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ABSTRACT 

Let T(t) be the translation group on Y = Co(lR x K) = Co(lR) 0 C(K), /( 

compact Hausdorff, defined by T(t)f(x, y) = j(x + t, y). In this paper we 

give several representations of the sun-dial y0 corresponding to this group. 

Motivated by the solution of this problem, viz. y0 = L1(IR)®M(K), we 

develop a duality theorem for semigroups of the form Ta(t)®id on tensor 

products Z@X of Banach spaces, where To(t) is a semigroup on Z. Under 

appropriate compactness assumptions, depending on the kind of tensor 

product taken, we show that the sun-dial of z 0 x is given by z0 0 x·. 
These results are applied to determine the sun-dials for semigroups induced 

on spaces of vector-valued functions, e.g. Co(!l; X) and LP(µ; X). 

Introduction 

Suppose µ is a complex Borel measure of bounded variation on JR. For t E lR 

define the measure µt by µt(A) = µ(A+ t). Then a classical theorem due to 

Plessner (PI] states that lim1_.0 IIµ - µ 1 11 = 0 if and only ifµ ~ m, where m 
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denotes the Lebesgue measure on R. In Section 2 of this paper we derive the 

following analogue of this result for vector-valued measures: let X be a Banach 

space and let µ be an X-valued Borel measure of bounded variation on IR, then 

limt__.0 llµ-µtll = Oifand only ifµ E L1(µ; X). By the Radon-Nikodym theorem, 

the case X = C reduces to Plessner's theorem. 

In case X = Y* is a dual space, this result can be restated in terms of the 

translation group in the following way: if T(t) denotes the translation group on 

C0 (1R; Y) then L1 (JR; Y*) is the maximal space of strong continuity of the adjoint 

T*(t) of T(t). Now both C0 (1R; Y) and L1 (IR; Y") can be written as certain 

tensor products, namely C0(1R;Y) = C0 (1R)®eY and L1(R;Y*) = L1(R)® 11Y* 

(the injective resp. projective tensor product), whereas the translation group on 

C0 (1R; Y) can be regarded as the tensor product To(t) 0 id, with To(t) denoting 

translation on C0(JR). This suggests the following question: 

Given two Banach spaces Z,X, a strongly continuous semigroup To(t) on Z, 
with z0 the maximal space of strong continuity of T0(t), when is it true that we 

have a formula like (Z ® X)0 = z0 0 X*? 

Here (Z 0 X)0 is the maximal space of strong continuity of the adjoint of 

the induced semigroup T0 (t) ®id on Z ® X. This question will be addressed in 

Section 3 for the injective and projective tensor product. These results can be 

applied to the vector-valued function spaces L1(µ; X) and Co(n; X). In order to 

treat also LP(µ; X) for 1 < p < oo we study in Section 4 the /-tensor product. 

1. Adjoint Semigroups 

In this section we will recall some of the standard results on adjoint semigroups. 

Proofs can be found in [BB, P]. Let {T0(t)}t;::0 (briefly, T0 (t)) be a C0-semigroup 

on a Banach space X. The adjoint T0(t) ofT0 (t) is the semigroup on X* defined 

by TQ'(t) := To(tt. From 

l(T;(t)x* -T;(s)x*,x)I $ llx*ll llTo(t)x -To(s)xll 

one sees that the map t 1-+ T0(t)x* is weak*-continuous for every x* E X*. 

Hence if X is reflexive, then T0(t) is weakly continuous and therefore strongly 

continuous. However in general T0(t) is not strongly continuous and it makes 

sense to define the sun-dual X 8 as the maximal subspace of X* on which T0*(t) 

acts in a strongly continuous manner: 

X 8 = {x" EX*: limllT;(t)x* - x*ll = O}. 
t!O 
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X 8 is a norm-closed, weak*-dense subspace of X*. In fact, one has 

where A0 is the adjoint of the generator Ao of T0(t); the closure is taken with 

respect to the norm-topology of X*. Letting R(>., Ao)= (>.-A0)-1 be the resol­

vent of To(t), then R(.A, A0) = R(>., Ao)* and D(A0) = R(>., A0)X*. Clearly x0 
is invariant under T0(t). By restricting T0(t) to x0 one obtains a strongly con­

tinuous semigroup on X 8 , which we will denote T08 (t). Let Aif be its generator, 

then one can show that A~ is precisely the part of A0 in x0. 
PROPOSITION 1.1: Let k ~ 1 and>. E e(Ao). Then X0 = R(>.,A0)kX•. 

In fact, R(>., A0)k X* = D((A0)k):) D((A~)k) and the latter is norm-dense in 

x0 since A~ is a generator on x0. 

Starting from T08 (t) one can repeat the duality construction and define T08 *(t) 
and x00 = (X0)0. The canonical map j: X-+ x0•, 

is an embedding mapping X into x00. In case j X = x00 we say that X is 

sun-reflexive with respect to T0 (t). It is well-known that this is the case if 

and only if R(>., Ao) is weakly compact [Pa2]. 

The spectra of A0 , A0 and A~ coincide, see e.g. [Na, A-III]. This will be used 

throughout this paper, as well as more or less obvious identities like R(>., A0 )*x0 

= R(>.,A~)x0 (x0 E x0), etc. 

2. Translation in C0 (1R; X) 

Let X be a Banach space. On C0 (1R;X) the translation group T(t) is defined by 

T(t)f(s) = f(t + s), t E JR. 

In this section we prove in two different ways that the sun-dual on Co(IR; X) with 

respect to T(t) is given by L1(IR; X*). 

Let M(IR; X) denote the Banach space of all countably additive X-valued vec­

tor measmes of bounded variation [DU]. If X is the scalar field we simply write 

M(R.). Forµ E M(R.; X) its variation lµI E M(R.) is defined by 

lµl(E) := sup{L l!µ(E n A)ll}, 
,,. AE,,. 
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where the supremum is taken over all partitions 7r of R into finitely many disjoint 

subsets. Ifµ E M(R; X) then lµI is a finite positive measure in M(R). 
It is well-known (see (DU, pp. 181-182]) that the dual of C0 (R;X) may be 

identified with M(R.; X*) and we have 

II L f dµll :$ L llfll dlµI, f E Co(R.;X), µ E M(R;X*). 

The space L1 (R; X) can be identified with a closed subspace of M(R; X) in the 

following way: for h E L1(R;X) define µh E M(R;X) by 

µh(E) := l h dµ. 

LEMMA 2.1: Suppose µ E M(R; X) and f E C(R.) with lim1--oo f(t) = 0. 
Define 

F(r) := 1:
00 

J(s) dµ(s). 

Then F is strongly measurable. 

Proof: In order to apply Pettis' measurability theorem [DS], we must show that 

(i) Fis weakly measurable, and (ii) Fis essentially separably-valued. 

To prove (i) first let m be a measure in M(R). Then F defined by 

F(r) := 1:rx> f(s) dm(s) 

is measurable. (To see this, we may assume that µ and f are real-valued, split 

f = !+ - f- and m = m+ - m_ and note that if f and m are positive then 

Fis monotone, hence measurable). Using this we see that for any x* EX* the 

function 

r 1-+ (x*,F(r)} = 1:
00 

f(s) d(x*,µ)(s) 

is measurable. This proves (i). 

To prove (ii) define 

F1(r) :=;:ex> IJ(s)i dlµl(s). 

