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In this paper the correlation between two multivariate martingales is studied. This correlation can be 
expressed in a nondecreasing process, that remains zero in the case of linear dependence. A key result 
is an integral representation for this process. 

martingale * quadratic variation * correlation * Moore-Penrose inverse 

1. Introduction 

Let (D, F, P) be a complete filtered probability space. Let M:Dx[O,oo)->IR" and 
m: D x [O, oo)-> IRk be locally square integrable martingales. We assume that both 
Mo and m0 are zero. 

Denote by (m, M) the predictable covariation process of m and M. So (m, /l.'f>: 11 x 
[O, oo)->IRkxn and if m; and Mi are the ith and jth components of m and M 
respectively, then the ij entry (m, M);; of (m, M) equals the real valued process 
(m;, Mi). (m) = (m, m) and (M) = (M, M) are defined likewise. 

Assume now that for some t > 0 the matrices (m), and (M), are invertible. Then, 
parallel to what one can do when dealing with multivariate random variables, it is 
natural to express the correlation between m and M over the interval [O, t] by 

p(m, M), = (m), 112(m, M),(M)~ 1 ' 2 • 

Let c(m, ML= (m) 1 -(m, M),(M)~ 1 (M, m),. Then we have the identity 

I- p(m, M),p(M, m), = (m) 1
10 c(m, M),(m), 1 ~. 

It follows that c( m, M), carries the same amount of information about the correlation 
between m and M as p(m, M),. It turns out that it is more convenient to study 
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c( m, ,\1) 1 than p( m, M ),. The process c(m, M) is of interest in its own right, because 

it appears at several places in probability and statistics. For example, this process -

or rather a slightly different one - appears in Dzhaparidze and Spreij ( 1989), where 

we studied a strong law of large numbers for matingales. The results of the present 

paper offer an alternative approach to such a study. 
In the situation where m and M are Gaussian martingales with deterministic 

brackets c( m, M) 1 has an interpretation as an ( L1 -) projection error. Indeed 

<m, M) 1(M);· 1 M 1 can be considered as an L1-projection of m, on M, and it is also 

the conditional expectation of m, given M, and the conditional covariance matrix 

of m, given M, is precisely c(m, M),. See Lipster and Shiryaev (1979, Theorem 

13.l ), which also describes the case where the inverse doesn't exist. In the general 

framework that we consider in the present paper (we don't assume that the brackets 

are deterministic) it is not clear whether a similar interpretation holds. 

In a statistical context c( m, M) can be interpreted as a measure of deficiency 

when comparing an arbitrary estimator with an optimal one. Consider for instance 

the following simple regression example. Let J'; = xT f3 + £; for i = 1, ... , n. Assume 

that the E 's are independent standard normal random variables, f3 E IR' and that the 

regressors are deterministic. Write YT=[y 1 , ••• ,y11 ], X=[x 1 , ••• ,x11 ]. Let Q be 

some positive definite matrix and denote by ffi the minimizer of the quadratic form 
( Y-XT{3) 1 Q( Y-X 1 {3). Then §=(XQXT)-'XQY, assuming that X has rank k. 

For the special case that Q is equal to the identity matrix we have as the minimizer 
T I A 

[3* == (XX ) ·· XY The Gauss-Markov theorem states that Cov(f3);;, Cov(/3*). Hence 

o~ XQX 1 (Cov(§)-Cov(/3*))XQX'= XQ 1XT-XQXT(XXT) I XQXT. 

Define the martingales m and M by 

m, = I -'fi and 
i I 

I< 

M, = I I X;QijEj. 
j__;.1 i---! 

Then the right hand side of the last inequality is just c( m, M) 11 • For more general 

estimation problems we refer to Dzhaparidze and Spreij (1990) for details. 

In the present paper we drop the restrictions that (m), and (M), are invertible. 

So we have to replace (M); 1 in the definition of c(m, M), by a suitable generalized 

inverse. The Moore-Penrose inverse turns out to be a good choice. Working with 

a generalized inverse however complicates the analysis of c(m, M) considerably. 

The rest of the paper is organized as follows. In Section 2 we describe some 

properties of (M), its Moore-Penrose inverse process (M) + and invariance properties 

of Munder a to (M), related orthogonal projection. Section 3 contains an important 

integral representation of c(m, M). In Section 4 linear dependence between m and 

M is defined by c(m, M) = 0 and characterized by the property that there is a 

constant (random!) matrix C such that m =CM. See Example 1 in the next section 
for a motivating example. 

