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Chapter 1

Introduction

The spontaneous formation of patterns occurs in nature on all lengthscales; the
inhomogeneous distribution of galaxies in the universe and the shape of a sin-
gle snowflake are extreme examples. Moving ionization fronts that create the
plasma body of sparks are on a scale somewhere inbetween. One of the striking
aspects of pattern formation is that completely different systems may give rise
to similarly looking patterns, the spiral shapes observed in chemical reaction
patterns and galaxies are well known examples. This can be exploited in the
analysis of those patterns, since it allows the use of similar mathematical tech-
niques. This thesis will focus on so-called moving boundary problems: two bulk
phases separated by an interface. Determining the motion of the interface is
usually the most challenging aspect of the problem. Well known examples of
moving boundary problems are dendritic growth, combustion fronts, growth of
bacterial colonies and viscous fingering. A moving boundary approximation for
streamers will be derived in this thesis. The investigation is inspired by the lit-
erature on viscous fingering. Since we will restrict the study to two dimensions,
conformal mapping can be applied.
A major problem in such a moving boundary approximation is the regulariza-
tion mechanism; it took several decades to prove that surface tension was the
appropriate mechanism in viscous fingering. We have derived a new, possi-
bly regularizing mechanism for our moving boundary problem. The important
question whether this condition is indeed regularizing will be investigated.

1.1 Organization of this thesis

The first chapter of my thesis is dedicated to the physical problem: streamer
propagation and branching. A minimal PDE model for streamers is introduced;
results of numerical simulations of the full model are given. The main mathe-
matical question of this thesis is formulated: can the minimal model describe
streamer propagation and branching? The computations suggest a certain ap-
proach for the analysis: the derivation of a moving boundary problem from the
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PDE model. We will study the problem in 2D; this allows us to use conformal
mapping. The general description of this method is given in Chapter 3. A
moving boundary approximation has been used in many problems, mentioned
in the previous section. Especially the problem of viscous fingering is well stud-
ied in the literature. A short review of a part of the literature on this subject
is given at the end of Chapter 3. The application of the machinery developed
earlier leads to the problem of finding the temporal behaviour of the so-called
mapping function. This mapping function contains all information about the
temporal evolution of the interface. In this thesis, the boundary will be between
the ionized and the non-ionized regions.
An equation of motion for the mapping function is studied in Chapter 4. Cusp
formation is inevitable; this is not due to the mathematical method, but signals
the fact that something is missing in the moving boundary approximation. A
mechanism is required to regularize the short lengthscales and prevent the for-
mation of cusps. In viscous fingering, surface tension is used as a regularization
mechanism. It is more difficult to find the correct regularization mechanism for
the ionization fronts.
In Chapter 5 a possible regularization is derived, namely a boundary condition
which is streamer specific and derived from the microscopic PDE’s. This condi-
tion depends on the width ε of the interface. Implementation of this condition
turns out to be difficult. In the two following chapters of my thesis I try to an-
swer the question whether this new condition is indeed regularizing the problem
or not.
First I decide to look close to the cusps; suppose the interface starts near a cusp,
is the condition enough to prevent the formation or not. The unregularized case
from Chapter 4 is revisited briefly; cusp formation is shown to be inevitable. If
the new condition is imposed, regularization can happen, but further investiga-
tion is required.
This is done in Chapter 7. Uniformly translating circles are found to be so-
lutions, both for the regularized and the unregularized problem. Will a small
perturbation of the circle cause a breakdown of the solution or not? The sta-
bility of the unregularized circle is studied, and we see that the unregularized
circle is unstable, as expected. We learn more from this case, though. It is not
possible to use an expansion in temporal eigenmodes to get the correct infor-
mation regarding the stability. This turns out to be the case in the regularized
problem as well. A truncated expansion in Fourier modes leads to the incorrect
conclusion that only purely imaginary eigenvalues exist. If a PDE is derived and
solved a different result is obtained. The circle is linearly convectively stable:
perturbations may grow initially, but are convected away to the back where they
are damped out. In viscous fingering this convective stability has been observed
numerically and experimentally; we can get further since we are able to solve
the PDE analytically for a particular value of the regularization parameter ε,
ε = 1. The analytical solutions are a gauge point for the numerical code which
needs to be developed to study the case 0 < ε < 1. The last section of Chapter
7 is devoted to the comparison of the numerical results to the analytic solution
for the linear stability analysis.
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In the last chapter, results of the planar fronts are given. A different regulariza-
tion mechanism containing the same physical information is derived. Whether
this mechanism will regularize and/or give the same outcome as the boundary
condition derived in Chapter 5 is an open question and requires further investi-
gation. Furthermore, the dispersion relation for an ionization front with electron
diffusion is derived that could be embedded in a stronger regularizing boundary
condition than investigated in the rest of the thesis.





Chapter 2

The physical problem:

streamer propagation and

branching

This section will guide you from natural phenomena in the atmosphere via ex-
periments to simulations of the minimal streamer model. Physics is typically
reductionistic; this is already clear from the ’minimal’: reality is modelled which
a few (essential) processes. The question is of course whether a model is reduced
too far.
Starting from the particle level, PDE’s for the densities have been derived.
Those PDE’s can be solved numerically, but I will try to reduce the model one
step further in this thesis. I will use a moving boundary approximation to de-
scribe the streamer.
This means that we have gone through two model reductions; from the particles
to the PDE’s and from the PDE’s to a moving boundary approximation. De-
scribing experiments would require a third model reduction in order to describe
the total pattern. The question is of course whether the model reductions are
too severe and whether all essential processes are taken into account: does the
minimal model still capture the correct physics. Is the minimal streamer model
able to describe branching?

2.1 Discharges in nature

Lightning is one of the most impressive phenomena in nature. It was not earlier
than 1990 that many phenomena above thunderstorms were recorded, although
their possible existence was already predicted in 1925 by Wilson [1]. Those
events have been named transient luminous events (TLE’s); this term covers a
variety of phenomena. An overview is given in figure 2.1.
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Figure 2.1: An overview of the different Transient Luminous Events

On top of a thundercloud, between 10 and 40 km, so called blue jets, foun-
tains of blue light, can be observed. Sprites, propagating downwards toward the
thundercloud and upwards toward the base of the ionosphere (at 90 km) and
elves spreading in the lateral direction in the ionosphere have been recorded.
Gigantic jets propagating upwards from the cloud were reported only a few years
ago by Pasko [3], [4].
A lightning stroke occurs after the charge separation in the cloud and removes a
considerable part of the charge, leaving a net charge with can be either positive
or negative. The charge creates an electric field above the cloud, which allows
TLE’s if it is larger than some threshold value. Based on those arguments,
sprites would be expected after both positive and negative cloud to ground
lightning but have been reported (almost) exclusively after positive lightning.
This is one of the (many) unsolved problems.
It is natural to wonder why those events were reported and recorded only in the
last two decades and not before, especially since the possibility of the existence
of sprites was already put forward eighty years ago. Observation of those ef-
fects from the ground is difficult due to the presence of clouds and the brighter
lightning flashes: they can easily be missed if you do not know exactly where to
look. Furthermore, one needs a clear sky to be able to look above the thunder
cloud.
All those phenomena form an essential part of the global electric circuit, which
can be seen as a capacitance consisting of two concentric spheres: the conduct-
ing surface of the earth and the ionosphere can be considered as the two plates
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of a capacitance. Since TLE’s contribute to charge transport between the plates
of the capacitance, they should be taken into account when describing the global
electric circuit [2].
All the phenomena described above are examples of gas discharges: a non-
conducting medium is exposed to a strong electric field, which accelerates a few
electrons. Those are able to either ionize neutral molecules, thus generating
more free electrons and causing a chain reaction, or to excite molecules. The
excited molecules return to the ground state by emission of a photon. Those
photons can be observed and allow us to actually see the gas discharge. This
is the basic idea of the local process, but an attempt to describe or explain the
rich variety of gas discharges which are observed on top of thunderclouds needs
some model reductions. An important picture towards a better understanding
was made by Gerken, who took pictures of sprites showing more details about
the structure.

Figure 2.2: Telescopic images of sprites [5].

Figure 2.2 was published in [5] and reveals that the sprite contains a lot of
channels. Those channels are probably similar to so called streamer channels. A
precise definition of a streamer will be given later, for now it suffices to see it as
an ionized channel, which is conducting, with a propagating head containing the
charge. Those streamers can be considered as the building blocks, understanding
them is imperative if one wants to understand the full phenomenon. The study
of those streamers, starting from the microscopic theory, is the purpose of this
thesis.

2.2 Towards the experiments: scales and results

When studying a physical phenomenon, it is desirable to have accurate exper-
imental data. The observations of sprites do not fullfill this requirement for
obvious reasons; it is difficult to measure e.g. partical densities or electrical
fields, one can not change the experimental parameters (e.g. gas composition)
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and the events can not be deliberately triggered, but only observed from a dis-
tance. At first sight, lab experiments seem an impossible task due to the huge
scales (of order kilometers) involved in sprite discharges. But the experimental-
ist is saved by the scaling of space, as will be explained in the next section.

2.2.1 Scaling space and time

At the heights on which sprites are observed, the density of air is much lower
than on the ground. Geophysicists usually use the empirical formula:

N = N010
−h/14km, (2.1)

where N and N0 are densities at height h and at ground pressure. This means,
that at typical sprite heights of about 70 km, the density is a factor of 105 lower.
(Exact values are not important for this argument.) This means that an electron
can travel much further before colliding with a molecule; the mean free path
is much longer. Distances should be measured in terms of the mean free path,
they become much shorter on the ground, a streamer of 1 km at 70 km would
correspond to a streamer of 1 cm on the ground. Energy is measured in terms
of the ionization energy for nitrogen (so does not scale); this means that the
electric potential and the kinetic energy, thus the velocity of the electrons are not
scaling. But this is wonderful for the experimentalist; the values of the electrical
potential (in order of kV) are easily attainable so streamers should be observed
when applying those voltages to air. And indeed, anyone can generate sparks
with e.g. a van de Graaf generator. There is one problem though concerning
good observation of the streamers: the time scales. The velocity does not scale,
which means that time has to scale with a factor 105, too: streamers become
much ’shorter’ in time as well. Their lifetime is in the nano (10−9) second
regime. This poses experimental problems; one has to use a fast camera to be
able to record the streamer and one has to know exactly where and when to
look.

2.2.2 Experimental setup and results

As an example I will give a sketch of experiments on streamers which have been
recently performed in Eindhoven by Tanja Briels and Eddie van Veldhuizen. A
schematical picture of their setup is given in figure 2.3:
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Figure 2.3: A schematic picture of the experimental setup: streamers are ini-
tiated at the needle electrode above and propagate downwards to the plate
electrode [6].

The width of the gap, the electric field, gas composition and the pressure
can be varied. The streamer starts after a fast increase of the voltage from the
point of a needle, so place and time of occurence are known. The results are
recorded with a fast CCD-camera. An example is shown in figure 2.4.

Figure 2.4: Experimental results; when the exposure time of the camera is
decreased, one observes that only the tips of the streamers are emitting light.

Those pictures are taken from [6]; see this ref. for more details on the
experiments. I will focus on those aspects that are the most important for
comparison with theory.
If the exposure time of the camera is large, one observes a highly branched
structure; reducing the exposure time reveals that only the tips of the channels
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are actually emitting light. This means that the streamers consist of two parts:
an active head with a lot of energetic ionizing electrons and an ionized tail.

2.3 Modelling streamers: the minimal streamer

model

When describing a physical phenomenon, one usually uses a model which ne-
glects certain processes. If one wants to include all possible chemical reactions
in air and all electrodynamic effects in a model, there are two major problems.
The number of points from the spatial discretization is simply too large for the
CPU of a computer. Even when much more sophisticated computers or algo-
rithms would be used (in the future), another more fundamental problem is
encountered. A lot of reaction rates are not known. It is possible to get any
outcome if you are allowed to use many fit parameters; the physical meaning is
doubtful. Such an approach is based on brute (computational) force and fails
to clarify which processes are the essential ones.
We would like to study the streamer problem with a minimal number of physical
parameters in order to be able to study the essential features of propagation of
negative streamers in non-attaching gasses. It is very important to realize which
assumptions are made; I will discuss and justify those assumptions in the next
section. The translation of the model in mathematical terms is standard and
will be done in section 2.3.2.

2.3.1 Discussion of the model

The minimal model includes only two charged species, electrons and ions. The
electron density will be denoted by σ and the ion density by ρ. An electron can
create another electron and an ion by impact ionization:

e− +N2 → 2e− +N+
2 . (2.2)

This means that attachment of electrons is neglected and no negative ions can
be formed. Experimentally, this models a non-attaching gas like nitrogen or ar-
gon. The density of nitrogen is assumed to be constant, which is valid since the
amount of ionized molecules is only about 10−5; the change in density of neutral
nitrogen is indeed negligible. The increase in electron density depends strongly
on the local electric field; the electrons need to be fast enough to be able to
ionize a molecule. This functional dependence is measured experimentally and
fit with a function f(E). We will use this function; as we will see later on, the
exact functional form is not very important anyway. The approximation made
is called the Townsend approximation.
The electrostatic Maxwell equations are used to describe the time evolution of
the charged species and the electric field. This means that magnetic effects are
neglected; there is a magnetic field, since there are currents, but it does not
couple back to the dynamical equations since it is too weak. See ref. [9] for an
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estimate of the magnetic field.
The most important point is, that this is a model for a negative streamer (prop-
agating in the direction of the anode). In nature, both positive and negative
streamers occur.
After the discussion of the assumptions, the introduction of the model in math-
ematical terms is straightforward and will be given in the next section.