Since F1 is monotone, F1 is continuous except at a countable set E. For r0 'f. E, 

r ER we have 

llF(r) - F(ro)ll = 111: f(s) dµ(s)ll :$1: lf(s)I dlµl(s) = IF1(r)- F1(ro)I. 

From this it follows that F is continuous as well on R\E. Since moreover R\E 

is separable it follows that F(R.\E) is separable. This proves (ii). I 
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THEOREM 2.2: IfT(t) is the translation group on G0(1R.;X) then G0 (1R;X)0 = 
L 1(1R;X*). 

Proof: First we prove that L1(1R;X*) C G0 (1R;X)0. Let x* EX* and f E 

L 1 (1R). Define J ® x* E L1(1R; X*) by 

(f ®x*)(s) = f(s)x*. 

Since translation is continuous on L 1(1R.) it is clear that f ® x* E G0(1R.; X)0. 

Since the linear span of such functions is dense in L1 (R; X*), the inclusion 

L1(1R.; X*) C G0 (1R; X)0 follows. We now prove the reverse inclusion. Let A 

be the generator of T(t). Since G0 (1R;X)0 = D(A*) it suffices to prove the in­

clusion R(..\,A*)M(lR;X*) c L 1(1R;X*). For f E Go(lR;X), µ E M(lR;X*) we 

have 

where 

(R(>., A*)µ, f) = (µ, R(,\, A)f} = L 1"° e->.t f(s + t) dt dµ(s) 

= L1"° e>.(a-t}J(t) dt dµ(s) 

= f f' e)..(s-t)f(t) dµ(s) dt 
J.JR 1-oo 

= L f(t)F(t) dt, 

F(t) := e-)..t j_t
00 

e;i.. 8 dµ(s). 

We will show that FE L1(1R;X*). By Lemma 2.1, Fis strongly measurable. 

But then we have 

II k F(t) dtll :$ L llF(t)ll dt 

= f e->.tll [' e;i..8 dµ(s)ll dt 
jR 1-oo 

~ L[100 e)..(s-t) dt] dlµl(s) 

1 = :xlµl(lR) < oo. 

This proves that FE L 1(1R.; X*). But since we had 

(R(>.,A*)µ,J) = lj(t)F(t) dt 
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for all f it is clear that F = R(>., A*)µ and the proof is finished. I 

For µ E M(IR; X) and t E IR we define µ 1 E M(IR; X) by µ 1(E) = µ(E + t), 
where E C R is measurable. According to Theorem 2.2 we have, in case X is a 

dual space, that 11µ 1 - µII -+ 0 as t -+ 0 if and only ifµ E L 1 (lR; X). This easily 

extends to the case where X is an arbitrary Banach space. 

COROLLARY 2 .3: Let µ E M(IR; X). Then lim1 .... o llµi - µII = 0 if and only if 

µ E L1 (1R; X). 

Proof: Suppose 11µ 1 - µII -+ 0. Regardingµ as an X** -valued vector measure, 

it follows from Theorem 2.2 that µ E £ 1 (R; X**). But sinceµ takes its values in 

X, the same must be true for the density function hµ representing µ. In fact, by 

the Lebesgue differentiation theorem [DU, III. 12.8] we have, for almost alls, 

1 1•+e 1 hµ(s) = lim - hµ(r) dr = lim -µ(s,s + €). 
e-+0€ • e-+0€ 

Since µ( s, s + c:) E X for all c: it follows that hµ is X -valued. The converse 

assertion is clear. I 

In the scalar case it is well-known that G0 (JR)00 = BUC(IR), the Banach 

space of bounded, uniformly continuous functions on lR. As might be expected, 

in the vector-valued case we get G0 (R; X)00 = BUC(IR; X** ). This follows from 

Theorem 3.11 below. 

We will now investigate the special case of Theorem 2.2 where X = C(K) with 

K compact Hausdorff (or X = G0(fl) with n locally compact Hausdorff). We 

have Co(IR; C(K)) ~ Go(IR x K). The following lemma is more or less standard. 

LEMMA 2.4: Suppose B C M(K) is separable. Then there is a positive µ E 

M(K) such that v ~µfor all v E B. 

Proof: Let (vn) be a dense sequence in Band define 

~ lvnl 
µ := ~ 2nll 11nll. 

Then Vn ~ µ for all n, so by closure also v ~ µ for all 11 E B. I 

Identifying Co(IR; C(K)) with G0(R x K) the translation group from above is 

given by 

T(t)f(x,y) = f(x +t,y). 



Vol. 77, 1992 SEMIGROUPS ACTING ON FUNCTION SPACES 311 

The following result gives an alternative representation of the sun-dual of C0 (R x 

K) with respect to this group. Lebesgue measure on R will be denoted by m; 

µ1 0 µz denotes the product measure of two measures p 1,p2 . 

THEOREM 2.5: Co(R x K)8 = Uo:-;µEM(K) L1 (R x K, m 0 p). 

Proof: By Theorem 2.2 we have C0 (JR x K)0 = L1(R; M(K)). But any f E 

L 1(R; M(K)) is essentially separably valued. Therefore without loss of generality 

we may assume that {f(t) : t E R} is a separable subset of M(K). By Lemma 

2.4 there is a positive fl E M(K) such that f(t) « µ for all f. By the Radon­

Nikodym theorem we may regard fas an element of L 1(R;L 1(K,µ)). By the 

Fubini theorem, the latter is isometric to L 1 (R x K, m 0 µ ). This proves the 

inclusion C. For the reverse inclusion, let Jl ?::: 0 and pick f E L 1 (R x K, m ® Jl ). 

Approximate f by a compactly supported j in C(JR x K) and note that translation 

off is continuous in the L1 -norm. I 

By Theorem 2.5, any v E C0 (R x K)0 belongs to some L1(R x K, m ® Jl) with 

µ 2 0. We will now give an explicit description of a possible choice for Jl. For 

v E M(JR x K) positive, define 1rv E M(K) by 7rv(F) := v(JR x F). Then for 

f E C(K) we have 

I J(y) d7rv(y) = f f J(y) dv(x,y). 
jK jKj'iR 

We need the following lemma. 

LEMMA 2 .6: Let,\, µ and v be positive measures in M(R), M(K) and M(R x K) 

respectively. If v « ,\ 0 µ then v « ,\ ® 7rV. 

Proof: By assumption there is an h E L 1 (R x K, ,\ ® p ), h 2 0 a.e., such that 

dv = h d(,\ 0 µ). Define 

Ko:= {y EK: 1 h(x,y) d,\(x) = O}; 

K1 := {y E K: 1 h(x, y) d,\(x) > O}. 

By the Fubini theorem, 

v(R x Ko)= r I h(x,y) d,\dµ = 0. 
j Ko j!R 
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Now suppose(,\ Q9 7rv)(A) = 0. We have to show that v(A) = 0. But we have 

0 = (,\ 07rv)(A)=l1 XA(x,y) d,\(x)d(7rv)(y) 

= JK LL XA(x,y)h(z, y) d>..(x)d,\(z)dµ(y) 

= JK L XA(x, y) (l h(z, y) d,\(z)) d,\(x )dµ(y) 

= f f XA(x,y)( f h(z,y) d,\(z)) d,\(x)dµ(y). 
jK1 j'R. lrw. 