The familiar case of linear dependence where m and M are replaced with random 
variables is easily recognized. 
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2. Some technical results 

In this section we describe some properties of the process (M). (M) takes its values 

in the space of positive semi definite n x n matrices Pf',,, and if t > s, then (M), - (M), E 

r!J n· 

For fixed t, w(M),=(M),(w) may have non trivial kernel. This is typically the 

case if M, =I:~i X;e;, where e; is a real valued martingale difference sequence and 

x and IR"-valued predictable process. Then (M), for t < n is always a singlular 

matrix. For t > s we always have Im(M), ::::i Im(M)" where Im(M), is the image 

space of ( M) ,, a linear subspace of IR". 

Define r: n x [O, CO)-'> {O, ... ' n} by 

r, =dim Im(M), = rank(M),. 

Then r is a predictable process (see Proposition 2.1). Although (M) is a right 

continuous process, r may fail to be right (or left) continuous. See Example 2 

below. Define the stopping times Tk (k = 0, ... , n + 1) by T0 = 0 and T, t 1 = 

inf{t > T,: r, > rTJ (inf 0 =co). Then each T,: n-'> [O, co], and T,, + 1 =co. The T, are 

in general not predictable (see Example 1 ), which is one of the sources of the 

technical complexity in the analysis hereafter. For ( w, t) E] T" Tu 1[ we have that 

Im(M), does not depend on t, and hence r is constant on this stochastic interval. 

So we can find a (random) matrix F( k) of size n x r, such that the columns of F( k) 

span Im(M), and F(k)TF(k) =I,,, the r, x r, identity matrix. Similarly we can find 

matrices G(k) of size n x rr, 1 {r,, x/ such that the columns of G(k) span 

Im(Mh,l{r"".1 and such that G(k)TG(k)= J,.,, 111 , q. Moreover, since Im(M),::::i 

Im(M), for t>s, we can always assume that F(k) is of the form [G(k), U,(k)], 

where U1 (k) is a n x (r, - rr, 1 1,. ·-"·/) matrix for (w, t) E TI Tk, Tk, 1[, and likewise G( k) 

is of the form [F(k-l),U 2(k)]. Then for (w,t)E]Tk.Tk+i[ there exists a r,xr, 

matrix V,(k) such that 

(M), = F(k) V,(k)F(k)r 

and there exists an rr, 1 { r,. , 1 x rr, 11 r,. •c/ matrix W( k) such that 

(M)r, l{T,<x} = G(k) W(k)Q(k)T. 

Notice that the V,(k) and the W(k) are in general not diagonal. Hence 

11 11 

(M).= I l11r,,r,,.,1F(k)V.(k)F(k)T+ L l11I,1G(k)W(k)G(k)T. (2.1) 
k~O k~o 

On the sets where the V,(k) and W(k) are defined, these matrices are invertible. 

Therefore we can define the generalized inverse process (Mt by 

n I! 

<M)+ = I 1F,.r,,.i11F(kl v.ckr 1 FCklT +I 1UT,,o(k) w(k)-'o(k)T. c2.2) 
k-0 k-0 

Proposition 2.1. (M): defined by equation (2.2) is for each t the Moore-Penrose 

inverse of (M), and rand (Mt are predictable processes. 
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Proof. First we show that the map rank:IH"'x" -7{0, ... , m 11 n} is upper semi­

continuous, that is the sets GP= {A E IH"' xn: rank A? p} are open in the ordinary 

topology on IH"' '". Let A E GP, and rank A= q? p. Then A contains a submatrix 

A,, E IH 4 " 1 with rank A,,= q. Let {sd c IH""" be a sequence of matrices converging 

to zero. Let E4" be the submatrix of Ek that is obtained in the same was as A,1, that 

is by deleting the same rows and columns. Then limk-a: det(A, + i::4k) ¥- 0. (by 

continuity of the determinant). Hence rank(A, + s<J,,) = q for all k large enough and 

consequently rank( A+ E")? q for the same k. This shows that GP is open. As a 

consequence rank is a (Borel) measurable map. Since r is the composition r = 
rank (M), it is predictable. Since (M), and (M): are both symmetric and since they 

commute, it follows from Lancaster and Tismenetsky (1985, p. 432), that (M)t is 

the Moore-Penrose inverse of (M),. To show predictability of (Mt, we need the 

following characterization of the Moore-Penrose inverse for any real matrix R: R + = 
lim" _ ,( R r R + (1/ 11) I) 1R1. That this characterization holds is easily seen for posi­

tive semidenfinite matrices (see the appendix). For the general case with a consider­

ably more difficult proof we refer to Rao and Mitra ( 1971, Theorem 3.5.3 ). Apply 

this characterization to (M)s for any stopping time S to obtain that (M)+ as a limit 

of predictable processes is predictable too. D 

Remark. Proposition 2.1 really needs a proof, since another generalized inverse of 

(M), may not yield a predictable process. Consider the following example. 

