 and Sk > 0 P-almost surely.
Under this condition, the event {Xk = 0} has strictly positive probability. Therefore, one can

straightforwardly define the conditional law P
↓
k of X given Xk = 0.

It is our aim to investigate splitting of Hk under P
↓
k, but we only have knowledge of X

under P. As a first step, it is therefore useful to give a sample path construction of the law P
↓
k



13.2 Splitting times 183

on the canonical measurable space (Ω,F). For this, we define a process Xk↓ by

Xk↓(t) =





X(t) if t ∈
[
R

(j)
k , S

(j)
k

)
;

X(R
(j)
k )−X((R

(j)
k + S

(j)
k − t)−) if t ∈

[
S

(j)
k , R

(j)
k

)
,

(13.1)

where R
(0)
k = 0, and for j ≥ 1,

S
(j)
k := inf

{
t > R

(j−1)
k : Xk(t) 6= Xk(t)

}
, R

(j)
k := inf

{
t > S

(j)
k : Xk(t) = Xk(t)

}
.

In other words, Xk↓ is constructed from the coordinate process X by ‘reverting’ the excursions
of Xk −Xk.

We have the following interesting lemma, which is the key to all results related to P
↓
k. For

the random-walk analogue, we refer to Doney [120].

Lemma 13.3 Consider a Lévy process X that satisfies D. If Rk = 0 and Sk > 0 P-almost

surely, then Xk↓ has law P
↓
k under P.

Proof. Observe that Rk > 0, and that the post-maximum process {X(F k+t)−X(F k) : t ≥ 0}
has distribution P

↓
k (a proof of this uses similar arguments as in the proof of Lemma 13.2; see

Millar [229, 230] for more details).
Fix some q > 0, and let eq be an exponentially distributed random variable, independent

of X (obviously, one must then enlarge the probability space). The first step is to construct
the law of {X(F

q

k + t) − X(F
q

k) : 0 ≤ t < eq − F
q

k}, where F
q

k := inf{t < eq : Xk(t) =
Xk(eq) or Xk(t−) = Xk(eq)}. By the time-reversibility of X (see Section 11.2), it is equivalent

to construct the law of {X(G
q

k) − X((G
q

k − t)−) : 0 ≤ t < G
q

k}, where G
q

k := sup{t < eq :
Xk(t) = Xk(eq) or Xk(t−) = Xk(eq)}.

To do so, we use ideas from Greenwood and Pitman [153]. Let `k be the local time of
Xk−Xk at zero (since Rk = 0, Sk > 0, we refer to Bertoin [43, Sec. IV.5] for its construction).
Its right-continuous inverse is denoted by `−1

k . The X-excursion at local time s, denoted by
Xs, is the càdlàg process defined by

Xs(u) := X
((
`−1
k (s−) + u

)
∧ `−1

k (s)
)
−X

(
`−1
k (s−)−

)
, u ≥ 0.

If `−1
k (s−) = `−1

k (s), then we let Xs be ∂, the zero function that serves as a cemetery. Since
{Xs : s > 0} is a càdlàg-valued Poisson point process as a result of D, one can derive (e.g.,
with the arguments of Lemma II.2 and Lemma VI.2 of [43]) that the process

W := {W (s) = (D(s), Xs) : s > 0}

is time-reversible, where D(s) := X
(
`−1
k (s)

)
. After setting σq := `−1

k (eq), it can be seen that
this implies that {(D(s), Xs) : 0 < s < σq} and {(D(σq−)−D((σq−s)−), Xσq−s) : 0 < s < σq}
have the same distribution. In other words, one can construct the law of {X(G

q

k)−X((G
q

k −
t)−) : 0 ≤ t < G

q

k} from the law of {X(t) : 0 ≤ t < G
q

k} by ‘reverting’ excursions as in (13.1).
It remains to show that this construction is ‘consistent’ in the sense of Kolmogorov, so that

one can let q → 0 to obtain the claim. For this, note that the family {σq} can be coupled with
a single random variable through σq = `−1

k (e1/q). ¤

We now study the splitting properties of Hk using the alternative construction of P
↓
k given

in Lemma 13.3. Since S
(1)
k is a P-stopping time with respect to the (completed) natural

filtration of X, the Markov property of X under P with respect to this filtration [43, Prop. I.6]
immediately yields the following analogue of Lemma 13.2.
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Lemma 13.4 Consider a Lévy process X that satisfies D. If Rk = 0 and Sk > 0 P-almost

surely, then Hk is a splitting time for X under P
↓
k. Moreover, it has an exponential distribution

under P
↓
k.

We remark that the construction and analysis of P
↓
k is the easiest under the assumption

that Rk = 0 and Sk > 0 P-almost surely, which is exactly what we need in the remainder.

A vast body of literature is devoted to the case n = 1, and the measure P
↓
1 is then studied

under the assumption that R1 = 0. This is challenging from a theoretical point of view, since
the condition that the process stays negative has P-probability zero. Therefore, much more
technicalities are needed to treat this case. We refer to Bertoin [42] and Doney [120] for more
details. See also Chaumont and Doney [68].

13.3 The P-distribution of (X, F )

The aim of this section is to find the Laplace transform of the distribution of (X,F ), assuming
some additional structure on the process X. Thus, in the sequel we write Xk ≺ Xj if there
exists some Kkj > 0 such that Xj −KkjXk is nondecreasing almost surely.

Lemma 13.5 Suppose the Lévy process X satisfies D. If Xk ≺ Xj, then F k ≤ F j.

Proof. First note that F k, F j <∞ as a consequence of D. To prove the claim, let us assume

instead that F j < F k while X̂(t) := Xj(t)−CXk(t) is nondecreasing for some arbitrary C > 0.
Suppose that Xk(F k) = Xk and Xj(F j) = Xj ; the argument can be repeated if, for instance,
Xk(F k−) = Xk. The assumption F j < F k implies that

0 ≤ X̂(F k)− X̂(F j) = Xj(F k)−Xj − C
[
Xk −Xk(F j)

]
≤ 0,

meaning that Xk = Xk(F j). This contradicts F j < F k in view of the definition of F k. ¤

The following proposition expresses the distribution of (X,F ) in terms of the distributions
of (X(F k), F k) and (X(F k−), F k). We denote the scalar product of x and y in Rn by 〈x, y〉,
and we write ‘cpd Ps’ for ‘compound Poisson’. Throughout this chapter, the expression

∏
j αj×∏

j βj × γ should be read as
(∏

j αj

)
×
(∏

j βj

)
× γ.

Proposition 13.6 Suppose that X is an n-dimensional Lévy process satisfying D and that
X1 ≺ X2 ≺ . . . ≺ Xn. Then for any α, β ∈ Rn+,

Ee−〈α,F 〉−〈β,X〉 =
n−1∏

j=1

Rj>0 or Xj cpd Ps

Ee−[
Pn

`=j α`]F j−
Pn

`=j β`X`(F j)

Ee−[
Pn

`=j+1 α`]F j−
Pn

`=j+1 β`X`(F j)

×
n−1∏

j=1

Rj=0, Xj not cpd Ps

Ee−[
Pn

`=j α`]F j−
Pn

`=j β`X`(F j−)

Ee−[
Pn

`=j+1 α`]F j−
Pn

`=j+1 β`X`(F j−)

× Ee−αnFn−βnXn .

Proof. First observe that the assumptions imply that the terms X`(F j) and X`(F j−) in
the formula are nonnegative for ` ≥ j, which legitimates the use of the Laplace transforms.
Remark also that Ri = 0 for i > j whenever Rj = 0, i.e., for some deterministic i0 we have
Ri > 0 for i ≤ i0 and Ri = 0 for i > i0.
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Let us first suppose that Rj > 0 or that Xj is a compound Poisson process. We prove that
for j = 1, . . . , n− 1,

Ee−
Pn

`=j α`F `−
Pn

`=j β`X` =
Ee−[

Pn
`=j α`]F j−

Pn
`=j β`X`(F j)

Ee−[
Pn

`=j+1 α`]F j−
Pn

`=j+1 β`X`(F j)
Ee−

Pn
`=j+1 α`F `−

Pn
`=j+1 β`X` .

The key observations are that Xj = Xj(F j) and that F ` ≥ F j almost surely for ` = j, . . . , n
by Lemma 13.5. The fact that F j is a splitting time by Lemma 13.2(i) then yields

Ee−
Pn

`=j α`F `−
Pn

`=j β`X`

= Ee−[
Pn

`=j α`]F j−
Pn

`=j β`X`(F j)e−
Pn

`=j+1 α`[F `−F j]−
Pn

`=j+1 β`[X`−X`(F j)]

= Ee−[
Pn

`=j α`]F j−
Pn

`=j β`X`(F j)Ee−
Pn

`=j+1 α`[F `−F j]−
Pn

`=j+1 β`[X`−X`(F j)]. (13.2)

The latter factor, which is rather complex to analyze directly, can be computed upon choosing
αj = βj = 0 in the above display.

Repeating this argument for the case Rj = 0 yields with Lemma 13.2(i), provided that Xj

is not a compound Poisson process,

Ee−
Pn

`=j α`F `−
Pn

`=j β`X` =
Ee−[

Pn
`=j α`]F j−βjXj−

Pn
`=j+1 β`X`(F j−)

Ee−[
Pn

`=j+1 α`]F j−
Pn

`=j+1 β`X`(F j−)

× Ee−
Pn

`=j+1 α`F `−
Pn

`=j+1 β`X` .

It is shown in the proof of Theorem VI.5(i) of [43] that Xj = Xj(F j−) almost surely, and this
proves the claim. ¤

In the rest of this section, the following assumption is imposed.

F For j = 1, . . . , n− 1, we have

Xj+1(t) = Kj+1Xj(t) + Υj+1(t), (13.3)

where the processes (Υ2, . . . ,Υn) are mutually independent nondecreasing subordinators
and the constants K2, . . . ,Kn are strictly positive.

Note that Assumption F implies X1 ≺ X2 ≺ . . . ≺ Xn. Moreover, it entails that for
j = 1, . . . , n− 1 and ` ≥ j, we have

X`(t) = K`
jXj(t) +

∑̀

i=j+1

K`
iΥi(t),

where we have set K`
j =

∏`
i=j+1Ki and Kj

j = 1. In other words, X` can be written as the sum
of Xj and ` − j independent processes, which are all mutually independent and independent
of Xj .

The following reformulation of (13.3) in terms of matrices is useful in Section 13.6. Let K
be the upper triangular matrix with element (i, i + 1) equal to Ki+1 for i = 1, . . . , n − 1, and
zero elsewhere. Also write Υ(t) := (Υ1(t), . . . ,Υn(t))

′, where Υ1(t) = X1(t). Equation (13.3)
is then nothing else than the identity X(t) = (I −K ′)−1Υ(t). The matrix (I −K ′)−1 is lower
triangular, and element (i, j) equals K i

j for j ≥ i.
The cumulant of the subordinator Υj(t) is defined as

θΥj (β) := − log Ee−βΥj(1)
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for β ≥ 0 and j = 2, . . . , n.
The following theorem expresses the joint Laplace transform of (X,F ) in terms of its

marginal distributions and the cumulants θΥ. However, except for trivial cases, the Laplace
transform is not the product of marginal Laplace transforms. Still, it can be expressed in terms
of these marginal transforms in a product-type manner. We call this a quasi-product form.

Theorem 13.7 Suppose that X is an n-dimensional Lévy process satisfying D and F. Then

for any α, β ∈ Rn+, the transform Ee−〈α,F 〉−〈β,X〉 equals

n−1∏

j=1

Ee−[
Pn

`=j α`+
Pn

`=j+1 θ
Υ
` (

Pn
k=` K

k
` βk)]F j−[

Pn
`=j K

`
jβ`]Xj

Ee−[
Pn

`=j+1 α`+
Pn

`=j+1 θ
Υ
` (

Pn
k=` K

k
` βk)]F j−[

Pn
`=j+1K

`
jβ`]Xj

× Ee−αnFn−βnXn .

Proof. Let j be such that Rj > 0 or Xj is compound Poisson. By Assumption F, we then
have for a ∈ R+,

Ee−aF j−
Pn

`=j β`X`(F j)

= Ee−aF j−[
Pn

`=j K
`
jβ`]Xj(F j)−

Pn
`=j+1[

Pn
k=` K

k
` βk]Υ`(F j)

= E

(
e−aF j−[

Pn
`=j K

`
jβ`]Xj(F j)E

[
e−

Pn
`=j+1[

Pn
k=` K

k
` βk]Υ`(F j)

∣∣∣F j
])

= Ee−[a+
Pn

`=j+1 θ
Υ
` (

Pn
k=` K

k
` βk)]F j−[

Pn
`=j K

`
jβ`]Xj(F j).

The claim now follows from Proposition 13.6 and the fact that Xj(F j) = Xj almost surely.
If Rj = 0 but not a compound Poisson process, the same argument gives the joint transform

of {X`(F j−) : ` = j, . . . , n} and F j . In the resulting formula, Xj(F j−) can be replaced by
Xj(F j) as outlined in the proof of Theorem VI.5(i) in Bertoin [43]. ¤

The following corollary shows that Theorem 13.7 not only completely characterizes the law
of (X,F ) under P, but also its law conditioned on one component to stay nonpositive. Indeed,

let P
↓
k be the law of {X(F k + t)−X(F k) : t ≥ 0} for k = 1, . . . , n; it can be checked that this

measure equals P
↓
k as defined in Section 13.2.2 in case Rk = 0 and Sk > 0 P-almost surely.

Note that P
↓
k can be regarded as the law of X given that Xk stays nonpositive.

Corollary 13.8 For α, β ∈ Rn+, we have

E
↓
ke

−〈α,X〉−〈β,F 〉 =

n−1∏

j=k

Ee−[
Pn

`=j+1 α`+
Pn

`=j+2 θ
Υ
` (

Pn
i=` K

i
`βi)]F j+1−[

Pn
`=j+1K

`
j+1β`]Xj+1

Ee−[
Pn

`=j+1 α`+
Pn

`=j+1 θ
Υ
` (

Pn
i=` K

i
`βi)]F j−[

Pn
`=j+1K

`
jβ`]Xj

.

Proof. Directly from Theorem 13.7 and (13.2). ¤

In particular, this corollary characterizes the law of the maximum of a Lévy process given
that it stays below a subordinator. It provides further motivation for studying the law of the
vector H under P

↓
k.

13.4 The P
↓
k-distribution of H

The aim of this section is to find the Laplace transform of the distribution of H under P
↓
k under

the assumption that 0 is a holding point for Xk −Xk under P.
We try to follow the same train of thoughts that led us to the results in Section 13.3.

This analogy leads to Proposition 13.9, which does not yet give the Laplace transform of the
distribution ofH under P

↓
k. Therefore, we need an auxiliary result, formulated as Lemma 13.10,
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which relies on Appendix 13.A. Finally, Proposition 13.11 enables us to find the Laplace
transform of the distribution of H under P

↓
k.

As in the previous section, additional assumptions are imposed on the Lévy process X.
Here, they are significantly more restrictive. The following Assumption H plays a similar role in
the present section as Assumption F in Section 13.3. Note that it implies X1 ≺ X2 ≺ . . . ≺ Xn.

H Let Π = {Π(t) : t ≥ 0} be a compound Poisson process with positive jumps only. For
each j = 1, . . . , n, we have

Xj(t) = Π(t)− cjt,
where cj decreases strictly in j.

In the remainder of this section, we write λ ∈ (0,∞) for the intensity of jumps of Π. We

also set ρ
(n)
k := sup{R(j)

k : R
(j)
k ≤ R(1)

n } and σ
(n)
k := sup{S(j)

k : S
(j)
k ≤ R(1)

n }. In particular,

ρ
(n)
n = R(1)

n and σ
(n)
n = S(1)

n . Also, we write for β ≥ 0 and i = 1, . . . , n,

ψi(β) := log Ee−βXi(1)

for the Laplace exponent of −Xi. Since we assume D, we can define Φi as the inverse of ψi,
see Section 11.2. The function Φi plays an important role in this section.

Recall that we used n splitting times to arrive at Proposition 13.6. Here, we only know
that Hk is a splitting time for X under P

↓
k (see Lemma 13.4). In general, however, H i (i < k)

is not a splitting time under P
↓
k, and the similarity with Proposition 13.6 is lost.

Proposition 13.9 Suppose the Lévy process X satisfies D. For γ ∈ Rk
+, we have

E
↓
ke

−Pk
j=1 γjHj =

λ

λ+
∑k
j=1 γj

Ee
−Pk−1

j=1 γj

“
ρ
(k)
k −ρ(k)

j

”

.

Proof. Lemma 13.4 yields

E
↓
ke

−Pk
j=1 γjHj = E

↓
ke

−(
Pk

j=1 γj)HkE
↓
ke

−Pk−1
j=1 γj(Hj−Hk).

In the discussion following (13.1), we have seen that there is a simple sample-path correspon-

dence between the laws P
↓
k and P. This yields immediately that Hk is exponentially distributed

under P
↓
k with parameter λ. It also gives that the P

↓
k-distribution of {Hj−Hk : j = 1, . . . , k−1}

is the same as the P-distribution {ρ(k)
k − ρ

(k)
j : j = 1, . . . , k − 1}. ¤

Motivated by the preceding proposition, we now focus on the calculation of the distribution

of the ρ
(k)
k − ρ

(k)
j (that is, their joint Laplace transform). For this, we apply results from

Appendix 13.A.
The following lemma is of crucial importance, as it provides a recursion for the transform

of {ρ(i)
j+1 − ρ

(i)
j : j = 1, . . . , i − 1} and {ρ(i)

j − σ
(i)
j : j = 1, . . . , i} in terms of the transform

of the same family with superscript (i − 1). The transforms of the marginals ρ
(i)
i − σ

(i)
i and

ρ
(i−1)
i−1 − σ

(i−1)
i−1 also appear in the expression, but these transforms are known: for γ ≥ 0,

i = 1, . . . , n (cf. the proof of Proposition 13.21),

λEe
−γ

“
ρ
(i)
i −σ(i)

i

”

= λ+ γ − ciΦi(γ). (13.4)
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Figure 13.1: Excursions of Xi−1 −Xi−1 correspond to jumps of Z.

Lemma 13.10 Suppose that X is an n-dimensional Lévy process satisfying D and H. Then
for any i = 2, . . . , n, β ∈ Ri−1

+ , γ ∈ Ri+, we have the following recursion:

Ee
−Pi−1

j=1 βj

“
ρ
(i)
j+1−ρ

(i)
j

”
−Pi

j=1 γj

“
ρ
(i)
j −σ(i)

j

”

=
βi−1 + λEe

−γi

“
ρ
(i)
i −σ(i)

i

”

βi−1 + λEe
−δi(βi−1,γi)

“
ρ
(i−1)
i−1 −σ(i−1)

i−1

”

× Ee
−Pi−2

j=1 βj

“
ρ
(i−1)
j+1 −ρ(i−1)

j

”
−Pi−2

j=1 γj

“
ρ
(i−1)
j −σ(i−1)

j

”
−[δi(βi−1,γi)+γi−1]

“
ρ
(i−1)
i−1 −σ(i−1)

i−1

”

,

with δi(β, γ) :=
(
ci−1

ci
− 1
)

(λ+ β) + ci−1

ci
γ.

Proof. Fix some i = 2, . . . , n, and consider the process Xi−1 between σ
(i)
i and ρ

(i)
i . There

are several excursions (at least one) of the process Xi−1−Xi−1 away from 0 between σ
(i)
i and

ρ
(i)
i , and we call these excursions the (i− 1)-subexcursions. Each (i− 1)-subexcursion contains

excursions of the processes X` −X` for ` < i − 1; we call these the `-subexcursions. To each
(i− 1)-subexcursion, we assign 2i− 4 marks, namely two for each of the i− 2 types of further
subexcursions. The first mark corresponds to the length of the last `-subexcursion in the (i−1)-
subexcursion, and the second to the difference between the end of the last `-subexcursion and
the end of the (` + 1)-subexcursion. Observe that these marks are independent for every

(i − 1)-subexcursion between σ
(i)
i and ρ

(i)
i , and that their distributions are equal to those of

{ρ(i−1)
` − σ(i−1)

` : ` = 1, . . . , i− 2} (the first marks) and {ρ(i−1)
`+1 − ρ

(i−1)
` : ` = 1, . . . , i− 2} (the

second marks).
The idea is to apply Proposition 13.21 to the process

Z(x) := inf
{
t ≥ 0 : Xi−1

(
σ

(i)
i

)
−Xi−1

(
σ

(i)
i + t

)
= x

}
− x

ci−1 − ci
,

see Figure 13.1. In this diagram, excursions of Xi−1 −Xi−1 correspond to jumps of Z. The
relevant information on the subexcursions is incorporated into Z as jump marks.

Observe that Z is a compound Poisson process with negative drift 1/ci−1 − 1/(ci−1 − ci)
and intensity λ/ci−1, starting with a (marked) jump at zero. The jumps of Z correspond
to (i − 1)-excursions, and the above marks are assigned to the each of the jumps. In terms
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of Proposition 13.21, it remains to observe that ρ
(i)
i − ρ

(i)
i−1 and ρ

(i)
i − σ

(i)
i correspond to

(τ− − TN−)/ci−1 and τ−/(ci−1 − ci) respectively. ¤

With the recursion of Lemma 13.10, we can find the joint transform of ρ
(k)
k − ρ

(k)
j for

j = 1, . . . , k− 1, which is required to work out Proposition 13.9. This is done in (13.14) below.

It is equivalent to find the transform of ρ
(k)
j+1 − ρ

(k)
j for j = 1, . . . , k − 1, which is the content

of the next proposition. We have also added ρ
(k)
k − σ

(k)
k for use in subsequent work. The

resulting formula has some remarkable features similar to the formula in Theorem 13.7. Most
interestingly, a quasi-product form appears here as well.

For β ∈ Rk−1
+ ≥ 0, and j = 1, . . . , k − 1, we define

Ckj (β) := cj

k−1∑

`=j

(
1

c`+1
− 1

c`

)
(λ+ β`).

Proposition 13.11 Suppose that X is an n-dimensional Lévy process satisfying D and H.
Then for any k = 2, . . . , n, β ∈ Rk−1

+ , γ ≥ 0, we have

Ee
−Pk−1

j=1 βj

“
ρ
(k)
j+1−ρ

(k)
j

”
−γ

“
ρ
(k)
k −σ(k)

k

”

=

k−1∏

j=1

βj + λEe
−
h
Ck

j+1(β)+
cj+1

ck
γ
i“
ρ
(j+1)
j+1 −σ(j+1)

j+1

”

βj + λEe
−
h
Ck

j (β)+
cj
ck
γ
i“
ρ
(j)
j −σ(j)

j

”

× Ee
−
h
Ck
1 (β)+

c1
ck
γ
i“
ρ
(1)
1 −σ(1)

1

”

.

Proof. Since for ` = 2, . . . , i, by definition of Ck` (β),

(
c`−1

c`
− 1

)
(λ+ β`−1) +

c`−1

c`
Ck` (β) = Ck`−1(β),

it follows from Lemma 13.10 that

Ee
−P`−1

j=1 βj

“
ρ
(`)
j+1−ρ

(`)
j

”
−
h
Ck

` (β)+
c`
ck
γ
i“
ρ
(`)
` −σ(`)

`

”

Ee
−P`−2

j=1 βj

“
ρ
(`−1)
j+1 −ρ(`−1)

j

”
−
h
Ck

`−1(β)+
c`−1

ck
γ
i“
ρ
(`−1)
`−1 −σ(`−1)

`−1

”

=
β`−1 + λEe

−Ck
` (β,γ)

“
ρ
(`)
` −σ(`)

`

”

β`−1 + λEe
−Ck

`−1(β,γ)
“
ρ
(`−1)
`−1 −σ(`−1)

`−1

” .

The claim follows from this recursion (start with ` = k and note that Ckk (β) = 0). ¤

13.5 Multidimensional Skorokhod problems

In the next sections, we apply results of the previous sections to the analysis of fluid networks.
Such networks are closely related to (multidimensional) Skorokhod reflection problems, which
we describe first. With the help of Skorokhod problems, the connection between the reflected
process and the free process can be made precise; cf. Section 1.1 for a discrete-time framework.
Subject to certain assumptions, we explicitly solve such a reflection problem in Section 13.5.1.
Section 13.5.2 describes the fluid networks associated to these special Skorokhod problems.

Let P be a nonnegative matrix with spectral radius strictly smaller than 1. To a given
càdlàg function Y with values in Rn such that Y (0) = 0, one can associate a càdlàg pair (W,L)
with the following properties (w ∈ Rn+):
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S1 W (t) = w + Y (t) + (I − P ′)L(t), t ≥ 0,

S2 W (t) ≥ 0, t ≥ 0 and W (0) = w,

S3 L(0) = 0 and L is nondecreasing,

S4
∑n
j=1

∫∞
0
Wj(t) dLj(t) = 0.

It is known that such a pair exists and that it is unique; see Harrison and Reiman [154] for
the continuous case, and Robert [272] for the càdlàg case. It is said that (W,L) is the solution
to the Skorokhod problem of Y in Rn+ with reflection matrix I − P ′.

In general, the pair (W,L) cannot be expressed explicitly in terms of the driving process Y ,
with the notable exception of the one-dimensional case. However, if the Skorokhod problem
has a special structure, this property carries over to a multidimensional setting.

13.5.1 A special Skorokhod problem

It is the aim of this subsection to solve the Skorokhod problem for the pair (W,L) under the
following assumptions:

N1 P is strictly upper triangular,

N2 the j-th column of P contains exactly one strictly positive element for j = 2, . . . , n,

N3 Yj is nondecreasing for j = 2, . . . , n.