Since JR h(z, y) d,\(z) > 0 for y E K1, we see that An (JR x K 1 ) is a ,\ 0 µ­

null set, hence also a v-null set (since by assumption v « ,\ 0 µ). Therefore 

AC (An (R. x K 1 )) U (JR x Ko) is a v-null set. Ill 

Combination of Theorem 2.5 and Lemma 2.6 gives the following intrinsic char­

acterization of those v belonging to Co(lR x Kf>. 

THEOREM 2.7: v E Co(lR x K) 8 if and only ifv « m 0 7r[v[. 

One might wonder whether there is a more direct proof of Theorem 2. 7. Indeed 

such a proof can be given. What may be more surprising is that it is possible to 

re-deduce Theorem 2.2 as a corollary from 2.7. Since we think that this approach 

is interesting in its own right, we will carry it out. 

Direct proof of Theorem 2. 7: If v E L 1 (JR x K, m Q9 7r[ vl) then as in the proof 

of Theorem 2.5 we have v E Co(R x K)0. The proof of the converse proceeds in 

two steps. For Borel measuresµ on lR and v on lR x K define the 'convolution' 

µ * v on R. x K by 

f f d(µ * v) = f f f(x + t, y) dµ(t) dv(x, y). 
lRxK jRxK jR 

Now let v E Co(lR x K)8. 

STEP 1: For T > 0 let ffi[o,T] be the Borel measure on lR defined by m[o,T](E) = 
m(E n [O, T]). For f E C0 (JR x K) and T > 0 we have 

( ~ 1T T*(t)v dt, f) = \v, ~ 1T T(t)f dt) 
=-T1 f {Tf(x+t,y)dtdv(x,y) 

JRxK Jo 
1 

= T(m[o,T] * v, f). 
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This shows that the equality 

1 [T * 1 
T Jo T (t)v dt = Tm[o,T] *II 

holds. We claim that 

m[o,T] * 11 ~ m * lvl-

313 

Indeed, let Ebe measurable such that (m* l111)(E) = O. This means by definition 

that 

[ [ XE(x+t,y) dm(t) dlvl(x,y) = 0. 
J.i!l'.xK J~ 

It follows that 

f [T XE(X +t,y) dt dlvl(x,y) = 0. 
J~xK Jo 

Hence 

xe(x +t,y) = 0, ITT[o,T] ® lvl - a.e. 

From this it is clear that also 

xe(x+t,y)=O, m[o,T] ® v - a.e. 

Rewriting this in terms of convolution, this is the same as (m[o,T] * 11)(E) = 0. 

Our claim is proved. By now we have shown that 

1 {T 
T Jo T*(t)v dt ~ m * J11J. 

Since by assumption 

lim -T1 ( T*(t)v dt = 11 

TlO lo 
strongly and since obviously{µ:µ~ m*lvl} is closed, it follows that 11 ~ m*lvl. 

STEP 2: We claim that m * lvl = m ® 7rlvl. Let 7r : lR x J{ -+ K be projection 

onto the second coordinate. We claim that the following equality holds: 

f f 0 7r dlvl = r f d7rlv\. 
jRxK jK 

Indeed, by the Riesz Representation Theorem the linear functional on C(I<) 

defined by 

f 1-r r f 0 7r dlvl 
lrrtxK 
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is represented by someµ E C(K)* and it is straightforward to check thatµ = 7rjv[. 

This proves the claim. 

For A C JR. x K measurable, put 

Ay, :=An {(x,y) E JR. x K: y = yi}. 

Using our claim and the translation invariance of the Lebesgue measure m we 

see 

(m * [vl)(A) = { { XA(x + t, y) dm(t) d[v[(x, y) 
JR.xK J.i?. 

::::: f m(A- x)y d[v[(x, y) 
lrs.xK 

= { m(A)y djvj(x,y) 
lrs.xK 

= JK m(A)y d7rjvj(y) 

= JK l XA(t, y) dm(t) d7r[vj(y) 

= [ XA(t,y)d(m©7rjv[)(t,y) 
llif.xK 

= (m @7rJvl)(A). 

This shows that m * Jvl = m @ 7rJvj. Combining this with Step 1 we see that 

v ~ m @7rJvl as was to be proved. II 

Second proof of Theorem 2.2: Let X be an arbitrary Banach space. By the 

Banach-Alaoglu theorem the dual unit ball K :=Bx· is weak*-compact. The 

map i : X -+ C(K) defined by ix(x*) = (x*,x) is an isometric embedding. 

Let i : C0 (1R.; X) -+ C0(JR; C(K)) = C0 (JR. x K) be the induced embedding. In 

this way we may regard C0 (1R.; X) as a closed, translation invariant subspace 

of C0 (1R. x K). Let y0 E C0 (1R.;X)0. We must show: y0 E L1 (lR;X*). By the 

extension theorem for adjoint semigroups [Ne], y8 can be extended to an element 

v of C0 (R x K)0. By Theorem 2.7 there is a density function g E L1 (lR x ]{, m® 

7rjvl) = L1(JR; L1(K, 7rjvl)) representing v. We claim that y0 = (i)*v can be 

regarded as an element of L1(R;X*). To see this, let f E C0 (lR;X) be arbitrary 
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and note that 

L f(r) dy8 (r) = (y8 , f) = (v, i(f)) 

= L (i(f))(r) dv(r) = 1 g(r) (i(f))(r) dr 

= L g(r) i(f(r)) dr = L i*(g(r)) f(r) dr. 

315 

Hence y8 can be represented by g, defined by g(t) := i*(g(t)). Since i*(g(t)) EX* 

for all t E JR. we see that y8 E L1 (JR.; X*) and the claim is proved. I 

3. The Injective and Projective Tensor Product 

Throughout this section X and Z will denote non-zero Banach spaces. We assume 

either both to be real or complex. Z ® X denotes the algebraic tensor product 

( cf. [Sl]). 

The 7r-norm on Z 0 X, often called the projective norm, is described most 

conveniently by its unit ball, which by definition is the convex closure of the set 

Bz ®Bx, where Bz and Bx are the unit balls of Z and X respectively. An 

analytic expression for the 7r-norm is given as follows: 

n n 

Jlullir = inf{L llzill, Jlxdl : u = L z; ® x;}, u E Z ®X. 
i=l i=l 

The 71"-tensor product Z©irX is the completion of Z 0 X with respect to this 

norm. Sometimes it is denoted by Z®X. The standard example for the 71"-tensor 

product is the following. Let Z be a space L 1(µ), where µ is some positive 

measure and X an arbitrary Banach space. Then L1 (µ )®irX can be identified 

in a canonical way with the space L1 (µ, X) of all X-valued Bochner integrable 

functions. 