(M), = [~ ~]. 
Let a, be an artibrary stochastic process, possibly not adapted. Then for t > 0, 

[ l/t a,,] 
a, ta~ 

is a generalized inverse of (M),, different from the Moore-Penrose inverse (which 

corresponds with a,= O), and viewed as a stochastic process it is in general not 

predictable. 

Example 1. Let N be the standard Poisson process. Define T = inf{ t > 0: N, = 1 }. Then 

T is a totally inaccessible stopping time. Define now the martingale M by M, = 

N, - t-(N,, T- t 1, T). Then (M), = t- t 11 T But now T 1 = inf{t > 0: (M), > O} = T 

So T1 is not predictable. Notice that r, = l{i>Tl is predictable. 

Let now k be an arbitrary Sfr°1 measurable random variable and K, = k 11, . ri. Then 

K is predictable (cf. Bremaud, 1981, p. 304) and m = K.M (the dot means stochastic 

integration) is a martingale indistinguishable from the product KM. Although K is 

not a constant, it is strightforward to show that c(m, M) = O (see the introduction 

for the definition of c(m, M)). We will return to this in Section 4. 

We need some technical properties of M and (M), to be used in Section 3. These 

are formulated in the next three lemmas. In the notation introduced above we have 

the following: 
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Lemma 2.2. On the set ·IT,< x we hare: 
! i .I Vi, ( k - l) = lim,, 1,. VI k l) exist.\ and i1 incertihle. 
\ii If flkl=G1k), then lim 111 , V,ikl= HH1. I( F\k =[Gikl.L: kl]. with 

U 1 ( k I non trivial, then we can write 

Y,(kl= R,(klR,(k) 1 

with 

R k . [a,(k) 
( •)"" 

I () 

decomposed in blocks of appropriate si:::es such that lim,, r. /.;) "''O. !im,; 1• t' k) = 0 
and lim,. 1, a,(k)a,(kl 1 = H'!kl. 

Proof. ( i) is obvious. 

(ii) If F( k) = G1 k ), then right continuity of (iii> yields the result. Assume there­
fore that F(kl=[G\kl, U,(k)]. Then 

[ W(kl OJ ( M) r = F( k ) F( k l 1, 
' 0 0 

with the zero blocks of appropriate dimension. 
Decompose V, (kl in blocks of the same dimension as 

Since V,( k) > O. we also have V11k l,, > 0. Since on TIT,, T, • 1IT also (M>, -<Ml r. ~ 0, 
we have that 

Hence 

[
V,(kl 11 -W(k) 

V,(kl.-:1 

V,(kl 11 -W(k)-V1(kl 1:-V1(kl;}V,(kl:-1?-0. 

Use the decomposition V,(k) = R,(klR,lk) 1 to write this inequality as 

a,(k)a,(k) 1 +b,(k)b,(k)1 - W(k) 

-b,(k lc,(k) r[c,(k)c,(k) 1 ] 1c,(k )b,(k )r? 0. 

But c,(k) is invertible, so this inequality becomes 

a,(kla,(kl 1 - W(k)?O. 

Right continuity of (M) gives lim,p, V,(k l11 = W(k J. So 

0 =Jim [ V,( k) 1 , - ~\/( k)J = lim [( a,(k )a,(k l 1 - W(k)) + b,( k )b,(k l 1 ). 
ii. Ti... ,_. r~ 

(2.3) 
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The term rn brackets is because of equation (2.3) the sum of two nonnegative 

matrices. Hence lim, 1 T, a,(k)a,(k)T = W(k) and lim,11, b,(k) = 0. Because 

lim, 11-,, V,(kb=O, we obtain limt1r, c,(k)=O. D 

Introduce the following notation. P, = (M),(M) ,C. Observe that P, for fixed ( t, w) 

is the orthogonal projection on Im(M), along Ker(M),. P as a process doesn't 

depend on ton] T., Tk+ 1[. It is, liker, nor right or left continuous at the Tk, although 

(trivially) left and right limits exist and are finite. Furthermore, for t > s, we have 

P,P, = P,P, = P,, because Im(M), c Im(M),. 

Lemma 2.3. M is indistinguishable from the stochastic integral P.M and from the 

product PM. 

Proof. P is predictable (from Proposition 2.1 ). Hence P.M defines again a marting­

ale. Then 

(M - P.M) = (( l - P).M) =I. (I - P) d(M)(l - P)'. 
() 

P d(M) = d(P(M)) = d(M) 

which makes the integral zero over] T" T,<+ 1[. On {Th< ro} we can apply the same 

argument if P1 , = P,, . Otherwise we get 

(J-P7;.)i1(M)r, =(/-PrJ[(M)r, -(M)r,] 

= -(!- Py,)(Mh,- = -(l - Pr;, )P7;, (Mh;, = 0, 

since Pr, PT, =PT, . Hence (M - P.M) is indistinguishable from the zero process. 