In Section 13.5.2, we show that these assumptions impose a ‘tree’ structure on a fluid
network.

Theorem 13.12 Under N1–N3, the solution to the Skorokhod problem of Y in Rn
+ is given

by

L(t) = 0 ∨ sup
0≤s≤t

[
−(I − P ′)−1Y (s)− (I − P ′)−1w

]
,

W (t) = w + Y (t) + (I − P ′)L(t),

where the supremum should be interpreted componentwise.

Proof. As W is determined by L and S1, we only have to prove the expression for L. By
Theorem D.3 of Robert [272], we know that Li satisfies the fixed-point equation

Li(t) = 0 ∨ sup
0≤s≤t

[(P ′L)i(s)− wi − Yi(s)] (13.5)

for i = 1, . . . , n and t ≥ 0.
As a consequence of N1, we have (I − P ′)−1 = I + P ′ + . . . + P ′n−1, and the j-th row of

(I − P ′)−1 is the j-th row of I + P ′ + P ′2 + . . .+ P ′j−1. Therefore, the theorem asserts that

Li(t) = 0 ∨ sup
0≤s≤t

[
−
i−1∑

k=0

[
P ′kY (s) + P ′kw)

]
i

]
. (13.6)

The proof goes by induction. For i = 1, (13.6) is the same equation as (13.5). Let us now
suppose that we know that (13.6) holds for i = 1, . . . , j − 1, where j = 2, . . . , n. Furthermore,
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let j∗ < j be such that pj∗j > 0; it is unique by N2. Equation (13.5) shows that

Lj(t) = 0 ∨ sup
0≤s≤t

[pj∗jLj∗(s)− wj − Yj(s)]

= 0 ∨ sup
0≤s≤t




0 ∨ sup

0≤u≤s
−
j∗−1∑

k=0

pj∗j
[
P ′kY (u) + P ′kw

]
j∗


− wj − Yj(s)




= 0 ∨ sup
0≤s≤t


 sup

0≤u≤s
−
j∗−1∑

k=0

pj∗j
[
P ′kY (u) + P ′kw

]
j∗
− wj − Yj(s)


 (13.7)

= 0 ∨ sup
0≤u≤t

sup
u≤s≤t


−

j∗−1∑

k=0

[
P ′k+1Y (u) + P ′k+1w

]
j
− wj − Yj(s)




= 0 ∨ sup
0≤u≤t


−

j∗∑

k=0

[
P ′kY (u) + P ′kw

]
j


 , (13.8)

where we have used N3 for the equalities (13.7) and (13.8).
The proof is completed after noting that the j-th row of P ′k only contains zeroes for

k = j∗ + 1, . . . , j − 1. ¤

Instead of working directly with W , it is often convenient to work with a transformed
version, W̃ := (I − P ′)−1W . The process W̃ lies in a cone C, which is a polyhedron and a
proper subset of the orthant Rn+. Under the present assumptions, at least one edge of C is in

the interior of Rn+ and at least one is an axis. Below we give an interpretation of W̃ .

We next establish a correspondence between the event that Wj(t) = 0 and W̃j(t) = 0 under
an additional condition.

Proposition 13.13 Suppose that N1–N3 hold, but with ‘nondecreasing’ replaced by ‘strictly
increasing’ in N3. Then we have Wj(t) = 0 if and only if W̃j(t) = 0, for any j = 1, . . . , n and
t ≥ 0.

Proof. For j = 1 we have Wj(t) = W̃j(t), so the stated is satisfied; suppose therefore that
j > 1. Since the matrix (I − P ′)−1 is lower triangular and nonnegative, we straightforwardly

get that W̃j(t) = 0 implies Wj(t) = 0.
For the converse, observe that under N1, N2 (see the proof of Theorem 13.12; we use the

same notation)

W̃j(t) =

j−1∑

k=0

[
P ′kW

]
j
(t) =

j∗∑

k=0

[
P ′kW

]
j
(t).

An induction argument shows that it suffices to prove that Wj(t) = 0 implies Wj∗(t) = 0. To
see that this holds, we observe that by S1 and (13.5), Wj(t) = 0 is equivalent to

pj∗jLj∗(t)− wj − Yj(t) = 0 ∨ sup
0≤s≤t

[pj∗jLj∗(s)− wj − Yj(s)] .

The right-hand side of this equality is clearly nondecreasing. Therefore, since Yj is strictly
increasing by assumption, we conclude that dLj∗(t) > 0, which immediately yields Wj∗(t) = 0
by S4. This completes the proof. ¤
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13.5.2 Lévy-driven tree fluid networks

In this subsection, we define a class of Lévy-driven fluid networks, which we call tree fluid
networks. We are interested in the steady-state behavior of such networks.

Consider n (infinite-buffer) fluid queues, with external input to queue j in the time interval
[0, t] given by Aj(t). We assume that A := {A(t) : t ≥ 0} = {(A1(t), . . . , An(t))

′
: t ≥ 0} is

a càdlàg Lévy process starting in A(0) = 0 ∈ Rn
+. The buffers are continuously drained at a

constant rate as long as there is content in the buffer. These drain rates are given by a vector
r; for buffer j, the rate is rj > 0. Note that the network introduced in Section 1.2 fits into this
framework.

The interaction between the queues is modeled as follows. A fraction pij of the output of
station i is immediately transferred to station j, while a fraction 1−

∑
j 6=i pij leaves the system.

We set pii = 0 for all i, and suppose that
∑
j pij ≤ 1. The matrix P = {pij : i, j = 1, . . . , n} is

called the routing matrix. We assume that for any station i, there is at most one station feeding
buffer i, and that pij = 0 for j < i. The resulting network can be represented by a (directed)
tree. Indeed, the stations then correspond to nodes, and there is a vertex from station i and j
if pij > 0. This motivates the name ‘tree fluid networks’. We represent such a fluid network
by the triplet (A, r, P ). Note that P satisfies N1, N2 by definition of a tree fluid network.

The buffer content process W and regulator L associated to the fluid network (A, r, P ) are
defined as the solution of the Skorokhod problem of

Y (t) := A(t)− (I − P ′)rt

with reflection matrix I − P ′. The buffer content is sometimes called the workload, explaining
the notation W . Importantly, the dynamics of the network are given by S1–S4, as the reader
may verify. The process Lj can be interpreted as the cumulative unused capacity in station j.

Associated to the processes W and L, one can also define the process of the age of the busy
period: for j = 1, . . . , n, we set

Bj(t) := t− sup{s ≤ t : Wj(s) = 0}, (13.9)

and let B(t) = (B1(t), . . . , Bn(t))
′. Hence, if there is work in queue j at time t (that is,

Wj(t) > 0), Bj(t) is the time that elapsed after the last time that the j-th queue was empty.
If there is no work in queue i at time t, then Bi(t) = 0. Similarly, one can also define the age
of the idle period for j = 1, . . . , n:

Ij(t) := t− sup{s ≤ t : Wj(s) 6= 0},

and the corresponding vector I(t). As a result of these definitions, Ij(t) > 0 implies Bj(t) = 0

and Bj(t) > 0 implies Ij(t) = 0 for j = 1, . . . , n. The quantities B̃j(t) and Ĩj(t) are defined

similarly, but with Wj replaced by the j-th element of W̃ = (I − P ′)−1W .

The random variables W̃j , B̃j , and Ĩj have a natural interpretation. Indeed, let us consider
all stations on a path from the root of the tree to station j. The total content of the buffers
along this path is then given by W̃j . Consequently, B̃j and Ĩj correspond to the ages of the
busy and idle periods of this aggregate buffer.

In the rest of the chapter, we assume that the tree fluid network has the following additional
properties:

T1 If pij > 0, then pij > rj/ri,

T2 Aj(t) are nondecreasing for j = 2, . . . , n,

T3 A is an n-dimensional Lévy process,
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T4 A is integrable and (I − P ′)−1EA(1) < r.

Assumption T1 can be interpreted as a work-conserving property, and T4 ensures stability
of the network. An important consequence of T1 and T2 is that Y is componentwise nonde-
creasing, except for Y1. Consequently, if T1 and T2 hold for a tree fluid network, then N1–N3
are automatically satisfied for the associated Skorokhod problem. Hence, Theorem 13.12 gives
an explicit description of the buffer contents in the network.

In the next proposition, we find the steady-state behavior of the buffer content and the age
of the busy (and idle) period for the Lévy-driven tree fluid network (A, r, P ). We also consider
the case where the inequality pij > rj/ri in T1 holds only weakly (i.e. pij ≥ rj/ri), as this
plays a role in priority fluid systems (see Section 13.6.3 below).

To this end, we define the process

X(t) := (I − P ′)−1Y (t) = (I − P ′)−1A(t)− rt.

Recall the definitions of F and H in Sections 13.2.1 and 13.2.2 respectively.

Proposition 13.14 Suppose that T1–T4 hold for the tree fluid network (A, r, P ).

(i) For any initial condition W (0) = w, the triplet of vectors (W (t), B(t), I(t)) converges in
distribution to ((I − P ′)X,F ,H) as t→∞.

(ii) If the second inequality in T1 holds only weakly, then for any initial condition W (0) = w,

the triplet of vectors (W (t), B̃(t), Ĩ(t)) converges in distribution to ((I − P ′)X,F ,H) as
t→∞.

Proof. Throughout this proof, a system of equations like (13.9) is abbreviated by B(t) =
t− sup{s ≤ t : W (s) = 0}.

We start with the proof of (ii). By Theorem 13.12, we have for any t > 0

W̃ (t) = [x+X(t)] ∨ sup
0≤s≤t

[X(t)−X(s)],

where x = (I − P ′)−1w. Moreover, as a consequence of Proposition 13.13, we have

B̃(t) = t− sup{s ≤ t : W̃ (s) = 0}

= t− sup

{
s ≤ t : x+X(s) = 0 ∧ inf

0≤u≤s
[x+X(u)]

}

= t− sup

{
s ≤ t : x+X(s) = 0 ∧ inf

0≤u≤t
[x+X(u)]

}
,

where the last equality is best understood by sketching a sample path of X. The supremum
over an empty set should be interpreted as zero.

This reasoning carries over to idle periods:

Ĩ(t) = t− sup

{
s ≤ t : x+X(s) 6= 0 ∧ inf

0≤u≤s
[x+X(u)]

}
.

Due to the stationarity of the increments of {X(t), t ≥ 0} {T3}, we may extend X to the
two-sided process {X(t), t ∈ R}. This leads to




W̃ (t)

B̃(t)

Ĩ(t)


 d

=




[x−X(−t)] ∨ sup−t≤s≤0[−X(s)]
− sup

{
s : −t ≤ s ≤ 0,−X(s) = [x−X(−t)] ∨ sup−t≤u≤0[−X(u)]

}

− sup
{
s : −t ≤ s ≤ 0,−X(s) 6= [x−X(−t)] ∨ sup−t≤u≤s[−X(u)]

}


 ,



194 Chapter 13 Quasi-product forms

where ‘
d
=’ stands for equality in distribution. Since x − X(−t) → −∞ almost surely by T4,

this tends to 


sups≤0[−X(s)]
− sup

{
s ≤ 0 : −X(s) = supu≤0[−X(u)]

}

− sup
{
s ≤ 0 : −X(s) 6= supu≤s[−X(u)]

}


 ,

a vector that is almost surely finite, again by T4. By time-reversibility (see Section 11.2), the
latter vector is equal in distribution to (X,F ,H).

Claim (i) follows from (ii); use that B(t) = B̃(t) and I(t) = Ĩ(t) by Proposition 13.13. ¤

We remark that the above proof does not use T3 to the fullest. Indeed, for the proposition
to hold, it suffices that A has stationary increments and that it is time-reversible.

Let us now suppose that the initial buffer content w is random. Proposition 13.14 shows that
{W (t)} is a stationary process if W (0) = w is distributed as µ∗, where µ∗ is the distribution
of (I − P ′)X; this can be deduced from Representation (1.7) for the stationary buffer-content

process Ŵ . We now show that this stationary distribution is unique.

Corollary 13.15 Suppose that T1–T4 hold for the tree fluid network (A, r, P ). Then µ∗ is
the only stationary distribution.

Proof. Suppose there exists another stationary distribution µ∗
0 6= µ∗. Let W ∗

0 be the cor-
responding stationary process. For any Borel set B in Rn

+ and any t ≥ 0, we then have
P(W ∗

0 (0) ∈ B) = P(W ∗
0 (t) ∈ B). Therefore,

P(W ∗
0 (0) ∈ B) = lim

t→∞
P(W ∗

0 (t) ∈ B)

= lim
t→∞

∫ ∞

0

P(W ∗
0 (t) ∈ B|W ∗

0 (0) = w)P(W ∗
0 (0) ∈ dw)

=

∫ ∞

0

lim
t→∞

P(W ∗
0 (t) ∈ B|W ∗

0 (0) = w)P(W ∗
0 (0) ∈ dw)

=

∫ ∞

0

P((I − P ′)X ∈ B)P(W ∗
0 (0) ∈ dw) = P((I − P ′)X ∈ B),

where the second last equation is due to Proposition 13.14. This is clearly a contradiction. ¤

Corollary 13.15 answers, for the special case of tree fluid networks, a question from the
paper of Konstantopolous et al. [195] on the uniqueness of the stationary distribution. Note
that for the queueing problem related to (A, r, P ), the uniqueness of the stationary distribution
was discussed in Kella [182]. In contrast to the setting in [182], we allow for the first component
of A(t) to be a general Lévy process.

In the next section, we combine Proposition 13.14 with the results given in Sections 13.3
and 13.4 to study particular networks.

13.6 Tandem networks and priority systems

In this section, we analyze n fluid queues in tandem, which is a tree fluid network with a special
structure. We also analyze a closely related priority system.

The tandem structure is specified by the form of the routing matrix: we suppose that P
is such that pi,i+1 > 0 for i = 1, . . . , n − 1, and pij = 0 otherwise. Observe that we allow
pi,i+1 > 1, and that it is not really a restriction to exclude pi,i+1 = 0; otherwise the queueing
system splits into independent tandem networks.
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In all of our results, we suppose that the tandem system (A, r, P ) satisfies T1–T4. We rule
out the degenerate case where the first j ≥ 1 components of A are deterministic drifts, since
an equivalent problem can then be studied with the first j stations removed. We also impose
the following assumptions on the input Lévy process A:

T5 A has mutually independent components,

T6 the Lévy measure of A1 is supported on R+.

Observe that under T2 and T3, T5 implies that A2, . . . , An are independent nondecreasing
subordinators.

This section consists of three parts. In Section 13.6.1, we are interested in the joint (steady-
state) distribution of the buffer contents and the ages of the busy periods for fluid tandem
networks, i.e., in the distribution of (W (∞), B(∞)). Section 13.6.2 considers the situation of
a single compound Poisson input to the system. For that system, we are also interested in the
ages of the idle periods, i.e., in the vector I(∞). In Section 13.6.3, we analyze buffer contents
and busy periods in a priority system.

13.6.1 Generalities

To find the joint distribution of W (∞) and B(∞), throughout this section denoted by W
and B respectively, we rely on Proposition 13.14. This motivates the analysis of X(t) = (I −
P ′)−1A(t)− rt. For i = 2, . . . , n, we define the cumulant of Ai(t) by θAi (β) := − log Ee−βAi(1),
β ≥ 0. As in Section 13.4, we write ψi (defined by ψi(β) = log Ee−βXi(1)) for the Laplace
exponent of −Xi. Its inverse is again denoted by Φi.

Under T2 and T6, the Lévy measure of X is supported on Rn
+. Moreover, as we ruled out

trivial queues in the network, each of the components of X has a nondegenerate distribution.
Therefore, let us recall that the following holds (cf. Proposition 11.6 as q → 0): for α, β ≥ 0,
(α, β) 6= (0, 0), β 6= Φi(α), i = 1, . . . , n, we have

Ee−αF i−βXi = −EXi(1)
Φi (α)− β
α− ψi(β)

. (13.10)

This identity plays a crucial role in the results of this section. For notational convenience, we
shall write that (13.10) holds for any α, β ≥ 0, without the requirements (α, β) 6= (0, 0) and
β 6= Φi(α).

Now we can formulate the main result of this subsection. We remark that the first formula
also holds if A1 is not necessarily spectrally positive. For instance, it allows for phase-type
downward jumps; see Section 12.3 for the joint transform of Xj and F j in that case.

Theorem 13.16 Consider a tandem fluid network (A, r, P ) for which T1–T6 holds. Then
for ω, β ∈ Rn+, the transform Ee−〈ω,W 〉−〈β,B〉 equals

n−1∏

j=1

Ee−[
Pn

`=j+1 θ
A
` (ω`)+

Pn
`=j+1(p`−1`r`−1−r`)ω`+

Pn
`=j β`]F j−ωjXj

Ee−[
Pn

`=j+1 θ
A
` (ω`)+

Pn
`=j+1(p`−1`r`−1−r`)ω`+

Pn
`=j+1 β`]F j−pj,j+1ωj+1Xj

× Ee−βnFn−ωnXn .

Consequently, we have for ω, β ∈ Rn+,

Ee−〈ω,W 〉−〈β,B〉 = −EXn(1)
Φn (βn)− ωn
βn − ψn(ωn)

×
n−1∏

j=1

Φj

(∑n
`=j+1 θ

A
` (ω`) +

∑n
`=j+1(p`−1,`r`−1 − r`)ω` +

∑n
`=j β`

)
− ωj

Φj

(∑n
`=j+1 θ

A
` (ω`) +

∑n
`=j+1(p`−1,`r`−1 − r`)ω` +

∑n
`=j+1 β`

)
− pj,j+1ωj+1
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×
n−1∏

j=1

∑n
`=j+1 θ

A
` (ω`) +

∑n
`=j+1(p`−1,`r`−1 − r`)ω` +

∑n
`=j+1 β` − ψj(pj,j+1ωj+1)∑n

`=j+1 θ
A
` (ω`) +

∑n
`=j+1(p`−1,`r`−1 − r`)ω` +

∑n
`=j β` − ψj(ωj)

.

Proof. By Proposition 13.14(i), (W,B)
d
= ((I − P ′)X,F ). Hence we have

Ee−〈ω,W 〉−〈β,B〉 = Ee−〈(I−P )ω,(I−P ′)−1W 〉−〈β,B〉 = Ee−〈β,F 〉−〈(I−P )ω,X〉. (13.11)

Now note that the stability condition T4 for (A, r, P ) implies D for X by the law of large
numbers. Thus, in order to apply Theorem 13.7 for (13.11), it is enough to check that F holds.
Standard algebraic manipulations give

X1(t) = A1(t)− r1t

and
Xi+1(t) = pi,i+1Xi(t) +Ai+1(t) + (pi,i+1ri − ri+1)t

for i = 1, . . . , n− 1. Hence, F holds with Ki = pi−1,i and Υi(t) = Ai(t) + (pi−1,iri−1 − ri)t.
As a result, we know that from Theorem 13.7,

Ee−〈β,F 〉−〈(I−P )ω,X〉 = Ee−〈β,F 〉−〈eω,X〉

=
n−1∏

j=1

Ee−[
Pn

`=j+1 θ
Υ
` (

Pn
k=` K

k
` eωk)+

Pn
`=j β`]F j−(

Pn
k=j K

k
j eωk)Xj

Ee−[
Pn

`=j+1 θ
Υ
` (

Pn
k=` K

k
` eωk)+

Pn
`=j+1 β`]F j−(

Pn
k=j+1K

k
j eωk)Xj

× Ee−βnFn−eωnXn ,

where we have set ω̃ = (I − P )ω for notational convenience.
The reader may check that

∑n
k=j K

k
j ω̃k = ωj and

∑n
k=j+1K

k
j ω̃k = pj,j+1ωj+1, leading to

the first claim. The second assertion is a consequence of the first and (13.10). ¤

Theorem 13.16 extends several results from the literature on the steady-state distribution
of the buffer content for tandem Lévy networks. In particular, if A(t) = (A1(t), 0)

′, P = (pij),
with p12 = 1 and zeroes elsewhere, if one chooses β1 = β2 = 0 and ω1 = 0 in Theorem 13.16,
then one obtains Theorem 3.2 of Dȩbicki et al. [92]. Additionally, if one chooses β1 = β2 = 0
and supposes that A1 is a subordinator, we recover the results of Kella [180].

For use in Section 13.6.3, we point out that the expression for Ee−〈ω,W 〉−〈β,B〉 in Theo-

rem 13.16 equals Ee−〈ω,W 〉−〈β, eB〉 if the second inequality in T1 is weak, cf. Proposition 13.14(ii).

The lengths of the busy periods

Besides the Laplace transforms of the ages B of the busy periods, Theorem 13.16 also enables
us to find the Laplace transforms of the length V of the steady-state running busy periods.
Indeed, let Di, i = 1, . . . , n denote the steady-state remaining lengths of the running busy
period, so that Vi = Bi + Di. We know that Di and Bi are equal in distribution. In fact,
following for instance [19, Sec. V.3], we have

(Bi, Di)
d
= (UiVi, (1− Ui)Vi), (13.12)

where Ui are i.i.d. and uniform on [0, 1].
For the Brownian (single) fluid queue, the following result is Corollary 3.8 of Salminen and

Norros [281].

Corollary 13.17 Consider a tandem fluid network (A, r, P ) for which T1–T6 holds. Then
for α, β ≥ 0, α 6= β,

Ee−αBi−βDi = −EXi(1)
Φi(α)− Φi(β)

α− β .
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Moreover, we have for α ≥ 0,

Ee−αVi = −EXi(1)
dΦi(α)

dα
.

Proof. Since the second claim follows straightforwardly from the first, we only prove the first
expression. Following (13.12), we have for α 6= β,

(α− β)Ee−αBi−βDi = (α− β)Ee−(α−β)UiVi−βVi = (α− β)E

∫ 1

0

e−(α−β)uVi−βVidu

= E

∫ α

β

e−uVidu = E

∫ α

0

e−uVidu− E

∫ β

0

e−uVidu.

The two identities that result upon setting β = 0 and α = 0 can be used to express the first
and second expectation in terms of the Laplace transform of Bi and Di respectively; this yields
for α 6= β

Ee−αBi−βDi =
1

α− β
[
αEe−αBi − βEe−βBi

]
,

where we have used the equality in distribution of Bi and Di. Application of (13.10) completes
the proof. ¤

13.6.2 A single compound Poisson input

In this subsection, we examine a tandem fluid network with a single compound Poisson input
[186]. The following assumption formalizes our framework.

T7 pi,i+1 = 1 for i = 1, . . . , n− 1, while pij = 0 otherwise,

T8 A1 is a compound Poisson process with positive drift d and intensity λ, and Aj ≡ 0 for
j = 2, . . . , n. Moreover, rj decreases strictly in j and EA(1) < rn.

An important consequence of T7 and T8 is that

(rj − rk)ω = ψj(ω)− ψk(ω), (13.13)

which simplifies the resulting expressions in view of fact that we often deal with ratios of the
fluctuation identity (13.10). Interestingly, it is also possible to study (joint distributions of)
idle periods under these assumptions.

The following corollary collects some results that follow from T7, T8, and Theorem 13.16.
Many more interesting formulas can be derived, but we have selected two examples for which
the formulas are especially appealing.

Corollary 13.18 Consider a tandem fluid network (A, r, P ) for which T7 and T8 hold.

(i) For i = 1, . . . , n, and ω, β ≥ 0, we have

Ee−ωWi−βBi = −EXi(1)
Φi(β)− ω

β + (ri−1 − ri)ω
× Φi−1((ri−1 − ri)ω + β)

Φi−1((ri−1 − ri)ω + β)− ω .

Moreover, P(Wi = 0) = P(Bi = 0) = EXi(1)
d−ri

.

(ii) For i = 2, . . . , n, ω, β ≥ 0, we have

E
[
e−ωWi−βBi ;Wi−1 = 0

]
= − EXi(1)

d− ri−1

Φi(β)− ω
Φi−1((ri−1 − ri)ω + β)− ω .
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Proof. To prove (i), apply Theorem 13.16 to obtain for i = 1, . . . , n,

Ee−ωWi−βBi =
Ee−[(ri−1−ri)ω+β]F i−1

Ee−[(ri−1−ri)ω+β]F i−1−ωXi−1

Ee−βF i−ωXi .

With (13.10), this leads immediately to the given formula after invoking (13.13).
We find P(Wi = 0) upon choosing ω = 0 and noting that

P(Wi = 0) = P(Bi = 0) = lim
β→∞

Ee−βF i = −EXi(1) lim
β→∞

Φi(β)

β
=

EXi(1)

d− ri
,

where the last equality follows from Proposition I.2 in [43].
The second claim uses a similar argument; it follows from Theorem 13.16 that for i =

2, . . . , n

Ee−ωiWi−βi−1Bi−1−βiBi =
Ee−[(ri−1−ri)ωi+βi−1+βi]F i−1

Ee−[(ri−1−ri)ωi+βi]F i−1−ωiXi−1

Ee−βiF i−ωiXi ,

and the numerator of the fraction tends to P(Wi−1 = 0) as βi−1 →∞. Now apply (13.10) and
(13.13). ¤

We end this subsection with an application of the theory in Section 13.4, which enables us
to study the idle periods in a tandem fluid network satisfying T7 and T8. For γ ∈ Rk−1

+ , we
set

Dkj (γ) := cj

k−1∑

`=j

(
1

c`+1
− 1

c`

)(
λ+

∑̀

p=1

γp

)
,

which is similar to the definition of Ckj in Section 13.4.