2.3.2 The model in mathematical terms

First of all there are continuity equations for the electrons and the ions:

∂tσ + ∇ · je = source, (2.3)

∂tρ+ ∇ · j+ = source, (2.4)

where σ denotes the electron density and ρ the ion density. The source terms
are equal since electrons and ions are created in pairs. Since the electrons move
much faster than the ions, the latter are considered immobile:

j+ = 0 (2.5)

and the electrons drift and diffuse:

je = −σE −D∇σ. (2.6)

The source term is given by the Townsend approximation, as discussed before:

source = σ|E|e−1/|E|. (2.7)

Additional electrons are only created if both electrons and an electric field are
present (σ|E|). Furthermore, the electric field has to exceed a certain treshold,
|E| > 1 in dimensionless units; it has to overcome the ionization energy. The
Poisson equation for the electrical field:

∇ · E = ρ− σ (2.8)

completes the model, which is now fully deterministic. Given an electron and ion
density, the electric field is determined via the Poisson equation. This in term
determines the right hand side of the dynamical equations for the electrons and
ions. Notice, however, that those equations are strongly nonlinear as soon as
a non-negligible charge density is present. For future reference it is convenient
to introduce the electric potential φ and to summarize the minimal streamer
model:

∂tσ −∇(σE +D∇σ) = σ|E|e−1/|E|, (2.9)

∂tρ = σEe−1/|E|, (2.10)
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and

∇ · E = ρ− σ, E = −∇φ. (2.11)

Numerical analysis of the full PDE-model is discussed in Section 2.4 and analysis
of so called planar solutions is presented in Chapter 8.
Finally I note that all variables are non-dimensionalized. The natural scales
are mean free path of the electrons lion and the ionization energy Eion. The
velocity scale is the electron drift velocity at this field, v0 = µeEion, leading to
a time unit t0 = lion

v0
= lion

µeEion
and a charge unit q0 = ε0Eion/lion. For N2 at

normal (ground) pressure, the values are listed as:

lion ≈ 2.3 µ m, v0 ≈ 7.56 · 107 cm/s
t0 ≈ 3 · 10−12 s q0 ≈ 4.7 · 1014 e /cm3

Eion ≈ 200 kV/cm µe ≈ 380 cm2/Vs.
(2.12)

2.4 Numerical analysis of the minimal streamer

model

A method to solve the PDE’s (2.9)-(2.11) is as follows: discretize space in
N3 points, where N needs to be large enough, fix the potential at z = 0 and
z = L to mimic the electrodes. Since we want to eliminate the effect of lateral
boundaries, the boundary conditions at x, y = 0 and x, y = Lx,y, Lx and Ly

should be taken large enough. Take as an initial condition e.g. a single electron
close to the cathode (z = 0) and calculate the electric potential on the whole
computational domain. The electric potential yields the electric field which in
turn gives you the right hand side of the continuity equations for electrons and
ions. Take a timestep, update the position of the space charges and repeat
the whole procedure. This turns out to be difficult in 3D after space charge
effects become important and sharp fronts are formed, since too many points
are required. To get (partly) rid of this problem, one can solve the equations
in 2D instead. In high fields with steep fronts, even this becomes inaccurate
on uniform grids. Carolynne Montijn imposed cylindrical symmetry on the
solutions, which means that they become essentially 2D and she furthermore
implemented adaptive grid refinement within her thesis [7] that allows for very
accurate computations. I did some numerical simulations in 2D, which means
that the variation in the densities and the electric field in one direction, e.g. the
x-direction, are neglected. Most of the numerical results are on the cylindrical
case; the results and pictures are from the thesis of Carolynne [7].

2.4.1 Boundary conditions and initial conditions

The equations are transformed from (x, y, z) to (r, φ, z) and assumed to be
independent of φ. Results can be plotted in the (r, z) plane but keep in mind
that all of them are radially symmetric around r = 0. Electrodes are set at
z = 0 and z = L, which means that the potential is specified. The streamer
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propagation should not be influenced by the (artificial) boundary conditions
for r = ±R, which means that R should be taken large enough: the streamer
should not approach R. The numerical routine requires boundary conditions on
the electron and ion density as well. Usually Neumann conditions are imposed
on the cathode, allowing inflow of electrons. The other conditions do not matter,
since we stop the computation before the streamer and thus the electrons reach
the anode. The initial condition is a small package of electrons close to the
cathode. For a detailed discussion about the numerical procedure, see ref. [7].

2.4.2 Avalanche and streamer phase: branching?

Initially, the electric field is not altered by the presence of the space charge;
this means that equations (2.9) and (2.10) are essentially linear. Electrons drift
toward the anode, generating more ion-electron pairs. An avalanche of electrons
is created, moving toward the anode. This can be seen in the numerical simu-
lation, see figure 2.5. The increasing space charge will generate its own elecric
field; at a certain point, the effect of the space charge on the total field is not
negligible anymore. A thin space charge layer at the tip of the streamer arises
and the electric field behind the head is effectively screened by the presence of
the charge: the streamer becomes a conductor with a head surrounded by a
thin negative space charge layer (and a tail with positive charge). From now
on, the problem is strongly nonlinear, since the electric field couples, via the
source term and the drift term, in a very nonlinear way back to the continuity
equations for the electrons and ions. The simulation can be continued further,
and one observes that the head of the streamer becomes unstable and branches,
shown in figure 2.7. Simulations in 2D instead of 3D with cylindrical symme-
try have been done as well; the results are shown in figures 2.8 and 2.9. The
branching instability is observed in this case as well.
The problem is, of course, whether this is instability is numerical or whether
there is a real physical instability within this model. This question was partic-
ularly pressing as many streamer experts believed that streamer branching in
our deterministic fluid model was a numerical artifact. Actually the numeri-
cal approach in the thesis of C. Montijn and the present analytical study have
been developed in parallel. Meanwhile the numerics convincingly demonstrates
that the branching instability persists on finer grids. This approch is comple-
mented by the present thesis that studies streamer evolution analytically in a
reduced interfacial approach. Furthermore analytical results can easily be ex-
tended to larger systems where computations again might break down. The
central question which I try to answer in this thesis is: can I formulate and
solve an interfacial model that gives us complementary reliable information on
streamer evolution and branching?
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Figure 2.5: The first stage: the formation of a streamer out of the avalanche
phase [7]; the density of the electrons and ions are presented in the upper part
of the figure, the net charge with the equipotential lines and the electric field in
the lower part.
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Figure 2.6: The second stage: the streamer phase: electric field is changed due
to the formation of a thin space charge layer at the streamer tip [7].
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Figure 2.7: The final stage: branching of the streamer.
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Figure 2.8: Simulations in 2D in a background field of E = 0.5; T = 200 electron
and ion density are shown in the upper panels, the electric field in the lower
panel on the right. Below: T = 300.
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Figure 2.9: The same simulations, now T = 400 above and T = 500 below;
branching is observed.
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Chapter 3

The mathematical problem

The essential tools of the mathematical analysis will be presented in this chapter.
The central idea is the separation of the problem in two scales; the so called inner
and outer scale of the problem. Examining the numerical simulations reveals
that there are essentially two regions, separated by a narrow boundary layer. If
we zoom in on the charge layer, we can neglect the curvature from the global
structure. This means that the geometry is greatly simplified, which allows a
full analysis. This analysis of the inner scale was already done in [9] and results
in an effective dynamical condition for the outer scale. On the outer scale, the
boundary layer becomes infinitely thin and will be taken as a mathematical
line. The information about the structure of the inner scale is transferred into
an effective dynamical condition for the outer scale.
The analysis of the inner scale will be given in section 3.2. In section 3.3 the
outer scale is analyzed and a moving boundary problem (MBP) is derived.
Conformal mapping is a very powerfull tool to analyze the MBP; this concept
will be introduced in section 3.4. The form of the mapping function and an
equation of motion for the mapping function are derived.
The MBP is similar to a well studied MBP: viscous fingering. A literature study
of this problem will be presented in the last section of this chapter.
Since the whole chapter relies heavily on complex analysis, I will give a short
review of the results used in this thesis first.

3.1 General complex analysis

In this section we will summarize some important properties from complex anal-
ysis. We will give some theorems too (without proof), since we will use them
extensively in this chapter.
Let us define the complex variable z = x + iy in the usual way. We will study
complex functions f(z) : G → Ĉ, where G is some open subset of Ĉ. Notice
that G corresponds to some open subset in R

2 as well, we will denote this set
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by G′. In general, f(z) will have a real and imaginary part:

f(z) = u(x, y) + iv(x, y), (3.1)

where u(x, y) and v(x, y) are real functions from G′ into R.

3.1.1 Analytic functions

Definition f(z) is analytic if it has a derivative for all z0 ∈ G.
To illustrate the importance of analytic functions, we will list some of the prop-
erties.

Theorem 1 Let f(z) be analytic in a simply connected region G and let C be
a closed contour in G:

f (n)(z) =
n!

2πi

∫

C

f(ζ)

(ζ − z)n+1
. (3.2)

Notice that one retrieves Cauchy’s integral formula by substiting n = 0. Theo-
rem 1 implies that an analytic function can be written as a Taylor series:

f(z) =

∞
∑

k=0

ak(z − z0)
k, (3.3)

where

ak =
f (n)(z0)

n!
. (3.4)

Equation (3.3) follows directly from equation (3.2).
A composition of analytic functions is analytic:

Theorem 2 If f(z) : G1 → G2 and g(z1) : G2 → G3 are analytic, h(z) =
g(f(z)) : G1 → G3 is analytic.

We are now ready to turn our attention to a smaller class of analytic functions,
to the conformal mappings.

3.1.2 Conformal mappings

Definition An analytic function f(z) is conformal in G if f ′(z) 6= 0 ∀z ∈ G.
We will use the following property of conformal mappings:

Theorem 3 f(z) is conformal and injective if and only if f(z) is biholomorphic.

(biholomorphic: bijective, analytic and analytic inverse).
Notice that all our definitions are valid only for open sets. We have a theo-
rem though which allows us to extend conformal mappings continuously to the
boundary:
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Theorem 4 Let G be an open subset of Ĉ and f(z) a conformal mapping from

G to Ĉ, then f(z) can be extended continuously and bijectively to the boundary
of G.

It is quite difficult to prove theorem 4; a proof can be found in [57]. Finally we
want to mention the famous Riemann mapping theorem:

Theorem 5 Let G ⊂ Ĉ be an open simply connected region such that Ĉ − G
contains at least two points. There exist a biholomorphic mapping

f : G→ D,

where D is the open unit disc.
One can require for some z0 ∈ G that f(z0) = 0, and f ′(z0) ∈ R

+. Then f is
unique.

3.1.3 Harmonic functions

A function u(x, y) : R
2 → R is called harmonic if it satisfies the Laplace Equa-

tion:

uxx + uyy = 0. (3.5)

We state two fundamental theorems without proof:

Theorem 6 If f(z) = u(x, y) + iv(x, y) is analytic in G, then u = u(x, y) and
v = v(x, y) are harmonic in G′.

Theorem 7 If u(x, y) is harmonic in G′, then it is possible to construct v(x, y)
harmonic in G′, such that f(z) = u(x, y) + iv(x, y) is analytic.

Combining these theorems, we see that solving for a harmonic function in a
certain region is equivalent to finding an analytic function in that region viewed
as a function of z. Moreover, due to Cauchy’s integral formula, we only need
the real part of an analytic function on the boundary to determine the function.
If the region G is the unit disc, one can calculate f(z) explicitly once u(θ) =
f(z = eiθ) is given:

f(z) = iv(0) +
1

2π

∫ 2π

0

u(θ)
eiθ + z

eiθ − z
dθ (3.6)

3.2 Analysis of the inner scale

If we zoom in on the streamer head we see the following picture (3.1):
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Ionized Region

Constant Field

V

Figure 3.1: Sketch of the inner problem

The width of the charge layer is much smaller than the local radius of curva-
ture of the streamer; this means that the streamer is approximately planar on
this scale. But this simplifies the analysis a lot. Propagation of planar fronts
was studied in [9] and [8]. The analysis shows that fronts with D 6= 0 are so-
called pulled fronts that are difficult to handle [Ebert, van Saarloos, Phys. Rep.
2000]. We therefore examine fronts with D = 0 in most of the thesis, and return
to D 6= 0 in the last chapter.
A result of these papers was the aforementioned effective boundary condtion:
the velocity a planar front is given by the local electric field

v = −E. (3.7)

Furthermore, (almost) analytic expressions for the charge density and electric
field strength were found. Plots for zero diffusion can be found in Figure 5.1 in
Chapter 5. Notice that the asymptotes show the expected (imposed) behaviour:
zero densities far in front of the front and zero net charge behind the front,
constant electric field in front and behind the front. These explicit analytic
results will be used later in the derivation of a new boundary condition, Chapter
5.
Finally we note that planar fronts are interesting in itself; the (in)stability of
planar fronts will be the subject of Chapter 8.

3.3 The analysis on the outer scale

If we zoom out, we obtain the following picture 3.2:
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E → −E0x̂

Figure 3.2: Sketch of the moving boundary problem

The charge layer has shrunk to a line which separates the ionized region and
the air. This line will be called the interface; our problem is reduced to the
dynamics of the interface. This is an example of a so called moving boundary
problem (MBP).
We choose the electric field far from the streamer to be homogeneous; this yields
the boundary condition (3.8):

E → −E0x̂ for x→ ∞, (3.8)

where x̂ is the unit vector in the x-direction. Notice the peculiar choice of
coordinates; this choice will be convenient in the future. From the inner analysis
a condition for the normal component of the velocity of the interface is derived
(3.9):

v = −E = (∇φ) (3.9)

If the shape of the interface is initially specified, the electric field and the velocity
can be calculated; one can take a timestep and use the updated interface to
calculate the updated electric field. There is however a more efficient way to
study these MBP’s if the system is two-dimensional.

3.4 Conformal mapping

The idea of our approach is illustrated in figure 3.3; in the region outside the
streamer in the z-space, we have to solve ∆φ = 0. Solving the Laplace equation
in a region G′ is equivalent to finding an analytic function in a region G. Let
us therefore define Φ(z):

Φ(z) : G→ Ĉ, (analytic) (3.10)

Re Φ(z) = φ(x, y). (3.11)
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Instead of finding a harmonic function φ(x, y) we have to find an analytic func-
tion with a prescribed real part on the boundary. We still have a problem: we
have a moving boundary.
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Figure 3.3: Conformal mapping

We will use a conformal map which maps the moving domain onto the unit
disc D. Since a conformal map is biholomorphic, its inverse is conformal as well
and we will try to find a mapping

ft(ω) : D → G, (3.12)

where

G = Ĉ − S; (3.13)

S is the streamer with its boundary in the complex plane. We assume S ⊂ Ĉ,
therefore ∞ ∈ G; the electrodes in figure 3.3 will be moved to infinity. Since
both Φ(z) and z = ft(ω) are analytic, their composition is analytic and we can
try to find Φ̂(ω) instead:

Φ(z) = Φ(ft(ω)) = Φ̂(ω). (3.14)

This is a relatively easy problem, since we have a fixed boundary instead of a
moving boundary. This will be done in section 3.6. The problem is transferred
to the problem of finding a conformal mapping. Tracing the time evolution
of the mapping function at the boundary is equivalent to tracing the interface.
Since the conformal mapping ft(ω) can be continuously and bijectively extended
to the boundary of the unit disc, the unit circle, we know that the unit circle
maps to the boundary of the streamer: it maps to the interface. This means
that we can track the time evolution of the interface by evaluating the conformal
mapping at |ω| = 1.
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3.5 Deriving the form of the mapping function

In this section we will prove the existence of a conformal mapping which maps
the area outside the streamer onto the unit disc. We will use the complex
coordinate z to denote the ’streamer space’; the complex variable ω is defined
on the unit disc. Let us define the region G in the ’streamer space’, describing
the space outside the streamer:

G = Ĉ − S, (3.15)

where S is the streamer with its boundary. We assume S ⊂ Ĉ, therefore ∞ ∈ G.
Since we include the point at infinity, G is an open, simply connected subset of
Ĉ.
It is usefull to define a third complex space, in which points are given by the
complex variable w. Define the biholomorphic mapping g:

g : Ĉ → Ĉ, (3.16)

where

z = g(w) =
1

w
. (3.17)

This allows us to define G′ as the image of G; G′ is an open, simply connected
subset of Ĉ:

G′ = {w ∈ Ĉ : g(w) ∈ G}. (3.18)

Remark: 0 ∈ G′, because we assumed that ∞ ∈ G.
We define the subset D, the open unit disc, in the following way:

D = {ω ∈ C : |ω| < 1}. (3.19)

The Riemann-mapping theorem gives us the existence and uniqueness of a func-
tion ft(ω) : D → G. The theorem is not constructive. Since we would like to
find such an analytic form of such a function f , it turns out to be more conve-
nient to apply Riemann mapping theorem to the region G′. It is clear that G′

satisfies the conditions in the theorem. This means that we have a function g1

g1 : D → G′, (3.20)

where g1 is biholomorphic. We require

g1(0) = 0, g′1(0) ∈ R
+. (3.21)

This implies that g1(ω) is the unique biholomorphic function which maps D
onto G′ with the properties given in equation (3.21). Since g1 is analytic on D,
we can expand it around 0:

g1 = a1ω(1 + α1ω + ..). (3.22)
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Since g1 is biholomorphic, it has only one zero inside the unit disc, ω = 0, which
means that the expression between the brackets in equation (3.22) is nonzero
for all ω in the unit disc. Furthermore, a1 ∈ R

+, since we put g′1(0) ∈ R
+. We

can define a biholomorpic mapping from G to D composing the mappings g and
g1:

ft(ω) =
1

g1
=

1

a1ω
+

p(ω)

1 + α1ω + ..
, (3.23)

where p(ω) is some polynomial in ω. The right hand side of equation (3.23) can
be rewritten in the following form:

ft(ω) =
a−1(t)

ω
+ ht(ω), (3.24)

where a−1(t) ∈ R
+ and ht(ω) analytic since it is a quotient of analytic functions

with nowhere zero denominator:

ht(ω) : D → C (3.25)

and

a−1(t) ∈ R
+. (3.26)

Remark Note that ft(ω) is analytic for all ω, including ω = 0, because of the
definition of analyticity around the point ∞.