Consider now the product PM. On] T., Tk+i[ we have d( PM)= P dM. Let T1 <co. 

Then 

PT,MT, = Pr1'1Mr1 = i1(P.M)r1 = flMT, =Mr,. 

Now we use an induction argument. Let Tk < oo and assume that Pr,, ,Mr, 1 = Mr,,_ 1 • 

Then 

i1(P1;.MrJ =Pr,+ Mr, - Pr,-Mr,. 

= Pr,+11Mr, +(PT,+- PT,-JM1;,-

= llMr, +(P-r;,c -PT,-)(MT, -Mr, )+(P1,,+-Pr,.)Pr,,Mr,_, 

=flM1;, +(Pr,+-Pr,-l f PdM+O 
(7i. ,.T,) 

= ilM-r, + (PT,+-P-r,-)Pr,. f dM = i1MT,-
u;, 1.TJ. I 

Hence PM and M are indistinguishable. D 
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The covariation process (m, M) enjoys the following property. 

Lemma 2.4. (m, M) = (m, M)P. 

Proof. 

On {Tk <oo} we have 

= r l ur,J",u d(m, P.M), 
J10,1] 

= r lur,.1," 1 11 d(m, M), (by Lemma 2.3) 
J [ll.rj 

=.d(m, P.M)r, +(m, M)r,.(P1 , -P7,.)+(m, M)r,Pr,,. 

=.d(m, M).,, +(m, M)r, P1 , .. , 

289 

because the second term equals zero, as can be seen by the first part of the proof 

and by using an induction argument like in the proof of Lemma 2.3. By the same 

argument it follows that 

(m, M)r,.Pr,- = lim(m, M),P, = lim(m, M), =(m, M)r,_. 
t)T, t1Tk 

So (m, M)r,P7-,, =(m, M)r,. Combining this with the first part of the proof we get 

(m, M)=(m, M)P. 0 

Remark. Lemmas 2.3 and 2.4 as well the results in subsequent sections can be 

generalized by taking other generalized inverses of (M). Consider for instance once 

more the example in the remark after Proposition 2.1 Then 

Write 
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with W a standard Brownian motion, then P,M, = (P.M), = M,. However one 
is in general faced with the problem that (although P, is still a (non-orthogonal) 
projection) P fails to be a predictable process. So, proving a statement like in 
Lemma 2.3 will certainly be more difficult. We will leave this possible generalization 
aside, since for our purposes the specific choice of the Moore-Penrose inverse 

suffices. 

3. The process c(m, M) 

Let m and M be as in Section 1. Define the predictable process (related to the 
correlation between m and M) c(m, M): f2 x [O, oo) ~IRkxk by 

c(m, M)=(m)-(m, M)(Mt(M, m). 

The main result of this section is an integral representation for c( m, M ). The difficulty 
that we encounter is that (Mt and even (m, M)(Mt may not be right continuous. 
See example 2. Typically right limits of (Mt at the Tk are not finite. Take for 
example the trivial case where (M), = t - t 1'1, then (M) 7 = 1/ ( t -1), for t > 1. 
Therefore we need some agreements concerning the notation that we will follow. 
The considerations above forbid us to define Ll(M)7 as (M)7+ -(M)7_. Therefore 

we adopt the convention 

All integrals of the type J, = J[o.rJ a d(M)+ are then to be understood such that 
M,=a,Ll(M)7=a,((M)7-(M)7-), provided of sourse that a is such that this 
convention makes sense, for instance it is such that J is right continuous. 

We need the following representation result (cf. Lipster and Shiryaev, 1990, 

pp. 112, 113 for the univariate case; the proof of the multivariate case proceeds 
along the same lines). 

Lemma 3.1. There exists a (in general not unique) predictable process K: n x [O, oo) ~ 
IRkx", such that m - K.M is an IRk-valued locally square integrable martingale, 

orthogonal to Min the sense that (m - K.M, M) = 0. However the martingale m - K.M 
is uniquely defined (up to indistinguishability ). D 

With a process K as in Lemma 3.1 we can write 

c(m, M) =(m -K.M)+(K.M)-(m, M)(M)+(M, m) 

=(m -K.M)+c(K.M, M). 

The proof of Theorem 3.3 below involves some calculus rules. As for (Mt, we also 
use for P the notation LlP, = P, - P,_. 
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Lemma 3.2. (i) d(M),(M)7_ = -(M), d(M)7 +dP,. 
(ii) d(M), = -(M),_ d(M)7(M), +dP,(M),. 
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Proof. On~ T" Tk+i[ the ordinary calculus rules apply to V,(k) and P doesn't vary 
with t on this stochastic interval. Hence the result follows in this case. Consider 
now what happens if t = Tk < oo. If (M) happens to be left continuous at this point 
we are back in the previous case. So assume that .1.(Mh, >6 0. Then 

il(Mh, (M);,_ +(Mh,.1.(M);, = (Mh, (M);, -(M)y,_(M)h- = ilPr,· 

This proves (i). Similarly we have 

il(Mh, +(Mh,-.1.(M);,(M)r, 

=(Mh, -(Mh,-+(Mh,-Pr, -Pr,-(Mh, 

=(I - Pr,_)(Mh,-(M)r,_(J- Pr,)= .dPr, (M)r. 

which proves the second assertion. 0 

In the notation that we introduced above we are now able to present the principal 
result of this section. 