An element u = L:~=l z; ® x; E Z ® X can (algebraically) be identified with 

an operator Tu E C(Z*,X) by the formula 

n 

Tuz'" = L(z*,z;)x;. 
i=l 

The e- or injective norm on Z ® X is the norm induced by the operator norm 
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on £( Z*, X). Thus for u = :E7=t z; ® x; the e-norm is given by 

llulle =sup { 11t(z*, z;)x;ll : llz*ll ~ 1} 
=sup { l~(z*,z;)(x*,x;)I: llz*ll ~ 1, llx*ll ~ 1 }· 

The completion of Z ® X with respect to this norm is denoted by Z ®eX. It is 

called thee- or injective tensor product of Z and Y. Some authors denote it by 

Z®X. The standard example is as follows: let Z := Co(O), n locally compact 

and X be an arbitrary Banach space. Then C0(0)®eX can be identified with 

Co(fl;X). 
It is well-known that dual spaces of tensor products can be identified with 

certain operator ideals. For u* E (Z®eX)* or u* E (Z®,,.X)*, define T,.. E 

C(Z,X*) by 
n 

(u*, u) = L(T,.. z;, x;), 
i=l 

where u = :E?=t z; @ x; E Z ® X. In particular, the dual of Z0,,.X can be 

identified with the space C(Z, X*). On the other hand, the dual of Z®eX can be 

identified with the set of all integral operators Z-+ X* [DU], which we denote 

by £i(Z,X*). 

A bounded linear operator T E£(Z) induces a linear operator T®id: Z ®X -+ 

Z ® X by the formula 

(T ® id)(z ® x) := Tz ® x. 

The operator T ®id is bounded for both thee- and the 7r-norm. In fact, in both 

cases one has llT ® idll = llTll· The unique continuous extensions to Z®eX and 

Z®,,.X will be denoted by T®eid and T®,,.id respectively. 

LEMMA 3.1: o-(T0.,id) = o-(T®,,.id) = a-(T). 

Proof: We prove a slightly more general result: Suppose II · II is a reasonable 

crossnorm (in the sense of [DU; Def. VIII.1.1]) on Z ® X with the additional 

property that every bounded linear operator T : Z -+ Z extends to a bounded 

linear operator T®id on the completion Z®X of Z ® X with respect to II · II· 
Then o-(T®id) = o-(T). 

o-(T®id) C o-(T): Suppose >.. - T is invertible. Then (>. - Tr1 ®id is a 

bounded operator on Z ®X and it is obvious that on the dense subspace Z ® X, 
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(..\ - T)-1 ®id is a two-sided inverse for>. - (T ®id). By density it follows that 

(..\ -T)-1@id = (>. - (T@id))-1, so>. E g(T@id). 

o-(T) C o-(T@id): Suppose >. E cr(T). If>. E CTap(T), the approximate point 

spectrum of T ( cf. [Na]), then by definition we can choose an approximate 

eigenvector (zn)~ 1 , i.e., llznll = 1 for all n and 

lim llTzn - >.znll = 0. 
n-+oo 

We claim that (zn®x );:"= 1 is an approximate eigenvector of T@i<l for every norm-1 

vector x EX. Indeed, we have llzn 0 xii = llznll llxll = 1 and moreover 

ll(Ti§id)(zn ® x) - >.(zn 0 x)ll = ll(Tzn - >.zn) 0 xii 

= llTzn - .AznlJ llxll _, 0, n-; oo. 

Thus>. E u(T0id). If>. E u(T)\uap(T) then the range of>. -T cannot be dense. 

According to the Hahn-Banach theorem,>. E (J"p(T*). Choose a norrn-1 vector z* 

such that T*z* = ).z*. We claim that>. E up((T0id)*) with eigenvector z* ®x*, 

where x* =/:- 0 is arbitrary in X*. Indeed, for any z 0 x we have 

((T0id)*(z* 0 x*), z ® x) = (z* 0 x*, Tz 0 x) 

= (z*,Tz)(x*,x) 

= (T*z*,z)(x*,x) 

= >.(z*,z)(x*,x) 

= >.(z* 0 x*, z 0 x). 

The claim now follows from a density argument. Hence >. E u((T@id)*) = 

u(T@id). The second inclusion is proved and the lemma follows. II 

Given a strongly continuous semigroup T0 (t) on Z with generator Ao then 

T(t) := T0 (t) ®id extends to a one-parameter semigroup of bounded linear op­

erators on Z@.-X and Z@11:X respectively. In fact it is easy to see that it is 

strongly continuous as well. Moreover, spectrum and resolvent can be described. 

We state these facts in the following proposition, in which 0 denotes either the 

c- or the 11'-tensor product. 
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PROPOSITION 3.2: T(t) is a strongly continuous semigroup. If we denote its 

generator by A then a(A) = a(A0 ). For>. in the resolvent set we have R(>., A) = 
R(>., Ao)@id. 

Proof: By the spectral mapping formula (cf. [Na]) we have 

a(R(,\,Ao))\{O} = (,\- a(Ao))- 1 

and similarly for A. Hence, to prove the first assertion, we see that it suffices 

to show that a(R(>., A)) = a(R(>., A0 )@id), but this follows from the previous 

lemma. The second assertion is obvious (e.g. apply a density argument). Ill 

Our next aim is to give a description of the adjoints of T(t) and R(.\,A). In 

order to do this, we identify the dual spaces of Z@rrX ancl Z@,,X with £(Z, X*) 

and .Ci(Z,X*) respectively. Given a bounded operator on Z, we want to deter­

mine the adjoint of S@id, where 0 is either @,, or @.,,.. Given z ® x E Z ® X and 

RE £(Z,X*) or RE .Ci(Z,X*), then 

(R, (S@id)(z 0 x)) = (R, (Sz) 0 x) = (RSz, x) = (RS, z 0 x). 

This shows that we have (S@id)*(R) =RS. We summarize this observation in 

the following proposition. 

PROPOSITION 3.3: The adjoint operators T*(t) and R(,\,A)* £(Z,X*) --+ 

£(Z, X*) are given as follows: 

T*(t)(S) = ST0 (t), SE .C(Z,X*); 

R(>., A)*(S) =SR(>., A0 ), SE .C(Z,X*). 

The same assertions are valid for the @,, tensor product, with .C( Z, X*) replaced 

by £i(Z,X*). 

Let us recall that the integral operators form a two-sided operator ideal, i.e. 

given RE .Ci(Z,X*) and bounded linear operators S1 E £(Z) and S2 E .C(X*) 

then S2 o Ro S1 is integral as well and llS2 o Ro S1 Iii ::; llS2 II · llRll; · llS1 II· Here 

II· Iii is the norm induced by (Z@eX)*. 

Both dual spaces £(Z,X*) and .Ci(Z,X*) contain z• 0 X* as a subspace. In 

order to identify the closure of Z* 0 X* with appropriate subspaces of £(Z, X*) 

and .Ci(z, X*) respectively we make for the rest of Section 3 the following as­

sumption: 



Vol. 77, 1992 SEM!GROUPS ACTING ON FUNCTION SPACES 319 

ASSUMPTION 3.4: Z* bas the approximation property (a.p.). 

The classical Banach spaces £P, Co(fi), LP(Jt) satisfy Assumption 3.4. Z* hav­

ing the a.p. implies that the closure of Z* 0 X* in J:.i(Z,X*) can be identified 

with z•@,,.X*. Operators belonging to this closure are called nuclear opera­

tors. Moreover, since Z* has the a.p., so does Z [DU]. The latter implies that 

the closure of Z*@ X* in .C(Z, X*), which is Z*@ 0 X*, is precisely the set of all 

compact operators from Z into X*. 

Now we are going to show that in case of sun-reflexivity the sun-dual of the 

c:-tensor product can be described easily. We already noted in section 1 that a 

semigroup is sun-reflexive if and only if the resolvent of the generator is weakly 

compact. 