3.6 Calculation of the complex potential

In this section we would like to derive an equation for the complex potential
Φ(z) such that

Re Φ(z) = φ(x, y), (3.27)

where we have taken z = x + iy in equation (3.27). From equation (3.27) we
will obtain an equation for the potential in the ω domain,

Φ̂(ω) = Φ(ft(ω)). (3.28)

Let us focus on the large x regime first. The physical potential φ(x, y) has to
satisfy the following property:

∇φ = E0x̂ for large x. (3.29)

This means that we have

Φ(z) = E0z for large z. (3.30)
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In section 3.5 we derived

z = ft(ω) =
a−1(t)

ω
+ ht(ω), (3.31)

which gives us

Φ̂(ω) = Φ(ft(ω)) =
E0a−1(t)

ω
(3.32)

if ω is small. This singular part of the potential describes the behavior for large
z. The structure of the mapping ft(ω) will not change this behavior, since the
mapping describes the changing shape of the interface. This implies that the
singular part of the potential is the one given in equation (3.32), and:

Φ̂(ω) =
E0a−1(t)

ω
+ analytic terms. (3.33)

In order to determine the analytic terms of equation (3.33) we need a boundary
condition on the streamer.

3.7 The equation of motion for the mapping

In order to derive the equation of motion for the mapping, we shall follow the
guidelines of [11]. In our problem the relationship between the velocity of the
interface and the potential is the following:

vn = (n̂ · ∇φ), (3.34)

where n̂ is the unit normal vector. Eq. (3.34) is extended to the complex plane in
the following way. Introduce the complex normal to the interface n = nx + iny,
and a complex velocity v = vx + ivy. Then the left hand side of (3.34) becomes

vn = vxnx + vyny = Re(vn∗), (3.35)

the star denotes the complex conjugate. Use equation (3.34) to obtain

Re(vn∗) = (n̂ · ∇φ), (3.36)

where the right hand side has to be expressed as a complex number in the same
way. Introduce α to parametrize the boundary of the unit disc:

ω = eiα. (3.37)

Functions depend on α via ω; the argument of the function determines which
variable is used, i.e.

f(ω) = f(eiα) ≡ f(α). (3.38)
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Now, the complex velocity can be related to the mapping as:

v = ż =
dft(α)

dt
=
∂ft(α)

∂t
+
∂ft(α)

∂α

dα

dt
. (3.39)

This is because the parametrization of the interface may in principle change in
time. Then the equation of motion for the mapping becomes

Re

{(

∂tft(α) + ∂αft(α)
dα

dt

)

n∗
}

= (n̂ · ∇φ) (3.40)

Using the expression for the normal, as in [11],

n = nx + iny = i
∂αft(α)

|∂αft(α)| . (3.41)

we obtain:

Re

{−i∂αf
∗
t (α)∂tft(α)

|∂αft(α)| − i|∂αft(α)|dα
dt

}

= (n̂ · ∇φ) (3.42)

which means

Re

{−i∂αf
∗
t (α)∂tft(α)

|∂αft(α)|

}

= (n̂ · ∇phi), (3.43)

since the parametrization of the interface is a real quantity. Let us calculate
now the term (n̂ · ∇φ):

(n̂ · ∇phi) = (nx∂xφ+ ny∂yφ) = Re(n∂zΦ), (3.44)

where z = x+ iy, Φ = Φ(z) is the complex potential defined in section 3.4 and
the property ∂zΦ ≡ ∂xΦ has been used. Going to the ω-domain, and using the
chain differentiation rule,

∂

∂z
=
∂ω

∂z

∂

∂ω
≡ ∂ω

∂ωz
, (3.45)

we obtain:

(n̂ · ∇φ) = Re

(

n∂ωΦ̂(ω)

∂ωz

)∣

∣

∣

∣

∣

ω=eiα

, (3.46)

where Φ̂(ω) corresponds to the complex potential mapped onto the ω-plane.
Now, recalling Eq. (3.41), it is a simple matter to show that

(n̂ · ∇φ) = Re

(

i∂αΦ̂(α)

|∂αft(α)|

)

. (3.47)

Using this, we finally obtain:

Re (i∂αf
∗
t (α)∂tft(α)) = Re

(

−i∂αΦ̂(α)
)

, (3.48)

which is our basic interfacial equation. This is the fundamental mapping equa-
tion already reported in [11].
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3.8 Comparison to viscous fingering

In this section I will discuss the viscous fingering problem, since the underlying
mathematical is similar to our moving boundary problem. The physical sys-
tem consists of a so called Hele-Shaw (HS-) cell, two parallel plates which are
very close to each other, filled with two fluids. When a pressure gradient is ap-
plied, the interface between the two fluids will become (un)stable depending on
whether the more viscous fluid is driving or not. If the less viscous fluid is driv-
ing, one usually observes the emergence of one or more fingers. The prediction
of the width of the finger became a classical problem: the selection problem.
There are of course some generalizations of this experimental setup; one can
study bubbles of air in a HS-cell, or injection from air in the center of the fluid
from above.
I will describe a general setup of the problem in section 3.8.1 and discuss the
early contributions in section 3.8.3. The selection problem is solved in those
papers. In section 3.8.4 I will discuss the later contributions, which are from a
dynamical systems point of view. Similarities and differences with the streamer
problem will be discussed in section 3.8.5. In the last section I will discuss some
mathematical papers concerning the complex moments.

3.8.1 General statement of the problem

The ’classical’ viscous fingering is shown in figure 3.4:

WATER OIL

Figure 3.4: Classical viscous fingering in a thin Hele-Shaw cell, seen from above.

The water-oil interface is unstable if the less viscous fluid of the two is driv-
ing the more viscous. One usually observes a ’fingered’ pattern in this case,
which is the reason for the name of the phenomenon, ’viscous fingering’. This
problem was already known by engineers, trying to push oil with water and
ending up with oil-water mixtures due to the instability of the interface. From
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now on, I will use air to denote the less viscous and water to denote the more
viscous fluid for convenience.
When air is injected from one side into a long stretched Hele-Shaw cell filled
with water, usually a finger is observed with width λ = 1

2 (where the width
of the channel is set to one). In 1958 Saffman and Taylor analyzed this prob-
lem and derived a family of exact finger shapes in absence of surface tension
parametrized by their width λ in [15]. They showed that their analytically
predicted shape fitted the experimental one very well, provided they imposed
λ = 1

2 . They conjectured and checked experimentally that the width of the
finger could only depend on a dimensionless combination of the surface tension.
The selection of the width of the finger by surface tension was called the ’selec-
tion problem’.
Their work was originally motivated by penetration of a fluid into a porous
medium, the aforementioned engineering problem. They wanted to model this
problem with a HS-cell, where air instead of water, water instead of oil and the
cell instead of a porous rock is used to study the instability.
In a later paper, [16], they studied the shapes of bubbles in a Hele-Shaw cell.
They were able to calculate the shapes of the bubbles analytically but encoun-
tered again a similar selection problem; a family of solutions exists.

3.8.2 Derivation of the moving boundary problem

The idea of the moving boundary approximation is given in figure 3.5. The
interface separating the air region from the water region is taken infinitely thin;
this means that we end up with two regions. In both regions the pressure
has to satisfy the Laplace equation, since overdamped motion (v = −∇p) and
incompressibility (∇ ·v = 0) are assumed. The viscosity of air can be neglected
with respect to oil/water, so the pressure is constant in the air region to the
left.

∆p+ = 0 in the water region (3.49)

and

p− = constant in the air region (3.50)

The pressure determines the local normal component of the velocity on the
interface via Darcy’s law:
(Remark: This law can be obtained directly from integration of the Navier-
Stokes equations)

−(∇p+)n = vn (3.51)

which means that the local velocity of the interface is determined by the pres-
sure; the tangential component is just a reparametrization of the interface and
can not be seen.
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P=0
V n =

dp
dn

p=0

Figure 3.5: A moving boundary approximation for the viscous fingering problem

Furthermore, one usually takes a constant extraction rate of the fluid at
x = ∞, which means that the velocity is fixed: v → Ux̂ if x → ∞. At the
sidewalls, the velocity of the fluid is parallel to the walls, which means:

dp

dy
= 0 at the walls. (3.52)

This means that the problem is fully determined once some initial shape of the
interface is given and if the jump condition for p+ − p− is given. The simplest
(unregularized) case is

p+ − p− = 0 (3.53)

and the regularized case

p+ − p− = Tκ, (3.54)

where T is the dimensionless surface tension and κ the curvature. Notice that
equation (3.54) reintroduces the third dimension into the problem; there are
actually two radii of curvature. Analysis shows that both smoothen out the
sharp cusps in the interface and one usually uses the two dimensional curvature
from the interface in equation (3.54). Let me formulate the ST-problem in
channel geometry for future reference:

∆p = 0, in the water (3.55)

dp

dy
= 0 on the walls and − dp

dx
→ U as x→ ∞ (3.56)

p = Tκ on the interface (3.57)

and

vn = −(∇p)n on the interface (3.58)

The problem (3.55)-(3.58) with T = 0 will be denoted as the unregularized
problem.
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3.8.3 Discussion of early papers

A class of solutions of the unregularized problem was already found in [15]: the
finger (ST1). The width λ was a free parameter though and could not be ob-
tained.
McLean included surface tension [17] and found a unique solution, which ap-
peared to be linearly unstable. Romero and Vandenbroeck [18] showed that
McLean had only found the smallest possible λ; a whole family of solutions
exists. In the meantime, the smallest finger was observed in experiments and
numerical solutions of the full problem; perturbations seemed to grow first but
were convected away to the side of the finger and elongated (larger k, more sta-
ble) in [26] and [27]. The stability and the selection problem was finally solved at
the same time by Bensimon [22] and (independent) Kessler and Levine [24], [25];
the fingers of [17] are indeed stable, but extremely sensitive to noise if T is small;
this leads to a nonlinear (subcritical) instability for small T. The higher values
of λ, reported in [18] are unstable and thus unobservable. Instabilities imposed
on the selected λ are convected away to the back. The breakdown of the sta-
bility analysis of [17] is due to the role of exponentially small terms which can
not be captured by a linear stability analysis, although such an analysis appears
to be consistent. This means that a complete picture for the finger selection is
achieved.
The unregularized problem exhibits some nice features; one can use an ansatz
like:

ft(ω) =

N
∑

k=0

ak(t)ωk; (3.59)

on the conformal map. If the initial shape of the interface can be described by
N modes ak, no higher modes will be generated. This means that the equation
of motion for the mapping function, a PDE, can be reduced to N ODE’s. All
those polynomial initial conditions will lead to cusps, points on the interface
with infinite curvature. When an ansatz like

ft(ω) =
a0(t)

ω
+

M
∑

m=1

αM ln(ω − am(t)), (3.60)

a sum of logarithms is inserted instead, no cusps will occur. This seems to
be a nice property, but the mappings can describe initial conditions which are
arbitrarily close to each other. This means that cusp formation is a generic
feature of the problem which can not be cured properly by a different ansatz on
the mapping function.

3.8.4 The later contributions

The idea is to use the known exact solutions, add a small amount of surface
tension and see whether the right finger width is selected and whether the cusps
are regularized away. This turns out to be the case, but not in the way it was
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expected. Terms of all order need to be kept in a perturbative expansion in T in
order to obtain the right λ. Furthermore, solutions for T = 0 and T 6= 0 which
are originally close to each other can differ even qualitatively at time of order
unity. This is due to the emergence of so called daughter singularities. The way
the surface tension is selecting the right width is called microscopic solvability;
microscopic since a microscopic property selects a macroscopic property and
solvability since solvability integrals are involved.
Casademunt wrote an interesting paper [41] which highlights all subtleties of
the problem. In a setup with multiple fingers, unequal fingers are a solution of
the unregularized problem, the planar interface is unstable and a single finger is
a solution as well. Addition of surface tension changes the full phase space: only
the equal fingers fixed point is left, but this has become a saddle point. The
single finger with λ ≈ 1

2 is the attractor of the problem. Even an addition of a
small amount of surface tension is able to change the phase space in regions far
away from the fixed points (and far away from the regions with high curvature,
where it is supposed to work). This means that a different ansatz on the mapping
function will not cure the sensitivity to cusp formation; an additional lengthscale
is needed, which is surface tension in the viscous fingering case.