Theorem 3.3. (i) c(m, M) is a right continuous process. 
(ii) With K as in Lemma 3.1 we have for m = K.M the following integral rep­

resentation: 

c(m, M) = - f (K(M)-(m, M)) d(Mt(K(M)-(m, M))T 

= - f (K -(m, M)(M)+)(M) d(M)+(M)(K-(m, M)(M)+)T 

= - f (K -(m, M)_(M):)(M)_ d(M)+(M)_(K -(m, M)_(M):)T 

= + f (K -(m, M)_(M):)(J-.d(M)(M)+) d(M) 

x (K -(m, M)_(M):f. 

Proof. (i) This is a simple consequence of right continuity of all involved processes 
if we restrict our attention to the open intervals ]T" Tk+1IT· Therefore we consider 
what happens at the Tk (on {Tk <oo}). Define the process q on ]Tk, Tk+1IT by 
q, =(m, M),F(k)R,(k)- 1, by q,=(m, M),F(k)R,(k)- 1, where R,(k) is as in Lemma 
2.2. We will show that lim 11 r, q,q I exists. Write 
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with 

q; = (m, M>T,F(k)R,(k) ·T 

and 

q; = ((m, M), -(m, MhJF(k)R,(kr·T. 

First we will show that limd r, q7 = 0. It is sufficient to prove that tr[q7(q7fr] tends 
to zero for t t Tk. Write 

q7(q7)T=J Kd(M)(M);J d(M>KT;:;,Q_ 
1. T,.1\ I T,.1] 

Let K; be the ith row of K and write (M); =I:;'~, Qi,Qr, where the Qi, are IR" valued 
random variables and Q ~ Q;, = 0 if i-¥ j. Then 

tr(q7q7T) = L [J . K; d(M)Q;,] 
2

, 

'·' \T;,1] 

which is by Schwarz' inequality less than 

I TI T 2: K; d(M)K; Q;, d(M>Q;, 
i,j I T,,1] I T>.t] 

=2: I K, d(M)KiL Qj;((M),-(M>T,)Q;, 
t I T,,1] j 

=tr f K d(M)K T tr[((M),-(Mh,)(M);]. 
I T>.t I 

(3.1) 

The first factor of this product tends to zero as t t Tk. Consider now the seond factor. 
First we notice that 

tr[ (M),(M) ;] = tr[ F( k) F( k) T] = tr[F( k) T F( k )] = r,. 

(Remember that r, = rank(M),.) Next we compute 

tr[ (M>T, (M) ;J = tr[ G( k) W(k) G( k) T F(k) V,( k) 1 F(k) TJ 

= tr[ V,(k)- 1 F(k)TG(k) W(k)G(kf F(k)] 

= tr[ V, ( k) - I [ W ~ k) ~] ] 

=tr[ R,(k)_,[W~k) ~]R,(k) T] 

=tr{[a,(~)- 1 :J[W~k) ~J[a,(~rT ~]} 

=tr[(a,(k)a,(k~r)- 1 W(k) ~] 

= tr[ (a,(k)a, (k) Tr 1 W(k)] 
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which tends to tr[W(k) 1W(k)]=rr,. Hence limiidUM),-(MhJ(M)tJ= 

rr,+ - r1, < ro. So from equation ( 3.1) we obtain that indeed q7-> 0 as t i Tk. Secondly 

we look at q ~. From Lemma 2.4 we see that there exists a random matrix A( k) such 

that (m, Mh,, = A(k)G(k)T. Hence 

q~ = A(k)G(k)rF(k)R,(k). r 

= A(k)[l O][a,(k)r OJ 
* * 

= A(k)[a,(k)' O]. 