THEOREM 3.5: Let Z be sun-reflexive with respect to T0 (t). Then the sun-dual 

of the semigroup T( t) induced on Z ®0 X is the closure iii Z* @,,X* of z0 0 X*. 

Proof: Given z* E Z* and x* EX* then T*(t)(z* 0 x*) = (T;(t)z*) 0 x*. It 

follows that 

llT*(t)(z* 0 x*) - z*@ x*ll = ll(T0*(t)z* - z*)ll · llx*ll· 

This shows that if z* E z0 then z* @x* E ( Z ®eX )0. Hence also the closed linear 

subspace of Z*@,,.X* generated by {z* 0 x*: z* E z0,x• EX*} is contained in 

(X@,Z) 8 . 

To prove the reverse inclusion, we first claim that (Z@,.X)8 c Z*®irX*. For 

the rest of the proof we fix one>. E e(A0 ). For SE (Z@,X)* = J:.i(Z,X*) we 

have by Proposition 3.3 R(>., A)*(S) = S oR(>., Ao). Since Z is sun-reflexive with 

respect to T0 (t), it follows that R(>.,A0 ) is weakly compact. From a theorem of 

Grothendieck (see [DU, Thm VIII.4.12)) it follows that So R( >.,Ao) is nuclear. 

Thus R(,\, A)*(S) E Z*®rrX* and by Proposition 1.1 the claim is proved. 

Thus if we fix SE .Ci(Z,X*), then for arbitrary c > 0 there exist z; E Z*, 

x; E X* such that 
n 

i=I 

It follows that 

lls o R(>.,A0 ) 2 - ~ R(>.,Ao)*zi ® x:lli 
= II (So R(>., Ao) - ~ zi 0 x;) o R(>., Ao)ll; < c · llR(>., Ao)ll· 
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Since R(,\,A0 )*zi E Z 8 it follows that R(,\,A)*2 (S) =So R(.X,A0 )2 is in the 

closed linear subspace of Z*@1rX" generated by {z* © x*: z* E z0,x• EX*}. 

The conclusion now follows from Proposition 1.1. II 

We point out that the 7r-tensor product is not injective, i.e. given a subspace 

Y of Z*, then in general Y@"X* cannot be identified with the closed linear 

subspace of Z*@"X* generated by {y@x* : y E Y, x* EX*}. There are special 

cases where this is true, e.g. if Y is complemented in Z* or if X is a Ca(!J)-space 

respectively. Thus we have the following corollary. 

COROLLARY 3.6: If in addition z0 is complemented in Z* or x = Co(!J), n 
locally compact, then (Z@,,X) 8 = z0@"X*. 

If To(t) is a positive semigroup on a Banach lattice Z whose dual has order 

continuous norm, then by a result of de Pagter (to be published), z0 is a pro­

jection band in Z*. This applies in particular to the case Z = C0 (Q) and we 

obtain: 

COROLLARY 3.7: Suppose T0 (t) is a positive semigroup on C0 (Q). Then there 

exists a measure space (D, f:, µ) such that C0(il; X)0 = L 1 (jt; X*). 

Now we consider the case of the n-tensor product. We are looking for condi­

tions, ensuring that the sun-dual of X®"Z can be identified with z0@.,X*. In 

contrast to Theorem 3.5 now sun-reflexivity (weak compactness of the resolvent) 

is not sufficient as Example 3.10 below shows. If we require compactness of the 

resolvent however, then the sun-dual can be described in a nice way. 

THEOREM 3.8: Assume that the generator oftbe semigroup T0 (t) on Z bas com­

pact resolvent, then for the semigroup induced on Z@"X we have (Z@"X)0 = 
z 0 0.,x·. 

Proof: As in the proof of Theorem 3.5 it can be shown that z0@.,X* is contained 

in the sun-dual of Z®,.X. To prove the converse inclusion we observe that 

R( .\Ao) being compact implies that for c > 0 there exist z; E Z and zi E z• 
such that 

m 

\\R(A,Ao) - I:>i ® z;\\ < c:. 
i=l 
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Thus given SE .C(Z,X*) then 

llSoR(,\,Ao)2 -tR(,\,Ao)*zi @Sz;ll 

= lls o ( R(A, Ao) - t zi © z;) o R(,\, A0 )11 

:::; c:l!SllllR(,\, Ao)I!. 

It follows that R(,\,A)* 2 (S) can be approximated with respect to the operator 

norm by elements of z0 © X*. Since the operator norm induces the c--norm 

it follows that R(,\,A)* 2(S) E z0@,X* for every S E C(Z,X*). Then from 

Proposition 1.1 we can conclude that (Z@,,.X)0 c z0@.X*. I 

The case Z = L1 (µ) was already proved in [Pal]. On spaces C0 (!1), Q locally 

compact, or spaces L1(µ), a resolvent is weakly compact if and only it is compact 

(see [Pa2]). Therefore the following corollary is an immediate consequence of 

Theorem 3.8. 

COROLLARY 3.9: Assume that z is either a space L1(µ) or a space Co(!l), n 
locally compact. If the semigroup T0 (t) is sun-reflexive then 

In general weak compactness of the resolvent is not enough in Theorem 3.8, as 

the following example shows. 

Example 3.10: Consider the semigroup of translations on Z = LP(JR). For 

1 < p < oo we have LP(JR)0 = LP(IR)* = U(JR) with l/p + l/q = 1 and the 

resolvent is weakly compact, Z being reflexive. Assuming that 

(LP(JR)@,,.X)8 = V(JR)@,X* = {TE .C(LP(JR), X*) : T is compact } 

then from Proposition 3.3 and Proposition 1.1 we conclude that So R(,\, Ao) is 

compact for every SE .C(LP(IR),X*). Choosing X = U(JR) and S the identity 

on LP(JR) shows that R(,\, Ao) has to be compact, which is not the case (for then 

Ao must have countable spectrum, but it is well-known that CT(A0 ) = ilR). 

In case p = 1 the resolvent of the ·translation group even fails to be weakly 

compact and the conclusion of Theorem 3.8 again does not hold, as we will now 

show. I 
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THEOREM 3.11: If T0(t) is the translation group on L1(JR.) then L1 (1R.; X)0 = 
BUC(R; X*). 

Proof: First we claim that R()., Ao) is representable [Pal). For almost alls we 

have 

(R(.A,Ao)f)(s) = fo00 e->.tf(s+t) dt 

= 1-: e->.(t-")X[s,oo)(t)/(t) dt. 

Define g: IR ~ L1(R) by (g(t))(s) = e->-(t-")X[ .. ,oo)(t). We have 

Since also g is continuous as a map R ~ L1(JR), hence in particular strongly 

measurable, this shows that g E L00(R; L1(JR.)) and our claim is proved. From 

Proposition 2.2 in [Pal) we deduce that L1(JR; X)0 C L00 (JR.; X*). Let h E 

L1(JR; X)0. We claim that h is continuous. Let <Pn be any continuous function 

with compact support such that <Pn(t) = 1 for all t E [-n, n]. Clearly it suffices to 

prove that h</>n is continuous for all n. Since each h<Pn is compactly supported and 

since obviously h E L1 (JR.; X)0 implies h</>n E L1 (IR; X)0, we may consider h<fin as 

an element of L1([-Nn, Nn); X)8 for some Nn large enough. Since £ 1([-Nn, Nn]) 

is 0-refiexive with respect to translation (see e.g. [HPh)) we have by Theorem 

3.9 that 

L1([-Nn,Nn];X)8 = L1([-Nn,Nn])8 @eX* c C([-N,.,N,,])®eX* 

= C([-Nn,Nn];X*). 