3.8.5 Comparison with the streamer

Let me compare the unregularized streamer problem to the bubble in the HS-
case; those two are very similar. The inner region of the streamer is fully ionized
which means φ = 0, corresponding to the air bubble of constant pressure. The
chargeless outer region ∆φ = 0 corresponds to the water region where ∆p = 0.
The geometry is the same in this case (no effects of the side walls). Since
the problem is not regularized, the jump condition on the interface, φ = 0 is
the same in both cases as well. The only difference is in the constant field at
infinity (streamer) instead of a prescribed potential, which is usually ∼ Q log z
(injection of air in the center of the bubble) in the HS-case. Nevertheless it is
not surprising to find very similar results in both cases, i.e. polynomials are
solutions but develop cusps in finite time. Although this could probably be
’cured’ using the logarithms instead, this would not be the correct approach.
The emphasis should be on the regularization of the problem.
The comparison of the regularized cases is more interesting, especially since
both regularization mechanisms can be compared directly (independent of global
topology). A regularization mechanism for the streamer was derived from the
inner problem:

φ = ε(∇φ)n, (3.61)

where ε is the width of the boundary layer. This boundary condition was al-
ready mentioned by Howison [34], he derived the correct dispersion relation for
the planar front.
Although the conditions (3.57) and (3.61) look very different, they both penalize
regions of large curvature. The first one explicitly, the latter one as well, since
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high curvature corresponds to high electric fields.
The inclusion of surface tension indeed regularizes the HS-problem; perturba-
tions can be amplified but are finally convected away. This is exactly what
we observe as well. We got even further, since we were able to derive analytic
solutions of the regularized problem which exhibit this feature. Furthermore we
were able to show that only a shift remains from any perturbation as t→ ∞. I
want to conclude this section with a remark made by Tanveer: this should be a
’cautioning tale’ for physicists. It is an example where a perturbative approach
failed completely due to the singular nature of the perturbation.

3.8.6 An alternatitive approach: the complex moments

The moving boundary can be solved in a different way; instead of solving the
PDE for the mapping function, the complex moments of the domain can be
used. This idea was introduced by Richardson in [42]. I will discuss three pa-
pers and make a comparison with my own work in the last part.
Summary of Richardson’s paper
His motivation came from an industrial application; injection moulding. A
molten polymer is forced into a mould of an appropriate shape through a hole.
It would be desirable to understand the shape of the growing domain, since air
has to escape at the points where the polymer arrives last. The same problem,
injection moulding, happened to be the subject of my master thesis [45], [46].
In [42], the polymer is replaced by a compressible Newtonian fluid; all the com-
plicating rheology is removed from the problem. Since he assumes furthermore
that the boundaries of the mould are infinitely far away, the problem becomes
the HS-droplet problem. The initial domain is a drop of a given shape which
expands via inflow of liquid in some interior point. The problem is formulated
in the usual way, without pressure drop across the interface. Using a simple
geometric argument, the known equation of motion for the interface is derived;
in his notation:

f ′(ζ, t) +
∂f?

∂t
+ (ζ2f ′(ζ, t))? ∂f

∂t
=
Q

π

1

ζ
, (3.62)

where the right hand side comes from the point source at the origin ∼ Q
2π ln(z).

Define the complex moments of a closed domain D:

CN =

∫ ∫

D

zNdxdy (3.63)

and notice that the 0th moment is the area of D and C1

C0
the center of mass.

Differentiating equation (3.63) and using equation (3.62) equation (3.64) follows
immediately:

dCN

dt
=

Q

2πi

∫

Γ′

fN

ζ
dζ, (3.64)
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where Γ′ denotes the unit circle. This means that all but one of the moments
are conserved in time; only the area is increasing at a given rate. The moments
are directly related to the Schwarz function; this approach can be impractical.
If the initial domain is given by a polynomial of degree N, Ck = 0, k > N
which means that those moments remain zero: polynomials are solutions and
the problem reduces to solving a system of N algebraic equations (since the area
is changing).
Injection gives rise to a smoother boundary than suction, which is logical since
in the latter case the less viscous fluid is driving.
Summary of the paper of Entov et al. [43]
0: Instead of a potential with a single pole as studied in [42], they study multi-
poles using the complex moments.
I: Let F (z) be the complex potential; a pole of order n and strength M at z0 is
defined as follows:

F (z) = −M
2π

(z − z0)
−n + φ(z), (3.65)

where φ(z) is analytic at z0. This expression is obtained by superposition of
sources and sinks of strength 1

2Mε−n around z0 at distance ε around z0 and
taking ε → 0; this implies that the n = 1 case is called a dipole and n = 2
a quadrupole. Both droplets (source in bounded domain) and bubbles (source
at infinity and bounded complement) can be described. The unregularized HS-
equations completely specify the evolution of an intial domain D0 under action
of a multipole.
II: Evolution of domain with pole of order n: Cn varies linearly, the other
moments are constant.(bubble is the same with appropriate definition of the
Cn.
III: Richardson’s results is recalled; polynomials of degree N are solutions iff the
Ck = 0, k > N
IV: Exact solutions for the droplet; multipole of order n, polynomial of degree
n+1, which breaks down in finite time, after t?, due to cusp formation; this
property holds for all initial domains, since addition of more modes makes it
worse, shorter lifetime. The same holds in the bubble case.
VI: Surface tension included to study equilibrium shapes; the complex potential
F (z) has as boundary condition Tκ; the analytic continuation of this function
has only one singularity inside D, which turns out to be sufficient to reconstruct
D. The Schwarz function is a curve ΓC such that there exists an analytic g(z)
in the neighbourhood of Γ and

g(z) = z?, z ∈ Γ. (3.66)

Important properties of the Schwarz function are listed in [56]. It is convenient
in this case, since the normal and the curvature can be expressed easily in g.
The complex potential is given in terms of g(z):

F (z) = ± iTg′′(z)

2(g(z))3/2
(3.67)
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and this means that the quotient on the right hand side has just one singular-
ity inside D. This turns out to be sufficient to derive an equation for g. The
droplet and the bubble are treated seperately. Using the information about the
singularities, an expression for the mapping function is derived; a one parame-
ter family of solutions in terms of M and T. If the surface is large enough, one
or two solutions can exist. Although no stability analysis is performed, they
conjecture that the solution is stable if one exists and stable/unstable if two
solutions exist.
Summary of the paper of Nie and Tian [44]
I: This paper studies time-dependent solutions with surface tension; in [43] they
found requirements for stationary solutions; order multipole greater than one,
sufficiently large surface tension and center of fluid at the multipole.
II: Setup droplet problem with a multipole at the origin in the presence of surface
tension. Equivalence complex moments and PDE problem is shown in presence
of surface tension. Even in the presence of surface tension, the first moment
can be calculated analytically and increases linearly in time in the dipole case.
This means that it either extends to infinity or develops cusps as time goes to
infinity. For multipoles of higher order, the center of mass is time-independent;
all stationary solutions of [43] had a coinciding center of mass and source, which
means that those can only be attained when the two coincide initially. Without
surface tension, a polynomial ansatz can be inserted and integrated (for com-
parison reasons).
III+IV: Numerical method and numerical solutions. Dipole develops cusps with-
out T, but cusp is regularized by surface tension and reaches dipole instead. This
critical time can be estimated and agrees nicely with the theoretical argument.
Larger surface tension, less pointed. Different initial condition used; cusps still
regularized away.
Quadrupole gives the same results, cusps without surface tension and former
cusps are fingers reaching the quadrupole. If surface tension is increased, they
manage to obtain one of the stationary shapes predicted by [43]. If they move
the position, the former cusp reaches the pole again and no stationary shape
exists.
Multipole of order 3 gives the same results; if surface tension is large enough, a
stationary shape can be reached.
The complex moments of the streamer
In the unregularized case, the streamer is completely equivalent to a bubble
with a dipole at infinity. This means that, apart from the first moment, all
moments are conserved. Instead of solving N ODE’s, one could solve N alge-
braic equations instead to trace the interface. This is, however, numerically
equally complicated, so I decided to stick to the ODE-formulation. The ques-
tion is, whether analytic progress could be made with the Schwarz function for
the regularized case. Although this worked particularly well in [43], it may be
a bit more complicated due to the different boundary condition. This may be a
direction for future analytic research, though.



Chapter 4

Solutions of the

unregularized problem

The framework developed in the previous chapter is applied to the unregularized
problem. It is possible to derive an explicit expression for the complex potential.
I use a power series expansion

ft(ω) =

∞
∑

k=−1

ak(t)ωk (4.1)

for the mapping and derive an (infinite) set of coupled ODE’s for the coefficients
of the expansion. If the initial condition truncates after some power N , the
coefficient ak(t) = 0, k > N ∀t > 0, which means that any solution of the
ODE can be characterized by N , the number of modes in the initial condition.
Analytic solutions are derived for the two trivial cases (N = 0, 1), I prove two
theorems for the first nontrivial case (N = 2). Finally, numerical solutions
are given for larger values of N . Cusp formation in finite time seems to be
inevitable.
The analysis and the results of this chapter have been published in Phys. Rev.
E [47].

4.1 Calculation of the potential

In chapter 3 the general form of the mapping function and the complex potential
were derived. Let me recall the explicit expressions:

ft(ω) =
a−1(t)

ω
+ an analytic function of ω (4.2)

and

Φ̂(ω, t) =
E0a−1(t)

ω
+ g(ω, t), (4.3)
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where g(ω, t) is a time dependent analytic function of ω. In the unregularized
problem, the streamer is equipotential and I gauge its potential to zero. This
leads to:

φ(x, y) = φ0 = 0 (4.4)

on the streamer. This gives us

Re Φ̂(ω, t) = 0, if |ω| = 1. (4.5)

I have to solve a Dirichlet problem for g(ω, t); g(ω, t) is analytic inside the unit
disc and has to satify

0 = Re g(ω = eiα, t) + E0a−1(t) cosα (4.6)

on the unit disc where ω = eiα. It is easy to verify that the function

g(ω, t) = −E0a−1(t)ω. (4.7)

has the desired properties. Insertion of (4.7) yields an expression for the complex
potential:

Φ̂(ω) = E0a−1(t)

(

−ω +
1

ω

)

. (4.8)

One could also use Fourier analysis to solve the problem. Writing

g(ω) = b0 + 2

∞
∑

n=1

bnω
n, (4.9)

yields

Re g(eiα) = b0 +

∞
∑

n=1

bne
inα + b?ne

−inα. (4.10)

In this case, I obtain

b0 = 0, (4.11)

b1 =
−E0a−1(t)

2
, (4.12)

bn = 0, n ≥ 2. (4.13)

Using equations (4.11)-(4.13) I obtain again the expression for the complex
potential

Φ̂(ω) = E0a−1(t)

(

−ω +
1

ω

)

, (4.14)

which is the same expression as the one derived in equation (4.8).



4.2 Derivation of a coupled set of ODE’s 39

4.2 Derivation of a coupled set of ODE’s

In Chapter 3, I derived the general form of the mapping function ft(ω):

ft(ω) =
a−1

ω
+ analytic terms. (4.15)

Any analytic function can be written as a convergent Taylor series,

ft(ω) =
a−1

ω
+

∞
∑

k=0

akω
k. (4.16)

I study interfaces which are mirror symmetric about the x-axis, i.e. x→ x and
y → −y if α→ −α, where the unit disc is parametrized by α: ω = eiα. This is
equivalent to imposing that all ak are real. Use the explicit expression for Φ̂(ω)
derived in section 4.1

Φ̂(ω) = E0a−1

(

−ω +
1

ω

)

(4.17)

and the equation of motion for the mapping function, equation (3.48), derived
in chapter 3:

Re (i∂αf
?∂tf) = Re(−i∂αΦ̂(α)). (4.18)

Substitution of the explicit expression for Φ̂ gives us the right hand side of the
equation:

Re(−i∂αΦ̂(α)) = −i∂α (−2iE0a−1 sinα) = −2E0a−1 cosα. (4.19)

Substitution of the equation for the mapping function (4.16) on the left hand
side of the equation 4.18 gives us:

Re (i∂αf
?∂tf) = Re





∞
∑

k,k′=−1

kake
−ikαȧk′eik′α



 (4.20)

=

∞
∑

k,k′=−1

kakȧk′ cos((k − k′)α). (4.21)

Equations (4.18)-(4.20) yield the desired equation:

∞
∑

k,k′=−1

kakȧk′ cos((k − k′)α) = −2E0a−1 cosα. (4.22)

This equation is an identical reformulation of the moving boundary problem.
Ordering coefficients of cos kα leads to an infinite countable number of ODE’s.
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4.2.1 Discussion of the equations

It is useful to prove the following theorem:

Theorem 8 If there exists an N such that the initial condition f0(ω) can be
written in the form

f0(ω) =

N
∑

k=−1

ak(0)ωk, (4.23)

then the solutions ft(ω) of the unregularized problem can be written in this form
for t > 0:

ft(ω) =

N
∑

k=−1

ak(t)ωk. (4.24)

Theorem 8 implies that the unregularized dynamics won’t generate higher modes
than those present in the initial condition. This means that a solution of the
problem can be characterized by the cut-off N .
Proof of theorem 8:
Assume N > 1; the cases N = 0 and N = 1 will be treated separately, since one
can solve the equations analytically in this case. The theorem holds in those
cases as well, see section 4.3.1 and 4.3.2. Take an arbitrary integer M ; I want
to show that

ak(t) = 0, k = N + 1, . . . , N +M ∀t > 0, (4.25)

if the initial condition can be written as (4.23). For the highest mode, I can
solve the equation directly, since the coefficient of cos((N+M+1)α) in equation
(4.22) gives

(N +M)aN+M ȧ−1 − a−1ȧN+M = 0, (4.26)

which means

aN+M (t) = aN+M (0)
a−1(t)

N+M

a−1(0)N+M
(4.27)

and we see directly that all modes stay zero if they were zero initially, since we
can work our way downward. This proves the theorem.
I would like to rewrite the equations (4.22) in matrix form; the first row of
the matrix corresponds to the equation for cos 0α = 1, the second row to the
equation for cosα of equation (4.22) and so on. This allows us to solve them
numerically rather easily, if the number of modes in the initial condition is
limited by some number N . If this is the case, equation (4.22) reduces to N +2
ODE’s for the modes ak which can be written as follows: We have

(M1{ak} + M2{ak})∂ta = r, (4.28)
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where

r =















0
−2E0a−1

0
...
0















, (4.29)

a =















a−1

a0

a1

...
aN















. (4.30)

The matrices are defined as follows:

M1 =















−a−1 0 a1 . . . NaN

0 −a−1 0 . . . (N − 1)aN−1

0 0 −a−1 . . . (N − 2)aN−2

...
...

...
. . .

...
0 0 0 . . . −a−1















(4.31)

and

M2 =















−a−1 0 a1 . . . NaN

0 a1 . . . NaN 0
a1 . . . NaN 0 0
...

...
...

...
...

NaN 0 0 . . . 0















(4.32)

The solutions of the ODE’s will be discussed in the next section.

4.3 Solutions of the ODE’s

Theorem 8 shows that the number of modes is conserved in time. This means
that N can be used as a classification of our solutions, where N is the number
of modes in the initial condition. Let us take a look at the easiest cases first.