So 

q~(q~)1 = A(k)(a1(k)a1(k)r) 1A(k) 1 ...... A(k) W(k) 1A(k)1 , 

since W(k) is invertible and a1(k)a,(k) 1 -> W(k) by Lemma 2.2. Because of the fact 

that limrt r, q7 = 0, and that a1(k) is bounded for d T,, we get 

lim q,q; =Jim q~(q~)1 = A(k) W(k)- 1 A(k) 1 . 

ri fr. I j /; 

But 

(m, M)r, (M) ~-, (M, m)r, = A(k) G( k)r G(k) W(k r I G( k )1 G(k)A(k )1 

= A(k) W(k) I A(k)T, 

which gives right continuity of (m, M)(Mf(M, m) at the T, (on { Tk <oo} ), thus 

proving the first assertion of the theorem. In order to prove the second one we 

proceed as follows. Because c(m, M) is right continuous we can use the results of 

Lemma 3.2 in the computations below. 

dc(m, M) = K d(M)KT-(m, M) (M) • d(M)K 1 

-(m, M) d(M)+(M, m)-K d(M)(M)'(M, m) (3.2) 

from which we obtain by Lemma 3.2, 

dc(m, M) = -(K(M)_ -(m, M)_) d(M)+(K(M)-(m, M)) 1 

+K dP(M)Kr-(m, M) dPKr_K dP(M, m) 

= -(K(M)-(m, M)) d(M)+(K(M)-(m, M))r 

+ K d( M) K r - ( m, M) _ d PK T - K d P ( M, m) _ . 

(3.3) 

(3.4) 

It is immediately seen that on ] T" T,+ 1[ the last three terms vanish, whereas on 

{Tk <oo} we have 

fJPr, (M)r, = fJP1,Pr,_-(Mh,- = 0 

and 

(m, Mh,_tJPr,, = (m, Mh,Pr, J.Pr, = 0, 

since Pr, .J.Pr, = 0. This proves the first formula of the second assertion. The other 

ones follow similarly. 0 
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Remark. At t=Tk it is not true that L1(M)7,,;,0 and that (M),Ll(M)7(M),s;;.O. 
However for all tone has (M),_Ll(M)7(M),_,,;,O. This is trivially true on the open 
intervals D Tb Tk+ 1[. Consider what happens at Tk on { Tk < oo} if Ll(Mh, >6 0. We 
know that G(k) W(k)G(k)T - F(k-1) VT,-(k- l)F(k- l)T~ 0 or, with an obvious 
decomposition of W(k): 

[ W(k)11-VT,-(k-l) 

W(k)12 
W(kh1] ~O. 
W(kh2 

Hence, since W(kb is invertible, we get 

W(k)11 - W(kL2 W(k)121 W(kh - VT,-(k-1) ~ 0. 

Now look at 

(Mh,-Ll(M) ;., (M)r,_ 

= (Mh,-(M);.,(Mh,- -(Mh,-

= F(k-1) VT,-(k - l)[F( k - l)T G(k) W(k)- 1 G(k)T F(k -1) 

- VT,-(k-1)- 1] VT,-(k- l)F(k-l)T. 

Consider the term in brackets. Again in obvious notation, it becomes 

[ W(k)- 1]11- VT,-(k-1)-I 

= [ W(k)11 - W(kL2 W(k)1i W(k)21r 1 - Vr,-(k-1)-I,,;, 0, 

from equation (3.5). Thus we have proved the following: 

Corollary 3.4. The process c(m, M) is nondecreasing. D 

4. Linear dependence 

(3.5) 

In this section we will study a suitably defined notion of linear dependence between 
two square integrable martingales m and M. By analogy with the situation in which 
one deals with multidimensional random variables we have the following: 

Definition 4.1. (i) m is said to be linearly dependent on M if the process c(rn, M) E 

!Rkxk is indistinguishable from zero. 
(ii) m and M are said to be mutually linearly dependent if both c(m, M) and 

c( M, m) are indistinguishable from zero. 

Here is the main result of this section. 

Theorem 4.2. m is linearly dependent on M if! there exists a (possibly random) matrix 
C E !Rkxn with C(M) a predictable process such that m =CM. Moreover in this case 
C(M) = (m, M). Furthermore m and Mare mutually linearly dependent if! there exist 
matrices C 1 and C2 such that m = C 1M and M = C2 m. In the latter case we also have 
that C1 and C2 are each others Moore-Penrose inverses. 
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Remark. The matrix C in Theorem 4.2 is not necessarily ~0-measurable. See 

Example 1 in Section 2 and Example 3 below. 

Proof of Theorem 4.2. Define y, = (m, M),(M)7. Then y,(M), == (m, M), from 

Lemma 2.4. On TI Tb Tk+ 1[ we have 

d y, = (m, M),_ d(M) 7 + d(m, M),(M) 7 
= y,_(M),_ d(M),' + K, d(M)f(M)7 

= ( y, - K,)(M)f- d(M)7. 

So if c( m, M) = 0, then from Theorem 3.3 we obtain that y is constant on TI Tb Tk+ 1[. 