Proposition 13.19 Consider a tandem fluid network (A, r, P ) for which T7 and T8 holds.
For γ ∈ Rn+, we have

Ee−〈γ,I〉 = 1−
n∑

k=1

P(Wk = 0)E↓
k

[
e−

Pk−1
`=1 γ`H`

(
1− e−γkHk

)]
,

where P(Wj = 0) is given in Corollary 13.18(i), and

E
↓
ke

−Pk
`=1 γ`H` =

λ+
∑k−1
`=1 γ`

(
1− ck

c`

)
− ckΦ1(Dk1 (γ))

λ+
∑k
`=1 γ`

×
k−1∏

j=1

λ+
∑k−1
`=1 γ` −

∑k−1
`=j+1

ck

c`
γ` − ckΦj+1(Dkj+1(γ))

λ+
∑k−1
`=1 γ` −

∑k
`=j+1

ck

c`
γ` − ckΦj(Dkj (γ))

. (13.14)

Proof. Note that T7 and T8 imply H. The first claim follows from Proposition 13.14 and the
facts that for k = 2, . . . , n,

Ee−
Pk

`=1 γ`H` = Ee−
Pk−1

`=1 γ`H` + E
↓
k

[
e−

Pk−1
`=1 γ`H`

(
1− γkHk

)]
P(Xk = 0),

and Eeγ1H1 = 1− E
↓
1

[
1− e−γ1H1

]
P(X1 = 0). These identities follow after observing that Hk

vanishes on the event {Xk = 0}, and that {Xk = 0} is the complement of {Xk > 0}.
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Let us now prove the expression for the P
↓
k-distribution of (H1, . . . , Hk)

′. From Proposi-
tion 13.9 and Proposition 13.11, we know that

E
↓
ke

−Pk
`=1 γ`H` =

λEe
−Dk

1 (γ)
“
ρ
(1)
1 −σ(1)

1

”

λ+
∑k
`=1 γ`

k−1∏

j=1

∑j
`=1 γ` + λEe

−Dk
j+1(γ)

“
ρ
(j+1)
j+1 −σ(j+1)

j+1

”

∑j
`=1 γ` + λEe

−Dk
j (γ)

“
ρ
(j)
j −σ(j)

j

” .

The proof is finished after invoking (13.4) and noting that for j = 1, . . . , k − 1,

ck
cj

[
λ+

j∑

`=1

γ` +Dkj (γ)
]

=
ck
cj+1

[
λ+

j∑

`=1

γ` +Dkj+1(γ)

]
= λ+

k−1∑

`=1

γ` −
k−1∑

`=j+1

ck
c`
γ`,

and

ck
c1

[
λ+Dk1 (γ)

]
= λ+

k−1∑

`=1

γ` −
k−1∑

`=1

ck
c`
γ`,

as the reader readily verifies. ¤

13.6.3 A priority fluid system

In this subsection, we analyze a single station which is drained at a constant rate r > 0.
It is fed by n external inputs (‘traffic classes’) A1(t), . . . , An(t), each equipped with its own
(infinite-capacity) buffer. The queue discipline is (preemptive resume) priority, meaning that
for each i = 1, . . . , n, the i-th buffer is continuously drained only if first i − 1 buffers do not
require the full capacity r. We call such a system a priority fluid system.

The aim of this section is to find the Laplace transform of (W,E), where Wj = Wj(∞) is
the stationary buffer content of class-j input traffic, and Ej = Ej(∞) is the stationary age of
the busy period for class j. We impose the following assumptions.

P1 A is an n-dimensional Lévy process with mutually independent components, and its Lévy
measure is supported on Rn+, A(0) = 0,

P2 Aj(t) are nondecreasing for j = 2, . . . , n,

P3 A is integrable and
∑n
i=1 EAi(1) < r.

The central idea is that W evolves in the same manner as the solution to the Skorokhod
problem that corresponds to a tandem fluid network (A, r, P ), with r = (r, . . . , r)′ and P =
(pij) such that pi,i+1 = 1 for i = 1, . . . , n − 1 and pij = 0 otherwise. This equivalence has
been noticed, for instance, by Elwalid and Mitra [130]. It allows us to use the notation of
Section 13.6.1.

It is important to observe that P1–P3 for the priority system implies T1–T6 for the
corresponding tandem fluid network, except that the second inequality in T1 only holds as
a weak inequality. However, as remarked in Section 13.6.1, the Laplace transform of the
distribution of (W, B̃) is then still given in Theorem 13.16.

The steady-state ages of the busy periods E can also be expressed in terms of the solution
(W,L) to this Skorokhod problem, but it does not always equal B̃ as in Section 13.6.1. To see
this, notice that if class-1 traffic (highest priority) arrives to an empty system at time t, we

have W2(t) = 0, while W̃2(t) > 0 so that B̃2(t) > 0. However, it must hold that E2(t) = 0.
Still, the following theorem shows that it is possible to express the distribution of (W,E)

in terms of (W, B̃).



200 Chapter 13 Quasi-product forms

Theorem 13.20 Consider a priority fluid network for which P1–P3 holds. Then for ω, β ∈
Rn+, the transform Ee−〈ω,W 〉−〈β,E〉 equals

Ee−〈ω,W 〉−〈β, eB〉 +

n∑

j=2

E

[
e−

Pj−1
`=1 ω`W`−

Pj−1
`=1 β`

eB`

(
1− e−βj

eBj

)
;Wj = . . . = Wn = 0

]
.

Proof. In principle, Ej equals B̃j , except when Wj = 0. In fact, it follows from the above
reasoning that

Ee−〈ω,W 〉−〈β,E〉 = E

[
e−ω1W1−β1

eB1 ;W2 = . . . = Wn = 0
]

+

n∑

j=2

E

[
e−

Pj
`=1 ω`W`−

Pj
`=1 β`

eB` ;Wj > 0,Wj+1 = . . . = Wn = 0
]
.

Now use the fact that {Wj > 0} is the complement of {Wj = 0} and rearrange terms. ¤

If the A2, . . . , An are strictly increasing, it can be seen (for instance with Theorem 13.16)
that

E

[
e−

Pj−1
`=1 ω`W`−

Pj−1
`=1 β`

eB`

(
1− e−βj

eBj

)
;Wj = . . . = Wn = 0

]
= 0.

Therefore, in that case, we have the equality in distribution (W,E)
d
= (W, B̃).

Another important special case is when A1, . . . , An are compound Poisson processes, say
with intensities λ1, . . . , λn respectively. Much is known about the resulting priority system, see
for instance Jaiswal [171] for this and related models. To our knowledge, the distribution of
(W,E) has not been investigated. However, it is given by Theorem 13.20 and Theorem 13.16
upon noting that θA` (ω)→ λ` as ω →∞. Since it is not so instructive to write out the resulting
formulas, we leave this to the reader.

13.A Appendix: some calculations for a compound Pois-
son process with negative drift

In this appendix, we study a compound Poisson process Z with negative drift, and derive some
results on the excursions of Z − Z from 0, just before its entrance to 0. These results are
applied in Section 13.4.

Let us first fix the notation. Throughout this appendix, Z is a Lévy process on (Ω,F ,P)
with Laplace exponent

ψ−Z(β) := log Ee−βZ(1) = cβ − λ
∫

R+

(
1− e−βz

)
F (dz),

where c > 0, λ ∈ (0,∞), and F is a probability distribution on (0,∞). That is, Z is a compound
Poisson process under P with rate λ and negative drift −c, and its (positive) jumps are governed
by F . We suppose that EZ(1) < 0, so that Z drifts to −∞. In analogy to Section 13.4, the
inverse of ψ−Z is denoted by Φ−Z ; it is uniquely defined since ψ−Z is increasing. Observe that
Φ−Z(0) = 0.

Set T0 = 0, and let Ti denote the epoch of the i-th jump of Z. To the i-th jump of
Z, we associate a vector of marks, denoted by Mi ∈ Rm+ (for some m ∈ Z+). We suppose
that Mi is independent of the process T ≡ {Tn : n ≥ 1}, and that it is also independent
of (Z(Tj) − Z(Tj−),Mj) for j 6= i. However, we allow for a dependency between Mi and
Z(Ti)−Z(Ti−). In fact, an interesting choice for Mi is Mi = Z(Ti)−Z(Ti−) (so that m = 1).
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Define τ− as the first hitting time of zero, and N− as the index of the last jump before τ−,
i.e.,

τ− := inf{t ≥ 0 : Z(t) = 0}, N− = inf{n ≥ 0 : Z(Tn+1−) ≤ 0}.
Write Pξ for the law of Z + ξ under P with initial mark M0 = M . We suppose that the initial
condition (ξ,M) is independent of Z, and has the same distribution as (Z(T1)−Z(T1−),M1).
Observe that both τ− and N− are Pξ-almost surely finite, and that (by the Markov property)
the ‘overshoot of the first excursion’ TN−+1−τ− has an exponential distribution with parameter
λ.

In this appendix, it is our aim to characterize the Pξ-distribution of τ− (excursion length),
τ−−TN− (excursion ‘undershoot’), and MN− (mark of the last jump). Overshoots and under-
shoots have been studied extensively in the literature. However, as opposed to what we have
here, these results are all related to the situation that a Lévy process can cross a boundary
by jumping over it (strictly speaking, this is the only case where the terms ‘overshoot’ and
‘undershoot’ seem to be appropriate). See Doney and Kyprianou [121] for a recent contribution
and for references.

In view of the results of Dufresne and Gerber [124], it is tempting to believe that τ−−TN−
has an exponential distribution. However, it turns out that this ‘undershoot’ has a completely
different distribution.

Proposition 13.21 We have for β, γ ≥ 0 and κ ∈ Rm
+ ,

Eξe
−β(τ−−TN− )−γτ−−〈κ,MN− 〉 =

[β + γ − cΦ−Z(γ) + λ] Ee−(β+γ+λ)ξ/c−〈κ,M〉

β + λEe−(β+γ+λ)ξ/c

=
[β + λEξe

−γτ− ] Ee−(β+γ+λ)ξ/c−〈κ,M〉

β + λEe−(β+γ+λ)ξ/c
.

To prove this proposition, we need an auxiliary result on Poisson processes. Consider
a Poisson point process N(t) with parameter µ, and let ζ be a positive random variable,
independent of N . Let A(t) be the backward recurrence time process defined by N , that is
the time from ζ to the nearest point to the left. The following lemma characterizes the joint
distribution of N(ζ), A(ζ), and ζ.

Lemma 13.22 We have for β, γ ≥ 0 and 0 ≤ s ≤ 1,

EsN(ζ)e−βA(ζ)−γζ =
β

β + sµ
Ee−(β+γ+µ)ζ +

sµ

β + sµ
Ee−[γ+(1−s)µ]ζ .

Proof. We only prove the claim for γ = 0; the general case follows by replacing the distribution

of ζ by the (defective) distribution of ζ̃ given by Ee−βζ̃ = Ee−(β+γ)ζ . Let U0 = 0 and U1, U2, . . .
be the location of consecutive points of N . Observe that

EsN(ζ)e−βA(ζ) =

∞∑

n=0

snE

[
e−β(ζ−Un); 0 ≤ ζ − Un ≤ Un+1 − Un

]

=
∞∑

n=0

sn
∫ ∞

0

∫ t

0

e−(β+µ)(t−x)PUn
(dx)Pζ(dt)

=

∞∑

n=0

snφn(µ+ β), (13.15)

where
φn(β) := E

[
e−β(ζ−Un); ζ ≥ Un

]
.
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Clearly, φ0(β) = Ee−βζ . If we let B be the forward recurrence time process, we have for n ≥ 1,

φn(β) = E

[
e−β(ζ−Un); ζ ≥ Un−1

]
− E

[
e−β(ζ−Un);Un−1 ≤ ζ < Un

]

= E

[
e−β(ζ−Un−1)+β(Un−Un−1); ζ ≥ Un−1

]
− E

[
e−β(ζ−Un);Un−1 ≤ ζ < Un

]

= E

[
eβ(Un−Un−1)

]
E

[
e−β(ζ−Un−1); ζ ≥ Un−1

]

− E

[
eβB(ζ)

∣∣∣N(ζ) = n− 1
]

P(N(ζ) = n− 1)

=
µ

µ− β [φn−1(β)− P(N(ζ) = n− 1)] ,

where we used the lack-of-memory property of the exponential distribution for the last equality.
After iteration, we obtain

φn(β) =

(
µ

µ− β

)n
Ee−βζ −

n−1∑

i=0

(
µ

µ− β

)n−i
P(N(ζ) = i).

Therefore, taking 0 < s < β/µ (later we may use an analytic-continuation argument), we
deduce from (13.15) that

E

[
sN(ζ)e−βA(ζ)

]
= Ee−(β+µ)ζ

∞∑

n=0

(
−sµ
β

)n
−

∞∑

n=1

sn
n−1∑

i=0

(
−µ
β

)n−i
P(N(ζ) = i).

The double sum in this expression can be rewritten as

− sµ

β + sµ

∞∑

i=0

siP(N(ζ) = i) = − sµ

β + sµ
Ee−(1−s)µζ ,

and the claim follows. ¤

Lemma 13.22 is the main ingredient to prove Proposition 13.21.

Proof of Proposition 13.21. The crucial yet simple observation is that

Eξe
−β(τ−−TN− )−γτ−−〈κ,MN− 〉

= Eξ

[
e−β(τ−−TN− )−γτ−−〈κ,MN− 〉;N− = 0

]
+ Eξ

[
e−β(τ−−TN− )−γτ−−〈κ,MN− 〉;N− ≥ 1

]

= Ee−(λ+β+γ)ξ/c−〈κ,M〉 + Eξ

[
e−β(τ−−TN− )−γτ−−〈κ,MN− 〉;N− ≥ 1

]
. (13.16)

To analyze the second term, we exploit the fact that there are several excursions of Z−Z from
0. Therefore, we set

C(t) := inf{s ≥ 0 : Z(s)− Z(0) = −t},
where an infimum over an empty set should be interpreted as infinity.

It is obvious that C is a subordinator with drift 1/c, and that it jumps at rate λ/c with
jumps distributed as τ− under Pξ. This observation implies with Theorem VII.1 of Bertoin [43]
that

Φ−Z(γ) =
γ

c
+
λ

c

(
1− Eξe

−γτ−) . (13.17)

Lemma 13.22 can be applied to the Poisson process N constituted by the jump epochs of
C, µ = λ/c, and ζ = ξ. Each jump of C corresponds to an excursion of Z − Z from 0, for
which the ‘excursion overshoot’, the excursion length, and the marks of the last jump are of
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interest. Observe that these quantities have the same distribution as τ− − TN− , τ−, and MN−
respectively. Using the notation of Lemma 13.22, this yields

Eξ

[
e−β(τ−−TN− )−γτ−−〈κ,MN− 〉;N− ≥ 1

]

= E

[(
Eξe

−γτ−)N(ξ)−1
e−βA(ξ)/c−γξ/c;N(ξ) ≥ 1

]
Eξe

−β(τ−−TN− )−γτ−−〈κ,MN− 〉.

Therefore, Lemma 13.22 yields

E

[
sN(ξ)−1e−βA(ξ)/c−γξ/c;N(ξ) ≥ 1

]
=

E
[
sN(ξ)e−βA(ξ)/c−γξ/c]− Ee−(λ+β+γ)ξ/c

s

=
λ

λs+ β

[
Ee−((1−s)λ+γ)ξ/c − Ee−(λ+β+γ)ξ/c

]
.

Upon combining the preceding two displays with (13.16), we arrive at

Eξe
−β(τ−−TN− )−γτ−−〈κ,MN− 〉

=
[β + λEξe

−γτ− ] Ee−(λ+β+γ)ξ/c−〈κ,M〉

λEξe−γτ− + β − λEe−(λ(1−Eξe
−γτ− )+γ)ξ/c + λEe−(λ+β+γ)ξ/c

,

which, with the help of (13.17), reduces to

[β + γ − cΦ−Z(γ) + λ] Ee−(β+γ+λ)ξ/c−〈κ,M〉

β + γ − cΦ−Z(γ)− λ
(
Ee−Φ−Z(γ)ξ − 1

)
+ λEe−(β+γ+λ)ξ/c

.

By definition of Φ−Z , we have

γ = ψ−Z(Φ−Z(γ)) = cΦ−Z(γ) + λ
(
Ee−Φ−Z(γ)ξ − 1

)
,

and the claim follows. ¤





CHAPTER 14

Extremes of Markov-additive
processes

This chapter investigates the extremes of a continuous-time Markov-additive
process with one-sided jumps. These processes are generalizations of spectrally
positive Lévy processes. To study the extremes jointly with the epochs at which
they are ‘attained’, we investigate discrete-time Markov-additive processes and use
an embedding in the spirit of Chapter 12 to relate these to a continuous-time setting.

Our results on extremes are first applied to determine the steady-state buffer-
content distribution of several single-station queueing systems. We show that our
framework comprises many models dealt with earlier, but that it also enables us to
derive new results, for instance for the M/M/∞-driven fluid queue. At the same
time, our setup offers interesting insights into the connections between the ap-
proaches developed so far, including matrix-analytic techniques, martingale meth-
ods, the rate-conservation approach, and the occupation-measure method.

Then we turn to tandem fluid networks driven by a Markov-additive process.
For these networks, we partly extend the results of Chapter 13 by showing how
the Laplace transform of the steady-state buffer-content vector can be found. In-
terestingly, this transform has a matrix quasi-product form. Fluid-driven priority
systems also have this property.

14.1 Introduction

There exists a vast body of literature on Markov-modulated processes, and queueing systems
with continuous-time Markov-additive input in particular. For instance, as a special case, so-
called fluid-flow models have been under continuous investigation over the past three decades,
a key reference being the work of Anick et al. [11]. The present chapter is motivated by an
appealing formula of Asmussen and Kella [24] for (the Laplace transform of) the buffer content
in a fluid queue driven by a Markov-additive process with nonnegative jumps and finitely
many background states. Generalizing the Pollaczek-Khinchine formula, Asmussen and Kella
show that the Laplace transform of the steady-state buffer content (jointly with the state of the
background process) can be expressed in terms of the Laplace exponent of the Markov-additive
process and a generally unknown vector. In view of the results on quasi-product forms for Lévy-
driven networks in Chapter 13 and recent insights into fluid-flow networks by Kella [184], our
initial aim was to understand how this formula generalizes to the setting of tandem networks
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and priority systems.
We have seen in Section 1.1 that (fluid) queues can often be investigated through extremes.

The results are then not only relevant for queueing theory, but also for risk theory and math-
ematical finance; see Section 1.1.5. The use of Markov-additive processes in a risk framework
is exemplified by Asmussen [18, Ch. VI], Asmussen and Rolski [29], and Miyazawa [232]; see
also the references therein. Fluctuations of Markov-additive processes have also been recently
examined in the context of financial contracts, see Jobert and Rogers [176], and Pistorius [255].

By exploiting this relationship with extremes, Chapter 13 shows that the analysis of tandem
networks with Lévy input requires knowledge of the maximum X of a Lévy process X, but

importantly also of the epoch F
X

at which this maximum is (first) ‘attained’. More specifically,

the arguments used in the preceding chapter indicate how to convert the transform of (X,F
X

)
to the joint transform of all steady-state buffer contents in the network. In the Lévy context,

the transform of (X,F
X

) is known, and can be deduced from Theorem VII.4 of Bertoin [43]:
if X is a Lévy process with nonnegative jumps (but not an increasing subordinator) while
EX(1) < 0, we have for α, β ≥ 0,

Ee−αF
X−βX = −EX(1)

β − Φ−X (α)

ψ−X(β)− α , (14.1)

where ψ−X(β) := log Ee−βX(1) is the Laplace exponent of −X, and Φ−X is its inverse (which
exists since ψ−X increases on [0,∞)). Note that this formula follows from Proposition 11.6 by
letting q → 0, and that the choice α = 0 yields a generalized Pollaczek-Khinchine formula since
Φ−X(0) = 0. Therefore, before being able to treat fluid networks with Markov-additive input,
first a better understanding of the corresponding single fluid queue is needed. More concretely,
extension of the results for networks with Lévy inputs to our setting requires the ‘Markov-
additive counterpart’ of (14.1). The primary goal of this chapter is to find this transform and
to understand the relationship with results that have been obtained earlier.

Theorem 14.19, which is one of our main results, holds for a general Markov-additive process
with nonnegative jumps and can be regarded as a true matrix version of (14.1). There are many
more subtleties in the Markov-additive case than in the Lévy case. For instance, the identity
ψ−X(Φ−X(α)) = α can be generalized to matrices in two different ways, and the two resulting
matrices turn out to be both relevant for examining the extremes of X. In fact, we believe
that these two matrix analogues of Φ−X(α) lie at the heart of fluctuation theory for Markov-
additive processes, and that they also play a fundamental role in exit problems and transient
queueing analysis.

As a by-product of our analysis, we gain more insight into the unknown vector in the
formula of Asmussen and Kella, and give an alternative interpretation. Importantly, this
enables us to relate their results, as well as our own, to recent developments in the literature
on matrix-analytic methods for Markov-additive models.

The derivation of our results relies on Wiener-Hopf theory for an embedded process. Per-
haps for historic reasons, the Wiener-Hopf technique is sometimes regarded as a complex-
analysis tool from which probabilistic insight cannot be obtained. However, inspired by
Kennedy’s [189] proof of Theorem 11.1, we are able to give interpretations of all our results in
terms of a last-passage process. This shows that our approach to Markov-additive processes
is essentially different from the occupation-measure method of Asmussen [18], the martingale
method of Asmussen and Kella [24], and the rate-conservation method of Miyazawa [232]. Still,
we believe that many of our results can also be obtained with other methods, and that each
method has its own advantages. We stress that our approach offers valuable insight into the
connections between the aforementioned branches of research. At the same time, we are the
first to characterize the distributions of extremes for general Markov-additive processes with
one-sided jumps.
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On the technical level, two steps are crucial. In the first place, we convert our continuous-
time process to a discrete-time Markov-additive process by using an embedding. The maximum
of the original, continuous-time process coincides with the maximum of the embedded process.
In the special case of continuous Markov-additive processes, this idea has been applied by
Asmussen [16]. However, by using this embedding we lose information on the epoch at which
the extreme is ‘attained’, and we therefore also apply a second idea: we impose a step-dependent
killing mechanism through which we keep track of the ‘time’ that passes in the continuous-time
process between embedding epochs. The resulting procedure enables us to find the counterpart
of (14.1). Note that this idea has also been used in Section 12.4.2 in the context of perturbed
risk processes. The most important assumption (Assumption 14.1) underlying the results of
this chapter entails that the downward jumps of the embedded process are ‘memoryless’ in
a space-time sense (not only in a space sense!), which can be regarded as an analogue of the
skip-free property in many matrix-analytic models. We remark that the killing technique is an
alternative to other approaches that have been proposed for fluid-flow models [6, 15, 37].

Our results for discrete-time processes are of independent interest; they unify and extend
(parts of) Section 1.12 and Chapter 5 of Prabhu [263]. This is exemplified (in Section 14.4.1)
by analyzing a ramification of a queueing system with Markov-modulated ON/OFF input
introduced by Cohen [78]. This system does not fall into the class of Markov-additive processes,
but we are still able to study it directly with the help of our results on discrete-time processes.
As a further application, we use this ON/OFF-type model to investigate the M/M/∞-driven
fluid queue.

Although we give fixed-point and matrix equations for all matrices that play an important
role in the theory, it is still an interesting and challenging issue to devise efficient algorithms for
numerically calculating these matrices. Therefore, our work could serve as a first step towards
the development of such new numerical methods; it could initiate an analysis in the spirit
of many results in the matrix-analytic literature. We find this indispensable for a successful
application of the theory.

This chapter is organized as follows. First, in Section 14.2, we start with the analysis of
the extremes of a discrete-time Markov-additive process. The insight that we obtain is then
applied to continuous-time Markov-additive processes in Section 14.3. Section 14.4 casts our
results on extremes into the queueing setting, and some examples are given in Section 14.5. We
address fluid networks in Section 14.6, and we end the chapter with some concluding remarks
(Section 14.7).

14.2 A discrete-time process and its extremes

This section introduces the discrete-time three-dimensional process (S, T, J) = {(Sn, Tn, Jn) :
n ≥ 0}. Although this process may look quite specific at first sight, we show in Sections 14.4–
14.7 that it is highly versatile: it can be used to study the steady-state buffer content (in
conjunction with the steady-state age of the busy period) for a broad class of queueing systems,
including networks and priority queues.

14.2.1 Definitions and assumptions

The process (S, T, J) takes values in R×R+×I, where I is a finite set with N+ +N− elements.
We write I+ for the first N+ elements (which we call ‘+-points’, as made clear below), and
I− for the last N− elements (which we call ‘−-points’). The component J is interpreted
as a ‘random environment’. Furthermore, (S, T ) is a two-dimensional random walk in this
environment. We suppose that (S, T, J) is defined on some measurable space (Ω,F).
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Of primary interest is the minimum S and the maximum S of the process S. After setting

FS := inf{n ≥ 0 : Sn = infk≥0 Sk} and F
S

:= inf{n ≥ 0 : Sn = supk≥0 Sk}, these are defined

as S := SFS and S := S
F

S respectively. The process T is interpreted as the ‘real’ time that
passes between the (discrete) time epochs; it cannot decrease. Therefore, it is also of interest
to study T := TFS , T := T

F
S , J := JFS and J := J

F
S . The aim of this section is to fully

characterize the joint distributions of the triplet (S, T , J) if S drifts to +∞, and (S, T , J) if S
drifts to −∞, under a measure specified below.