4.3.1 The circle: N = 0

If the initial condition is given by

f0(ω) =
a−1(0)

ω
, (4.33)
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we can solve the ODE’s analytically. Substitution of N = 0 in equation (4.28)
yields:

((

−a−1 0
0 −a−1

)

+

(

−a−1 0
0 0

))

∂t

(

a−1

a0

)

=

(

0
−2E0a−1(t)

)

.(4.34)

The first equation is solved as

a−1ȧ−1 = 0 ⇒ a−1(t) = a−1(0), (4.35)

(since a−1 ∈ R
+ and thus nonzero) and the second equation as

−a−1ȧ0 = −2E0a−1 ⇒ a0 = 2E0t. (4.36)

This means that we have a uniformly translating circle with constant radius
a−1(0) and speed 2E0, as

ft(e
iα) = a−1(t)e

−iα + a0(t) ⇒ (4.37)

x(t) = a−1(0) cosα+ 2E0t, y(t) = −a−1(0) sinα. (4.38)

4.3.2 The ellipse: N = 1

In this case I have

ft(e
iα) = a−1(t)e

−iα + a0(t) + a1(t)e
iα ⇒ (4.39)

x(t) = (a−1(t) + a1(t)) cosα+ a0(t), (4.40)

y(t) = −(a−1(t) − a1(t)) sinα, (4.41)

which is an ellipse with axes a−1 ± a1.
We can solve the equations again analytically; substitute N = 1 in equation
(4.28):









−a−1 0 a1

0 −a−1 0
0 0 a−1



+





−a−1 0 a1

0 a1 0
a1 0 0







 ∂t





a−1

a0

a1



 = (4.42)





0
−2E0a−1(t)

0



 . (4.43)

Start with the last equation to obtain

a1ȧ−1 − a−1ȧ1 = 0 ⇒ a1(t) =
a1(0)

a−1(0)
a−1(t). (4.44)

and substitute the expression for a1(t) in the first equation:

a1ȧ1 − a−1ȧ−1 = 0 ⇒ ȧ−1

(

(

a1(0)

a−1(0)

)2

− 1

)

= 0. (4.45)
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We have a1(0) ± a−1(0) 6= 0, since those quantities are the axes of the ellipse.
Therefore we have ȧ−1 = 0 ⇒ ȧ1 = 0: we have a translating ellipse, whose
axes both are time independent. The velocity can be derived from the second
equation:

ȧ0(a1(0) − a−1(0)) = −2E0a−1(0) ⇒ ȧ0 =
2E0a−1(0)

a−1(0) − a1(0)
. (4.46)

Notice that we find the circle back if we set a1(0) = 0.

4.3.3 The first nontrivial case: N = 2

Although I am unable to solve the equations analytically, I am able to prove
two theorems.
I am mainly interested in shapes with broader head than tail, since those shapes
resemble the numerical solutions in [13]. This means that I have to impose
a2(0) < 0. Furthermore I assume a positive tip velocity and prove

Theorem 9 If a2(0) < 0 and if the velocity in the tip of the streamer stays
positive, the curvature in the tip of the streamer will decrease in time.

Theorem 9 implies that the streamer can make a transition from a convex to a
concave shape and branches. Since the overall streamer velocity is positive due
to the form of the potential, a negative tip velocity would also give rise to a
flatter streamer; the tip is overtaken by the sides.
However, in chapter 6 I will prove the following theorem:

Theorem 10 A non-conformality point will hit the unit disc in finite time.

This means that a cusp is formed; we can not trace the time development of the
interface further.
Proof of theorem 9:
The general expression for the curvature of a curve parametrized by f is given
by equation (4.47)

κ(α, t) = −Im
∂2

αf

|∂αf |∂αf
. (4.47)

Inserting ansatz (4.16) with N = 2 in equation (4.47) for the tip of the shape
α = 0 yields:

κ(0, t) =
a−1(t) + a1(t) + 4a2(t)

(a−1(t) − a1(t) − 2a2(t))2
(4.48)

Differentiate the equation:

κ̇(0, t) =
n(t)

(a−1(t) − a1(t) − 2a2(t))3
, (4.49)
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where the numerator n(t) is given by the following expression

n(t) = (ȧ−1(t)a−1(t) + 3ȧ−1(t)a1(t) + 10ȧ−1(t)a2(t) − 3ȧ1(t)a−1(t)
−ȧ1(t)a1(t) − 6ȧ1(t)a2(t) − 8ȧ2(t)a−1(t) − 8ȧ2(t)a2(t)).

(4.50)

The equations of (4.28) are:

2a2ȧ2 + a1ȧ1 − a−1ȧ−1 = 0, (4.51)

2a2ȧ1 + a1ȧ2 + a1ȧ0 − a−1ȧ0 = −2E0a−1 (4.52)

2a2ȧ0 + a1ȧ−1 − a−1ȧ1 = 0, (4.53)

2a2ȧ−1 − a−1ȧ2 = 0. (4.54)

Substitute the following expressions that follow from (4.52), (4.54) and (4.54)

−8a2ȧ2 + a−1ȧ−1 − a1ȧ1 = −6a2ȧ2, (4.55)

3a1ȧ−1 − 3a−1ȧ1 = −6a2ȧ0, (4.56)

10ȧ−1a2 − 8ȧ2a−1 = −6ȧ−1a2, (4.57)

in the numerator n(t) to obtain:

κ̇(0) ∼ 6a2(ȧ−1 + ȧ0 + ȧ1 + ȧ2). (4.58)

I will prove now that the denominator of κ̇(0) is initially positive; this means
that it stays positive. Otherwise, ∂αf(0) = 0 and the curvature would tend to
infinity. The area A is given by (see Chapter 3 about the complex/Richardsons
moments)

A(0) = a2
−1(0) − a2

1(0) − 2a2
2(0) > 0 ⇒ a−1(0) > a1(0). (4.59)

Since a2(0) < 0, I obtain:

a−1(0) − a1(0) − 2a2(0) > 0 (4.60)

This means that the sign of the derivative of the curvature is determined by the
numerator, given is equation (4.58). Since we have

a2 = a2(0)
a2
−1(t)

a2
−1(0)

, (4.61)

we see that a2 < 0 ∀t > 0 , since we assumed a2(0) < 0. The part between
brackets (ȧ−1+ȧ0+ȧ1+ȧ2) is the velocity of the interface at the tip: ∂tf(α = 0).
Therefore the curvature at the tip decreases according to (4.58). This is com-
pletes the proof.
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4.3.4 The general case: arbitrary N

In this case it is impossible to solve the equations analytically; the ODE’s need
to be solved numerically. The numerical implementation of equation (4.28) is
done using a standard fortran algorithm from the Numerical Recipes [58], which
solves an N -dimensional system of ODE’s.
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Figure 4.1: Upper panel: evolution of the interface in equal time steps up to
time t = 0.1/E0 with initial condition
a) z0(α, 0) = e−iα + 0.6 · eiα − 0.08 · e2iα,
b) z(α, 0) = z0(α, 0) − 5 · 10−3 · e8iα

c) z(α, 0) = z0(α, 0) + 3 · 10−3 · e8iα

d) z(α, 0) = z0(α, 0) − 4.5 · 10−7 · e30iα,
and lower panel: zoom into the unstable head of Fig. d.

Figure 4.1 shows four runs of the program; the initial conditions for all four
runs are almost the same; they only differ in a small perturbation of a high
mode. After some evolution the interfaces depend a lot on this initial condition,
though. Furthermore, we see the emergence of cusps at the interface: points
with infinite curvature. If I continue the simulation, I get self-intersections at the
interface. This means, that it makes no sense to continue the simulation after a
cusp is reached. Physically, we see those cusps since a regularization mechanism
for the short length scales is missing. This corresponds mathematically to the
loss of conformality of the mapping function at a point on the boundary. When
performing those simulations, I usually keep track of the minimum of the |∂αf |;
at a certain time, this minimum decreases rapidly towards zero and a cusp at the
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interface is formed, ending the simulation. From the simulations in figure 4.1 we
clearly see, that the cusp formation is a generic property of the unregularized
problem.
I will investigate in later chapters whether a regularization can be found that
prevents cusps; in figure 4.2 we studied a more elongated streamer; the back
part is not shown. This figure shows, that the streamer head is able to become
concave, even if it is initially convex.

Figure 4.2: Evolution of the tip of an elongated “streamer” in equal time steps
up to time t = 0.1/E0; initial condition z(α, 0) = e−iα + 0.9 · eiα − 0.03 · e2iα −
1.2 · 10−5 · e12iα.

The conclusion of this chapter is that the unregularized problem shows
promising features, the transition from convex to concave of the streamer head.
It is still lacking a physical ingredient: a mechanism which regularizes the short
length scales. This mechanism will be the subject of the next chapter.



Chapter 5

Derivation and

implementation of a new

boundary condition

The purpose of this chapter is the derivation of a streamer specific condition on
the moving boundary. Regularization can be hoped for, but has not been fully
tested up to now. This boundary condition reads

φ = ε(∇φ)n, (5.1)

where ε introduces a new lengthscale. Previously, the problem was scale in-
variant, since the electrodes where placed at infinity. The size of the boundary
layer with respect to the size of the streamer is introduced via the boundary
condition (5.1). It is still possible to derive analytic solutions; the uniformly
translating circle is a solution of the regularized problem. For more general
initial conditions, the complex potential can not be calculated analytically. I
use a mode expansion of Φ̂ in terms of the mapping function to calculate the
potential numerically. In order to solve the full PDE problem, the analyticity
of the ft(ω) needs to be preserved. An expansion in ω is used for f as well to
analyze the full nonlinear problem. The previous chapter motivated truncated
series, but the following chapters will show that this is not appropriate.

5.1 Derivation of the boundary condition

In Chapter 8 planar solutions of the streamer equations (2.9)-(2.11) will be
discussed. Those can be derived by inserting the comoving coordinate ξ in the
equations

σ(r, t) = σ(ξ = z − vt), similarly for ρ and E. (5.2)
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We are looking for fronts, connecting the ionized state behind the streamer to
the non-ionized state in front of the streamer:

ρ = σ, E = 0 as ξ → −∞ (5.3)

and

ρ = σ = 0, E → −E0ξ̂ as ξ → ∞. (5.4)

Those solutions can be calculated analytically [9], [12]. A shock front is obtained
for D = 0. The coordinate ξ is chosen such that the position of the jump is
exactly at ξ = 0. A picture of the planar solutions is given in figure 5.1.
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Figure 5.1: The planar front in a field E0 = 1 from [12].

It is possible to calculate the jump of the potential across the interface in the
planar case (almost) analytically, since the expression for the electrical field is
given. Let ξ be the comoving coordinate and calculate the jump in the potential:

−
∫ 0

−∞

Edξ = φ(0) − φ(−∞). (5.5)

We have, for ξ < 0

ξ2 − ξ1 =

∫ E(ξ2)

E(ξ1)

v + x

ρ[x]

dx

x
, (5.6)

where v = E0 > 0 and

ρ[x] =

∫ E0

|x|

α(x)dx, (5.7)
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α(x) = e−1/x. (5.8)

Far ahead of the front, we have a constant electrical field E = −E0ξ̂. Substitu-
tion of ξ1 = 0 and renaming ξ2 = ξ in equation (5.6) yields

ξ =

∫ E(ξ)

−E0

v + x

ρ[x]

dx

x
. (5.9)

Partial integration of equation (5.5) gives us

φ(0) − φ(−∞) = −
∫ 0

−∞

Edξ = (ξE) +

∫ −E0

0

ξdE =

∫ −E0

0

ξdE, (5.10)

since either the electrical field E or ξ vanishes at the boundaries of the integra-
tion. Substitute equation (5.9) in equation (5.10) to obtain

φ(0) − φ(−∞) =

∫ −E0

0

dE

∫ E

−E0

v + x

ρ[x]

dx

x
. (5.11)

It is possible to change the order of integration in the following way:

∫ E=−E0

E=0

dE

∫ x=E

x=−E0

f(x)dx =

∫ x=0

x=−E0

dx

∫ E=x

E=0

f(x)dE =

∫ x=0

x=−E0

dx xf(x).(5.12)

Rewriting equation 5.11 in this way gives us

φ(0) − φ(−∞) =

∫ 0

−E0

dx
v + x

ρ[x]
. (5.13)

Lemma 1

φ(0) − φ(−∞)

E0
→ 1 (5.14)

if E0 large enough.

Lemma 1 implies that the jump in the potential is given by the local electric
field, provided the field is large enough. What ’large enough’ means can be seen
from the direct numerical integration of equation (5.13) for different values of
E0.
Proof of Lemma 1:
The idea of the proof is to give upper and lower bounds on the integral and to
show that both bounds tend to E0 if E0 tends to infinity. Substitute y = −x
and v = E0 in equation (5.13):

φ(0) − φ(−∞) =

∫ E0

0

dy
E0 − y

ρ[y]
. (5.15)

One of the estimates on the jump in the potential is easy:

ρ[y] =

∫ E0

y

e−1/x dx <

∫ E0

y

e−1/E0 dx = e−1/E0(E0 − y) (5.16)
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and

φ(0) − φ(−∞) > E0e
1/E0 > E0 (5.17)

The other bound is more complicated. Choose 0 < ε � 1 arbitrary and define
x? > 0

1 − e1/x?

= ε. (5.18)

Notice that the function α(x) = e−1/x is monotone, α(0) = 0 and α(∞) = 1,
which means that x? is well defined and unique. This definition allows me to
estimate ρ[x] for x > x?:

ρ[x] =

∫ E0

x

e−1/x > (E0 − x)(1 − ε), (5.19)

since the function is monotone.
Similar estimates for 0 < x < x?:

ρ[x] =

∫ E0

x

e−1/x =

∫ x?

x

e−1/x +

∫ E0

x?

e−1/x > (1 − ε)(E0 − x?), (5.20)

since the first integral is positive. This implies

φ(0) − φ(−∞) =

∫ x?

0

E0 − x

ρ[x]
+

∫ E0

x?

E0 − x

ρ[x]
<

x?