This also implies that y admits right limits at T, if Tk < oo. We need some more 

properties of y. On { Tk < oo} we have 

(YT,+-YTJG(k)=O, (4.1) 

Yr, -yr, =Kr,(0(k)G(k)T-F(k-l)F(k-l)T]=Kr,.:.1Pr,· (4.2) 

Indeed right continuity of (m, M) gives 

Yr, (M)r, = (m, M)r, = lim(m, M), = lim y,(M), = Yr,+(M)r,. 
t!T; r!T, 

Hence (yr,+-YrJ(M)r, =0, which is equivalent to equation (4.1). Next we use 

Lemma 3.2 to write 

Yr, -yh-- = (m, M)r, (Mlh -(m, M)r, (M)~-, 

= (m, M)J-,_.:.1(M)~, + Kr,.:.:l(M)r, (M)~, 

=Yr, (M)r, _.:.:l(M) ~' + Kr,.:.1(M)r, (M) ~' 

= Yr,-(M)r,_.:.:l(M) h - Kr, (M)7,_d(M) ;., + Kr,Lj,Pr, 

= ( Yr,-Kr, )(M)i,_d(M)h + Kh'1Pr,· 

The assumption that c( m, M) == 0 yields the first term zero from Theorem 3.3, which 

gives equation (4.2). Notice that equation (4.1) and equation (4.2) imply 

( 4.3) 

Hence Yr,(Mh,- = 0 and ,1( y1,(Mh,) == Yr,.:.:l(M)r,, or d(m, Mh, = Yr,d(M)r,. 

Define now C = lim, 4X y 1 • We claim that this is the matrix in the assertion of the 

theorem. Notice that on the set Dk == { Tk < oo, Tk, 1 = oo} C equals Y-r,,. Furthermore 

U%~o Dk= D and Dk n D1 =0 if k ~I. First we prove the following facts. CM is a 

martingale and CM,= y,M1 = ( y.ML. 

From Lemma 2.3: CM,= C(M) 1(M),' M,. On f2, we have for j,,,;, k, 

k 

C(M)r1 = Yr,+(M)r, = I (Yr,+ - 'Yr,_ 1+)(Mh, 
i~l 

k 

= I (Yr,+ - Yr;_)(Mh1 = Yr1-r(Mh,, 
i=l 
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since ('Yr,+ - 'Yr,-)(Mh, = 0 if i <j. But 

'Yr;+(Mh, = (Yr,+- 'Yr)(M)r, + 'Yr;(M)r, = 'Yr,(M)r, 

by equation (4.3). 
Furthermore on ilk x [O, oo) n] T;, 7)+ 1[ we have in the same way C(M)1 = 

'YT,+(M),, because ('Yr,+ - 'Yr,-)F(j) = 0 ifj < i and so C(M) is equal to y(M). Hence 

CM1 =y1M 1 =(y.M) 1 + r dy,M,_. 
J[o,1] 

Now on ilk for j:;;;: k we have 

,jyrMr-- = L1yr(M)r(M)~ Mr- =0. 
I J I I I I 

Hence 

Predictability of y (Lemma 2.3) gives that CM= y.M is indeed a martingale. 
Finally we have to show that m and CM are indistinguishable. Compute 

(m - CM)= (m - y.M) = ((K - y).M) = r (K - y) d(M)(K - y)T. 
J[o.1] 

Consider 

(K -y) 1 d(M)1 = d(m, M), -y, d(M) 1 = d( y1(M) 1)- y1 d(M) 1 = dy1(M),_, 

which is zero on all ] Tk> Tk+ 1[, because here d y, = 0. At t = Tk < oo we also get zero 
from equation (4.2). This proves the only if part. 

Next we prove the converse statement. Assume that C(M) is predictable, 
equivalently CP is predictable. Then the product m = CM is a martingale. Indeed 
CM = CPM is adapted. Let now y = CP. Then 

m = y.M +I dyM_ = 'Y·M +I. dyP_M_. 
0 0 

The last integral is easily seen to be zero. So m is equal to y.M and thus a martingale. 
Moreover we also obtain 

(m,M)=y.(M)=y(M)-Ldy(M)_, 

where again the last integral vanishes. But y(M) = C(M). Similarly (m) = C(M)CT. 
Hence c(m, M) = 0. Assume finally that m and M are mutually linearly dependent. 
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Then there exists matrices C 1 and C2 as in the first part of the theorem. They are 
of the form as in the first part of the proof. Therefore we can compute 

C1C2C1 =lim(m, M),(M)7(M, m),(mt(m, M),(M)7 
r~co 

= lim (m, M),(M)7(M),(M)7 
r~co 

= lim(m, M)7(M)7 = C 1 • 

Here we used in the second equality the fact that c( M, m) = 0. Similarly one can 
prove that C2C1 C2 = C2 and C1 C2 = ( C1 C2 )T which shows that C1 and C2 are each 
others Moore-Penrose inverses (cf. Lancaster and Tismenetsky, 1985). This com­
pletes the proof. D 

Remark. Consider the other extreme case. One always has c(m, M),~(m),. Here 
equality holds iff (m, M), = 0. Indeed, assume that equality holds, then 
(m, M),(M), = 0, and hence (m, M),P, = Oand by Lemma2.4this implies (m, M), = 0. 
The converse statement is trivial. 