Suppose that P is a probability measure on (Ω,F) (with corresponding integration operator
E) such that (S, T, J) is a (discrete-time) Markov process on R × R+ × I. To describe the
transition kernel, we need the vectors (specifically, their P-distributions) {(σjk, U jk) : j ∈
I+, k ∈ I}, taking values in [0,∞)2, and also the vectors {(τ j , Dj) : j ∈ I−}, taking values in
[0,∞)×(0,∞). Both sets of vectors are defined on (Ω,F). We remark that P(σjk = 0), P(U jk =
0), and P(τ j = 0) are allowed to be strictly positive. The transition kernel corresponding to
(S, T, J) is given by

p((s, t, j), (s+ dv, t+ dw, k)) =

{
pJjkP

(
U jk ∈ dv, σjk ∈ dw

)
if j ∈ I+, k ∈ I;

pJjkP
(
−Dj ∈ dv, τ j ∈ dw

)
if j ∈ I−, k ∈ I.

The letters U and D stand for ‘up’ and ‘down’. The U jk and −Dj can be interpreted as ‘jump
sizes’, whereas the σjk and τ j reflect ‘sojourn times’.

The transition matrix of J is denoted by P J , and we suppose that it is irreducible. The
unique stationary distribution of J is written as πJ . For k ∈ I, we write Pk for the law of
(S, T, J) given S0 = T0 = 0 and J0 = k. To avoid trivialities, we suppose throughout that both
N− and N+ are nonzero, and that not all of the U jk are degenerate at zero.

The following assumption is crucial in our analysis.

Assumption 14.1 For any j ∈ I−, there exists some λαj > 0, µαj ∈ (0, 1] such that

Ee−ατ
j−βDj

= µαj
λαj

λαj + β
, α, β ≥ 0,

where µ0
j = 1.

Assumption 14.1 can be thought of as (a generalized version of) a memoryless property for
the distribution of the jump sizes and sojourn times in the −-points. We suppose that this
assumption holds throughout this section.

In many of the proofs in this section, an important role is played by a family of probability
measures {Pα : α ≥ 0}. Under Pα, the distribution of U jk is potentially defective, and the

relation with P is given by Pα(U jk ∈ dv) = E[e−ασ
jk

;U jk ∈ dv]. Similarly, Pα(Dj ∈ dv) =

E[e−ατ
j

;Dj ∈ dv]. Furthermore, (S, J) is a discrete-time Markov process under Pα with
transition kernel

pα((s, j), (s+ dv, k)) =

{
pJjkP

α(U jk ∈ dv) if j ∈ I+, k ∈ I;
pJjkP

α(−Dj ∈ dv) if j ∈ I−, k ∈ I.
The Pα-law for which S0 = 0 and J0 = k is denoted by Pαk .

We note that {(Sn, Jn) : n ≥ 0} is a discrete-time Markov-additive process under each of
the measures Pk, Pαk for k ∈ I and α ≥ 0. As a result, the powerful Wiener-Hopf factorization
for these processes is available. More details can be found in Asmussen [19, Sec. XI.2.2f].

In order to use this technique, we need some more notation related to time-reversion. Let
us therefore introduce the time-reversed transition probabilities

p̂Jjk =
πJ(k)

πJ(j)
pJkj ,
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constituting the transition matrix P̂ J ; here πJ(k) denotes the k-th element of πJ .

Moreover, let P̂ be a probability measure on (Ω,F) (with expectation operator Ê) such that
(S, T, J) is a Markov process with transition probability

p̂((s, t, j), (s+ dv, t+ dw, k)) =

{
p̂JjkP

(
Ukj ∈ dv, σkj ∈ dw

)
if j ∈ I, k ∈ I+;

p̂JjkP
(
−Dk ∈ dv, τk ∈ dw

)
if j ∈ I, k ∈ I−.

This should be compared to the kernel p: the indices differ. The P̂-law for which S0 = T0 = 0
and J0 = k is denoted by P̂k.

Finally, we also define the probability measures P̂α by requiring that (S, J) is a Markov
process with transition kernel

p̂α((s, j), (s+ dv, k)) =

{
p̂JjkE[e−ασ

kj

;Ukj ∈ dv] if j ∈ I, k ∈ I+;

p̂JjkE[e−ατ
k

;−Dk ∈ dv] if j ∈ I, k ∈ I−,

and P̂αk is defined as the P̂α-law of this process given S0 = 0 and J0 = k.

14.2.2 Notation

We now introduce some convenient matrix notation. It is not our aim to define every single
matrix that we use, but rather to present a set of notation rules that we follow throughout this
chapter.

Vectors are always written as column vectors. By writing E instead of E, we indicate that
we deal a matrix or vector. For instance, we define

E [S1; J1] := {Ej [S1; J1 = k] : j, k ∈ I} ,

and the j-th element of the vector ES1 is EjS1. We use a similar convention for P and P,
thereby defining for instance the vector P (S1 > 0).

A given (I × I)-matrix A (which is sometimes best thought of as a mapping from R|I| to
R|I|) is written in block form as

A ≡
(
A++ A+−
A−+ A−−

)
,

where, for instance, A++ is an (I+ × I+)-matrix corresponding to transitions from +-points
to +-points. The (I ×I)-identity matrix, denoted by I, consists of the blocks I++, 0+−, 0−+,
and I−− in self-evident notation. In conjunction with integration, the subscript ‘−’ or ‘+’
of E indicates the row, and ‘∈+’ or ‘∈−’ the column of the appropriate matrix block. For
instance, E [S1; J1] consists of four blocks, which we write as E+ [S1; J1 ∈+], E+ [S1; J1 ∈−],
E− [S1; J1 ∈+], and E− [S1; J1 ∈−]. The matrix with the first and last two blocks is written

as E+ [S1; J1] and E− [S1; J1] respectively, and Ê± [S1; J1] is defined analogously, but with Ej

replaced by Êj .
Similar conventions apply to vectors: the restriction of the vector ES1 to I+ (or I−)

is written as E+S1 (or E−S1). Note that we have the relation E+S1 = E+ [S1; J1]1 =
E+ [S1; J1 ∈+]1++E+ [S1; J1 ∈−]1−, where 1 stands for the I-vector with ones, and similarly
for 1+ and 1−. The I-vector with zeroes is written as 0, and consists of 0+ and 0−.

The diagonal matrix with the vector ES1 on its diagonal is written as diag(ES1). For
example, I++ = diag(1+). We also write diag (λα/(λα + iβ)) for the (I− × I−)-diagonal
matrix with element (j, j) equal to λαj /(λ

α
j + iβ), and diag(λα) is defined similarly. Moreover,

we also set
#A := diag

(
1

πJ

)
A′ diag (πJ ) , (14.2)
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where ‘′’ denotes matrix transpose. In conjunction with block notation, # has priority over
block notation: #A++ is the (+,+)-block of #A.

For instance, if we set for α ≥ 0, β ∈ R

Fjk(α, β) :=

{
pJjkEe

−ασjk+iβUjk

if j ∈ I+, k ∈ I;
pJjkEe

−ατj−iβDj

if j ∈ I−, k ∈ I,

this defines not only the matrix-transform of the transition kernel F (α, β) := {Fjk(α, β) : j, k ∈
I}, but also its four block matrices; note that Assumption 14.1 prespecifies the structure of
F−+(α, β) = E−

[
e−αT1+iβS1 ; J1 ∈+

]
and F−−(α, β) = E−

[
e−αT1+iβS1 ; J1 ∈−

]
. The time-

reversed counterpart is written as F̂ (α, β), i.e., F̂ (α, β) := #F (α, β). Note that in particular

P̂ J = #P J .

14.2.3 The ladder heights of S

The goal of this subsection is to characterize the Pk-distribution of (S, T, J) at the first strict
ascending ladder epoch of S and at its first strict descending ladder epoch. We do not impose
conditions on the drift of S yet.

The first strict ascending ladder epoch and the first weak descending ladder epoch of S are
defined as

τ+ = inf{n ≥ 1 : Sn > 0}, τ− = inf{n ≥ 1 : Sn ≤ 0}.
Its first strict descending ladder epoch, for which the weak inequality is replaced by a strict
inequality, is denoted by τ̃−.

The distribution of (Sτ+ , Tτ+ , Jτ+)

In order to facilitate the investigation of the ascending ladder structure of (S, T, J), we first

prove a useful lemma related to τ−. For notational convenience, we define the matrix P̂ α =

{P̂αjk : j, k ∈ I} as

P̂ α := Ê
[
e−αTτ− ; Jτ−

]
.

This matrix admits a block form as described in Section 14.2.2. As before, when integrating
a defective random variable, we only carry out the integration over the set where the random
variable is both finite and well-defined: in the above definition of P̂ α, it is tacitly assumed
that τ− <∞.

Lemma 14.2 Suppose that Assumption 14.1 holds. For α ≥ 0, β ∈ R, we have

#Ê
[
e−αTτ−+iβSτ− ; Jτ−

]
=

(
F++(α, i∞) F+−(α, i∞)

diag
(

λα

λα+iβ

)
#P̂ α

−+ diag
(

λα

λα+iβ

)
#P̂ α

−−

)

Proof. After recalling that τ− is a weak ladder epoch, it is immediate that for α ≥ 0, j ∈ I,
k ∈ I+,

Êj

[
e−αTτ−+iβSτ− ; Jτ− = k

]
= p̂JjkE

[
e−ατ

kj

;Ukj = 0
]

= F̂jk(α, i∞).

Hence, it remains to calculate

Ê
[
e−αTτ−+iβSτ− ; Jτ− ∈−

]
= Êα

[
eiβSτ− ; Jτ− ∈−

]
.
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To find an expression for this quantity, we directly apply the idea of Lemma VIII.5.1 of As-
mussen [19], as follows. Evidently, for j ∈ I, k ∈ I−, we have

P̂αj
(
Sτ− < −x, Jτ− = k

)
=

∞∑

n=1

P̂αj
(
Sτ− < −x, τ− = n, Jτ− = k

)
.

Conditioning on Sn−1 and using Assumption 14.1, we see that the summands equal

Êαj

[
µαk e

−λα
k (x+Sn−1); τ− > n− 1, Jτ− = k

]
= e−λ

α
kxÊαj

[
µαk e

−λα
kSn−1 ; τ− > n− 1, Jτ− = k

]
,

since the value of the n-th increment should (in absolute terms) be larger than x + Sn−1.
Importantly, this is exponential in x, so that we obtain

Êαj

[
eiβSτ− ; Jτ− = k

]
=

λαk
λαk + iβ

∞∑

n=1

Êαj

[
µαk e

−λα
kSn−1 ; τ− > n− 1, Jτ− = k

]
.

The latter sum is calculated by inserting β = 0 into this identity. ¤

The above lemma requires knowledge of P̂ α. The following proposition gives a fixed-point
equation for this matrix, so that it can be found numerically. Write F α

++(dx) for the measure-
valued (I+×I+)-matrix with element (j, k) equal to pJjkP

α(U jk ∈ dx) for j, k ∈ I+, and define
F α+−(dx) similarly.

Proposition 14.3 For α ≥ 0, we have

#P̂ α
−− = diag (µα)P J

−− +

∫

(0,∞)

e
#bQα

−−x #P̂ α
−+F

α
+−(dx),

#P̂ α
−+ = diag (µα)P J

−+ +

∫

(0,∞)

e
#bQα

−−x #P̂ α
−+F

α
++(dx),

where the integral should be understood as componentwise integration, and #Q̂α
−− is specified

by

#Q̂α
−− = −

[
I−− − #P̂ α

−+ (I++ − F++(α, i∞))
−1
F+−(α, i∞)− #P̂ α

−−

]
diag (λα) .

Proof. Write τ−(x) := inf{n > 0 : Sn ≤ −x} for x ≥ 0. For j ∈ I and k ∈ I−, we have by
the Markov property

P̂αjk ≡ P̂αj (Jτ− = k) = p̂Jjkµ
α
k +

∑

`∈I+

p̂Jj`

∫

(0,∞)

Pα(U `j ∈ dx)P̂α` (Jτ−(x) = k).

Note that the integration interval for U `j is (0,∞), because if U `j were 0, then Jτ− would be
in I+. It remains to show that

P̂α` (Jτ−(x) = k) =
∑

j∈I−

P̂α` (Jτ− = j)
[
e
bQα
−−x

]
jk
,

where

Q̂α
−− = −diag (λα)

[
I−− − F̂−+(α, i∞)

(
I++ − F̂++(α, i∞)

)−1

P̂ α
+− − P̂ α

−−

]
.
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To this end, note that τ−(x) is nondecreasing in x. Also, the first-passage process {Jτ−(x) :

x ≥ 0} given Jτ− = j is a under P̂α` a (defective) Markov process with values in I−, cf. As-
sumption 14.1. For ease we first concentrate on the case for which the distributions of the U j`

do not have an atom at zero. After an exponentially distributed time with parameter λαj , the

first-passage process then jumps to a −-point k ∈ I− with probability P̂αjk (where j = k is
allowed).

For the general case where U j` may have an atom at zero, we have to take into account the
paths in which S stays at the same level for a while before entering k ∈ I−. This procedure
leads to the given intensity matrix. ¤

There are several ways to extract an algorithm for determining #P̂ α
+−,

#P̂ α
−−, and #Q̂α

−−
from Proposition 14.3. For instance, it is possible to find an initial matrix #Q̂

α,0
−− and a matrix-

function ϕ such that the recursion #Q̂
α,n+1
−− = ϕ( #Q̂

α,n
−−) characterizes a sequence of matrices

that converges to #Q̂α
−−. We do not give further details here, but we refer to Asmussen [18,

Sec. VI.2] and Miyazawa [232] instead; we have already encountered a similar algorithm in
Proposition 12.4.

One difficulty that needs to be overcome is the calculation of matrix exponentials, see [236]
for a survey of available methods. Uniformization is a useful tool in this respect, as noted, for
instance, in [16, 36, 221, 233]. It is not our aim to devise fast algorithms for computing the

matrix #Q̂α
−−, and we shall therefore not address these algorithmic properties here.

Our next result is a nonlinear system for the matrix Kα
−−, where

Kα
−− := diag(λα) #Q̂α

−−diag(1/λα). (14.3)

To state the system, we define for β ∈ R,

F+ª−(α, β) := (I++ − F++(α, β))
−1
F+−(α, β),

and F α
+ª−(dx) is the measure for which β 7→ F+ª−(α, β) is the characteristic function. These

notions relate to the increment in the ‘vertical direction’, when starting in a +-point, until the
epoch that a −-point is reached.

Corollary 14.4 For α ≥ 0, the matrix Kα
−− satisfies

Kα
−− + diag(λα)

(
I−− − diag(µα)P J

−−
)
−
∫

[0,∞)

eK
α
−−xdiag(µαλα)P J

−+F
α
+ª−(dx) = 0−−.

Proof. The idea of the proof is to slightly modify the process without changing the (time-
reversed) first-passage process (and thus Kα

−−). Indeed, interpret a sequence of +-points as
a single +-point; one then obtains a different discrete-time process, with F+−(α, β) replaced

by F+ª−(α, β). Importantly, for this ‘new’ J we have that P J
++ = 0++, so that #P̂ α

−+ =

diag(µα)P J
−+ by Proposition 14.3. The formula for #Q̂α

−− in this proposition then immediately
leads to the desired matrix equation for Kα

−−. ¤

The next proposition characterizes the Pk-distribution of (Sτ+ , Tτ+ , Jτ+). The main ingre-
dient is the celebrated Wiener-Hopf factorization, which has already been used in Section 12.4
in the context of perturbed risk models. For the random-walk case, we refer to Section 11.1.1.

Proposition 14.5 For α ≥ 0, β ∈ R such that (α, β) 6= 0, we have

E
[
e−αTτ+

+iβSτ+ ; Jτ+

]
= I −

(
I − #Ê

[
e−αTτ−+iβSτ− ; Jτ−

])−1

(I − F (α, β)),

where nonsingularity is implicit.
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Proof. Write Ĝ(α, β) := Ê[e−αTτ−+iβSτ− ; Jτ− ]. The statement is the Wiener-Hopf factor-
ization (e.g., [19, Thm. XI.2.12]) for the Markov-additive process S under the measure Pα,

provided I − #Ĝ is nonsingular. This requirement is equivalent to nonsingularity of I − Ĝ.
To see that this matrix is nonsingular, we exploit the fact that Ĝjk is the transform of a

nonlattice distribution for j ∈ I, k ∈ I−. Therefore, we have |Ĝjk(α, β)| < P̂ 0
jk for (α, β) 6=

(0, 0), see, e.g., Theorem 6.4.7 of Chung [75]. As a result, I−Ĝ is a strictly diagonally dominant
matrix: ∑

k∈I

∣∣∣Ĝjk(α, β)
∣∣∣ <

∑

k∈I+

p̂JjkP(Ukj = 0) +
∑

k∈I−

P̂ 0
jk ≤ 1,

where the last inequality follows from the fact that Sτ− has a (possibly defective) distribution,
see Lemma 14.2. ¤

The distribution of (Sτ̃− , Tτ̃− , Jτ̃−)

We now turn to our second aim of this subsection, the characterization of the distribution of
(Sτ̃− , Tτ̃− , Jτ̃−). This turns out to be simpler than the analysis of (Sτ+ , Tτ+ , Jτ+); particularly,
Wiener-Hopf techniques are not required here. As the distribution of (Sτ̃− , Tτ̃− , Jτ̃−) is readily
derived from (Sτ̃− , Tτ̃− , Jτ̃−−1), we focus on the latter vector instead. We omit all proofs, since
similar arguments apply as before.

Write P α for E[e−αTτ̃− ; Jτ̃−−1]; the indices should be compared to those in the definition of

P̂ α. The analogue of Lemma 14.2 immediately gives the desired transform: for α ≥ 0, β ∈ R,
we have

E
[
e−αTτ̃−+iβSτ̃− ; Jτ̃−−1

]
=


 0++ P α

+−diag
(

λα

λα+iβ

)

0−+ diag
(

λα

λα+iβ

)

 .

Let us therefore continue by giving a result in the spirit of Proposition 14.3. We set

P α
+ª− := (I++ − F++(α, i∞))

−1 [
P α

+−diag(1/µα) + F+−(α, i∞)
]

for notational convenience.

Proposition 14.6 For α ≥ 0, we have

P α
+− =

∫

(0,∞)

F α++(dx)P α
+−diag(1/µα)eQ

α
−−xdiag(µα) +

∫

(0,∞)

F α+−(dx)eQ
α
−−xdiag(µα),

where Qα
−− is specified by

Qα
−− = −diag (λα)

[
I−− − diag(µα)P J

−− − diag(µα)P J
−+P

α
+ª−

]
.

We next turn to the analogue of Corollary 14.4, which can be proven along the same
lines. When inspecting the differences between the two corollaries, we first note that they are
remarkably similar. Whereas the Kα

−−-matrices are always the first matrices in each of the
terms, the Qα

−−-matrices always appear last. In Section 14.2.5, we show that this has a specific
reason.

Corollary 14.7 For α ≥ 0, the matrix Qα
−− satisfies

Qα
−− + diag(λα)

[
I−− − diag(µα)P J

−− −
∫

[0,∞)

diag(µα)P J
−+F

α
+ª−(dx)eQ

α
−−x

]
= 0−−.
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14.2.4 The distribution of (S, T , J)

In this section, we study S (jointly with T , J), assuming that S drifts to −∞. Therefore,
throughout this subsection, we suppose that π′

JES1 < 0. We remark that, with the only
exception of Lemma 14.13, all the results also hold under the weaker assumption that S drifts
to −∞. Our main tools are the ladder-height results obtained in the previous subsection.

The next theorem completely characterizes the distribution of (S, T , J). It is formulated as

an expression for (I − F (α, iβ))E[e−αT−βS ; J ] and not for E[e−αT−βS ; J ], since the nonsingu-
larity of the matrix I−F (α, iβ) is a delicate issue for real β; this is addressed in Section 14.2.5.
One way to avoid these problems is to work with characteristic functions, and we shall often
do so in the proofs. Still, our results are given in terms of Laplace transforms, since this is
customary in the literature.

We express the aforementioned matrix in terms of the matrix characterized in Lemma 14.2
and the (still unknown) vector P (S = 0). Observe that the matrices #P̂ α

−− and #P̂ α
−+ required

in Lemma 14.2 can be found with Proposition 14.3.

Theorem 14.8 For α, β ≥ 0, we have

(I − F (α, iβ))E
[
e−αT−βS ; J

]
=
(
I − #Ê

[
e−αTτ−−βSτ− ; Jτ−

])
diag

(
P (S = 0)

)
.

Proof. By the Markov property, we have for α ≥ 0, β ∈ R such that (α, β) 6= (0, 0),

E
[
e−αT+iβS ; J

]
=

(
I −E

[
e−αTτ+

+iβSτ+ ; Jτ+

])−1

diag (P (τ+ =∞))

= (I − F (α, β))
−1
(
I − #Ê

[
e−αTτ−+iβSτ− ; Jτ−

])
diag (P (τ+ =∞)) ,

where the second equality follows from Proposition 14.5. The nonsingularity of I − F (α, β)
follows from (strict) diagonal dominance, cf. the proof of Proposition 14.5. This proves the
claim after an analytic-continuation argument. ¤

There is a direct, insightful interpretation of Theorem 14.8 in terms of a last-passage process,
which is used on several occasions in this chapter. This interpretation is inspired by Kennedy’s
interpretation [189] of the Wiener-Hopf factorization. First note that the theorem states that

E[e−αT+iβS ; J ] equals

∞∑

n=0

F n(α, β)diag(P (S = 0))−
∞∑

k=0

F k(α, β) #Ê
[
e−αTτ−+iβSτ− ; Jτ−

]
diag(P (S = 0)).

Clearly, the n-th summand in the first term can be interpreted as the transform of (Sn, Tn, Jn)
on the event {supm≥n Sm = Sn}. If the maximum is attained at Tn, this is precisely

E[e−αT+iβS ; J ]. However, if this is not the case, we have to subtract the contribution due
to the fact that there is an ` < n for which S` ≥ Sn. In that case, write Sn = Sk + (Sn − Sk),
where k = sup{` < n : S` ≥ Sn}, so that n is now a so-called last-passage epoch for the
process with (k, Sk) as the origin. Looking backward in time, starting from (n, Sn), k is a first
weak descending ladder epoch. The argument is completed by exploiting the Markov property.
Partitioning with respect to the last-passage epoch is sometimes called the Beneš-method [38].

It is insightful to give the complete argument for α = 0 in formulas. The terms that need
to be subtracted (because the maximum occurred earlier) are

∞∑

n=0

E
[
eiβSn ;∀m ≥ n : Sm ≤ Sn,∃m < n : Sm ≥ Sn, Jn

]
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=
∞∑

k=0

∞∑

n=k+1

E

[
eiβSk+iβ(Sn−Sk); sup

m≥n
Sm = Sn, Sk ≥ Sn, sup

k<`<n
S` < Sn, Jn

]

=
∞∑

k=0

E
[
eiβSk ; Jk

]
#Ê
[
eiβSτ− ; Jτ−

]
diag(P (S = 0)),

where the first equality is justified by the fact that the events are disjoint as a result of the
partitioning with respect to the last-passage epoch.

Interestingly, Theorem 14.8 implies that, to compute E[e−αT−βS ], only the determination
of the vector P (S = 0) is left. Before giving results on P (S = 0), however, we first show that
Theorem 14.8 has a number of interesting consequences.

Let us define for α, β ≥ 0,

D−−(α, β) := βI−− − diag(λα)
[
I−− − diag(µα)P J

−−

− diag(µα)P J
−+ (I++ − F++(α, iβ))

−1
F+−(α, iβ)

]
.

After some elementary linear algebra for block-matrix inverses, we arrive at the following
corollary. It is instructive to derive this result with the above interpretation of Theorem 14.8:
consider the discrete-time process only at −-points. The corresponding statements for E+ can
derived from those for E− and the Markov property.

Corollary 14.9 We have for α, β ≥ 0,

D−−(α, β)E−
[
e−αT−βS ; J ∈+

]

= diag (λα)
[

#P̂ α
−+ − diag (µα)P J

−+

(I++ − F++(α, iβ))
−1

(I++ − F++(α, i∞))
]

diag
(
P+(S = 0)

)

and

D−−(α, β)E−
[
e−αT−βS ; J ∈−

]

=

[
βI−− − diag (λα)

(
I−− − diag (µα)P J

−+

(I++ − F++(α, iβ))
−1
F+−(α, i∞)− #P̂ α

−−

)]
diag

(
P−(S = 0)

)
.

If P J
++ = 0++, the second claim of this corollary can be reformulated in the following

interesting form:

D−−(α, β)E−
[
e−αT−βS ; J ∈−

]
=
[
βI−− +Kα

−−
]

diag
(
P−(S = 0)

)
. (14.4)

Our next aim is to find P (S = 0). The following lemma gives two matrix equations that
must be satisfied by P (S = 0).

Lemma 14.10 P (S = 0) satisfies the system

P+(S = 0) = F++(0, i∞)P+(S = 0) + F+−(0, i∞)P−(S = 0),

P−(S = 0) = #P̂ 0
−+P+(S = 0) + #P̂ 0

−−P−(S = 0).
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Proof. Let us write A for the matrix I− #Ê[eiβSτ− ; Jτ− ], thereby suppressing the dependence
on β. With Theorem 14.8 and a standard formula for block matrix inverses, this yields for any
β ∈ R,

P (S = 0) =

(
I++ −A−1

++A+−
−A−1

−−A−+ I−−

)(
B−1

++ 0+−
0−+ B−1

−−

)
(I − F (0, β))EeiβS ,

where
B−1

++ := A++ −A+−A
−1
−−A−+, B−1

−− := A−− −A−+A
−1
++A+−.