(1 − ε)(E0 − x?)
(E0 −

1

2
x?) +

1

1 − ε
(E0 − x?) =

E0

1 − ε
+

1
2 (x?)2

E0 − x?
<

E0

1 − ε
+

1

2x?
, (5.21)

provided I choose E0 large enough, E0 > (x?)3 + x?. Since ε was arbitray, we
see that φ(0)−φ(∞) tends to E0 from both sides taking ε→ 0. This completes
the proof.
Numerical integration of equation (5.13) gives us φ(0)−φ(∞) for different values
of E0.
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Figure 5.2: φ(0)−φ(∞) as a function of E0; the numerical calculation of equation
(5.11) is given by the upper curve and approaches the straight line for large E0

From figure (5.2) we clearly see that φ(0) − φ(−∞) grows approximately
linearly if E0 > 3.
The electric field in front of the jump is the constant negative far field in the
planar case:

E = −E0ẑ. (5.22)

We have according to the results of this section

φ(0) − φ(−∞) = −E0 + constant, (5.23)

and combining this yields at the front

φ = (∇φ)|n. (5.24)

We choose φ(−∞) to get rid of the constant, since we are only interested in the
jump of the potential across the interface. Furthermore the normal coincides
with ẑ = ξ̂ in the planar case. φ/(∇φ)|n has the dimension of length; instead of
keeping in mind, that I need to set the overall size of the streamer with respect
to this length, I prefer to set the size of the streamer to unity and to introduce
ε and set,

φ = ε(∇φ)|n. (5.25)

to denote the width of the layer with respect to the size of the streamer.
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5.2 Implementation of the boundary condition

The implementation of the new boundary condition is investigated in this sec-
tion. Use equation (3.47)

(∇φ)|n =
Re
(

i∂αΦ̂(eiα)
)

|∂αf |
(5.26)

to rewrite equation (5.25):

Re(Φ̂(eiα)) = ε
Re(i∂αΦ̂(eiα))

|∂αf |
. (5.27)

We see, that we need the information about the mapping function via |∂αf | to
calculate the potential. Only if this derivative is trivial, which happens to be the
case for the circle, I am able to calculate solutions of the full PDE’s analytically.
This will be done in Section 5.3.
Otherwise I have to use a numerical method. We still use the formulation of
chapter 3 which implies that Φ̂(ω) has the following form:

Φ̂(ω) =
E0a−1

ω
+ analytic terms (5.28)

which can be written without loss of generality

Φ̂(ω) =
E0a−1

ω
+

∞
∑

k=0

αkω
k, (5.29)

where the αk are complex time dependent constants. Due to the left-right sym-
metry imposed by the mapping function, one would expect the same symmetry
for the potential. This is indeed the case: I will rigorously show this in lemma
2.
I want to calculate the αk numerically, so I will have to use a cut-off:

Φ̂(ω) =
E0a−1

ω
+

N
∑

k=0

αkω
k. (5.30)

The subsequent calculation was done in two ways; in Section 5.4 I calculate the
coefficients αk for some given mapping function f ; an equation of the form

M[|∂αf |]α = b[|∂αf |] (5.31)

is derived, where the vector α contains the αk. The matrix M and the vector b
are given in terms of |∂αf |. I can go one step further though; since we use the
Ansatz

ft(ω) =

∞
∑

k=−1

ak(t)ωk (5.32)
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on f , we have

|∂αf | =
b0
2

+

∞
∑

k=1

bk cos(kα). (5.33)

I use this equation for |∂αf | in Section 5.5 to derive an equation of the following
form

M[bk]α = b[bk]. (5.34)

This is, however, inefficient; it requires a lot of analysis and has no advantages
for the numerics.
I still like to prove in the following lemma that the αk are real.

Lemma 2 If |∂αf | is given by the Ansatz (5.33) and if Φ̂(ω) is given by (5.30),
αk ∈ R ∀k > −1, provided the determinant of the matrix M1 − M2, defined
below, is nonzero.

Proof of Lemma 2:
If bk = 0 ∀k > 0 we have a circle. In this case we can solve the problem
analytically, see section 5.3.
Substitution of the Ansätze 5.33 and 5.30 in equation 5.27 yields the following
equations for the αk:

(

N
∑

k=−1

αk,r cos(kα) − αk,i sin(kα)

)(

b0
2

+

M
∑

k=1

bk cos(kα)

)

= (5.35)

−ε
(

N
∑

k=−1

kαk,r cos(kα) − kαk,i sin(kα)

)

, (5.36)

where we wrote

αk = αk,r + iαk,i. (5.37)

Compare the odd terms on both sides (notice that we calculated α−1,i = 0
already explicitly and that α0,i = 0 since it only appears in the left hand side):

(

N
∑

k=1

αk,i sin(kα)

)(

b0
2

+
M
∑

k=1

bk cos(kα)

)

= −ε
N
∑

k=1

kαk,i sin(kα). (5.38)

We need to compare sin(mα) on both sides by calculating

1

π

∫ 2π

0

dα sinmαf(α), (5.39)

where the left and right hand side of equation (5.38) need to be substituted
for f(α). It is convenient to rewrite the equations in matrix form, where the
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first component corresponds to the equation for m = 1 and the last equation to
m = N . I will derive an equation of the following form

M1a = −εM2a, (5.40)

where

a =











α1,i

α2,i

...
αN,i











. (5.41)

After rewriting equation (5.38) we only have to keep track of the determinant of
the matrix M1 −M2. Rewriting the right hand side of equation (5.38) is easy:

M2 =











1 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . N











(5.42)

The contributions of the left hand side are a bit more difficult. Use

sin(lα) cos(kα) =
1

2
(sin((l + k)α) − sin((l − k)α)). (5.43)

The integration in equation (5.39) will give three different contributions: for
l + k = m, l − k = m and k − l = m. The left hand side consists of those three
contributions:

1

π

∫ 2π

0

N
∑

k,l=1

sin(lα) cos(kα) sin(mα)αl,ibk =
1

2
(M1,a + M1,b + M1,c)a, (5.44)

where the matrices are given below:

M1,a =











b0
2 0 . . . 0

b1
b0
2 . . . 0

...
...

. . .
...

bN−1 bN−2 . . . b0
2











, (5.45)

M1,b =











b2 b3 . . . bN+1

b3 b4 . . . bN+2

...
...

. . .
...

bN+1 bN+2 . . . b2N











, (5.46)

and

M1,c =











b0
2 b1 . . . bN−1

0 b0
2 . . . bN−2

...
...

. . .
...

0 0 0 b0
2











. (5.47)
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We see that a = 0 solves the equation; since I assumed the determinant of
M1 − M2 to be nonzero. This proves the theorem.
Notice that this determinant depends strongly on the mapping function at each
time. For any physical solution, this assumption will probably not be restricitive.
The real part of the αk will be calculated in Section 5.5; in this case, the matrix
equation is inhomogeneous, due to the term present because of the far field E0,
which implies that this equation will have a non trivial solution.

5.3 Analytical solution: the circle

In this section we will show that the circle is a uniform translating solution in
the regularized case, more precisely formulated in Theorem 11:

Theorem 11 If the initial condition of the regularized problem is a circle, then
the solution will stay a circle.

Proof of theorem 11: We will prove that the time derivatives of all ak are zero
initially, execpt a−1, thus proving that they remain zero, which implies that the
circle is a uniformly translating solution. Initially we have:

f0(ω) =
1

ω
, (5.48)

and

|∂αf | = 1, (5.49)

Since the size of the streamer was set to unity, a−1(0) = 1. I am able to calculate
the αk analytically at t = 0:

Re(Φ̂(eiα)) = E0 cosα+

∞
∑

k=0

αk(0) cos(kα) (5.50)

and

Re(i∂αΦ̂(eiα) = E0 cosα−
∞
∑

k=0

kαk(0) cos(kα) (5.51)

and using the boundary condition (5.27) we see that

E0(1 − ε) cos(α) = −
∞
∑

k=0

(1 + kε)αk(0) cos(kα) (5.52)

which means that

α1(0) = −E0
1 − ε

1 + ε
, αk(0) = 0 for k 6= 1 (5.53)
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This means that driving force in the equation of motion (3.48) is given by

Re(−i∂αΦ̂(eiα)) = cosα(−E0 + α1). (5.54)

Insertion of the explicit expression for α1 of equation (5.53) into equation (5.54)
gives us Re(−i∂αΦ̂(eiα)):

Re(−i∂αΦ̂(eiα)) = −2E0 cosα
1

1 + ε
. (5.55)

Notice that the dynamics of the regularized equation is very similar to the
dynamics of the unregularized problem, where we had

Re(−i∂αΦ̂(eiα)) = −2E0 cosα. (5.56)

We can use the same argument as in this case: since the time derivatives of all
the higher modes are initially zero, they will stay zero and the explicit solution
is:

a−1(t) = a−1(0) = 1, a0(t) =
2E0t

1 + ε
, ak(t) = 0 for k > 0 (5.57)

This means that we have a uniformly translating circle. This proves the theorem.

5.4 Towards a numerical scheme: calculation of

the potential 1

For a general initial condition, I need a numerical scheme to solve the problem.
This means that I will have to calculate the potential Φ when the mapping
function is given. I will rewrite the boundary condition

Re Φ̂ = ε
Re(i∂αΦ)

|∂αf |
(5.58)

with the ansatz

Φ̂(ω) = E0a−1

(

1

ω
+

∞
∑

k=0

αkω
k

)

(5.59)

in the following form:

Mα = b, (5.60)

where the matrix M and the vector b depend on |∂αf | and

α =











α0

α1

...
αN











(5.61)

In Section 5.5 I use a mode expansion for the absolute value as well. This
approach offers no numerical advantages, but was used to obtain the numerical
results in the last section. Using the next section instead would be preferable
in the future.
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5.4.1 Derivation of the equation for the potential

We would like to determine the coefficients αk using the boundary condition
given in equation (5.58). Although this means that we have to determine an
infinite number of coefficients, we expect that the αk become very small if k > N ,
where N is chosen sufficiently large such that their impact on the dynamics is
negligible.
Substitution of equation (5.59) in equation (5.58) yields

∞
∑

k=−1

|∂αf |αk cos(kα) = −ε
∞
∑

k=−1

kαk cos(kα), (5.62)

where α−1 = 1. Insert this in equation (5.62) to obtain:

−ε
∞
∑

k=1

kαk cos(kα) = −ε cosα+ |∂αf |
(

cosα+

∞
∑

k=0

αk cos(kα)

)

. (5.63)

Use

−εmαm =
−ε
π

∫ 2π

0

cos(mα)

∞
∑

k=1

kαk cos(kα)dα (5.64)

and combine the equations (5.63) and (5.64) to obtain

εmαm = εδm1 −
1

π

∫ 2π

0

cos(mα)|∂αf |
(

cos(α) +

∞
∑

k=0

αk cos(kα)

)

dα, (5.65)

where I used

1

π

∫ 2π

0

cos(α) cos(mα)dα = δm1 (5.66)

Remark Notice that equation (5.65) also holds for m = 0.
It is convenient to rewrite equation (5.65) in matrix form; the first equation
corresponds to m = 0 and so on.

εAα = ε















0
1
0
...
0















+ b1 + M1α, (5.67)

where

A =















0 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 0 N















, (5.68)
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M1 = −















m0,0 m0,1 m0,2 . . . m0,N

m1,0 m1,1 m1,2 . . . m1,N

m2,0 m2,1 m2,2 . . . m2,N

...
...

...
...

...
mN,0 mN,1 mN,2 . . . mN,N















, (5.69)

b1 = −















m0,1

m1,1

m2,1

...
mN,1















, (5.70)

where mi,j is defined as follows:

mi,j =
1

π

∫ 2π

0

cos(iα) cos(jα)|∂αf |dα. (5.71)

We see, that this gives us the desired form of the equation, since

Mα = (εA − M)α = ε















0
1
0
...
0















+ b1 = b. (5.72)

I will show that those results are still consistent with known results, which is
always a good check for errors. In the circular case, f is independent of α and
|∂αf | = 1

mi,j = δij + δ00. (5.73)

Use the expression from equation (5.73) to simplify equation (5.67):

εAα = (ε− 1)















0
1
0
...
0















− Iα, (5.74)

where I is the a diagonal matrix

I =











2 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1











. (5.75)
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We see immediately that

α1 = −1 − ε

1 + ε
, αk = 0 if k 6= 1, (5.76)

as expected.
If ε→ 0 (the unregularized case), we can neglect the left hand side and the first
term on the right hand side of equation (5.67). This means that equation (5.67)
reduces to equation (5.77):

M1α = −b1. (5.77)

Notice that the first row of the matrix M is the same as the vector b. We can
solve equation (5.77) directly:

α =















0
−1
0
...
0















(5.78)

and we see that we obtain

Φ̂(ω) = E0a−1

(

1

ω
− ω

)

, (5.79)

which is exactly the expression we obtained in the unregularized case. Finally
we see that for large ε (which would physically correspond to switching of the
electrical field) both M and b can be neglected, which means

α =















0
1
0
...
0















, (5.80)

and this means that

Re(ω∂ωΦ̂(ω)) = a−1E0Re(2i sin(α)) = 0. (5.81)

There is no driving force left and the streamer gets stuck.
Equation (5.67) reproduces all desired limits correctly.

5.5 Towards a numerical scheme: calculation of

the potential 2

In this section, I will proceed the analysis one step further, using

|∂αf | =
b0
2

+

N
∑

k=1

bk cos(kα), Φ̂(ω) =
E0

ω
+

N
∑

k=0

αkω
k. (5.82)
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At this point, I do not need to impose any cut-off on the mapping function itself;
I only limit the number of terms I calculate in the expansion of its derivative.
Equation 5.27 defines the coefficients αk implicitly:

|∂αf |Re(Φ̂(eiα)) = εRe(i∂αΦ(eiα)). (5.83)

Insertion of equation (5.82) in equation 5.83 yields

(

1

2
b0 +

N
∑

k′=1

bk′ cos(k′α)

)(

(E0a−1 + α1) cos(α) + α0 +
N
∑

k=2

αk cos(kα)

)

= ε

(

(E0a−1 − α1) cos(α) −
N
∑

k=2

kαk cos(kα

)

.(5.84)

Comparing the terms cos(α) until cos((N + 1)α) will give us N + 1 linear equa-
tions for α0, . . . , αN . I would like to rewrite these equations in the following
form:

M[bk]α = b, (5.85)

where

α =











α0

α1

...
αN











(5.86)

contains the αk and the matrix M and the vector b are given in terms of the
bk. We obtain those equation by mulitplying both sides of equation 5.84 with
cos(mα) and integrating;

eqm =
1

π

∫ 2π

0

g(α) cos(mα), m = 1, . . . N + 1, (5.87)

where

g(α) = |∂αf |Re(Φ̂(eiα)) − εRe(i∂αΦ̂(eiα). (5.88)

Evaluating the contribtions of εRe(i∂αΦ̂(eiα)) is easy (I will call this integral
rhs for further reference):

rhs =
1

π

∫ 2π

0

cos(mα)εRe(i∂αΦ̂(eiα))dα = ε















0
E0a−1 − α1

−2α2

...
−NαN















. (5.89)
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The contributions of |∂αf |Re(Φ̂(eiα)) are more involved, since some of them
involve integrations over multiple cosines. I will evaluate the integral in parts:

1

π

∫ 2π

0

cos(mα)|∂αf |Re(Φ̂(eiα))dα =

lhs1 + lhs2 + lhs3 + lhs4,m=0 + lhs4,a + lhs4,b + lhs4,c (5.90)

Terms containing a b0:

lhs1 =















α0b0
1
2b0(E0a−1 + α1)

1
2b0α2

...
1
2b0αN















(5.91)

Terms containing α0:

lhs2 = α0











0
b1
...
bN











. (5.92)

Terms of the form cosα cos kα cosmα yield different contributions:

lhs3 =
1

2
(E0a−1 + α1)





























2b1
b2
...
bN
0















+















0
0
b1
...

bN−1





























. (5.93)

This leaves us with terms of the following form:

∫ 2π

0

dα

N
∑

k=1

bk cos(kα)

N
∑

k′=2

αk′ cos(k′α) cos(mα) 6= 0 if k ± k′ = ±m. (5.94)

Let us look first of all at the case where m = 0; in this case we get:

1

π

∫ 2π

0

dα

N
∑

k=1

bk cos(kα)

N
∑

k′=2

αk′ cos(k′α)

N
∑

k=2

bkαk. (5.95)

Rewrite equation 5.95 and the other equations in a matrix form:

lhs4,m=0 = π













0 0 b2 . . . bN
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0



























α0

α1

α2

...
αN















(5.96)
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We have four possibilities, but since k, k′ and m are positive, k+k′ = −m gives
no contribution. Let us start with lhs4a, where we consider k − k′ = −m; this
means k′ = m+ k and we have for m = 1:

b1α2 + b2α3 + ..+ bN−1αN , (5.97)

for m = 2:

b1α3 + .., (5.98)

this last contribution comes from m = N − 1 and gives b1αN . These results can
be summarized in a matrix:

lhs4a =















0 0 0 . . . 0
0 0 b1 . . . bN−1

0 0 0
. . .