By localization it is possible to formulate a whole string of corollaries, which are 
roughly all of the following type. 

Corollary 4.3. Let S be a stopping time and assume that 

c(m, M)sl {S<ro} + c(m, M)co-l{s~oo} = 0. 

Then the stopped martingale ms depends linearly on the stopped martingale Ms. 
Equivalently there exists C such that 1 [o.snC m - CM) = 0. 

Proof. It holds that c(m, M)s = c(m 5 , Ms). Hence the assumption in the corollary 
implies Jim,_°" c(m 5 , M 5 ), = 0. So c(ms, Ms),= 0 Vt ~ 0, since c(ms, M 5 ) is non 
decreasing (Corollary 3.4). The result now follows from Theorem 4.2. D 

Example 2. Let W be Brownian motion and e an N (O, 1) distributed random variable. 
Assume that W and e are independent. Let µ, = W, + 1 {,,,,!)e. Define g: [O, oo) ~ IR 2 

by 

g ( t) = [ ~ J 1 {I} (t) + L ~ i] 1 I l ,OC· I ( t) 

and M =g.µ. Let 

:Ji, = <7{ W" S ~ t; 11 r °" I} B} · 

Then M is a martingale with respect to the filtration F = {:Ji,} ""o and 

[ 1 o] [ t H1-1) 2
] 

(M),= O O l{l}(t)+ ~(t-1) 2 ht-1)3 111 .. x•1(t) 

for(µ)= t+1 11 ,001 (1). Hence r, =rank(M), = l{q(t)+2.111.x1Ct). 
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Let K:[O,oo)-+IR2 x2 be given by K(t)=K 11{1 1(t)+K 2111 .oc>(t), and m=K.M. 
Then (m, M) 1 = K.(M)1 equals 

K 1 [~ ~Jilll(t)+{ K 1 [~ ~] +K{~(:=~)2 t~:=~~:]}1(1.oc)(t). 
A computation shows 

(M)7 = [~ ~Ji{q(t) + [ 1~: 
(t-l)(t+3) 

-6 l (t-l)(t+3) () 
121 1(1.uc) t • 

(t-1)3(t+3) 

Let K 1 =[KtJ and K 2 =[K~;]. Then 

y 1 = (m, M)1(M)7 

( 
2 I ) l K 2,+6 K11-K11 

L (f-l)(t+3) 
6(K~ -K~) l(l,-x1(t). 

K;,+ _1 _1 

-- ( t -1)( t + 3) 

Hence lim,.t 1 y1 doesn't exist for arbitrary K. 
Assume now that c( m, M) = 0, then from Theorem 4.2 we know that 'Y is constant 

on (1, oo). So the following equalities have to hold: K: 1=Ki1 and K ~ 1 = K~ 1 . Now 
'Y becomes 

1 [ 1 OJ 2 J'1=K O O l{q(t)+K 10 ,oc. 1(t). 

And in agreement with Theorem 4.2 (cf. its proof) we see that m = 'Yi+M. 

Example 3. Let e; be i.i.d. N(O, 1) random variables. Let g;;n = u{e 1 , ••• , En}. Let 
x 1 · · · Xn be an orthonormal basis for !Rn and X; = 0 for i;:, n + 1. Let furthermore 
K;: fl-+ IRkxn be g;;H measurable. Define 

M 1 = I X;e;, 
i"'1::1 i~t 

Then 

(M) 1 = I x;xi, (M>7 = I x;xi. 
io;f,t i::s;tl\t1 

A simple calculation shows that c(m, M) = 0 and that the matrix C in Theorem 4.2 
becomes C =I:;.," K;X;Xi, which is g;;n-I measurable. 
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Appendix 

We provide a simple proof of the characterization of the Moore-Penrose inverse 

of a positive semidefinite matrix R. Write R = QQT, where Q has full column rank, 

so that QT Q is invertible. Use the matrix inversion lemma, which is a simple extension 

of the Sherman-Morrison formula (cf. Lancaster and Tismenetsky, 1985, p. 64) to 
write (R 2 + (1/ n) J)- 1 R as 

= n[J - Q((l/ n)( QT Q)-1 +QT Q)-lQT]QQT 

= n[J _ Q((l/ n)(QT Q)-2+ /)-1( QT Q)-lQT)QQT 

= n[/ -Q(J-(l/n)(QTQ)-2+0(1/n2))(QTQ)-1QT]QQT 

= Q(QTQ)-2QT +0(1/n). 

Clearly Q(QTQ)-2Qr is the Moore-Penrose inverse of R. 
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