After some elementary matrix algebra, this equation immediately yields that

A++P+(S = 0) +A+−P−(S = 0) =
(
I++ 0+−

)
(I − F (0, β))EeiβS .

The right-hand side vanishes as β → 0, and the first claim follows. The same argument works
for the second assertion by rewriting A−+P+(S = 0) +A−−P−(S = 0). ¤

The first equation of this lemma can be alternatively derived by considering P+(S = 0)
and conditioning on the first step. The interpretation of the second equation is slightly more
complicated, and follows from arguments reminiscent of the interpretation of Theorem 14.8.
Again, the idea is to partition with respect to the last-passage epoch ` := inf{n : Sn =
supm≥n Sm}, which is either a +-point or a −-point. On the event {S = 0}, starting from
(`, S`) and looking backward in time, zero is a first descending ladder epoch. On the other hand,
looking forward in time from (`, S`), the process cannot have a strict ascending ladder epoch.
This explains the formula. Obviously, ` fails to be a stopping time; we refer to Chapter 13 for
related arguments.

We briefly pause our analysis of P (S = 0) to record the following consequence of Corol-
lary 14.9 and Lemma 14.10. It can be regarded as a Pollaczek-Khinchine formula for S.

Corollary 14.11 For β ≥ 0, we have

D−−(0, β)E−e
−βS = βP−(S = 0).

We now investigate to what extend the system of equations in Lemma 14.10 determines
P (S = 0). First, since I++−F++(0, i∞) is always nonsingular by assumption, the first formula
shows that it suffices to find P−(S = 0) instead of the larger vector P (S = 0). Unfortunately,
the whole system of equations in Lemma 14.10 is always singular. More precisely, the equations
can be combined into

(
I−− − #P̂ 0

−+(I++ − F++(0, i∞))−1F+−(0, i∞)− #P̂ 0
−−

)
P−(S = 0) = 0−,

or, equivalently, by (14.3) and Proposition 14.3,

K0
−−P−(S = 0) = 0−. (14.5)

The following proposition shows that this determines P−(S = 0) (and therefore P (S = 0)) up
to a constant.

Proposition 14.12 The matrix K0
−− has the following properties:

(i) zero is a simple eigenvalue of K0
−−, and the other N− − 1 eigenvalues have strictly

negative real parts, and
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(ii) if N− > 1, then diag(1/λ0)πJ (−) and P−(S = 0) are left and right eigenvectors of K0
−−

respectively, corresponding to the eigenvalue zero.

Proof. For the first property, it suffices to consider the matrix Q̂0
−−, which is similar to K0

−−.

The matrix Q̂0
−− inherits its irreducibility from P J , and since it is an intensity matrix of a

(nondefective) Markov process, the assertion follows from standard Perron-Frobenius theory.
The ‘right eigenvector’ part of the second claim follows from (14.5), and the ‘left eigenvector’

part translates to Q̂0
−−1− = 0−. ¤

Proposition 14.12 shows that one more equation is needed to fully specify P−(S = 0), and
this equation is given in the following lemma. Let π− be the unique I−-probability vector
satisfying

π′
−diag(λ0)

(
P J

−− + P J
−+

(
I++ − P J

++

)−1
P J

+−

)
= π′

−diag(λ0); (14.6)

in fact, π− is proportional to diag(1/λ0)πJ (−).

Lemma 14.13 We have

π′
−P−(S = 0) = 1− π′

−diag(λ0)P J
−+

(
I++ − P J

++

)−1
E+S1.

This equation is independent of the N−−1 independent linear equations stemming from (14.5).

Proof. The idea is to premultiply the expression for P−(S = 0) in Corollary 14.11 by π′
−, to

divide both sides by β, and then let β → 0. By definition of π−, this immediately yields that
π′
−P−(S > 0) equals

lim
β→0

1

β
π′
−diag

(
λ0
)
P J

−+

[(
I++ − P J

++

)−1
P J

+− − (I++ − F++(0, iβ))−1F+−(0, iβ)
]
E−e

−βS .

It is not hard to see that this equals π′
−diag

(
λ0
)
P J

−+E+Sγ− , where γ− := inf{n ≥ 1 : Sn ∈
I−}. To compute E+Sγ− , we condition on the first step to see that

E+Sγ− = E+S1 + P J
++E+Sγ− ,

and the claim follows.
The independence of the other N− − 1 equations follows from the fact that

π′
−diag(λ0)P J

−+

(
I++ − P J

++

)−1
E+S1 < 1,

due to the stability constraint π′
JES1 < 0. ¤

Let us summarize the results of this section by providing a ‘recipe’ how the joint transform

E[e−αT−βS ; J ] can be found.

• To obtain P (S = 0):

– Calculate #P̂ 0
+− and #P̂ 0

−− through the fixed point of Proposition 14.3.

– Compute K0
−−, and find the unique I−-probability vector h− satisfying K0

−−h− =
0−.

– Compute π− with (14.6), and set

κ :=
1− π′

−diag(λ0)P J
−+

(
I++ − P J

++

)−1
E+S1

π′
−h−

.
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– Set P−(S = 0) = κh− and

P+(S = 0) = κ(I++ − F++(0, i∞))−1F+−(0, i∞)h−.

• To obtain E[e−αT−βS ; J ] for fixed α ≥ 0:

– Calculate #P̂ α
+− and #P̂ α

−− through the fixed point of Proposition 14.3.

– Determine the transform with Corollary 14.9 for every value of β ≥ 0 for which the
transform is needed.

14.2.5 The spectral method for the distribution of (S, T , J)

In Section 14.2.4, we have used Wiener-Hopf theory and nonlinear matrix equations to study
the distribution of (S, T , J). Our probabilistic reasoning culminated in a number of results,
including the Pollaczek-Khinchine formula for S in Corollary 14.11. However, our approach is
not the only way to prove this statement; it is usually possible to take alternative approaches.

Other methods to obtain the Pollaczek-Khinchine formula are (Kolmogorov) differential
equations [297], martingales [24], rate-conservation laws [232], or conditioning on the first
step [79, Sec. II.4.5]. Importantly, these methods express the Laplace transform in terms of
an unknown vector, which is the equivalent of P−(S = 0) from the previous subsection. For a
discrete-state model, Gail et al. [138] show how this vector can be found. Cast into the present
setting, they show that adjD−−(0, β)P−(S = 0) must vanish to the order at least r at β = ν
if ν 6= 0 is a singularity of D−−(0, ν) with algebraic multiplicity r. Here adjD−−(0, β) denotes
the adjoint matrix ofD−−(0, β), i.e., the transpose of the matrix formed by taking the cofactor
of each element of D−−(0, β).

Alternatively, one can use a technique that we call the spectral method. It is the goal of this
approach to find N−− 1 linear independent vectors `1, . . . , `N−−1 such that `′jP−(S = 0) = 0.
As in Section 14.2.4, the remaining equation is given in Lemma 14.13 (note that its proof
only relies on Corollary 14.11). To determine the `j , one determines a root νj of the equation
detD−−(0, β) = 0, and identifies the `j with a left eigenvector of D−−(0, νj) corresponding to
the eigenvalue zero.

The main question is whether the spectral approach is feasible, i.e., whether enough eigen-
vectors `j can be found. The spectral method is then an alternative for the ‘matrix-analytic’
approach taken in the previous subsection. As a first step to answering this question, we in-
vestigate the relationship between the matrices D−−(α, ·), Qα

−−, and Kα
−−. We omit a proof

of the next proposition, since we prove a more general statement in Theorem 14.15 below.
To gain some intuition for the result, note that the identity in (14.4) immediately shows

the equivalence of (ii) and (iii) if P J
++ = 0++.

Proposition 14.14 Suppose that π′
JES1 < 0.

For any ν with <(ν) ≥ 0, the following are equivalent:

(i) −ν is an eigenvalue of Qα
−−,

(ii) −ν is an eigenvalue of Kα
−−, and

(iii) zero is an eigenvalue of D−−(α, ν).

Moreover, the geometric multiplicities of these eigenvalues coincide.

This proposition shows why the recursions in Corollaries 14.4 and 14.7 are necessarily matrix
versions of the equation D−−(α, β) = 0−−. Indeed, suppose that (−ν, `) is a left eigenpair
for Kα

−−, so that `′Kα
−− = −ν`′. Since then `′eK

α
−−x = e−νx`′, it follows from the recursion
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for Kα
−− in Corollary 14.4 that `′D−−(α, ν) = 0′

−. The same reasoning goes through for the
recursion in Corollary 14.7, but one then has to work with the right eigenpair.

Proposition 14.14 has interesting consequences for the location of singularities ofD−−(α, β)
in the right complex halfplane (that is, the values of β for which this matrix is singular). First,
since Qα

−− is a real matrix, these singularities come in conjugate pairs. Moreover, as a result
of Proposition 14.12, zero is a simple singularity and the real parts of the other singularities
are strictly positive. In fact, all nonzero singularities must be in the open disc with radius
and center maxj λ

α
j . For α = 0, this claim has recently been proven with different methods by

Tzenova et al. [297]. In [297], it is also shown that β 7→ detD−−(0, β) has exactly N− zeroes
(counting multiplicities).

Let us now explain how Proposition 14.14 relates to our aim to find vectors that are orthog-
onal to P−(S = 0). It follows from Proposition 14.14 that K0

−− (or Q0
−−) is diagonalizable

if and only if there exist N− − 1 pairs (−νj , `j) with νj 6= 0 such that the `j are linearly
independent and `′jD−−(0, νj) = 0′

−. By Corollary 14.11, we then have `′jP−(S = 0) = 0.
The remaining equation can be determined with Lemma 14.13. Therefore, the spectral method
can be successfully applied in the diagonalizable case and several relatively explicit results can
be derived, cf. Kella [184]. In fact, the spectral method not only yields P−(S = 0), but it is
also possible to reconstruct K0

−−; see for instance Section 5 of Asmussen [16].
However, if K0

−− is not diagonalizable, Proposition 14.14 shows that it is impossible to
find enough pairs (−νj , `j) with the above properties. This raises the questions whether the
spectral method is still feasible, and whether it yields K0

−− (or Q0
−−) as a by-product. We

address these questions in the remainder of this subsection for general but fixed α ≥ 0.

In fact, we show that it is always possible to construct Kα
−− and Qα

−− with the spectral

method. For α = 0, the procedure also gives exactly N− − 1 vectors orthogonal to P−(S =
0). Based on Proposition 14.14, one might guess that these vectors are the generalized left
eigenvectors of D−−(α, ν) if ν is a singularity of D−−(α, ν). Interestingly, it turns out that
this is not the case.

It is most insightful to present the procedure in an algorithmic form:

• Locate the singularities ofD−−(α, β) in the right complex halfplane (if α = 0, then β = 0
is such a singularity).

• For every nonzero singularity ν, find as many independent vectors ` with `′D−−(α, ν) =
0′
− as possible (if α = 0, then π− is such a vector for ν = 0, see (14.6)).

• This results in s pairs (−νj , `j), for some s ≤ N−, j = 1, . . . , s (the νj need not be
distinct). If s = N−, then stop; Kα

−− is diagonalizable.

• Kα
−− is not diagonalizable. If α > 0, execute the following subroutine for each j =

1, . . . , s. If α = 0, set ds = 1 and `
(1)
s = π−, and execute the following subroutine for

each j = 1, . . . , s− 1:

– Set p := 1 and write `
(1)
j := `j .

– If possible, find a vector `, independent of `
(1)
j , . . . , `

(p)
j , such that

`′D−−(α, νj) = `
(p)′

j −
p∑

q=1

∫

[0,∞)

xq

q!
e−νjx`

(p−q+1)′

j diag(µαλα)P J
−+F

α
+ª−(dx).

– If the previous step was successful, set `
(p+1)
j := `, p = p+1, and repeat the previous

step. If it was unsuccessful, set dj := p and stop the subroutine.
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The following theorem shows that this algorithm yields bothKα
−− for α ≥ 0 and P−(S = 0).

The matrix Qα
−− can be found in a similar fashion, but the reasoning in the proof must then

be applied to the time-reversed process (i.e., the process (S, T, J) under P̂). For notational
convenience, we only write down the nonzero elements of the matrices. Note that the Jj-
matrices are Jordan blocks.

Theorem 14.15 For α ≥ 0, the matrix Kα
−− is constructed as follows:

Kα
−− =



L1

...
Ls




−1

J1

. . .

Js






L1

...
Ls


 , (14.7)

where the (dj × dj)-matrices Jj and (dj ×N−)-matrices Lj are defined as

Jj :=




−νj
1 −νj

. . .
. . .

1 −νj


 , Lj =




`
(1)′

j
...

`
(dj)

′

j


 .

Moreover, if α = 0, then the rows of L1, . . . ,Ls−1 constitute exactly N−−1 independent vectors
that are orthogonal to P−(S = 0).

Proof. The first step is to ‘regroup’ the +-points as in the proof of Corollary 14.4. That is,
any sequence of +-points is replaced by a single +-point; the matrix F+−(α, β) then needs to
be replaced by F+ª−(α, β), and we have P J

++ = 0++ for the new process.
Denote the first (strict) ascending ladder epoch of this process by τ̄+. Equation (14.4),

which applies due to P J
++ = 0++, now factorizes D−−(0, β) into two matrices:

D−−(α, β) =
[
βI−− +Kα

−−
] (
I−− −E−

[
e−αTτ̄+

−βSτ̄+ ; Jτ̄+ ∈−
])
. (14.8)

This equation can be regarded as a factorization identity. Indeed, the first matrix in this
identity has singularities in the right complex halfplane, and the second matrix in the left
complex halfplane. For similar factorizations in a discrete-state framework, we refer to Zhao et
al. [313]. The second matrix is abbreviated as M(α, β) for convenience.

To prove the theorem, write Kα
−− in the Jordan form L−1

−−J−−L−−, cf. (14.7). If α = 0,
we know that zero is a simple eigenvalue and that its corresponding left eigenvector is π−,
cf. Proposition 14.12. The above factorization identity shows that

adj (βI−− + J−−)L−−D−−(α, β) = det (βI−− + J−−)L−−M(α, β). (14.9)

Now observe that βI−− +J−− is a block-diagonal matrix, and that for (square) block matrices
A and B of arbitrary size,

adj

(
A 0
0 B

)
=

(
detB adjA 0

0 detA adjB

)
.

This shows that (14.9) is equivalent to the s systems

adj (βIdjdj
+ Jj)LjD−−(α, β) = (β − νj)djLjM(α, β). (14.10)

If α = 0, the equation for j = s plays no role and is redundant. In the rest of the proof, we
consider this system for fixed j and drop the subscripts j from the notation.
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It remains to show that our algorithm constructs the matrix L (≡ Lj). First observe that
(14.10) is equivalent to the d equations

k∑

n=1

(−1)n−1

(β − ν)k−n `
(n)′D−−(α, β) = (β − ν)`(k)′M(α, β), (14.11)

for k = 1, . . . , d. If we consider this equation for k = 1 and let β → ν, then it becomes clear
that `(1)

′
D−−(α, ν) = 0−. Using this fact in the same equation for k = 2, we obtain

`(2)
′
D−−(α, β)− 1

β − ν `
(1)′ [D−−(α, β)−D−−(α, ν)] = (β − ν)`(2)′M(α, β).

Upon letting β → ν, we see (with dominated convergence and <(ν) > 0) that `(2)
′
D−−(α, ν) =

`(1)
′ − `(1)′D(1)

−−(α, ν), where

D
(q)
−−(α, ν) :=

∫

[0,∞)

xq

q!
e−νxdiag(µαλα)P J

−+F
α
+ª−(dx).

Conversely, if there exists no vector `(2) independent of `(1) such that `(2)
′
D−−(α, ν) = `(1)

′ −
`(1)

′
D

(1)
−−(α, ν), then (14.11) cannot hold. All essential ideas of the proof have now been used,

and it is completed with an induction argument.
Suppose that we know that for n = 2, . . . , k,

`(n)′D−−(α, ν) = `(n−1)′ −
n−1∑

q=1

`(q)
′
D

(n−q)
−− (α, ν). (14.12)

Note that we have just proven this assertion for n = 2, and we now show that it also holds for
n = k+ 1. For this, first multiply the k− 1 equations in (14.12) by (−1)n−1(β − ν)n−k−1, and
substitute them in Equation (14.11) for n = k + 1 such that terms D−−(α, β) −D−−(α, ν)
appear everywhere; also use `(1)

′
D−−(α, ν) = 0′

−. After some algebra, one then obtains

(β − ν)`(k+1)′M(α, β) = (−1)k`(k+1)′D−−(α, β) +
(−1)k−1

β − ν `(k)
′
[D−−(α, β)−D−−(α, ν)]

+
k−1∑

n=1

(−1)n−1

(β − ν)k−n+1
`(n)′

[
D−−(α, β)−D−−(α, ν)− (β − ν)I−−

−
k−n∑

q=1

(−(β − ν))qD(q)
−−(α, ν)

]
.

Upon letting β → ν, this leads to (14.12) for n = k + 1. ¤

Two elements of the preceding proof deserve special attention. First, we emphasize the ap-
pealing form of the factorization (14.8); we encounter similar forms in the remainder. Another
interesting point is the connection between the system (14.12) and Corollary 14.4, which is used

in Section 14.3. To explain this, we rewrite this system and the equation `
(1)′

j D−−(α, νj) = 0′
−

as

0dj− = −JjLj −Lj diag(λα) +Lj diag(µαλα)P J
−−

+

dj−1∑

k=0

e−νjx
xk

k!

(
νjIdjdj

+ Jj
)k
Lj diag(µαλα)P J

−+F
α
+−(dx), (14.13)
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for j = 1, . . . , s.
In the proof of the preceding theorem, we showed that there is some s such that (14.13)

holds for a unique dj and unique matrices Jj and Lj (with independent rows; uniqueness holds
up to multiplication by a constant). We now argue that a solution to (14.13) immediately gives
a solution to the equation in Corollary 14.4. To see this, stack the s matrix equations of (14.13)
into a single system, premultiply by L−1

−−, note that

dj−1∑

k=0

e−νjx
xk

k!

(
νjIdjdj

+ Jj
)k

= eJjx,

and use (14.7). The argument can also be reversed: given a solution to the equation in
Corollary 14.4, the ‘building blocks’ for the Jordan form must solve (14.13). This proves the
following.

Corollary 14.16 The matrix equations in Corollaries 14.4 and 14.7 have a unique solution.

14.2.6 The distribution of (S, T , J)

In this subsection, we study the minimum of S if it drifts to +∞. Therefore, throughout this
subsection, we suppose that π′

JES1 > 0. We remark that the matrix βI−− −Qα
−− is always

nonsingular for β ≥ 0, since Qα
−− is a defective intensity matrix.

Theorem 14.17 For α, β ≥ 0, we have J ∈ I+ and

E
[
e−αT+βS ; J ∈+

]
=

[(
I++

0−+

)
+

(
P α

+ª−
I−−

)
(βI−− −Qα

−−)−1diag (µαλα)P J
−+

]

× diag
(
1+ − P 0

+ª−1−
)
.

In particular, for j ∈ I and k ∈ I+, we have the matrix-exponential form

Pj(S < x; J = k) =
(
1− e′kP 0

+ª−1−
)
e′j

(
P 0

+ª−
I−−

)
e−Q−−xdiag(λ0)P J

−+ek,

where x ≤ 0.

Proof. The Markov property shows that for α, β ≥ 0,

E+

[
e−αT+βS ; J ∈+

]
= P α

+ª−E−
[
e−αT+βS ; J ∈+

]
+ diag(P+(S = 0))

and

E−
[
e−αT+βS ; J ∈+

]
= diag

(
µαλα

λα + β

)
P J

−+E+

[
e−αT+βS ; J ∈+

]

+ diag

(
µαλα

λα + β

)
P J

−−E−
[
e−αT+βS ; J ∈+

]
.

Substitution of the first equation in the second yields, with the expression for Qα
−− in Propo-

sition 14.6,

E−
[
e−αT+βS ; J ∈+

]
=
(
βI−− −Qα

−−
)−1

diag (µαλα)P J
−+diag(P+(S = 0)).

The proof is finished after observing that P+(S = 0) = 1+ − P 0
+ª−1−. Note that this vector

is nonzero as a result of the drift condition. ¤
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14.3 Markov-additive processes and their extremes

In this section, we study the extremes of a continuous-time Markov-additive process X with
nonnegative jumps and finitely many background states. Loosely speaking, such a process
is characterized by a number of Lévy processes (with nonnegative jumps) Z1, . . . , ZN and
a continuous-time Markov process with state space {1, . . . , N}; X behaves as Z j when the
Markov process is in state j. Our goal is to find the Laplace transform of the maximum and
minimum of X, jointly with the epoch at which they are attained and the state of the Markov
process at that moment.

We first give a precise definition of the process under study (Section 14.3.1). Section
14.3.2 introduces an embedded process that falls in the framework of Section 14.2, so that
the maximum of the embedded process equals the maximum X of the original process. This
embedding facilitates the computation of the desired transform, see Section 14.3.3. For the
minimum, a similar procedure can be followed; the analysis of X may be found in Section
14.3.4.

14.3.1 Definitions and assumptions

A continuous-time Markov-additive process {(X(t), J(t)) : t ≥ 0} is defined on some probability
space (Ω′,F ′,P) and has càdlàg paths with values in (R, {1, . . . , N}). We only define Markov-
additive processes with nonnegative jumps and a finite number of background states, but we
refer to the classical papers by Çinlar [76] and by Ney and Nummelin [243] for the construction
and properties of general Markov-additive processes.

Under P, {J(t) : t ≥ 0} is a (finite-state) continuous-time Markovian background process,
which stays in state j for an exponentially(qj) distributed amount of time, and then jumps
according to some transition matrix PJ. We allow J to jump to the same state. We assume
that J is irreducible, so that there is a unique stationary distribution πJ (i.e., π′

J
diag(q)PJ =

π′
J
diag(q)). While J(t) = j, the process X(t) behaves under P as a spectrally positive (i.e.,

without negative jumps) Lévy process Zj , with Laplace exponent

ψ−Zj (β) := log E exp(−βZj(1)) =
1

2
σ2
jβ

2 − cjβ −
∫

(0,∞)

(
1− e−βy − βy1(0,1)(y)

)
Πj(dy),

where
∫
(0,∞)

(1∧y2)Πj(dy) <∞ and β, σj ≥ 0. In particular, X(0) = 0. The reason for writing

ψ−Zj instead of ψZj is that we try to follow the notation of Bertoin [43, Ch. VII] as closely as
possible. Let ψ−Z(β) be the vector with elements ψ−Zj (β), j = 1, . . . , N .

We need some further notation related to ψ−Zj , for which we need to suppose that σj > 0.
By Hölder’s inequality, ψ−Zj is then strictly convex. Let Φ−Zj (0) be the largest solution of
the equation ψ−Zj (β) = 0, and define Φ−Zj (the ‘inverse’ of ψ−Zj ) as the unique increasing
function Φ−Zj : [0,∞) → [Φ−Zj (0),∞) such that ψ−Zj (Φ−Zj (β)) = β for β > 0. We write
Φ−Z for the vector with elements Φ−Zj , which is only defined for elements with σj > 0.

When the background process J jumps from j to k, the process X jumps according to
some distribution Hjk on [0,∞). The matrix of the Laplace transforms corresponding to
these ‘environmental jumps’ is written as H, i.e., element (j, k) of the matrix H(β) equals∫
[0,∞)

e−βxHjk(dx).

In the spirit of Section 14.2.2, we use the matrix notation

E

[
e−βX(t); J(t)

]
:=
{

Ej

[
e−βX(t); J(t) = k

]
: j, k = 1, . . . , N

}
,

and similarly for other quantities than X(t). We draw attention on the difference between E,
the matrix version of the ‘continuous-time’ mean E corresponding to P, and E, the matrix
version of the ‘discrete-time’ mean E corresponding to P.
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Using this matrix notation, the definition of (X, J) entails that E
[
e−βX(t); J(t)

]
is given by

etψ−X(β), where

ψ−X(β) = diag(ψ−Z(β))− diag(q)
(
I −PJ ◦H(β)

)
, (14.14)

with ◦ denoting componentwise (Hadamard) matrix multiplication. Note that for instance As-
mussen [19] uses a slightly different (yet equivalent) representation, but ours is more convenient
in the context of this chapter. The representation in (14.14) can be proven along the lines of the
proof of Proposition XI.2.2 in [19], by setting up a differential equation for Ej [e

−βX(t); J(t) = k].
Each of the states j = 1, . . . , N can be classified as follows. When, for some j, σj = 0 and

cj ≥ 0, we call j a subordinator state. Special cases are zero-drift states (σj = cj = 0 and
Πj ≡ 0), compound Poisson states (σj = cj = 0, Πj(R+) ∈ (0,∞)), and strict subordinator
states1 (all other subordinator states). If σj = 0 and cj < 0, we call j a negative-drift compound
Poisson state. A special case is a negative-drift state, for which Πj ≡ 0. The other states are
called Brownian states; these are characterized by σj > 0 (note that for these Brownian states
Zj is not necessarily a Brownian motion with drift; it may also be that Πj 6≡ 0).

There is no one-to-one correspondence between ψ−X and tuples (ψ−Z , q,PJ,H). For in-
stance, consider the situation that Zj corresponds to the sum of a Brownian motion and a
compound Poisson process. Then one could equivalently do as if there are environmental
jumps at the jump epochs of the Poisson process; by also adapting the transition matrix, one
obtains an alternative description of the same stochastic process.