Hence h<fin E C([-Nn,Nn];X*). This proves that L1(R;X)0 C C(IR;X*). But 

then we must have that actually h E BUC(IR; X*): h is bounded as an element 

of L 00(1R;X*), and u:o.iformly continuous since otherwise the map t i-t T*(t)h is 

easily seen not to be norm-continuous. This shows L1(1R.;X)0 C BUC(R; X*). 
The reverse inclusion holds trivially. I 

This theorem is the £!-analogue of Theorem 2.2. Now in general it is not true 

that 



Vol. 77, 1992 SEMIGROUPS ACTING ON FUNCTION SPACES 323 

holds. In fact, any function in BUC(IR)@eX must have relatively compact range 

whereas it is easy to construct functions in BUC(IR; Co(IR)) not having relatively 

compact range. Just let f E Co(IR) be any non-zero function. Then the set of 

translates {T(t)f : t E IR} is not relatively compact, so by defining F(t) = T(t)f 

we obtain an FE BUC(JR; Co(IR)) which does not have relatively compact range. 

Remark 3.12: (a) The above examples show that for translation on Z = LP(R), 

1 S p < oo the conclusion of Theorem 3.8 does not hold for every X. 

In fact, let Z be any fixed Banach space and let T0 (t) be a C0-semigroup 

on Z with generator Ao. We claim that if for every X the formula (Z@11:X)0 = 

Z 8 @,,X* holds, then R(>., Ao) must be compact. Take X = Z*. Let X = z• and 

assume (Z@11"X) 8 = Z 8 0.,X*. Then R(>., A)*(T) = To R(>., Ao) is a compact 

operator for every TE (Z@rrX)* = .C(Z,X*) = .C(Z,Z**). In particular, letting 

T : Z -> Z** be the canonical embedding, it follows that R( >.,Ao) itself is 

compact. See also [Pal], where X = 100 is taken. 

(b) Concerning 3.5 the situation is different and weak compactness of R( >.,Ao) 

is not necessary in order that (Z@.,X)0 = z0 0 X·z·®~x· holds for every Ba­

nach space X. In fact, an inspection of the proof of Theorem 3.5 shows that a 

necessary and sufficient condition for this is that To R( >.,Ao) is nuclear for every 

operator T E £i(z, X*). An example of a semigroup without weakly compact 

resolvent but satisfying this condition (by Theorem 2.2 !) is translation in Co(R). 

By combining 3.5 and 3.8 one can under suitable assumptions describe the 

bi-sun-dual of the s- and the 7r-tensor product. In order to apply 3.5 and 3.8 we 

formally need the assumption that z0• has the a.p. The proof below however 

shows that it suffices to have that Z* has the a.p. II 

For L 1 (µ)011"X the following result was first proved by de Pagter (unpublished). 

PROPOSITION 3.13: Suppose R(>.,Ao) is compact. Then: 

(i) (Z071'X)00 is the closure in z0 •®"X** of Z 0 X**. If eitlier Z is com­

plemented in z0• or X is an L1 (µ)-space then (Z@1rX)88 = Z@rrX**. 

(ii) If either z0 is complemented in Z* or X = C0 (0), 0 locally compact 

Hausdorff, then (Z0eX)88 = Z@eX**. 

Proof: First we prove (ii). By Corollary 3.6 we have (Z@e.>()(:) = zc'1@11'x•. 

The conclusion now follows from Theorem 3.8 in case zl:l• has the a.p. However, 

inspection of the proof of Theorem 3.8 shows that the a.p. was needed for 

showing that R( >.,Ao) could be approximated by finite rank operators in the 
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uniform operator topology. Hence what we must show in the present case is that 

R( >.,A~) can be approximated by finite rank operators. That this is true when Z* 
has the a.p., i.e. under Assumption 3.4 (regardless whether z0* has the a.p.), is 

shown by the following argument. Fix>. E e(Ao)- Since Z* has the a.p., R(>., Ao) 
is the uniform limit of finite rank operators Clin E Z* ® Z. Then forµ E e(Ao), 
R(>.,A0 )R(µ,Ao) is the uniform limit of 41nR(µ,Ao)- Since R(µ,Ao)*Z* c z0 

it follows that .PnR(µ,Ao) E Z8 ® Z. Moreover, 

jjR(>.,Ao)*R(µ,Ao)* - (.PnR(µ,Ao))*il = llR(µ,Ao)R(>.,Ao)- Cli,,R(µ,Ao)ll, 

hence µR(>.,A~)R(µ,A~) = µR(>.,Ao)*R(µ,Ao)*lz0 is the uniform limit of 

µClinR(µ,Ao)*lz0 E Z 181 z° C Z8 * 181 Z8 . Since 

R(>.,A~) = lim µR(>.,A~)R(µ,A~) 
1.1-00 

in the uniform operator topology (this follows from the resolvent equation for 

A~), we can conclude that R(>.,A~) can be approximated by finite rank opera­

tors. As we noted above, from these considerations we can conclude that 

and since R( >.,Ao) is compact we have z00 = Z, and (ii) is proved. 

The first assertion of (i) is proved by a similar argument. Now suppose that Z 

is complemented in z0•. Then trivially every TE C(Z, X*) admits an extension 

to an operator in .C(Z0*,X*). Also, if X is an L1(µ)-space, then X* is injective 

[LT] and this again implies that every T E C(Z, X*) admits an extension to an 

operator in £(Z0*, X*). In other words, in either case the natural map (induced 

by restriction 7r : z0• --+ Z) 

7r: C(Z8 *,X*)--+ C(Z,X*) 

is surjective. But since C(Y,X*) = (Y®,,X)* this shows that the canonical 

inclusion map 

i : z ®,,x --+ z0 • ®,,x 

is an embedding. Applying this to X** instead of X (and noting that X*** is 

an L1(µ)-space if X* is) we obtain that Z®,,X** can be regarded as a closed 

subspace of z0•@.,..X** and this proves the second assertion. I 
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4. The .e-Tensor Product 

It is not possible to identify the space LP(µ; X), 1 < p < oo, with either a 

c.- or a 71"-tensor product. In this case the so-called I-tensor product solves the 

problem. It was introduced about 1970 by Chaney, Fremlin, Levin and Schaefer 

[Ch, Frl, 53]. In order to define it, first of all one has to introduce the class of 

cone absolutely summing operators. The following result is taken from [52, IV.3]. 

PROPOSITION 4.1: Let Z be a Banach lattice, X a Banach space. For a bounded 

linear map T: Z--+ X the following are equivalent: 

(i) 3C > 0 such that for every 0 S Ji, ... ,fn E Z, L;~=I llTf;JJ $ CJI L;~=I f;JJ; 
(ii) For every positive sequence (fi) in Z such that I.:::1 fi converges, the sum 

I.:::1 !IT fdl converges; 

(iii) There is an L 1(µ)-space such that T admits a factorization Z ~ L1(µ) ~ X 

with T1 ~ O; 

(iv) 3 0 S </> E Z* such that for all f E Z, llTJll S (</>, lfl); 
(v) The set {T*x* : llx*JI::::; l} is order bounded in Z*. 