...
0 0 0 0 b1
0 0 0 0 0





























α0

α1

α2

...
αN















. (5.99)

We continue with lhs4b where we investigate the case where k − k′ = m; this
means k′ = k −m and we get get the following terms; m = 1:

b3α2 + b4α3 + ..+ bNαN−1, (5.100)

for m = 2

b4α2 + b5α3 + ..+ bNαN−2 (5.101)

and for m = N − 2 we have bNα2. This can be summarized in a matrix:

lhs4b =



















0 0 0 0 0 0
0 0 b3 . . . bN 0

0 0
...

. . . 0 0
0 0 bN 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































α0

α1

α2

...
αN















. (5.102)

Finally we investigate the case where k+k′ = m. We will call this case lhs4c. If
m = 3, we have b1α2, if m = 4, we have b1 + α3 + b2α2 and so on until m = N
where we have

bN−2α2 + ..+ b1αN−1. (5.103)

Summarizing this in a matrix yields:

lhs4c =



















0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 b1 0 0 0

0 0
...

. . . 0 0
0 0 bN−2 . . . b1 0

































α0

α1

α2

...
αN















. (5.104)
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I am now ready to rewrite equation 5.84 in the desired form:

M[bk]α = b, (5.105)

where the matrix M and the vector b depend on the bk. Rewriting the equation
with rhs and all parts of the equations with lhs in the approprate form yields
the following equations:

rhs =















0
E0a−1

0
...
0















− M0α (5.106)

where M0 is defined as follows:

M0 =















0 0 0 . . . 0
0 1 0 . . . 0
0 0 2 . . . 0

0 0 0
. . . 0

0 0 0 0 N















(5.107)

Adding the last term for the equation of lhs3,
1
2 of the first term of lhs2 and

the first term of equation lhs1 − 1
2α0b0 to the matrix of equation lhs4c gives us

term M3:

M3α =
1

2















b0 0 0 . . . 0
b1 b0 0 . . . 0
... . . .

. . . 0 0
bN−1 . . . b1 b0 0
bN bN−1 . . . b1 b0















α. (5.108)

Adding the first term of lhs3 − b1α1

2 , the other half of the first term of equa-
tion lhs2, a half of equation lhs4,m=0 and 1

2α0b0 (remaining from the previous
equation) to the matrix of equation lhs4b gives us term M2:

M2α =
1

2















b0 b1 b2 . . . bN
b1 b2 . . . bN 0
...

...
. . . 0 0

bN−1 bN 0 . . . 0
bN 0 0 . . . 0















α. (5.109)
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Collecting the remaining terms, b1α1, the other half of lhs4,m=0 and the matrix
from lhs4a we obtain an equation for M1:

M1α =















0 b1 b2 . . . bN
0 0 b1 . . . bN−1

0 0 0
. . .

...
0 0 0 0 b1
0 0 0 0 0















α (5.110)

I have taken care of all terms involving α and I can collect all the contribtions
in the matrix M:

M = M0 + M1 + M2 + M3, (5.111)

where M0 is the term coming from the rhs in equation 5.106. Collecting the
terms without αk we obtain an expression for the vector b:

b =
1

2
E0a−1





































0
2 − b0

0
0
...
0



















−



















2b1
b2
b3
...
bN
0



















−



















0
0
b1
b2
...

bN−1





































. (5.112)

We notice that we have N + 1 linear equations for the αk if the bk are known.
In general it is impossible to give the bk in terms of the ak; we will have to
compute them numerically. After the calculation of the bk we can solve the
linear equations for the αk numerically. This gives us the regularized dynamics.
The results of the numerical computations are given in the last section of this
chapter.

5.6 Numerical results

After the cumbersome calculation of the previous section, the numerical routine
is surprisingly simple. The dynamical equation for the mapping function reads

Re(i∂tf∂αf
?) = Re(i∂αΦ̂(eiα)), (5.113)

where Φ̂ can be calculated once the mapping function is given:

Φ̂ =
E0a−1

ω
+

N
∑

k=0

αkω
k, (5.114)

and

M[bk]α = b. (5.115)
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The bk are the coefficients of the Fourrier transform of the norm of the derivative
of the mapping function f . I do not need to use a series expansion for f here,
but I did anyhow to preserve analyticity. The first set of pictures is made with
a fixed value of ε = 0.001 and varying values of the cut-off in Figures 5.3 and
5.4:
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Figure 5.3: The interface with ε = 0.001, N = 50 and N = 100.
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Figure 5.4: The interface with size ε = 0.001, N = 200.

We see that cusps are formed and that the cusp formation depends on the
cut-off N . This means that we have to get rid of this cut-off in order to get
reliable results. For ε = 1 and N = 100 we obtain the following set of pictures
5.5:
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Figure 5.5: The interface with ε = 1, N = 100

We see that cusps are still encountered, although later. I can include a
lot more modes than previously. The obvious question is, whether e.g. the
mode expansion for the mapping function causes the cusps or whether this is
due to the lack of regularization from the boundary condition. This will be
central question of the following two chapters: is this boundary condition able
to regularize the problem.



Chapter 6

Behaviour non-conformality

points

The emergence of a cusp is related to the motion of the nonconformality points
in the complex plane. I study this motion in particular cases with and without
regularization. If a zero of the derivative ∂ωf hits the unit disc, a cusp will occur
in the physical plane. (The curvature will blow up.) This ends the numerical
integration of the ODE’s. I checked this numerically by tracking the minimum of
the absolute value of the derivative on the circle. In the unregularized problem,
this cusp formation is probably unavoidable.
I will study the dynamics of these zeros, non-conformality points, in this case
for the first nontrivial case, N = 2. The N = 0, 1 cases will be discussed as
well, to get a feeling for the type of analysis. In the trivial cases, the zeros stay
where they are and do not reach the unit disc, as expected. In the N = 2 case,
the zeros are described by two parameters, r and R. The first one denotes two
complex conjugate zeros in front of the streamer, the second one a real zero
behind the streamer. It is possible to obtain a 2D-phase plane for (r,R) which
shows that the solutions tend to r = 1. This means that the pair will hit the
unit disc, thus ending the solution.
In section 6.3 the regularized case is analyzed in a similar way. Since higher
modes will be generated in this case, it is impossible to calculate a phase plane.
I can draw a 2D-phase plane, assuming that all terms for N > 2 are small; the
ODE’s will not follow the flow arbitrarily long, but they might do this for some
time. The interesting part of this analysis is that arrows, which where originally
directed in the direction of the r = 1 axis turn around, if the regularization is
switched on. This gives hope that the mechanism may be able to regularize the
problem.
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6.1 The circle and the ellipse: uniformly trans-

lating for ε = 0

In the unregularized case, the number of modes is conserved in the mapping
function; this also means, that the number of zeros of the derivative is conserved.
Those zeros are called the ’mother’-singularities of the function. One can easily
check that the number of mother singularities equals N + 1. This means that
the circle and the ellipse are relatively easy cases with one/two zeros. They will
be treated in this section.
The mapping function for the circle is

ft(ω) =
a−1

ω
+ a0(t) (6.1)

and it is immediately seen that the derivative

∂ωf =
−a−1

ω2
(6.2)

is nonvanishing on the unit disc |ω| ≤ 1, since a−1 is the (constant) radius of
the circle.
The ellipse is a bit more complicated:

ft(ω) =
a−1

ω
+ a0(t) + a1(t)ω, (6.3)

∂ωf =
−a−1

ω2
+ a1(t), (6.4)

which has zeros if

ω2 =
a−1(t)

a1(t)
. (6.5)

But

∂t
a−1(t)

a1(t)
=
ȧ−1a1 − ȧ1a−1

a2
1

= 0, (6.6)

since the numerator is one of the dynamical equations. This means that the
zeros stay where they are and do not hit the unit disc. This can also be seen
from the fact that the right hand side of equation (6.5) is real, which means
that solutions only exist for ω2 = ±1, which would imply

a1 ± a−1 = 0, (6.7)

but those are the axes of the ellipse. The first nontrivial case will be a bit
harder.
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6.2 The first nontrivial case for ε = 0: N = 2

The general form of the mapping function in this case is:

ft(ω) =
a−1(t)

ω
+ a0(t) + a1(t)ω + a2(t)ω

2. (6.8)

Direct calculation would involve roots of a third order equation, so I used a
detour. I will use a convenient ansatz on ∂ωf to find the zeros and to track
whether they are real or not.
Let me rewrite the mapping function in the following form

r3

a−1
∂ωf =

−r3
ω2

+ e2iα

(

ω − reiα

e−iα − eiα

)

+ e−2iα

(

ω − re−iα

eiα − e−iα

)

. (6.9)

Notice that this mapping has the following properties:

f → a−1

ω
if ω → 0, (6.10)

∂ωf = 0 if ω = re±iα. (6.11)

Although the ansatz (6.9) has almost all required properties, it is not the most
general way to rewrite equation (6.8). The equation ∂ωf = 0 is a third order
equation; we can either have three real roots or one real root and two complex
conjugate roots since the ak are real.

Figure 6.1: Two possibilities for the location of the non-conformality points

I have to extend the ansatz to the first case as well by rewriting f in a
convenient form. Rewriting equation (6.9) yields

∂ωf =
−a−1

ω2
+
a−1(4 cos2(α) − 1)

r2
− ω

2a−1 cosα

r3
. (6.12)

Integration of equation (6.12) yields the mapping function

f =
a−1

ω
+ a0 + a1ω + a2ω

2, (6.13)
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with

a1 =
a−1(4 cos2 α− 1)

r2
, a2 =

−a−1 cosα

r3
. (6.14)

It is convenient to define

S = cosα. (6.15)

This allows us to rewrite equation 6.12 as follows:

∂ωf =
−a−1

ω2

(

1 − ω2(4S2 − 1)

r2
+

2Sω3

r3

)

. (6.16)

Use

(ω − reiα)(ω − re−iα) = ω2 − 2ωr cosα+ r2 (6.17)

to rewrite equation (6.16)

∂ωf =
−a−1

ω2
(ω2 − 2ωrS + r2)(ω +R)

2S

r3
, (6.18)

where R is the third, real, zero. Comparing equations (6.16) and (6.18) shows
that they are equivalent if we set

R =
r

2S
. (6.19)

If we take a closer look at equation (6.16) we see that this ansatz already incor-
porates the case with three real zeros. Apart from the zero at −r

2S I have

|S| < 1 , ω± = re±iα (6.20)

|S| > 1 , ω± = rS

(

1 ±
√

1 − 1

S2

)

(6.21)

|S| = 1 , ω = rS double zero. (6.22)

This means that the parameters r and S determine the position of the zeros. Let
a2(0) < 0, which means that it remains smaller than zero: 2a2ȧ−1 − a−1ȧ2 = 0
and the number of modes is conserved. Since

a2 = −a−1
S

r3
(6.23)

according to equation (6.14), we have S 6= 0 and rS > 0. Due to our initial
interpretation of r we set both r > 0 and S > 0. This means that R = r

2S
approaches the interface from behind. Notice that we can rewrite the four
dynamical equations for the ak in terms of r,R and a0 and a−1. I want to
prove, that a zero of the derivative only reaches the interface in the case r = 1
or R = 1; this means that I need to exclude the case S > 1, since one of the
two real roots could be smaller than one, while r > 1. I will prove that this is
impossible in the following Lemma:
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Lemma 3 If S > 1 and R > 1, |ω±| > 1.

This means that we will have to look for two complex conjugate non-conformality
points in front of the streamer; a real point is impossible, since the point in the
back would be ’earlier’.
Proof of Lemma 3:
Use the following inequalities:

R =
r

2S
> 1 > 1 − 1

2rS
, (6.24)

which implies

r2 + 1

2rS
> 1, and squaring (r2 + 1)2 > 4r2S2. (6.25)

Division by S4r4 gives us

1

S4
+

1

r4S4
− 4

r2S2
+

2

r2S4
> 0. (6.26)

Add on both sides 4(1− 1
S2 ): this gives us (2− 1

S2 − 1
r2S2 )2 on the left hand side

of equation (6.26). Since |S| > 1 (we are looking at the real roots), 4(1− 1
S2 ) > 0

and we can take the square roots of both sides of the equation to obtain:

2

√

1 − 1

S2
< 2 − 1

S2
− 1

r2
S2. (6.27)

Since both the left hand side and the right hand side are positive r, S > 1, we
also have -left hand side<right hand side and we can write

±2

√

1 − 1

S2
< 2 − 1

S2
− 1

r2
S2 (6.28)

and

±2

√

1 − 1

S2
> −2 +

1

S2
+

1

r2
S2. (6.29)

Multiplying by r2S2 and rearrangement of terms yields:

r2S2

(

1 + 1 − 1

S2
± 2

√

1 − 1

S2

)

= r2S2

(

1 ±
√

1 − 1

S2

)2

> 1. (6.30)

I finally obtain

ω2
± > 1, (6.31)

which implies |ω±| > 1. This proves the lemma.
In equation (6.14), a1 and a2 are expressed in terms of r and S, use equation
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(6.19) to express them in terms of r and R:

a1 = a−1

(

1

R2
− 1

r2

)

, a2 = − a−1

2Rr2
. (6.32)

Use the equations (4.28) which are explicitly given in (4.51). The first equation
gives

2a2ȧ−1 − a−1ȧ2 = 0, (6.33)

which implies

a2(t) = a2(0)a−1(t)
2. (6.34)

This yields

a−1 =
−1

2a2(0)Rr2
. (6.35)

Substitute the expressions for a1 and a2 given by equation (6.32) in the equations
(6.36) and (6.37):

2a2ȧ0 + a1ȧ−1 − a−1ȧ1 = 0 (6.36)

2a2ȧ2 + a1ȧ1 − a−1ȧ−1 = 0 (6.37)

to obtain equations in terms of r,R, a−1 and their derivatives. We can eliminate
a−1 using equation (6.35). This yields the following equations for r and R:

ȧ0r
3R3a2(0) + Ṙr3 − ṙR3 = 0, (6.38)

−2ṙR3 − ṘrR2 − 2ṙr4R− 3Ṙr5 + 6ṙr2R3 + 4ṘR2r3

−4ṙR5 − ṘR4r + 2ṙr4R5 + ṘR4r5 = 0. (6.39)

We can use equation (6.38) to eliminate ṙ from equation (6.39), this will be
equation (6.40). We can also use it to eliminate Ṙ this will be equation (6.41):

f(r,R)Ṙ+ g(r,R)ȧ0 = 0 (6.40)

−f(r,R)ṙ + h(r,R)ȧ0 = 0, (6.41)

where

f(r,R) = −2r2R2 −R4 − 2r6 + 3r4R2 −R6 + 2r6R4 + r4R6 (6.42)

g(r,R) = −2a2(0)r
2R3(R2 + r4 − 3r2R2 + 2R4 − r4R4) (6.43)

and

h(r,R) = −a2(0)r
3R2(R2 + 3r4 − 4r2R2 +R4 − r4R4). (6.44)

It is convenient to prove the following Lemma first:
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Lemma 4 If r > 1 and R > 1, f(r,R) > 0.