Consequently, since J is allowed to make self-transitions, without loss of generality we can
assume that there are no compound Poisson states nor negative-drift compound Poisson states.
Indeed, these states can be replaced by zero-drift or negative-drift states, provided the Hjj and
qj are changed appropriately. Throughout, we suppose that there is at least one negative-drift
state or Brownian state after this simplification (if X drifts to −∞, then this is a consequence
of the spectral positivity).

The above observations allow a partitioning of the states 1, . . . , N of the background process
into

(i) the strict subordinator states, labeled ‘s’;

(ii) the zero-drift states, labeled ‘z’;

(iii) the negative-drift states, labeled ‘n’; and

(iv) the Brownian states, labeled ‘B’.

In the following, we always assume that the state space {1, . . . , N} of J is partitioned in the
order s–z–n–B. Sometimes, it is unnecessary to distinguish between s- and z-states, and it is
therefore convenient to refer to s- and z-states as s-states. If we use this s-notation in block
matrices, we suppose that the order is s–z. Similarly, we refer to n- and B-states as ∼-states,
again preserving the order.

We also need another probability measure on (Ω′,F ′), denoted by P̂. Under P̂, (X, J) is a
Markov-additive process with Laplace exponent

ψ̂−X(β) := diag(1/πJ)ψ
′
−X(β)diag(πJ). (14.15)

That is, working with (X, J) under P̂ amounts to working with the time-reversed Markov-
additive process under the measure P, and vice versa.

1It is customary in the literature to use the term strict subordinator for a subordinator with an infinite

lifetime; here, it stands for a strictly increasing subordinator.
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As before, we define

X(t) := sup{X(s) : 0 ≤ s ≤ t},
F
X

(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)},
X(t) := inf{X(s) : 0 ≤ s ≤ t},
FX(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)}.

We also set J(t) := J(F
X

(t)) and J(t) = J(FX(t)). It is our aim to study these quantities as

t→∞, in which case we omit the time index. We study the joint P-distributions of (X,F
X
, J)

(in Section 14.3.3) and (X,FX , J) (in Section 14.3.4). We rely extensively on two fundamental
properties of Lévy processes, which we recall in the next subsection.

14.3.2 Intermezzo on Lévy processes

In this intermezzo, we consider a Lévy process Z (i.e., there is no background process) with
killing at an exponentially distributed epoch. We let eq denote the killing epoch with mean
1/q, and suppose that it is independent of Z. We also suppose that the process does not have
negative jumps, and that it is ‘Brownian’ in the terminology of the previous subsection, i.e.,
that Z has a Brownian component. Note that consequently the inverse Φ−Z of the Laplace
exponent is well-defined.

We start with two observations that have already been proven useful in the preceding two

chapters. First, if we define quantities Z,F
Z
, Z, and FZ similarly as for X, we have the

following interesting identities: for α, β ≥ 0,

Ee−αF
Z(eq)+βZ(eq) = Ee−αF

Z(eq)
Ee−βZ(eq+α),

Ee
−α

“
eq−FZ

(eq)
”
−β(Z(eq)−Z(eq)) = Ee

−α
“
eq−FZ

(eq)
”

Ee−β(Z(eq+α)−Z(eq+α)),

see also (12.3).
Moreover, the PRS identity in Proposition 11.5 shows there are two ways of decomposing

(eq, Z(eq)) into two independent vectors:

(i) • a vector (σ, U) := (F
Z
(eq), Z(eq)) related to the process till time F

Z
(eq), and

• an independent second vector (τ,−D) := (eq−F
Z
(eq), Z(eq)−Z(eq)) related to the

process between F
Z
(eq) and eq.

(ii) • a vector (FZ(eq), Z(eq)) related to the process till time FZ(eq) (this vector has the
same distribution as (τ,−D)), and

• an independent second vector (eq − FZ(eq), Z(eq) − Z(eq)) related to the process

between time FZ(eq) and eq (this vector has the same distribution as (σ, U)).

In the special case of no jumps, Asmussen [16] exploits the first splitting property in the context
of Markov-additive processes.

Due to the assumptions that Z is spectrally positive and that it has a Brownian component,
Z(eq+α)−Z(eq+α) has an exponential distribution; see Proposition 11.6 (applied for X = −Z).
Importantly, Proposition 11.6 also gives an expression for the Laplace transform of (σ, U), and
shows that (τ,D) satisfies Assumption 14.1 with µα = Φ−Z(q + α). The latter property
facilitates application of the results of Section 14.2 in the context of continuous-time Markov-
additive processes, as we demonstrate in the next subsection.
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Figure 14.1: The left-hand diagram represents the process X with its embedding points, along
with the state labels. The discrete-time embedded process S is given in the right-hand diagram,
along with the point labels.

14.3.3 The distribution of (X,F
X

, J)

We have collected all the necessary prerequisites for an embedding that allows us to characterize

the distribution of (X,F
X
, J), providedX drifts to −∞. Throughout this subsection, we impose

the stronger requirement that π′
J
EX(1) < 0, but, as in Section 14.2, the majority of our results

only requires the weaker assumption that X drifts to −∞ almost surely; this holds in particular
for our main result, Theorem 14.19.

To find the distribution of (X,F
X
, J), we do not monitor the full process (X, J), but we

just record time and position at ‘special’ epochs only. For s-states and n-states, these epochs
are

• whenever a sojourn time in these states starts; we call these s-points and n-points, re-
spectively, and

• immediately before this sojourn time ends (where the environmental jump at that epoch
is not included).

For B-states, these epochs are

• whenever a sojourn time in these states starts; we call these B-points,

• whenever the maximum within this sojourn time is attained; we call these A-points, and

• immediately before this sojourn time ends (again without the environmental jump at
that epoch).

Note that we have thus constructed a discrete-time stochastic process from X that still contains
all information on the maximum of X. We call this process the embedded process. Importantly,
as a result of the independence discussed in Section 14.3.2, the embedded process fits into the
framework of Section 14.2, when the space-component of the embedded points is recorded in S
and the time-component in T . The embedding is illustrated in Figure 14.1; in the realization
of X, a negative-drift compound Poisson state has been replaced by a negative-drift state with
environmental jumps and self-transitions. Note that some of the embedding points remain
unlabeled.
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Motivated by this embedding, we label n-points and A-points as −-points (as from these
points the process moves down), in accordance with the terminology of Section 14.2.2. The
order is n−A. Moreover, we refer to n-points and B-points as ∼-points. The (environmental-
jump) points immediately after the −-points are called ↑-points. These points are always
incorporated into the embedded process, even if there are no environmental jumps; the step
size is then simply zero. To be able to perform arithmetics, the order is again preserved: the
j-th ↑-point comes after the j-th −-point, which in turn corresponds to the j-th ∼-point.

Application of this labeling shows that we have

λα :=

(
vec
(
qn+α
−cn

)

vec(Φ−Z(qB + α))

)
, µα :=


 vec

(
qn

qn+α

)

vec
(

Φ−Z(qB)
Φ−Z(qB+α)

)

 . (14.16)

The notation in (14.16) should be interpreted as follows. First, qn is the block vector of q that
corresponds to n; similarly cn is the block vector of the drift vector c corresponding to n. Then
(qn + α)/cn is the vector with element j equal to (qn,j + α)/cn,j . The vector qB is defined
analogously to qn. With k = 1, . . . , N being the index of the j-th B-state, the j-th element of
Φ−Z(qB +α)) is Φ−Zk(qB,j +α)). The notation used in the definition of µα should be read in
a similar fashion.

Note that an explicit expression for Φ−Z can be given for Brownian states without jumps;
this is exploited by Asmussen [16].

With the theory of Section 14.2 at hand, the embedding argument shows that the key

quantities for studying the distribution of (X,F
X
, J) are the matrices #P̂α

−z and #P̂α
−− that

contain the last-passage transforms of the embedded process. Here, # refers to time-reversal
with respect to the Markov chain underlying the embedded (discrete-time) Markov-additive
process, cf. (14.2). However, we shall not rely on this exact definition, since it is easier to

interpret the #P̂α-matrices directly as last-passage transforms.
We next focus on the calculation of these last-passage matrices. To this end, we set for

α, β ≥ 0,

Fsª(α, β) :=
(
αIss −ψ−Xss(β)

)−1
diag(qs),

where ψ−Xss is the (s, s)-block in the matrix ψ−X . The matrices Fsª(α, β) and Fzª(α, β) are
defined similarly, with s replaced by s and z respectively. The idea behind this definition is
that Fsª characterizes the displacement in time and space when we start in an s-state, then
stay in s-states, until a ∼-state is reached. It is important to realize that the change in the
position due to the environmental jump before reaching the ∼-state is not included; these
jumps appear in the following formulas. We define for α, β ≥ 0,

F↑sª·(α, β) := PJ

∼s ◦H∼s(β)Fsª(α, β)PJ

s· ◦Hs·(β) + PJ

∼· ◦H∼·(β),

where ‘·’ can be replaced by any of the blocks s, z, n, or B. The first term should be inter-
preted as zero if there are no s-states. Importantly, we have now defined F↑sª∼(α, β), which
corresponds to the displacement in time and space between the end of a sojourn time in a
∼-state and the beginning of a sojourn time in the next ∼-state, including both environmental
jumps.

We also set

F↑sªA(α, β) := F↑sªB(α, β)diag
(
EBe

−αFZ
(eq)−βZ(eq)

)
,

where the diagonal matrix in the right-hand side should be read as follows. Denote qB as
before, and let k = 1, . . . , N be the index of the j-th B-state (so that qk = qB,j). Then

diag
(
EBe

−αFZ
(eq)−βZ(eq)

)
jj

:= Ek

[
e−αF

Zk
(eqk

)−βZk(eqk
)

]
.
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We now have all prerequisites to show how #P̂α
−z and #P̂α

−− can be calculated. A proof is
given later, since it relies on a slightly different, ‘sparser’ embedding than the one that we have
just described. The measure-valued matrices Fα↑sª−(dx) and Fα↑sªz(dx) are defined similarly

as in Section 14.2.3.

Proposition 14.18 For α ≥ 0, let ]P̂
α

−−, ]Q̂
α

−− satisfy the nonlinear system

]P̂
α

−− =

∫

(0,∞)

e
]bQα

−−xdiag(µα)Fα↑sª−(dx),

]Q̂
α

−− = −
[
I−− − diag(µα)F↑zª−(α,∞)− ]P̂

α

−−

]
diag(λα).

We then have

#P̂α
−z =

∫

(0,∞)

e
]bQα

−−xdiag(µα)Fα↑sªz(dx),

#P̂α
−− = ]P̂

α

−− −
(

#P̂α
−zFzª(α,∞)PJ

zn ◦Hzn(∞) 0−B

)
.

The analogue of the matrix Kα
−− (see Section 14.2.3) is

K
α
−− := diag

(
q∼
µα

)
]Q̂

α

−−diag

(
µα

q∼

)
,

and this matrix plays a prominent role in the fluctuation theory for Markov-additive processes.
To formulate our next result, we need to define closely related last-passage matrices; their

precise relationship to K
α
−− is investigated below. Compared to Section 14.2, it is somewhat

more involved to work with last-passage matrices in the general Markov-additive setting, due
to the presence of subordinator states and Brownian states. We set

Kα
−− := −diag

(
q∼
µα

)[
I−− − diag(µα)F↑zª−(α,∞)− #P̂α

−−

]
diag

(
µαλα

q∼

)
,

Kα
−z := diag

(
q∼
µα

)
#P̂α

−z,

and define the α-independent matrices

Kzz := −diag(qz)
[
Izz −PJ

zz ◦Hzz(∞)
]
, Kzn := diag(qz)P

J

zn ◦Hzn(∞),

and KzA := 0zB . We remark that we have lost the interpretation of these matrices as intensity
matrices related to the last-passage process.

The following theorem, which is the main result of this subsection and the matrix version
of (14.1), should be compared with (14.4). Note that the presence of the matrix ψ−X(β)−αI
is already apparent from the results of Kaspi [179].

Theorem 14.19 For α, β ≥ 0, we have

(ψ−X(β)− αI)E

[
e−αF

X−βX ; J
]

=




0ss 0sz 0s−
0zs Kzz − αIzz Kz−
0−s Kα

−z βI−− + Kα
−−


 diag




0s
Pz(X = 0)

v−


 ,

where v− =
(
−cnPn(X = 0)); qB

Φ−Z(qB)PA(X = 0)
)
.
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Proof. Write
C(α, β) := diag

(
Ee−αeq+iβZ(eq)

)
PJ ◦H(−iβ).

A formal proof could be based on direct application of Theorem 14.8; due to the presence of
many auxiliary states, a substantial amount of matrix algebra is then needed. However, we feel
that it is more insightful to follow the lines of the arguments used earlier, when interpreting
Theorem 14.8.

For instance, let us consider the scenario that both J(0) and J are Brownian states. Consider
the embedded process: it starts in a B-point. In terms of the embedded process, the maximum
S∗ should be in an A-point, after some number of steps, say n∗. In the first place, it should
be that after n∗, the embedded process never exceeds S∗. This leads to the expression

(I −C(α, β))
−1
BB diag

(
EBe

−αFZ
(eq)+iβZ(eq)

)
diag

(
PA(X = 0)

)
.

However, there are paths for which the process exceeds S∗ before n∗; these need to be subtracted
from the above expression. Looking back in time, starting from n∗, this means that there is a
weak descending ladder epoch, necessarily an A-point or n-point. If it is an A-point, it must
be preceded by a B-point. Hence, the contribution of the paths that need to be subtracted is

(I −C(α, β))
−1
BB diag

(
EBe

−αFZ
(eq)+iβZ(eq) ◦ Φ−Z(qB + α)

Φ−Z(qB + α) + iβ

)
#P̂α

AAdiag
(
PA(X = 0)

)

+(I −C(α, β))
−1
Bn diag

(
qn + α

qn + α− cniβ

)
#P̂α

nAdiag
(
PA(X = 0)

)
.

A similar formula can be found if J starts in a subordinator state or a negative-drift state.
Finally, the fact that

I −C(α, β) = diag(q + α− ψ−Z(−iβ))−1 [αI −ψ−X(−iβ)] ,

yields the asserted B-column after some elementary algebra.
This argument can be repeated if J is a zero-drift state or a negative-drift state, but some

additional arguments are needed. In that case, we also need to subtract paths that go from
a z-point to a z-point (or n-point) without a strictly positive environmental jump, and then
have no strict ascending ladder height. This accounts for the terms Kzz − αIzz and Kzn. ¤

We now show that the unknown vectors Pz(X = 0) and v− can be found in almost exactly
the same way as in Section 14.2.4. The following lemma casts Lemma 14.10 and Proposi-
tion 14.12 into the general Markov-additive setting. It shows that two important properties
carry over to this general framework. First, Pz(X = 0) can be expressed in terms of v− (more
precisely, in terms of Pn(X = 0)). Furthermore, there is a simple relationship between v− and

the right eigenvector of ]Q̂
0

−−diag(1/q∼) corresponding to its (simple) eigenvalue zero.

Lemma 14.20 The K-matrices have the following properties:

(i) Pz(X = 0) = −K−1
zz Kz−v−, and

(ii) if there is more than one ∼-state, then v− is a right eigenvector of K
0
−− = K0

−− −
K0

−zK
−1
zz Kz−.

Next we formulate a result in the same spirit as Corollary 14.11, which immediately follows
from Theorem 14.19 and Lemma 14.20. It is the Markov-additive version of (14.1) for α = 0.
A closely related formula has been obtained by Asmussen and Kella [24, Eq. (4.1)], who phrase
their result in terms of the reflected process and a local-time vector. The precise relationship
between the two formulas is further investigated in Section 14.4.2.
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Corollary 14.21 For β ≥ 0, we have

ψ−X(β)Ee−βX = β

(
0s
v−

)
.

The vector v− is determined by Lemma 14.20 and the next lemma, which is an analogue
of Lemma 14.13. Note that this lemma corrects Equation (4.2) in [24].

Lemma 14.22 We have
−π′

JEX(1) = πJ(∼)′v−.

Proof. Since πJ satisfies π′
J
diag(q)PJ = π′

J
diag(q), Corollary 14.21 shows that for β > 0,

1

β
π′

J

[
diag(ψ−Z(β))− diag(q)

(
PJ −PJ ◦H(β)

)]
Ee−βX = πJ(∼)′v−.

Now let β → 0 to obtain

−π′
J

[
EZ(1) + diag(q)PJ ◦

∫
xH(dx)

]
= πJ(∼)′v−.

Using Corollary XI.2.9(b) and (the second equality in) Corollary XI.2.5 of Asmussen [19], it is
not hard to see that the left-hand side equals −π′

J
EX(1). ¤

Censored embedding and spectral considerations

Let us consider the embedded process (only) on −-points and ↑-points. We refer to the resulting
process as the censored embedded process. In the censored embedded process, one always jumps
from a −-point to a ↑-point and vice versa. Using the notation of Section 14.2, this means that
|I+| = |I−|, F++(α, β) = 0++, and F−−(α, β) = 0−−, while

F+−(α, β) = F↑sª−(α,−iβ), F−+(α, β) = diag

(
µαλα

λα + iβ

)
.

It is left to the reader to check that this leads to

D−−(α, β) = diag

(
µαλα

q∼

)[
diag(ψ−Z∼∼(β))− diag(q∼)

(
I−− − F↑sª∼(α, β)

)
− αI−−

]

× diag
(
E∼e

−αFZ
(eq)−βZ(eq)

)
.

Therefore, the factorization identity (14.8) can be rewritten as

diag(ψ−Z∼∼(β))− diag(q∼)
(
I−− − F↑sª∼(α, β)

)
− αI−− =

[
βI−− + K

α
−−
]
M ′

−−(α, β),

(14.17)
for some matrix M ′

−−(α, β) which is nonsingular if <(β) ≥ 0.

This identity immediately shows that the reasoning in Section 14.2.5 can be repeated ver-
batim in the general Markov-additive case, showing how K

α
−− can be found based on ‘spectral’

considerations. We also note that K
0
−− determines v− up to a constant, since the nullspace of

K
0
−− has dimension one. We have thus provided answers to the questions raised in Section 4

of Asmussen and Kella [24].
With the censored process at our disposal, we can prove Proposition 14.18; the matrix

]P̂
α

−− contains the last-passage transforms for the censored embedded process.
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Proof of Proposition 14.18. By applying Proposition 14.3 to the censored embedded pro-

cess, the system for ]P̂
α

−− and ]Q̂
α

−− is readily found. The expressions for #P̂α
−z and #P̂α

−−
follow by considering the whole embedded process again. The first formula is a consequence of
the fact that there must be a (censored) ↑-point before a z-point if it is a last-passage point.

The matrix #P̂α
−− is found upon noticing that if an n-point is a last-passage point for the

censored process, then either a z-point or (the same) n-point is the corresponding last-passage
point in the whole embedded process. ¤

From a theoretical point of view, there are two main reasons why we feel that the system
in Proposition 14.18 is unsatisfactory:

• It contains the transform EBe
−αFZ

(eq)−βZ(eq), and is therefore not really the analogue
of Corollary 14.4. In other words, the presence of the function Φ−Z is undesirable, since
it arises from a nonlinear system itself.

• It cannot be viewed as a matrix analogue of α = ψ−Z(Φ−Z(α)).

The formula in the following proposition has the ‘right’ form in view of the above two
issues. In the light of recent progress made by Pistorius [256], this result may have attractive
numerical features as well. To see that it is a matrix version of α = ψ−Z(Φ−Z(α)), recall the
representation of the Laplace exponent of X in (14.14).

Proposition 14.23 For α ≥ 0, K
α
−− is the unique matrix that solves the nonlinear system

αI−− =
(
K
α
−−
)2

diag

(
σ2
∼
2

)
+ K

α
−−diag(c∼)

−
∫

(0,∞)

(
I−− − eK

α
−−y + K

α
−−y1(0,1)(y)

)
diag(Π∼(dy))

− diag(q∼) +

∫

[0,∞)

eK
α
−−y diag(q∼)Fα↑sª∼(dy).

Moreover,

Kα
−z =

∫

(0,∞)

eK
α
−−xdiag(q∼)Fα↑sªz(dx)

and
Kα

−− = K
α
−− −

(
Kα

−zFzª(α,∞)PJ
zn ◦Hzn(∞)diag(−1/cn) 0−B

)
.

Proof. The first claim is a consequence of (14.17), after repeating the proof of Theorem 14.15
and the subsequent reasoning. The last two formulas follow from the corresponding expressions
in terms of the #P̂α-matrices, see Proposition 14.18. ¤

14.3.4 The distribution of (X,F X , J)

In this subsection, we study the minimum of X if it drifts to +∞. We suppose throughout this
subsection that π′

J
EX(1) > 0.

As in the previous subsection, we do not monitor the full process (X, J), but we only record
for s-states and n-states the time and position at the start (leading to s-points and n-points,
respectively) and immediately before the end of the sojourn time, and for B-states in addition
the minimum within the sojourn times (leading to A-points).

While an A-point was a −-point in the previous subsection, the situation is now different.
In order to still preserve our conventions of Section 14.2.2, it is therefore necessary to group the
points differently. Hence, the −-points in this subsection are not the same as in Section 14.3.3:
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we now say that n-points and B-points are −-points. The points immediately after −-points
are still called ↑-points; these are also different from before, since for instance A-points are now
↑-points. Again, when using this notation in block matrices, we adopt the indicated order.

Despite the relabeling, as a result of the theory in Section 14.3.2 and the new definition
of −-states, λα and µα are still given by (14.16). We keep the notation Fsª of the previous
subsection, but we also define for α, β ≥ 0,

Fsª·(α, β) := Fsª(α, β)PJ

s· ◦Hs·(β),

F↑sª−(α, β) := diag
(
E∼e

−αFZ
(eq)−βZ(eq)

) [
PJ

∼s ◦H∼s(β)Fsª−(α, β) + PJ

∼∼ ◦H∼∼(β)
]
,

where again ‘·’ stands for any of the blocks s, z, n, or B, and the first matrix should be
interpreted as zero if there are no s-states.

As in the previous subsection, it is useful to study a censored embedded process with
only −-points and ↑-points. The next proposition shows how the first-passage matrices of
the censored embedded process (P-matrices) as well as the first-passage matrices of the whole
embedded process (P-matrices) can be found.

Proposition 14.24 We have

P
α
−− =

∫

(0,∞)

Fα↑sª−(dx)eQ
α
−−xdiag(µα),

Q
α
−− = −diag(λα)

[
I−− − diag(µα)Pα

−−diag(1/µα)− diag(µα)F↑zª−(α,∞)
]
.

Moreover, Pα
−− = P

α
−− and

Pα
s− =

∫

(0,∞)

Fαsª−(dx)eQ
α
−−xdiag(µα).

Proof. Consider the censored embedded process. In the notation of Section 14.2, we have
|I+| = |I−|, F++(α, β) = 0++, and F−−(α, β) = 0−−, while

F+−(α, β) = F↑sª−(α, β), F−+(α, β) = diag

(
µαλα

λα + iβ

)
.

The nonlinear system then follows from Proposition 14.6. The first-passage matrices for the
whole embedded process follow readily. ¤

With the P-matrices and Q
α
−− at our disposal, it is straightforward to find the Laplace

transform of (X,FX , J) along the lines of the proof of Theorem 14.17.

Theorem 14.25 For α, β ≥ 0, we have

E

[
e−αF

X+βX ; J
]

= diag




1s −P0
s−1−

1z − Fzª−(0,∞)1− − Fzªs(0,∞)P0
s−1−

0−




+




Pα
s−diag(1/µα)

Fzªs(α,∞)Pα
s−diag(1/µα) + Fzª−(α,∞)

I−−


(βI−− −Q

α
−−
)−1

× diag(µαλα)
(

0−s diag
(
1− −P0

−−1− − F↑zª−(0,∞)1−
) )

.
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We remark that it is possible to derive a system for Q
α
−− in the spirit of Proposition 14.23.

This generalizes the results in Section 5.3 of Miyazawa and Takada [233] and Proposition 2(i)
of Pistorius [256].

Indeed, the reader may check that Q
α
−− solves a similar system as in Proposition 14.23,

but the place of the matrices Q
α
−− and exp

(
Q
α
−−x

)
is different: instead of premultiplied, they

should now be postmultiplied. This is in line with the correspondence between Corollaries 14.4
and 14.7.

We conclude this section with a simple relationship between Qα
−− and K̂

α

−−, which can be

regarded as the analogue of (14.3). The matrix K̂
α

−− is defined as K
α
−−, but with the dynamics

of the Markov-additive process specified by the time-reversed Laplace exponent ψ̂−X instead
of ψ−X . The next lemma formalizes the intuition that the last-passage matrices under the

measure P̂ are closely related to the first-passage matrices under the measure P.

Lemma 14.26 For α ≥ 0, we have

Q
α
−− = diag

(
1

πJ(∼)

)[
K̂
α

−−

]′
diag(πJ(∼)). (14.18)

Proof. The matrix K̂
α

−− satisfies the system given in Proposition 14.23, but with Fα↑sª∼(dx)

replaced by F̂α↑sª∼(dx) (in self-evident notation; however, the embedding is different!). It can

be checked that

F̂↑sª∼(α, β) = diag

(
1

q∼πJ(∼)

)
F′

↑sª∼(α, β)diag (q∼πJ(∼)) ,

and that the matrix on the right-hand side of (14.18) satisfies the same matrix equation as
Q
α
−−. Uniqueness of its solution proves the claim. ¤

14.4 The fluid queue: theory

In this section, we use the theory developed in the previous sections to analyze a single fluid
queue. Recall from Section 1.1 that this means that work (fluid) arrives at a storage facility,
where it is gradually drained; if the input temporarily exceeds the output capacity, then work
can be stored in a buffer. As usual, we let W (t) be the buffer content at time t and B(t) be
the age of the busy period. The input process A is governed by a background process J.