Definition 4.2: T : Z --+ X is called cone absolutely summing ( c.a.s.) if one 

of the equivalent assertions of Proposition 4.1 is satisfied. The set of all c.a.s 

operators is denoted by £ 1(Z,X). For TE £ 1(Z,X) define 

JITll1 := inf{C: (i) in Proposition 4.1 holds with constant C}. 

£ 1(Z,X) is a Banach space and contains the finite-rank operators. If X is a 

Banach lattice then £ 1(Z,X) is a Banach lattice as well. 

The I-nuclear operators N 1(Z,X) are defined as the closure of the finite rank 

operators in £ 1(Z, X). 

As a subspace of £(Z,X), £ 1(Z,X) has the following ideal property: given 

T E £ 1(Z,X), R E £(X) and S E .C(Z) such that its modulus !SI exists, then 

Ro To SE £ 1(Z,X) and 

llR o To s111 s llRll llTll1 II 1s1 11. 

Let u = I:~=l z; 0 x;. By the formula Tuz* := L;~=l (z*, z;)x; we regard Z 0 X 

as a linear subspace of £ 1(Z*,X). On Z 0 X we define the I-norm 11·111 to 

be the norm induced by £ 1(Z*,X). The Banach space Z@1X is defined to be 

the completion of Z 0 X with respect to the !-norm. In this way Z@1X can be 

identified with the closure of Z 0 X in the space £ 1 ( Z *, X). 
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In this way Z*®1X can be identified with the closure of Z* ® X in £ 1( Z**, X). 

Now elements 'U = E~=l zi ® x; E z· ® x can also be identified with an operator 

Tu : Z -+ X (rather than Z** -+ X), by 

n 

Tu(z) = °E(zi,z)xi. 
i=l 

The following proposition states that indeed Z*®1X becomes in this way the 

closure of Z*®X in.C1(Z,X). In fact, the.C1(Z,X)-closure of Z*®X is precisely 

.N1(Z,X). 

PROPOSITION 4.3: Z*tf91X can be identi:fi.ed isometrically witli .N1(Z, X). 

Proof: By definition, .N1(Z,X) is the closure of the finite rank operators in 

.C1(Z,X). Regarding a finite rank operator Z -+ X as an element of z• ® X 

as above, we see that .N1(Z,X) is the closure of Z* ® X in .C1(Z,X). On the 

other hand, by definition Z*@1X is the .C1(Z**,X)-closure of Z* ® X. Therefore 

it suffices to show that the .C1(Z,X)-norm and the .C1(Z**,X)-norm agree on 

Z* ® X. To this end, let u E Z* ® X be given. On the one hand, we can consider 

u as a c.a.s. map T,. : Z** --+ X. This map is also c.a.s. as a map Z** --+ X** 

and 

llTull.cr(z••,x) = llT,.ll.cr(z .. ,x••)-

On the other hand we may regard u as a c.a.s. map T,. : Z --+ X. In this case 

i';•: Z** --+ X** is c.a.s. [S2, IV Cor. 3.8] and 

But clearly as maps Z** --+ X** we have Tu = 'i;•, so combining the two above 

equalities gives the desired result. I 

The map j : LP(µ) ® X --+ LP(µ;X), 1 $ p < oo, defined by j(f ® x)(t) = 

J(t)x extends to an isometric isomorphism from LP(µ)®1X onto LP(µ; X). In a 

similar way one has Co(!l)®1X = C0(!l; X). This is summarized in the following 

proposition [S2, IV.7 Examples 1,4]. 

PROPOSITION 4.4: One has LP(µ; X) = L1'(µ)@1X, 1 $ p < oo, and C0 (!l; X) = 

Co(!l)®,x. 

One of the surprising properties of the I-tensor product is that the dual is given 

by the same class of operators which is used to define it (the 1-norm is 'self-dual'). 
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More precisely, one has [S2, IV.7.4] 

Now we want to describe the sun-dual of Z®1X with respect to semigroups 

induced by a semigroup on one of the factors. Since (in contrast to the c- and 71'­

tensor product) the /-tensor product is not symmetric (even when X is a Banach 

lattice as well) we have to distinguish the two cases where To(t) is given on Z or 

onX. 

First we consider the case where we are given a C0 -semigroup T0 (t) on X with 

generator Ao. As in Section 3, id®T0 (t) := idz®To(t) extends to a Co-semigroup 

on ze;,x. 

THEOREM 4.5: Each of tlie following conditions implies (Z01X)8 = Z*01X8 : 

(i) R(A., Ao) is compact; 

(ii) R(A., Ao) is weakly compact and Z does not contain a sublattice isomorphic 

to £1 • 

Proof: The inclusion ::::> can be proved as in 3.5. 

For TE £ 1(Z,X*) one has as in Proposition 3.3 that 

R(A., A)*(T) = R(A.,Ao)* o T. 

Hence to prove the converse inclusion by Proposition 4.3 we have to show that 

R( A., Ao)* o T is I-nuclear as a mapping Z -+ X 8 . 

(i) Since T: z-+ X* is c.a.s, by Proposition 4.l(iii) T has a factorization 

with T1 ~ 0. Hence R(A.,A0 )* oT factorizes as 

T1 1( ) r; ·x Z-+L µ-+ , 

with T~ = R(A.,Ao)* 0 y2 compact and taking values in X 8 . Thus by [S2, Prop. 

IV.8.2] R(A., Ao)* o T : Z -+ X 8 is I-nuclear. 
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(ii) By a result due to Schlotterbeck-Lotz (personal communication), if Y 

is reflexive and Z contains no sublattice isomorphic to C1, then N 1(Z, Y) = 

£.l(Z, Y). Since by assumption R(>.., A0 )* : X* ........ x0 is weakly compact, by 

a well-known result of Davis-Figiel-Johnson-Pelczynski [DFJP] there exists a 

reflexive space Y such that R( >..,Ao)* admits the factorization 

Since T is c.a.s., the operator R1 o T : Z ........ Y is c.a.s. as well and we conclude 

that R1 o T is I-nuclear. Then R(>.., Ao)* o T = R2 o R1 o T is !-nuclear as well. 

I 

Note that both Z = C0 (D) and Z = LP(µ), 1 < p < oo do not contain C1 as a 

sublattice. 

Now we will discuss the case where we are given a Co-semigroup To(t) on Z. 

In general for a bounded linear operator T on Z, the operator T Q9 id does not 

admit an extension to a bounded operator on Z@1X. If however T possesses a 

modulus !TI, then the extension exists and 

llT0iidll '.S II !TI II· 

Therefore in order to be sure that To(t)QSI id admits an extension to a Co­

semigroup T(t) = To(t)®1id of bounded operators on Z®1X, we will assume that 

T0 (t) is a positive semigroup (see [Na]). Then for).. sufficiently large R(>..,Ao) is 

positive, hence R(A, Ao )@id extends to a bounded linear operator on Z®1X. One 

easily shows that this extension equals R(>..,A), the resolvent of the generator A 

of T(t). Similarly as in Proposition 3.3 one has that R(>.., A)* considered as an 

operator on .C1(Z, X*) = (Z@1X)* is given by 

R(>.., A)*(T) =To R(>.., A0 ). 

In order to be able to identify (Z01X)0 with z0@1X* we need a certain com­

pactness property of R(>.., Ao) which we will describe next. 