It is our aim to study the distribution of (W (t), B(t), J(t)) in steady-state, i.e., as t→∞,
for a number of different input processes. We abbreviate W (∞), B(∞), and J(∞) as W , B,
and J respectively; their existence follows from assumptions that we impose later on.

14.4.1 Markov-modulated ON/OFF input

Suppose that the input process corresponds to a single source that is driven by a background
process J that switches between N states. The transitions of the background process are
governed by an irreducible Markov chain J , defined through the transition probability matrix
P J := {pJjk : j, k = 1, . . . , N}; the sojourn times in the each of the N states are specified below.
Suppose that J and all other random objects in this subsection are defined on the probability
space (Ω,F ,P).

If the background process is in state j for j = 1, . . . , N − 1, it feeds work into the reservoir
at a constant rate Rj < r. Since the fluid level decreases during these periods, we call the
corresponding states OFF-states. The lengths of the sojourn times in these states are all
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mutually independent. Moreover, the sojourn time in OFF-state j is exponentially distributed
with parameter qj .

If the source is in state N , the so-called ON-state, the source generates work according
to a generic stochastic process {AON(t) : t ≥ 0}. In order to ensure that the buffer content
does not decrease (strictly) while the source emits fluid, we suppose that AON(t) ≥ rt for any
t ≥ 0 almost surely. The ON-period is terminated after some period distributed as the generic
random variable k > 0 (‘killing time’), independent of AON. After this ON-period, J always
makes a transition to an OFF-state (i.e., J has no self-transitions in state N). We suppose
that k is integrable. In principle, the probability distribution governing the transitions to
OFF-states may depend on (the whole trajectory of) AON and k, but we suppose for simplicity
that this is not the case. The ON-periods are mutually independent, and also independent of
the OFF-periods.

We emphasize the versatility of this Markov-modulated ON/OFF model. For instance, by
redefining ON-periods, it is possible to incorporate multiple (and distributionally different)
subsequent ON-periods. Moreover, as observed by Cohen [78] in a special case of our model,
the superposition of a number of (independent) ON/OFF sources can be regarded as a single
source. Indeed, one considers the aggregate of the sources, which has the same structure as
a single ON/OFF source, but with ON-periods corresponding to so-called inflow periods (i.e.,
periods in which at least one of the sources is in the ON-state). This shows that, if for each
source it holds that it emits work at a rate of at least r while ON, then we may restrict our
attention to the single-source model. We mention that our formulation of the model has been
inspired by work of Kella and Whitt [185] and Scheinhardt and Zwart [284], who consider
the (more specific) situation of a single OFF-state and strictly alternating ON-periods and
OFF-periods. A closely related model has been recently examined by Boxma et al. [60].

To characterize the distribution of (W,B, J), we use an embedding and the theory from
Section 14.2. Let k

∗ be distributed as the elapsed time that the source is ON, if we observe
the system in steady state in an ON-state. That is, it has the integrated-tail distribution

P(k∗ > y) =
1

Ek

∫ ∞

y

P(k > x)dx,

where y ≥ 0. We also need the expected sojourn time between ON-states, EVOFF. Standard
formulas for moments of phase-type distributions show that

EVOFF = P J
N−
(
I−− − P J

−−
)−1

vec

(
1

q−

)
,

where the beginnings of the OFF-sojourn times and ON-sojourn times are labeled as −-points
and +-points respectively, as in Section 14.2. The quantity EVOFF plays an important role
for the probability pk that the source is in state k when the system is in steady state. For
k = 1, . . . , N − 1, we find that

pk =
EVOFF

EVOFF + Ek

πJ (k)

πJ(−)′vec(qk/q−)
,

and pN = Ek/(EVOFF + Ek). The stability condition of this model is

EAON(k)

EVOFF + Ek
+R′

−p− < r.

We write P̂ J = {p̂Jjk : j, k = 1, . . . , N} for the time-reversed transition matrix of the Markov

process J , and we define P̂ such that (S, T, J) has the transition kernel

p̂((s, t, j), (s+dv, t+dw, k))=

{
p̂JjkP(U ∈ dv, σ ∈ dw) if j = N and k = 1, . . . , N ;

p̂JjkP
(
−Dj ∈ dv, τ j ∈ dw

)
if j = 1, . . . , N − 1and k = 1, . . . , N,
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with
Ee−ασ−βU = E

[
e−αk−β[AON(k)−rk]

]
, Ee−ατ

j−βDj

=
qj

qj + α+ β(r −Rj)
.

We next express the distribution of (W,B, J) in terms of the distribution of (S, T ).

Proposition 14.27 For k = 1, . . . , N − 1, ω, β ≥ 0, we have

E
[
e−ωW−βB ; J = k

]
= pkÊke

−ωS−βT ,

and
E
[
e−ωW−βB ; J = N

]
= pNE

[
e−(β−ωr)k∗−ωAON(k∗)

]
P̂ J
N−Ê−e

−ωS−βT .

This proposition can be proven with regenerative-processes theory [19, Ch. VI]. The construc-
tion borrows its key elements from Theorem 4 in [185]. Specializing to just W , it relies on two
principles:

• The classical Reich formula says that W is distributed as supt≥0−Â(−t) − rt, with Â
being the version of the input process A with stationary increments and with time indexed
by R. That is, −Â(−t) can be thought of as the work generated in the interval [−t, 0]
given that the system started in steady state at time −∞ (it is then always in steady

state, in particular at time zero). This entails that the process −Â(−t)−rt (thus looking
backward in time!) needs to be analyzed.

• To construct supt≥0−Â(−t) − rt, the state of the background process at time zero is
sampled from p. Two possibilities arise.

– The initial state is N . The background process stays in this state for a period that
has the integrated-tail distribution of k; the increment is AON(k∗) − rk∗ ≥ 0. The

next state, say j, is sampled from P̂ J
N−, and the process {−Â(−t− k

∗)− rt− rk∗ :
t ≥ 0} behaves exactly in the same way as the process {A(t)−rt} with initial state j
(independently of the initial increment), except for the following two changes. The
background states are chosen according to the time-reversed probabilities {p̂Jjk},
and the trajectories during ON-periods are ‘reversed’. Still, the distribution of
the increment during such a period remains the same. As a result, the embedded
process, which is governed by the kernel p̂, can be used to express the remaining
contribution to the supremum.

– The initial state is k = 1, . . . , N − 1. It stays in this initial state for a period that
has the integrated-tail distribution of τ k, which is again exponential with parameter
qk; as a consequence we could do as if the background process had just jumped to
k at time zero. The supremum can thus immediately be expressed in terms of the
time-reversed embedded process.

We emphasize that the distribution of (W,B, J) ≡ (W (∞), B(∞), J(∞)) is not affected by
the initial state of the system. More precisely, the steady-state solution is independent of the
buffer content W (0) at time zero, the state of the background process J(0) at that epoch, and
the time spent already in this state before time zero.

The Êke
−ωS−βT for k = 1, . . . , N − 1 can be found as explained in Section 14.2. Hence, in

order to use the above theorem, an expression for the transform of (k∗, AON(k∗)) is needed;
from Scheinhardt and Zwart [284] we have

E

[
e−αk

∗−βAON(k∗)
]

=
1

Ek
E

[∫
k

0

e−αt−βAON(t)dt

]
. (14.19)
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Figure 14.2: A realization of W .

For the special case of AON being just a drift, i.e., AON(t) = RN t almost surely for some
RN > r, it evidently reads

E[e−(α+βRN )k∗ ] =
1− E[e−(α+βRN )k]

(α+ βRN )Ek
.

When specialized to the distribution of W and using (14.19), Proposition 14.27 reduces to

Ee−ωW =

(
p′− +

pN
Ek

E

[∫
k

0

e−ω[AON(t)−rt]dt

]
P̂ J
N−

)
Ê−e

−ωS .

In Boxma et al. [60], a similar expression has been interpreted as a decomposition of W in
terms of a clearing process and an independent dam process.

14.4.2 Markov-additive input

In this subsection, we suppose that there is an irreducible Markov process J such that (A, J) is a
Markov-additive process on some probability space (Ω′,F ′,P). We define X(t) := A(t)−rt, the
free process. Clearly, (X, J) is a Markov-additive process as well. Even though Proposition 14.28
below holds in much greater generality, we suppose throughout that X does not have negative
jumps. Consequently, this subsection relies extensively on Theorem 14.19. We do not analyze
the spectrally negative case, but it could be analyzed with Theorem 14.25; further details can
be found in Miyazawa and Takada [233].

In Figure 14.2, we have plotted a possible realization of the process W . Note that there
are Brownian states, subordinator states, and negative-drift states.

We now establish the precise relationship between the buffer-content process and extremes
of the free process, which follows from the reasoning in Section II.3 and Section VI.7 of As-
mussen [18]; see also Section 4 of Miyazawa and Takada [233]. Again, (B(0),W (0), J(0) does
not have influence on the behavior of (B(t),W (t), J(t)) as t→∞, a property that is intuitively
clear. The result follows by the same arguments as those used for Markov-modulated ON/OFF
input, but no ‘residual’ (or ‘clearing-model’) quantities are needed since the sojourn times of J

are exponential. We write P̂k for the law of the Markov-additive process (X, J) with J(0) = k

and Laplace exponent ψ̂−X defined in (14.15).

Proposition 14.28 Suppose that π′
J
EX(1) < 0. Then (W,B) is a finite random vector, and

for any ω, β ≥ 0, k = 1, . . . , N , we have

E
[
e−ωW−βB ; J = k

]
= πJ(k)Êke

−βFX−ωX .
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We now work out the preceding proposition for the distribution of (W, J), since the resulting

formula is particularly appealing. Corollary 14.21 shows that for ω ≥ 0, provided ψ̂−X(ω) is
nonsingular,

diag(πJ)Êe
−ωX = ωdiag(πJ)ψ̂

−1
−X(ω)

(
0s
v̂−

)
= ω

[
ψ′

−X(ω)
]−1

(
0s
u−

)
,

where we set u− := πJ(∼) ◦ v̂− (recall that ∼-states stand for n-states and B-states). The

vector v̂− is defined in the same way as the vector v−-vector, but with P replaced by P̂. With
Proposition 14.28, this leads immediately to the identity

E
[
e−ωW ; J

]
ψ−X(ω) = ω

(
0′
s u′

−
)

(14.20)

for arbitrary ω ≥ 0. This formula is Equation (4.1) of Asmussen and Kella [24], who inter-
pret u− in terms of local times. The following observation, however, is new. By combining
Lemma 14.26 with Lemma 14.20, it readily follows that u− must be a left eigenvector of
Q

0
−− (corresponding to the simple eigenvalue zero); this uniquely determines u− up to a con-

stant. This constant can be found by writing down the formula for Ee−ωW from (14.20), using
1 = PJ1, and letting ω → 0 in the resulting expression.

Motivated by Proposition 14.28, we next characterize the P̂-distribution of (X,F
X
, J) (the

last component is not required here, but it is needed in Section 14.6). To avoid the introduction
of yet more matrices, we suppose that there are no zero-drift states. The following result then
follows immediately from Theorem 14.19 and Lemma 14.26.

Corollary 14.29 Suppose that π′
J
EX(1) < 0 and that there are no zero-drift states. We then

have for α, β ≥ 0,

(
ψ′

−X(β)− αI
)

diag(πJ)Ê
[
e−αF

X−βX ; J
]

=

(
0ss 0s−

0−s
(
βI−− +

[
Q
α
−−
]′)

diag(u−)

)
.

In conclusion, if X is spectrally positive, the matrix Q
α
−− plays a similar role for the

steady-state buffer-content process as the matrix K
α
−− for the maximum of the free process.

14.5 The single queue: examples

Many known models can be incorporated into the framework of the preceding section. To
emphasize the versatility of our framework, we now give some examples.

The M/G/1 queue

Consider a single-server queue with Poisson arrivals at rate λ and i.i.d. service requirements; a
generic service requirement is denoted by U . Throughout, we assume stability, i.e., λEU < 1.
A standard result (‘PASTA’) for the M/G/1 queue is that the steady-state buffer content
(‘virtual waiting time’) has the same distribution as the steady-state waiting time under the
First-In-First-Out discipline, see, e.g., [19, Cor. II.9.2]. In turn, these quantities have the
same distribution as the maximum of a Lévy process X with unit negative drift and jumps
distributed as U .

Two approaches are possible to derive this distribution. The first relies on Proposition 14.28
and the remarks thereafter. Since the free process X is a Lévy process with unit negative drift
and jumps distributed as U , it immediately yields the desired Pollaczek-Khinchine formula

Ee−βX =
β(1− λEU)

β − λ (1− Ee−βU )
. (14.21)
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To gain some intuition for the embedding technique, it is insightful to give a second deriva-
tion of this formula based on the results in Section 14.2. Essentially, we are interested in the
maximum of a discrete-time Markov-additive process S, for which the modulating part takes
values in {+,−}. The process S increases by amounts that are distributed as U (correspond-
ing to a +-point) and decreases by exponentially(λ) distributed amounts (corresponding to a
−-point). This is summarized as

F (0, β) =

(
0 EeiβU
λ

λ+iβ 0

)
.

Note that if the maximum is attained, the background process must be in a −-point.
First note that P−(S = 0) = 1 − λEU by Lemma 14.13. Some further straightforward

computations based on Corollary 14.11 show that E−[e−βS ; J = −] indeed equals the right-
hand side of (14.21).

We next analyze the length of the busy period. Note that the Laplace transform of
the length of a busy cycle (which consists of a busy period and an idle period) is P α+− =

E+[e−αTτ− ; Jτ−−1 = −]. By the Markov property, these two parts of a busy cycle are indepen-
dent, and the part corresponding to the idle period has Laplace transform µα = λ/(λ+α). As
a result, the transform of the length of the busy period is given by Gα := Pα+−/µ

α + P(U = 0)
for α ≥ 0. Since λα = λ+α, the recursion of Proposition 14.6 reduces in the present setting to

Pα+− =
λ

λ+ α
E

[
e−(λ+α)[1−Pα

+−−µα
P(U=0)]U ;U > 0

]
. (14.22)

This shows that Gα satisfies Takács’ fixed-point equation

Gα = Ee−[α+λ(1−Gα)]U , (14.23)

in accordance with, for instance, Prabhu [263, Thm. 1.37].

The BMAP/G/1 queue

The BMAP/G/1 queue is a generalization of the M/G/1 queue. Here BMAP is shorthand
for batch Markovian arrival process. Special cases include the MMPP/G/1 queue, where
MMPP stands for Markov modulated Poisson process, and the PH/G/1 queue, where PH
stands for phase-type renewal process. For further special cases, we refer to Latouche and Ra-
maswami [210, Sec. 3.5]. The BMAP/G/1 queue has been studied in detail by Lucantoni [221],
and it is our present aim to relate his results to ours. This is particularly relevant since our
notation does not always agree with the standard notation in the matrix-analytic literature as
used in [221].

The virtual waiting time in a BMAP/G/1 queue is defined as the buffer content in a fluid
queue with special Markov-additive input; we describe this below. More precisely, as observed
by Tzenova et al. [297], the BMAP/G/1 queue can be viewed as a fluid-flow model with jumps
(fluid-flow models are discussed below). It is important to note that the setting of Section 14.4.2
can therefore be used.

In a BMAP/G/1 queue, the arrival process is governed by a Markovian background process
J that can take N <∞ values. The sojourn time of J in state j has an exponential distribution

with parameter qj . At the end of a sojourn time in state j, with probability p
(n)
jk , n ≥ 0

customers arrive (that all bring in a generic amount of work U > 0) and a transition of J to

state k occurs. These transition probabilities satisfy
∑∞
n=0

∑N
k=1 p

(n)
jk = 1 for j = 1, . . . , N .

We write H for the distribution of U , and the stationary distribution of J is denoted by πJ as
usual.
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Let us now define the free process X such that (X, J) becomes a Markov-additive process.
Since the amount of work in the system decreases at unit rate, it readily follows that the
Laplace exponent of X is given by

ψ−X(β) = βI − diag(q)

(
I −

∞∑

n=0

P (n)
[
Ee−βU

]n
)
, (14.24)

where P (n) is the matrix with elements p
(n)
jk . We suppose that the system is stable, i.e.,

π′
J
EX(1) < 0. It is an immediate consequence of Proposition 14.28 and the remarks thereafter

that
Ee−ωW = ωu′

−ψ
−1
−X(ω)1,

at least for ω ≥ 0 for which the matrix ψ−X(ω) is nonsingular. This formula, in the present
context due to Ramaswami, is Equation (45) in [221]. In the matrix-analytic literature, it is
customary to use the notation y0 for u−. Note that we have shown in Section 14.4.2 that
u′
−Q

0
−− = 0′

−.
This motivates the investigation of the matrix Q

α
−− for α ≥ 0. We have argued in Sec-

tion 14.3.4 that Q
α
−− satisfies the ‘postmultiplication version’ of (14.24), as opposed to the

‘premultiplication version’ in Proposition 14.23. That is, we have

Q
α
−− + αI = −diag(q)

(
I −

∞∑

n=0

P (n)

∫

[0,∞)

eQ
α
−−xH(n)(dx)

)
,

with H(n)(dx) denoting the n-fold convolution of H(dx). Upon setting

Gα :=

∫

[0,∞)

eQ
α
−−xH(dx), (14.25)

the fixed-point system for Q
α reduces to

Q
α
−− + αI = −diag(q)

(
I −

∞∑

n=0

P (n) [Gα]
n

)
.

Substitution of this expression in (14.25) leads to a fixed-point system for Gα:

Gα =

∫

[0,∞)

e−αxe−diag(q)(I−
P∞

n=0 P
(n)[Gα]n)xH(dx),

which is the matrix version of (14.23) if P (1) is the only nonzero matrix in the sequence
{P (n) : n ≥ 0}. Based on this formula, Lucantoni [221] gives an algorithm that serves as an
efficient alternative for Neuts’ approach to M/G/1-type queueing systems [242]. Importantly,
it is not necessary to compute Q

0
−− in order to find u−: the definition of G0 in (14.25) shows

that u− is necessarily proportional to the unique probability vector g satisfying g′G0 = g′.
The normalizing constant is found as in Section 14.4.2.

The G/M/1 queue and its ramifications

Let us now suppose that the interarrival times have a general distribution (the generic service
time is written as U), while the service requirements are exponentially distributed (say with
rate λ). Throughout, we assume stability, i.e., λEU > 1.

Again, we are interested in the waiting-time distribution. As opposed to the M/G/1 queue,
however, the buffer-content process cannot be represented by a (reflected) Markov-additive pro-
cess. Still, by exploiting a connection with random walks, we can use the results of Section 14.2
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to find the waiting-time distribution. Similar arguments can be applied to the G/PH/1 queue.
We rely on the fact that the steady-state waiting time is equal in distribution to −S if S0 = +,
where the process S is the process that we defined in the context of M/G/1 queues.

It is interesting to see that we have essentially found the waiting-time distribution while
examining the M/G/1 queue in detail. Note that we know from Proposition 14.6 that Q−− =
−λ(1− P 0

−+ − P(U = 0)). Therefore, Theorem 14.17 immediately yields

E+e
βS =

(
1 +

λ(P 0
−+ + P(U = 0))

β −Q−−

)[
1− P 0

−+ − P(U = 0)
]

=
−Q−−
λ

+
λ+Q−−

λ

−Q−−
β −Q−−

.

This shows that the waiting-time distribution has an atom at zero with mass −Q−−/λ, and
that its density over (0,∞) is proportional to the density of an exponential distribution with
parameter −Q−−. To relate this to well-known formulas for −Q−−, note that (14.22) implies
that

λ

λ+Q−−
EeQ−−U = 1,

which is consistent with (for instance) Theorem VIII.5.8 of Asmussen [19].
The same result can also be obtained with the theory of Markov-additive processes de-

veloped in Section 14.4.2, and even certain many-server queues are covered by the results.
One then needs to look at the problem in a slightly different way, due to Sengupta; see [19,
Sec. XI.3d]. The Sengupta approach leads to the waiting-time distributions in the G/PH/s
and MAP/PH/s queue, as detailed by Asmussen and Møller [28].

Fluid-flow models

A fluid-flow model is a fluid queue with a special type of Markov-additive input: the free
process X is not allowed to have jumps nor Brownian states. They constitute undoubtedly
the most well-studied fluid queues; we do not attempt to give a full bibliography, but refer to
[16, 203, 274] for more details.

Recently, there has been some interest in deriving the Laplace transform of the busy period
in fluid-flow models [6, 37]; see also [15] for an earlier contribution. It is our present aim to
show how some of the main results are reproduced in our general theory. We remark that we
allow states with zero drifts.

Even though fluid models are special Markov-additive processes, we shall work within the
framework of Section 14.2 to derive formulas that are familiar from the fluid-flow literature.
To facilitate the use of our discrete-time results, we use an embedding that records the time
and position at the beginning of a sojourn time of the underlying background process J. In
self-evident notation, we partition the state space into +-points, 0-points, and −-points. The
intensity matrix of J is written as QJ; this also defines QJ

++, for instance.
Let Ψα

+− be the matrix with the transforms of the busy-period lengths. That is, if cj > 0
and ck < 0, then element (j, k) of this matrix is the Laplace transform of the length of the first
positive excursion of X on the event that it ends this excursion in state k. In other words,
it corresponds to the amount of time that X spends above zero on the event that it starts in
state j and it first hits zero in state k.

Let us use the notation vec(c+) and vec(c−) for the vector of strictly positive and strictly
negative drifts respectively. We also set µα± := diag(q±/(q± + α)), λα± := diag((q± + α)/c±),
and

Tα
±± := ±diag

(
1

c±

)[
QJ

±± − αI±± −QJ

±0(Q
J

00 − αI00)−1QJ

0±
]
,

Tα
±∓ := ±diag

(
1

c±

)[
QJ

±∓ −QJ

±0(Q
J

00 − αI00)−1QJ

0∓
]
.
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Note that, in the notation of Section 14.2, we are interested in Ψα
+− = P α

+−diag(1/µα). As in
the proof of Corollary 14.4, we consider a sequence of +- and 0-points as a single +-point, so
that F+−(α, β) = (βI++ −Tα

++)−1Tα
+−. Then Proposition 14.6 immediately yields that

Ψα
+− =

∫

(0,∞)

eT
α
++xTα

+−e
Q

α
−−xdx,

where Q
α
−− = Tα

−− + Tα
−+Ψα

+−. Since the eigenvalues of Tα
++ have a strictly negative real

part and those of Q
α
−− have a nonpositive real part, the integral in the above representation

for Ψα
+− converges. This implies the identity (see Bean et al. [36] for references)

Tα
++Ψα

+− + Ψα
+−Q

α
−− = −Tα

+−.

After some rearranging and substitution of Q
α
−−, we obtain the matrix equation

Tα
+− + Ψα

+−Tα
−+Ψα

+− + Tα
++Ψα

+− + Ψα
+−Tα

−− = 0+−,

which is Theorem 1 of Bean et al. [37] and, for α = 0, Theorem 2 of Rogers [274]. Note that
no drift condition was imposed to derive this equation.

Importantly, the theory of Section 14.4.2 shows that the matrix Q
α
−− is a key quantity

for fluid-flow models. For instance, under a stability assumption, a left eigenvector of Q
0
−−

(corresponding to the simple eigenvalue zero) appears in the representation of W as a phase-
type distribution. The matrix Q

α
−− plays a prominent role in many system characteristics of

fluid queues, see also Section 14.7.

M/M/∞-driven fluid queues

Although it was assumed that the state space of the background process be finite, we now
give an example with a countably infinite state space that still fits into our framework. The
model is a fluid-flow model, but we show that we can translate it in terms of the queue with
Markov-modulated ON/OFF input of Section 14.4.1.

Consider the following queueing model. A buffer is emptied at a constant service rate r, and
jobs arrive according to a Poisson process (with rate λ). They stay active for an exponentially
distributed period of time (without loss of generality, we set its mean equal to 1); while active
they feed work into the buffer at unit rate. Notice that the number of (active) jobs in the
system follows an M/M/∞-model, therefore it has a Poisson distribution with mean λ; denote
pk := e−λλk/k!. This leads to the stability condition λ < r.

The buffer level increases when the number of active jobs exceeds r, whereas the buffer is
drained (or remains empty) when the number of jobs is below r. Let X(t) denote the free
process at time t as before, and let N(t) the number of active flows at time t. For ease we
assume that r 6∈ N; r− := brc and r+ := dre. Define for ` > r

σ` := inf{t ≥ 0 : N(t) = r− | N(0) = `}, U` := X(σ`).