Defi.nition 4.6: An operator T E .C(Z) is called r-compact if its modulus IT! 
exists and there is a sequence of finite rank operators <I>n E Z* ® Z such that 

lim 11 !T- cl>nl II= 0. 
n->oc 
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The adjoint of an r-compact operator is r-compact again. Since llTll $ 11 ITI II, 
every r-compact operator is compact. In case Z = L 1(µ) or z = C0 (Q) the 

converse is true (see [S2]). For Z = L2(µ) the situation is different. In [Fr2j an 

example is given of a positive compact operator on L2 (µ) which is not 1·-compact. 

However, in L2 (µ) every Hilbert-Schmidt operator is r-compact. 

Note that a sufficient condition for r-compactness for a positive T is the exis­

tence of a positive sequence 4>n of finite rank operators satisfying O ::; -Pn ::; T 

a.nd llT - 4>nll -+ 0. This is a convenient criterion to check, e.g., whether kernel 

operators are r-compact. 

THEOREM 4.7: Suppose To(t) is a positive C0-semigroup on a Banach lattice Z 

whose resolvent R(>.,Ao) is r-compact for sufficiently large>.. Then (Z®1X)0 is 

the closure in Z*@1X* of z0 ® X*. H z0 is a sublattice of Z* then (Z®1X)0 = 
z0@1X*. 

Proof: As before, we will show that R(>.,A)2 *(.C1(Z,X*)) C span(Z0 ©X*), 

the closure taken in Z*®1X*. By assumption there are finite rank operators -Pn 

satisfying ll IR(..\,Ao)- -Pnl ll-+ 0. Given TE .C1(Z,X*) it follows that 

llR(>., A)2*(T) - To cpn o R(>., Ao)ll1 = !IT o (R(>., Ao) - IP,.) o R(>., Ao )111 

$ llTll1 11 IR(>.,Ao) - .P,.l II llR(..\,Ao)ll 

-+ 0. 

Moreover if cpn = 2:~1 zi ®z; then To.PnoR(>., Ao)= I:;:1 R(>.,Ao)*zi ©Tz; E 

z0 ® X* and the first part of the theorem is proved. The additional statement 

is a consequence of the left-injectivity of the I-tensor product in the sense that if 

Z1 is a sublattice of Z2 , then Z 1 ®1X can be identified with a closed subspace of 

Z2®1X (see [S2]). I 

By the result of de Pagter mentioned after 3.6, the second statement of 4. 7 

applies to the case where Z* has order continuous norm. 

COROLLARY 4.8: Suppose Z is a Banach lattice with Z* having order continuous 

norm and let T0 (t) be a positive semigroup on Z. If R(>.,Ao) is r-compact for 

sufficiently large>., then (Z®1X)88 = Z©1X**. 

Proof: Since R(>.,Ao) is r-compact, hence compact, we have Z88 = Z. Now 

since Z* has order continuous norm, by the result of de Pagter Z 8 is a projection 
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band in z•. Hence we can apply Theorem 4.7 to find that (Z@1X)0 = Z 8 ®1X*. 

Moreover, the canonical embedding Z -+ Z 8 * factorizes as Z -+ Z** -+ z0• 
where the second map is the adjoint of the inclusion map i : z0 --+ Z*. But 

since z0 is a band, i* is a lattice homomorphism. Combining this with the 

embedding Z -+ Z** it follows that z00 = Z is a sublattice of z0•. Hence we 

can apply 4.7 to the positive semigroup T08 (t) on Z 8 . Note that this semigroup 

has r-compact resolvent as well. Indeed, R(.A,A0 )*: Z*-+ Z* is r-compact and 

z0 is complemented in Z* by a positive projection. 111 

Weak compactness is not sufficient for the conclusion of Theorem 4. 7 to hold: 

take any uniformly continuous semigroup on LP(µ), 1 < p < oo and note that in 

general LP(µ; X)* = (LP(µ)@1X)* f. Lq(µ)®1X* = U(µ; X*). 

Remark 4. 9: An inspection of the proof of Theorem 4. 7 shows that the as­

sumption of r-compactness of the resolvent can be weakened to the following 

assumption: To R(A.,Ao) is I-nuclear for every TE .C1(Z,X*). This condition 

is satisfied when e.g. Z = LP (µ) ( 1 < p < oo) and the resolvent R( ,\, Ao ) is 

represented by a positive measurable kernel k, i.e., 

( R()., Ao )f)(x) = j k(x, y )f (y) dµ(y) 

where k satisfies the condition 

s~p j k(x,y)q dµ(y) < oo, 

for µ-a.a. x, 

1 1 
-+-=l. 
p q 

This can be seen as follows. If TE .C1(LP(µ),X*) then by 4.l(iv) there exists a 

function <P E U(µ), <P ~ 0 such that llTfll :::; (<P, IJI) for all f E LP(µ). Thus 

T has an extension to a bounded operator on L1 (cpdµ), which we denote by T1 . 

Let i: LP(µ) -+ L1(<Pdµ) be the canonical embedding. Then i o R().., Ao) is also 

represented by k. In order to show that i o R( ,\,Ao) is !-nuclear we have to verify 

that k E Lq(µ)@1L1(ifJdµ) = Lq(µ; L 1(ifJdµ)). By Jensen's inequality, 

flf k(x,y)<f>(x) dµ(x),qdµ(y) 5 j j k(x,y)qifJ(x)qd1i(x)dµ(y) 

= j (j k(x,y)qdµ(y))<f>(x)qdµ(x) 

5 (s~p j k(x,y)qdµ(y)) · ll</>11:. 
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Thus k E Lq(µ; L1( </>dµ)) and hence ioR(>., Ao) is I-nuclear. Then ToR(>., Ao) = 
T1 o i o R(.A, Ao) is !-nuclear as well. 

This criterion can be used for the translation group on £P(R) (1 < p < oo). In 

this case R(.A, Ao) is given by 

(R(>.,Ao)f)(x) = 100 
e-"(x-y) f(y) dy, 

so k(x, y) = e-"(x-y)X(x,oo)- Hence for each x, 

{ k(x, y)q dy = 1= e.>..q(x-y) dy = -2.._. 
jR x Aq 

Therefore we obtain: 

THEOREM 4.10: Let To(t) be tbe translation group on LP(R), 1 < p < oo. Then 

LP(!R; X)0 = Lq(R; X*). 

This example shows that the criterion from Remark 4.9 is weaker that the one 

of Theorem 4.7: for the translation group on £P(R) the resolvent is not compact 

and therefore certainly not r-compact. 

We close with an application of Theorems 4.5 and 4. 7 to vector valued £P(µ )­

spaces. 

THEOREM 4.11: Consider a space £P(µ), 1 < p < oo, and an arbitrary Banach 

space X. 
(i) Given a C0 -semigroup T0(t) on X which is sun-reflexive, then the induced 

semigroup on LP(µ; X) is sun-reflexive as well. Moreover, 

(ii) Given a positive C0 -semigroup on LP(µ) with r-compact resolvent, then for 

the semigroup induced on £P(µ;X) we have £P(µ;X) 8 = Lq(µ;X*) and 

£P(µ; X)00 = LP(µ; X**). 

Proof: (i) £1 does not embed into the reflexive space £P(µ). (ii) Since LP(µ) is 

reflexive, LP(µ)8 = Lq(µ) is a sublattice of L9(µ). I 
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