An explicit formula for ξ`(α, β) := E[e−ασ`−βU` ] is provided by Preater [264].
Due to exponentiality and reversibility properties, we have that the steady-state buffer

content W is distributed as supt≥0X(t). To study this supremum, it suffices to consider an
embedding. One embedding could be the position of the free process at epochs jobs arrive
and leave, but this has drawback that the dimension of the background process is (countably)
infinite. Evidently, we could alternatively opt for the ‘sparser’ embedding that lumps together
the states r+, r+ + 1, . . . into state r+; the supremum of the embedded process coincides
with the supremum of the full free process. Then the sojourn time in state k = 0, . . . , r−
is exponential with parameter λ + k, whereas the Laplace transform of the time spend in
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r+, jointly with the net amount of work generated, is ξr+(α, β). With qj := λ + j, it is
easy to verify that corresponding discrete-time Markov chain on {0, . . . , r+} has the following
transition probabilities: pJj,j+1 = λ/qj , if j = 0, . . . , r−; pJj,j−1 = j/qj , if j = 1, . . . , r−;

pJr+,r− = 1; pJjk = 0, otherwise. Define P such that (S, T, J) has the transition kernel

p((s, t, j), (s+dv, t+dw, k)) =

{
pJjkP(U ∈ dv, σ ∈ dw) if j = r+ and k = 0, . . . , r+;

pJjkP
(
−Dj ∈ dv, τ j ∈ dw

)
if j = 0, . . . , r− and k = 0, . . . , r+,

with

Ee−ασ−βU = Ee−ασr+
−βUr+ = ξr+(α, β), Ee−ατ

j−βDj

=
qj

qj + α+ β(r − j) .

A procedure analogous to that for Markov-modulated ON/OFF input now yields for k =
0, . . . , r− and ω, β ≥ 0,

E
[
e−ωW−βB ; J = k

]
= pkEke

−ωS−βT ,

and

E
[
e−ωW−βB ; J = r+

]
=




∞∑

k=r+

pkξk(α, β)


Er−e

−ωS−βT .

14.6 Tandem networks with Markov-additive input

In this section, we consider the single queueing systems of Section 14.4 in a network setting.
Networks with Markov-modulated ON/OFF input [284] or Markov-additive input [184] can be
studied with nearly the same techniques, so we choose to only continue the investigation of
queueing systems with Markov-additive input.

Even though our framework offers an appealing approach to such networks, we do not strive
for the greatest possible generality. Instead, we only give the main ideas without proofs, since
the results can be proven along the lines of Chapter 13. Several extensions are discussed in the
next section.

One of the simplest networks is a tandem network, in which n fluid reservoirs are lined up
in series. Queue j is drained at rate rj as long as there is content in buffer j. After fluid is
released from queue j, it immediately flows to queue j + 1, unless j = n; then it leaves the
system.

We suppose that the input to the first queue is governed by the same Markov-additive
process (A, J) as in Section 14.4.2, i.e., its input process A is spectrally positive. Furthermore,
we suppose for simplicity that J has no zero-drift states and that there is no external input to
queues 2, . . . , n. To avoid ‘invisible’ stations, we impose the condition r1 > . . . > rn.

We define Wj(t) as the content in buffer j at time t, and let W (t) be the vector of buffer
contents. The evolution of the process W is completely determined by A and the initial
buffer-content vector W (0). Formally, this can be made precise by using Skorokhod reflection
mappings; see Section 13.5. It is our aim to study the steady-state vector of buffer contents in
this network, which we denote by W := W (∞). The inclusion of the ages of the busy periods
raises no additional difficulties, but we focus here on the simplest possible situation.

We define for j = 1, . . . , n, Xj(t) := A(t)− rjt and X(t) = (X1(t), . . . , Xn(t))
′. Note that

(X, J) is a multidimensional Markov-additive process on Rn×{1, . . . , N} under P. We also set

Xj := sup
t≤0

Xj(t), F
X

j := inf{t ≥ 0 : Xj(t) = Xj(∞) or Xj(t−) = Xj(∞)},
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and Jj := J(F
X

j ). Throughout, we suppose that π′
J
EXn(1) < 0, so that each component of X

drifts to −∞.

Our analysis consists of three steps. First, the queueing problem is formulated in terms of
free processes. The splitting technique of Section 14.3.2 can be used, in a different form, to
characterize the extremes of these free processes. This is reminiscent of the analysis of Lévy-
driven fluid networks in Chapter 13. The final step converts the results back to the queueing
setting.

We start by giving the analogue of Proposition 14.28, thereby establishing the connection
between fluid networks and extremes of X. It can be proven along the lines of Proposi-
tion 13.14. Note that the distribution of W = W (∞) is independent of W (0) and J(0).

Proposition 14.30 The vector W is finite, and for any ω ∈ Rn
+, we have

E

[
e−〈ω,W 〉; J = k

]
= πJ(k)Êk

[
e−

Pn−1
i=1 (ωi−ωi+1)Xi−ωnXn ; Jn

]
1.

We use splitting to calculate the transform in this expression. In Chapter 13, splitting
is distinguished from splitting from the left, but this is irrelevant for the arguments and the
results. Modulo this remark, the following lemma can be proven along the lines of Lemma 13.2.

Lemma 14.31 For any j, {(X(t), J(t)) : 0 ≤ t ≤ FXj } and {(X(F
X

j +t)−X(F
X

j ), J(F
X

j +t)) :

t ≥ 0} are P̂-conditionally independent given J(F
X

j ).

With this proposition at our disposal, the joint distribution of F
X

and X can be derived

in only a few lines. The key element in this analysis is the observation F
X

1 ≤ . . . ≤ F
X

n . In
the following theorem, we give the resulting Laplace transform; in the terminology of Chap-
ter 13, this transform has a quasi-product form. The proof requires only minor modifications in
comparison with the proof of Theorem 13.16, and is therefore omitted. We emphasize that the
product is taken from 1 to n− 1; the order is important, since the matrices do not commute.

Corollary 14.32 We have for β ∈ Rn+,

Ê

[
e−〈β,X〉; Jn ∈∼

]
= Ê

[
e−[

Pn
k=2(r1−rk)βk]F

X
1 −[

Pn
k=1 βk]X1 ; J1 ∈∼

]

×
n−1∏

j=1




(
Ê∼
[
e−[

Pn
k=j+1(rj−rk)βk]F

X
j −[

Pn
k=j+1 βk]Xj ; Jj ∈∼

])−1

× Ê∼
[
e−[

Pn
k=j+2(rj+1−rk)βk]F

X
j+1−[

Pn
k=j+1 βk]Xj+1 ; Jj+1 ∈∼

]


 ,

whenever the appropriate matrices are nonsingular.

Corollary 14.32 expresses the transform of the P̂-distribution of (X, Jn) in terms of the
marginals (Xj , Jj) for j = 1, . . . , n. Importantly, the transforms of these marginals can be
found with Corollary 14.29. As a final step, we therefore cast the results back into the queueing
setting. For notational convenience, we define

ηj(ω) :=
n∑

`=j+1

(r`−1 − r`)ω`,

so that we obtain the main result of this section, which is a generalization of (14.20). The
simplicity of the expression for the Laplace transform is remarkable, especially in view of the
transform-free solution of Kroese and Scheinhardt [202] for the two-station fluid-flow tandem
with a two-dimensional background state space.
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Theorem 14.33 For ω ∈ Rn+, we have

E

[
e−〈ω,W 〉; J

]
(ψ−X1

(ω1)− η1(ω)I)

=

(
0′
s ωn

[
un−
]′ n−1∏

j=1

{[
ωj+1I−− + Q

(j)
−−(ηj(ω))

]−1 [
ωjI−− + Q

(j)
−−(ηj(ω))

]} )
,

whenever the appropriate matrices are nonsingular.

Importantly, this theorem shows that the joint buffer-content distribution for a fluid network
can immediately be established from known results about the single (fluid) queue discussed in
Section 14.5. For instance, Lucantoni’s algorithm for the BMAP/G/1 immediately yields

Q
(j)
−−(·), and similarly for algorithms that efficiently solve the matrix-quadratic equation in

fluid-flow models.
Specializing Theorem 14.33 to the marginal distribution of Wn for n > 1, we obtain the

interesting formula

E
[
e−ωWn ; J ∈∼

]
=

[
un−
]′

rn − rn−1

[
ωI−− + Q

(n−1)
−− ((rn−1 − rn)ω)

]−1

Q
(n−1)
−− ((rn−1 − rn)ω),

which should be compared with Theorem 3.2 of [92] or Corollary 13.18(i).

14.7 Concluding remarks

In the course of writing this chapter, we have bypassed several interesting questions. It is
the aim of this section to sketch how some additional features can be incorporated into our
framework. These features are mainly inspired by models that have been recently studied in
the literature.

Markov-additive processes under exponential killing

The approach taken in this chapter can also be used to characterize the distributions of

(X(t), F
X

(t), J(t)) and (X(t), F
X

(t), J(t)) for any t ≥ 0. By taking Laplace transforms with re-

spect to time, this amounts to investigating (X(eλ), F
X

(eλ), J(eλ)) and (X(eλ), F
X

(eλ), J(eλ))
for some λ > 0. The resulting identities can be viewed as the analogue of the second formula
in Proposition 11.6.

The vector (X(eλ), J(eλ)) plays a role in a number of problems in applied probability.
First, it completely specifies the solution to the one-sided exit problem [207]. We remark
that, if there are no subordinator states, the nonnegative matrix −(Kλ

−−)−1 plays a prominent
role in this solution; it can be interpreted as a local-time matrix. Moreover, the distribution
of (X(eλ), J(eλ)) also immediately specifies the transient behavior of a queue with Markov-
additive input, see [6] for a special case.

Ramifications of the tandem network in Section 14.6; priority systems

In Section 14.6, there are no external inputs to the stations 2, . . . , n of a tandem fluid network.
As long as these external inputs are increasing subordinators, i.e., if they do not depend on the
state of the background process J, our reasoning immediately carries over to this more general
setting.

Kella [184] does allow for a dependence of this external input (or the drain rates) on the
background state, and we now outline how our framework should be modified to be able to
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derive expressions under this assumption. In terms of the one-dimensional Markov-additive

process X of Section 14.3, it is not sufficient to study F
X

(jointly with (X, J)), but knowledge

is required about the amount of time spent in each of the states till time F
X

.
The last-passage (or Wiener-Hopf) approach that we have used in this chapter can still

be applied, but the matrices K
α
−− now depend on a vector vec(α) instead of a single value.

An expression such as ψ−X(β) − αI in Theorem 14.19 then changes to ψ−X(β) − diag(α).
However, the reasoning essentially requires no further new ideas. As for tandem networks,

the only remaining assumption is that the components of F
X

are ordered (note that a similar
assumption is needed in [184]).

Recently, there has been an interest in fluid-driven priority systems [296]. As seen in
Section 13.6.3, these systems are closely related tandem queues with external inputs and equal
drain rates. Although equal drain rates are not covered in Section 14.6, the techniques still
apply. Indeed, if the external inputs are nondecreasing processes (with the first station as the

only possible exception, see Chapter 13), the components of F
X

are ordered. In particular,
our theory can be used to analyze priority fluid systems with Markov-additive input.

Phase-type jumps in the opposite direction

All Markov-additive processes in this chapter have one-sided jumps. Given the tractability of
Lévy processes with phase-type jumps in the opposite direction (see Chapter 12 and [256]), it
seems plausible that a similar analysis can be carried out for Markov-additive processes. Indeed,
one can then again use an embedded process to which the theory of Section 14.2 can be applied.
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of Lévy processes, Ann. Appl. Probab. 12 (2002), 69–100. [177]

[62] M. Braverman and G. Samorodnitsky, Functionals of infinitely divisible stochastic processes with
exponential tails, Stochastic Process. Appl. 56 (1995), 207–231. [21]

[63] J. A. Bucklew, Large deviation techniques in decision, simulation, and estimation, John Wiley
& Sons Inc., New York, 1990. [17]

[64] J. A. Bucklew, P. Ney, and J. S. Sadowsky, Monte Carlo simulation and large deviations theory
for uniformly recurrent Markov chains, J. Appl. Probab. 27 (1990), 44–59. [99]

[65] V. V. Buldygin and V. V. Zaiats, A global asymptotic normality of the sample correlogram of a
stationary Gaussian process, Random Oper. Stochastic Equations 7 (1999), 109–132. [44]



250 Bibliography

[66] N. R. Chaganty, Large deviations for joint distributions and statistical applications, Sankhyā Ser.
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[85] K. Dȩbicki, A note on LDP for supremum of Gaussian processes over infinite horizon, Statist.
Probab. Lett. 44 (1999), 211–219. [36, 51]

[86] , Asymptotics of the supremum of scaled Brownian motion, Probab. Math. Statist. 21

(2001), 199–212. [51, 63]

[87] , Ruin probability for Gaussian integrated processes, Stochastic Process. Appl. 98 (2002),
151–174. [29, 51, 52, 53, 59, 64, 67]

[88] , Some remarks on properties of generalized Pickands constants, Tech. Report PNA-
R0204, CWI, the Netherlands, 2002. [31]
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(1992), 396–403. [179, 180]

[188] J. Kennedy, A probabilistic view of some algebraic results in Wiener-Hopf theory for symmetriz-
able Markov chains, Stochastics and quantum mechanics, World Sci. Publishing, River Edge,
NJ, 1992, pp. 165–177. [160]

[189] , Understanding the Wiener-Hopf factorization for the simple random walk, J. Appl.
Probab. 31 (1994), 561–563. [152, 206, 214]
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[234] A. A. Mogul′skĭı, Large deviations for the trajectories of multidimensional random walks, Theory
Probab. Appl. 21 (1976), 309–323. [116]

[235] , Large deviations for processes with independent increments, Ann. Probab. 21 (1993),
202–215. [116]

[236] C. Moler and Ch. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later, SIAM Rev. 45 (2003), 3–49. [212]

[237] E. Mordecki, The distribution of the maximum of a Lévy processes with positive jumps of phase-
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[270] , A probability path, Birkhäuser Boston, Boston, MA, 1999. [15, 17]

[271] D. Revuz and M. Yor, Continuous martingales and Brownian motion, second ed., Springer-
Verlag, Berlin, 1994. [9, 40]

[272] Ph. Robert, Stochastic networks and queues, Springer, Berlin, 2003. [4, 100, 180, 190]

[273] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, N.J., 1970. [19, 100,
145, 146]

[274] L. C. G. Rogers, Fluid models in queueing theory and Wiener-Hopf factorization of Markov
chains, Ann. Appl. Probab. 4 (1994), 390–413. [240, 241]

[275] T. Rolski, H. Schmidli, V. Schmidt, and J. L. Teugels, Stochastic processes for insurance and
finance, John Wiley & Sons Ltd., Chichester, 1999. [6, 166]

[276] H. L. Royden, Real analysis, The Macmillan Co., New York, 1968. [116]

[277] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method, Springer, New York, 2004. [98]

[278] J. S. Sadowsky, On the optimality and stability of exponential twisting in Monte Carlo estimation,
IEEE Trans. Inform. Theory 39 (1993), 119–128. [99]

[279] , On Monte Carlo estimation of large deviations probabilities, Ann. Appl. Probab. 6

(1996), 399–422. [101, 103, 104, 106, 107, 108, 111, 114, 116, 119, 120, 124]

[280] J. S. Sadowsky and J. A. Bucklew, On large deviations theory and asymptotically efficient Monte
Carlo estimation, IEEE Trans. Inform. Theory 36 (1990), 579–588. [99, 104, 107, 128, 137]

[281] P. Salminen and I. Norros, On busy periods of the unbounded Brownian storage, Queueing Syst.
39 (2001), 317–333. [196]

[282] G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes, stochastic models
with infinite variance, Chapman & Hall, New York, 1994. [157]



Bibliography 259
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Çinlar, E., 223

Cirel′son, B. S., 28

Cohen, J. W., 4, 8, 154, 207, 218, 234

Collamore, J. F., 100, 111

Conway, J. B., 17

Daniels, H. E., 62

Davies, R. B., 128, 140

de Acosta, A., 116

de Haan, L., see Geluk, J. L., 13
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Massoulié, L., 51

Maulik, K., 177

Mazumdar, R. R., see Likhanov, N., see Piera, F.

J., 128, 144, 179, 180
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Palmowski, Z., see Dȩbicki, K., see Kyprianou, A.

E., 9, 157, 180, 244

Parthasarathy, K. R., 40

Parthasarathy, K. R., see Ghosh, J. K., 111

Parzen, E., 27

Perman, M., see Huzak, M., 85, 161, 166, 169, 173

Perry, D., see Boxma, O. J., 234, 236

Petrov, V. V., 17

Pickands, III, J., 29

Piera, F. J., 179, 180

Pistorius, M., 6, 160, 161, 206, 231, 233, 245

Pistorius, M., see Asmussen, S., 6, 160, 164

Piterbarg, V., 28–31, 52, 61, 65, 67, 75, 79
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Zeevi, A., 52

Zeitouni, O., see Dembo, A., 17–20, 98, 99, 105,

109, 110, 118, 122

Zhang, L., see Yang, H., 85

Zhao, Y. Q., 220

Ziedins, I., see Kelly, F., 8

Zolotarev, V. M., see Uchaikin, V. V., 157

Zwart, B., 86, 88
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Samenvatting (Summary)
Extremen en vloeistofmodellen

In de wachtrijtheorie worden systemen bestudeerd waar klanten aankomen, eventueel wachten
op hun bediening, en weggaan nadat ze zijn geholpen. Bij sommige toepassingen van deze theo-
rie, bijvoorbeeld in moderne communicatienetwerken, zijn individuele klanten (datapakketjes)
zo klein dat het eenvoudiger is om het binnengebrachte werk als een vloeistofstroom op te
vatten. De inputstroom bij een vloeistofmodel is aan een kansmechanisme onderhevig, verge-
lijkbaar aan dat in een systeem met klanten. Zowel de aankomstmomenten als de hoeveelheden
werk die klanten meebrengen zijn immers onzeker.

Bij het standaard vloeistofmodel komt vloeistof in een buffer terecht die met een bepaalde
vaste snelheid leegstroomt. Als er tijdelijk meer vloeistof de buffer instroomt dan kan worden
verwerkt, dan wordt de overtollige vloeistof opgeslagen en neemt de bufferinhoud dus toe. De
bufferinhoud neemt weer af zodra er minder vloeistof instroomt dan er wegstroomt.

Dit roept de vraag op of we de kans dat de bufferinhoud een bepaalde drempelwaarde
overschrijdt kunnen uitrekenen. De kans dat vloeistof niet in de buffer past indien deze een
vaste (eindige) capaciteit zou hebben hangt hiermee nauw samen. Inzichten in deze kansen
zijn nuttig bij het ontwerpen van systemen waarin wachtrijen een rol spelen, aangezien vaak
kosten verbonden zijn aan buffercapaciteit.

Bij het bestuderen van (de kansverdeling van) de bufferinhoud kan gebruik gemaakt worden
van een opvallende identiteit, die de niet-negatieve bufferinhoud koppelt aan een extreem (het
maximum) van een gerelateerd proces. Dit gerelateerde proces is een ‘vrij proces’ in de zin dat
het zowel positieve als negatieve waarden kan aannemen. Het belangrijkste voordeel van het
werken met extremen is dat de opgebouwde theorie ook gebruikt kan worden in risicotheorie
en financiële wiskunde.

Dit proefschrift bestaat uit de delen A tot en met C, voorafgegaan door twee hoofdstukken
van algemene aard. Het eerste hoofdstuk behandelt het verband tussen extremen en wachtrij-
systemen, in het bijzonder vloeistofmodellen. Ook netwerken van deze systemen worden kort
beschouwd, en de relevantie van vloeistofmodellen met zogenaamde Gaussische inputstromen
en Lévy inputstromen wordt besproken. Hoofdstuk 2 gaat vervolgens in op enkele onderwer-
pen uit de wiskundige analyse en kansrekening die een belangrijke rol spelen in dit proefschrift.
De drie delen van dit proefschrift beginnen elk met een hoofdstuk waarin specifieke achter-
grondinformatie wordt besproken die van belang is in de resterende hoofdstukken van deze
delen.

Deel A: Vloeistofmodellen met Gaussische inputstromen

In deel A, dat de hoofdstukken 3 tot en met 6 omvat, worden vloeistofmodellen met Gaussische
inputstromen geanalyseerd. Bij deze modellen bestaat de mogelijkheid dat er hevige correlaties
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zijn in de inputstroom tussen verschillende tijdsintervallen.
Hoofdstuk 4 richt zich op de volgende twee vragen: (i) Als de bufferinhoud een hoog peil

heeft bereikt, op welke manier is dit gebeurd? en (ii) Als de buffer lang niet-leeg is geweest,
op welke manier is dit tot stand gekomen? Met behulp van de theorie van grote afwijkingen
formuleren we conditionele limietstellingen als antwoord op deze vragen. Zo beschrijft de
limietstelling corresponderend met vraag (i) volgens welk pad een hoog bufferniveau bereikt
wordt. Een bijproduct van de analyse is een goede benadering voor de logaritme van de kans
dat de bufferinhoud groot is.

In hoofdstuk 5 verkrijgen we een nauwkeurigere benadering van deze kans, namelijk een
zogenaamde asymptotisch exacte benadering. Gebruik makend van het verband tussen vloei-
stofmodellen en extremen, analyseren we de kans op een grote bufferinhoud door bepaalde
bestaande technieken voor extremen van Gaussische processen uit te breiden.

De resultaten van hoofdstuk 5 worden gebruikt in hoofdstuk 6 om een vloeistofmodel te
analyseren waarbij meerdere heterogene Gaussische inputstromen in dezelfde buffer samen-
vloeien. We zijn gëınteresseerd in voorwaarden waaronder een deel van deze inputstromen de
anderen domineert in de zin dat dit deel, in zekere asymptotische zin, de verdeling van de
bufferinhoud bepaalt.

Deel B: Simulatie

Deel B, bestaande uit de hoofdstukken 7 tot en met 10, heeft tot doel de simulatie van kleine
kansen te onderzoeken. In de context van dit proefschrift is dit in het bijzonder relevant
ter bepaling van verlieskansen in vloeistofmodellen. Er zijn verschillende simulatie-aanpakken
denkbaar bij het schatten van dit soort kleine kansen, zodat de vraag rijst welke hiervan het
meest efficiënt is.

Hoofdstuk 8 behandelt de simulatie van een belangrijke klasse van kleine kansen, namelijk
kansen die verband houden met de theorie van grote afwijkingen. Met behulp van deze theorie
formuleren we voorwaarden om te bepalen of een schatter zekere optimaliteitseigenschappen
bezit, en laten we zien dat deze de bestaande voorwaarden uit de literatuur verbeteren. De
toepasbaarheid van deze verscherpte voorwaarden beperkt zich overigens niet tot de vloeistof-
modellen en extremen die in dit proefschrift centraal staan.

In hoofdstuk 9 geven we een eerste toepassing van bovengenoemde voorwaarden in de
context van extremen. We bestuderen de kans dat een zogenaamde stochastische wandeling ooit
een bepaalde waarde bereikt, waarbij deze waarde afhangt van het tijdstip van de wandeling.
Hiertoe onderzoeken we twee simulatiemethoden; de eerste simuleert op padniveau, en de ander
op stapniveau. Voor beide methoden leiden we condities af waaronder optimaliteit bereikt
wordt, en vervolgens vergelijken we deze condities.

De voorwaarden van hoofdstuk 8 worden ook gebruikt in hoofdstuk 10, waar we terugke-
ren naar de Gaussische vloeistofmodellen uit deel A. Wederom zijn we gëınteresseerd in (de
kansverdeling van) de bufferinhoud, maar nu willen we deze kansen simuleren in plaats van be-
naderingen vinden. Hiertoe analyseren we de optimaliteitseigenschappen van vier verschillende
simulatiemethoden en voeren we computerexperimenten uit om te zien hoe goed elke methode
werkt in de praktijk.

Deel C: Vloeistofmodellen en netwerken met Lévy inputstromen

In deel C, bestaande uit de hoofdstukken 11 tot en met 14, worden vloeistofmodellen met Lévy
inputstromen bestudeerd. De geheugenloosheid van Lévy processen manifesteert zich in een
zogenaamde splitseigenschap. Er ontstaat een krachtige combinatie van technieken door deze
eigenschap te gebruiken na het herformuleren van vloeistofmodellen in termen van extremen.
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Hoofdstuk 12 bevat een drietal toepassingen van de splitstechniek. Eerst gebruiken we deze
techniek om de extremen van een Lévy proces met een bepaalde sprongstructuur te analyseren,
en vervolgens bestuderen we geperturbeerde risicoprocessen. Bij de derde toepassing maken we
gebruik van resultaten voor stochastische wandelingen om het asymptotische gedrag te vinden
van de kans dat het maximum van een Lévy proces een zekere grote waarde overschrijdt.

In hoofdstuk 13 beschrijven we hoe de splitstechniek gebruikt kan worden om inzicht te
verschaffen in netwerken van vloeistofbuffers met Lévy inputstromen. We laten zien dat de
verdeling van de bufferinhoud-vector (preciezer gezegd: de Laplace getransformeerde hiervan)
een zogenaamde quasi-productvorm kan hebben. Deze quasi-productvormen verschijnen ook
bij het bestuderen van de periodes dat de buffer leeg respectievelijk vol is. We werken de
resulterende formules uit voor netwerken waarbij de Lévy inputstromen niet-negatieve sprongen
hebben.

De resultaten uit hoofdstuk 13 worden uitgebreid in hoofdstuk 14, waar Lévy processen
worden vervangen door algemenere processen, de zogenaamde Markov-additieve processen.
Aannemende dat de inputstroom niet-negatieve of niet-positieve sprongen heeft, onderzoeken
we eerst het corresponderende vloeistofmodel met een enkele buffer. In de literatuur is een
breed scala aan technieken beschreven om speciale gevallen van dit model te analyseren. Met
behulp van de splitseigenschap kan het algemene model opgelost worden en kunnen tegelijker-
tijd verbanden gelegd worden met andere methoden. Gebruik makend van dit resultaat laten
we zien dat matrix-quasi-productvormen een cruciale rol spelen in netwerken met Markov-
additieve inputstromen.
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