Proof of Lemma 4:
Let us assume first that r > R, this means r4 > R2, since they are both greater
than one. Now we can estimate all terms of equation (6.42):

3r4R2 − 2r2R2 −R4 = 2R2r2(r2 − 1) +R2(r4 −R2) > 0, (6.45)

since r > 1 and r4 > R2 and

−2r6 + 2r6R4 −R6 + r4R6 = 2r6(R4 − 1) +R6(r4 − 1) > 0, (6.46)

since R > 1, r > 1.
This proves the Lemma in this case. Now we assume the other case, R > r,
which implies R4 > r2. We have some different estimates for equation (6.42):

−2R2r2 + 2r4R2 = 2r2R2(r2 − 1) > 0, (6.47)

since r > 1,

−r6 + r4R2 = r4(R2 − r2) > 0, (6.48)

since R > r,

2r6R4 −R4 − r6 = r6(R4 − 1) +R4(r6 − 1) > 0, (6.49)

since r > 1 and R > 1,

r4R6 −R6 = R6(r4 − 1) > 0, (6.50)

since r > 1. This proves the Lemma in this case. If r = R, we have

f(r,R) = 3r6(r4 − 1) > 0, (6.51)

since r > 1.
This proves the Lemma.
Since f(r,R) > 0 and ȧ0 > 0 (proof given in Lemma 6 at the end of this section)
, we see that the dynamics of r and R is determined by the sign of g(r,R) and
h(r,R). Since a2(0) < 0, we see that:

ṙ < 0 if R2 + 3r4 − 4r2R2 +R4 − r4R4 < 0 (6.52)

and

Ṙ < 0 if R2 + r4 − 3r2R2 + 2R4 − r4R4 > 0. (6.53)

The curves where ṙ = 0 and Ṙ = 0 are shown in Figures 6.2 and 6.3.
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Figure 6.2: The curve g(r,R) = 0 where Ṙ = 0
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Figure 6.3: The curve h(r,R) = 0 where ṙ = 0
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Figure 6.4: The complete phase plane composed of the previous two figures.
The logarithms are taken to fit both curves into one figure.

A picture of the full phase plane is given in Figure 6.4; log(log(R)) is plotted on
the y-axis instead of R to fit both curves in one picture. We see that any solution
will eventually end up in region 3, which it can not leave, which means that it
will finally reach the axis where r = 1; this means that a non-conformality point
hits the unit disc and the solution ceases to exist. This is true for any initial
condition (which is initially conformal).

Lemma 5 A necessary condition for a conformal initial condition is given by

a−1(0)
2 − a1(0)

2 − 4a2(0)
2 > 0. (6.54)

Remark Although this isn’t a ’sharp’ bound, it gives a good estimate for ad-
missible initial conditions.
Proof of Lemma 5:
Substitute the expressions for a1 and a2 from equation (6.32) in equation (6.54)
to obtain:

c(r,R) = a−1(0)
2(−1 +

(

1

R2
− 1

r2

)2

+
1

R4r4
)

= a−1(0)
2−R4r4 + r4 +R4 − 2R2r2 +R2

R4r4
. (6.55)

We have to show that c(r,R) < 0 if R > 1 and r > 1. If R2 > r2, we have

−R4r4 + r4 +R4 − 2R2r2 +R2

= R4(1 − r4) + r2(r2 −R2) +R2(−r2 + 1) < 0, (6.56)
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since all terms are negative. If r2 > R2, we have

−R4r4 + r4 +R4 − 2R2r2 +R2

= r4(1 −R4) +R2(−r2 +R2) +R2(−r2 + 1) < 0, (6.57)

since all terms are negative. If R = r, we have

−R4r4 + r4 +R4 − 2R2r2 +R2 = r2(1 − r6) < 0. (6.58)

This proves the Lemma.
We still had to prove a small Lemma containing the velocity, ȧ0(t):

Lemma 6 If r,R > 1, ȧ0(t) > 0.

Proof of Lemma 6:
Use the last equation

2a2ȧ1 + a1ȧ0 + a1ȧ2 − a−1ȧ0 = −2E0a−1 (6.59)

combined with equations (6.36) and (6.37) to obtain an equation for ȧ0(t):

ȧ0(t) = 2E0
g1(r,R)

f1(r,R)
, (6.60)

where

f1(r,R) = (R2 − 1)(r2 − 1)

(r4(R4 − 1) + r4R4 + r6(R4 − 1) + r2R4 +R2 + 3r4R2 + 3r2R2) > 0, (6.61)

and

g1(r,R) = R4r2(−r4 +R4r4 + 2r2R2 −R2 −R4). (6.62)

If r2 > R2, we have

g1(r,R) = r2R2 −R4 + r2R2 −R2 +R4r4 − r4

= R2(r2 −R2) +R2(r2 − 1) + r4(R4 − 1) > 0. (6.63)

If R2 > r2, we have

g1(r,R) = r2R2 − r4 + r2R2 −R2 +R4r4 −R4

= r2(R2 − r2) +R2(r2 − 1) +R4(r4 − 1) > 0. (6.64)

This means that ȧ0(t) > 0, which proves the lemma.
The conclusion is that r → 1, independent of the initial condition. A non-
conformality point will hit the unit disc in finite time (the velocity is strictly
positive).
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6.3 The short time evolution for ε > 0

In Chapter 5, I derived a boundary condition for the streamer. Since imple-
mentation of this boundary condition and integration of the full problem is a
difficult numerical problem, we ask ourselves first whether this boundary con-
dition is able to regularize the easiest problem. We also like to get a feeling
for the values of the regularization parameter which regularize this problem.
We would like to see whether the boundary condition (5.25) is able to suppress
cusps in the easiest case. The first nontrivial case is the case where N = 2;
this is the case which will be studied. In section 6.2 we reformulated the dy-
namics of the ak in terms of the variables a−1, a0, R and r. The latter variables
all have a clear interpretation: size, position and location of the singularities
in front of and behind the streamer. We were able to derive a picture of the
phase plane, which showed that all flow went to the r = 1-axis, implying that
a non-conformality point would hit the unit disc in finite time, creating a cusp,
independently of the initial condition. In the following sections, our goal is the
derivation of a phase plane in the regularized case. Since the regularization
mechanism leads to the emergence of higher modes, a 2D phase space will never
suffice to describe the full problem. New zeros of the derivative will appear;
those are called ’daughter’-singularities. But we can try to answer the following
question: suppose we start close to a cusp, with an initial condition defined
by r,R and a−1, are there any values for the regularization parameter ε such
that the solution initially moves away from the cusp? If there exists such a
regime, we can hope that at least the zeros of the derivative, present in the ini-
tial condition are regularized by this boundary condition. Those zeros are called
’mother’-singularities. Higher modes will be created in the time evolution, thus
causing ’daughter’-singularities: new zeros of the derivative in different regions
from the ω-space. We are unable to trace the daughter singularities; we will
investigate the mother singularities in the following sections.

6.4 Tracing the ’mother’-singularities

In this section we will formulate the problem. Since we would like to look at
the cusps of the regularized problem, we will combine the results of chapter 5,
the derivation of the regularized dynamics of the ak, with the results of section
6.2, the dynamics of the non-conformality points. We will start close to a cusp,
without higher modes, to study the short time behaviour. This translates into
the following Ansatz on ft(ω):

ft(ω) =
∞
∑

k=−1

akω
k. (6.65)

We substitute

a1 = a−1

(

1

R2
− 1

r2

)

, a2 = − a−1

2Rr2
(6.66)
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ak(0) = 0, ȧk(0) 6= 0, for k > 2. (6.67)

We will discuss the consequences of this ansatz for both sides of the dynamical
equation (6.68) first:

∞
∑

k,k′=−1

kakȧk′ cos(k − k′)α = Re(−i∂αΦ̂(eiα))). (6.68)

We will investigate the temporal flow of r and R for small t, therefore it is suffi-
cient to evaluate both sides for t = 0. The right hand side depends on Φ̂, which
depends on the absolute value of the spatial derivative of f . Using equation
(6.65) and setting a−1(0) = 1 (information about the size of the streamer is
transferred to the regularization parameter ε), we see that the right hand side
depends on the choices of r,R and ε:

Re(−i∂αΦ̂(eiα)) = F (r,R) at t = 0. (6.69)

We see that insertion of ansatz (6.67) simplifies equation (6.68) a lot; in fact, it
’decouples’ the higher modes from the lower ones. Since only −a−1, a1 and 2a2

are nonzero we have

∞
∑

k,k′=−1

kakȧk′ cos(k − k′)α =

∞
∑

k=−1

(−a−1ȧk cos(k + 1)α+

a1ȧk cos(k − 1)α+ 2a2ȧk cos(k − 2)α). (6.70)

I need to evaluate this expression numerically, which means that I need to
introduce a cut-off N : ȧk = 0 if k > N . Closer examination of equation
(6.70) reveals that the quantities ȧ3(0)..ȧN (0) are determined by the last N − 3
equations; the equations cos 4α, . . . , cos(N+1)α. The only coupling to the lower
modes is via the values of ȧ3, . . . , ȧ5. This is an important observation, since
this means that we can split in problem in three parts:

• determine Re(−i∂αΦ̂) as a function of r and R

• calculate ȧ3..ȧ5 solving the last N − 3 equations

• solve the first four equations which give us ṙ and Ṙ

In Section 6.5 I will show that the phase space does not change if N is doubled;
this means that our results are not sensitive anymore for changes in N . This is
a very important result.

6.5 Numerical results

For different, fixed values of ε, we are interested in ṙ for varying R close to r = 1;
previously all flow was directed toward the r = 1 axis, which caused the cusp.
In the pictures, we will show the curve ṙ = 0. To the left of this curve, ṙ < 0.
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This means that we have two regimes: if r is small, but not too small, ṙ > 0 for
certain values of R and ε. This means that we have a regime of shapes which
can be regularized.
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Figure 6.5: The line where ṙ = 0 for different values of ε : ε = 100, 10, 1, 0.1

We investigated the dependence of the curves on the value of N as well. In
the pictures below we plotted ṙ = 0 and Ṙ = 0 for fixed ε = 7 and two different
values of N : N = 36 and N = 144:
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Figure 6.6: The nulclines where ṙ = 0 (lower curve) and Ṙ = 0 (upper curve).
The only difference between the two curves is N : N = 36 or N = 144; we see
that the phase space is independent of N .

In the following set of pictures we show the shape of the interface at the
points 1-4 in Figure 6.7.
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Figure 6.7: Interfaces can flow to more stable regions in the regularized case.
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Figure 6.8: r = 5 and R = 1.01, 1.02 (points 1 and 2)

Figure 6.9: r = 10 and R = 1.02, 1.01 (points 3 and 4)

We have shown in this chapter that the interface will develop cusps in the un-
regularized case. In the regularized case, we see that flow to more stable regions
is possible. This means that our boundary condition may indeed regularize the
problem.





Chapter 7

Linear stability analysis of

the circle

In Chapter 4 I derived explicit analytic solutions for the unregularized case:
circles and ellipses; in Chapter 6 we saw that circles remain solutions in the
regularized case. The stability of those solutions will be the topic of the present
chapter. I will investigate the linear stability for the unregularized case (ε = 0)
in Section 7.1 and the stability for the regularized problem in Section 7.2, by
writing

ft(ω) = f0 + δβ, (7.1)

where f0 is the circle and δ small.
If I use a mode expansion for β, β =

∑∞
k=0 akω

k and truncate the series, the
linear stability analysis yields an equation of the form

∂ta = Ma. (7.2)

The eigenvalues of the matrix M would determine the stability, but they turn
out to be all zero. Clearly, the mode expansion is not the right idea in this
case. In Section 7.1.2 a PDE for the perturbation is derived instead of the series
approximation. This PDE can be solved analytically and we see that the circle
is unstable.
The regularized case is investigated along the same lines in section 7.2. A mode
expansion in this case yields purely imaginary eigenvalues. Instead of the mode
expansion, we derive a PDE for the perturbation in section 7.3. It is possible
to derive analytic solutions for this PDE if ε = 1. Those solutions show, that
perturbations may be amplified initially, but are always convected away to the
back of the streamer. This means that the circle is a stable solution. We know
on the other hand, that planar fronts are unstable; this means that the mech-
anism regularizes in regions where the curvature is large enough. This means
that all shapes might be finally regularized.
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I would like to point out, that this is exactly the same scenario as in the regu-
larized viscous fingering, where this feature was observed both experimentally
and numerically (see Chapter 3). But here we can show this fully analytically
for an arbitrary initial perturbation.
For ε 6= 1 we have no analytic solutions; we will have to solve the problem
numerically, e.g. by a mode expansion. The analytic solutions in the ε = 1 case
also offer the opportunity to check the validity of the numerical solutions; I can
check how many modes are needed to describe the correct solution and how long
this solutions holds. In order to do so, I use a transformation of the unit disc

u =
ω + T

ωT + 1
, T = tanh

t

2
(7.3)

and I rewrite the PDE for the perturbation in terms of u. I can preserve the
analyticity of β numerically by an expansion in either u or ω; the coefficients
are given in terms of each other. The former is more convenient numerically,
the equations are solved in terms of an expansion in u; the coeficients of the
expansion in ω can be calculated and compared to the analytical expressions.
These match perfectly, which means that the expansion is valid, at least in the
regime I tested.

7.1 The unregularized case: perturbing the cir-

cle

The mapping function f0

f0 =
R

ω
+ 2E0t (7.4)

describes a uniformly translating circle with radius R and velocity v = 2E0. We
perturb this solution with f1:

f1 =

∞
∑

k=−1

akω
k (7.5)

and set

f = f0 + δf1, (7.6)

where δ is a small parameter. The dynamical equation is

Re (i∂αf
?∂tf) = −2E0 cos(α)(R+ δa−1). (7.7)

Expanding in 0th order in δ yields

−Rv cos(α) = −2E0R cos(α) (7.8)
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which reproduces the solution (7.4). In first order we obtain

∞
∑

k=−1

kakv cos(kα) +

∞
∑

k=−1

−Rȧk cos(k + 1)α = −va−1 cos(α) (7.9)

Let me first try to use an eigenvalue approach to study the stability.

7.1.1 The perturbation in matrix form

Using a truncation of the series (7.5) by a large order N brings equation (7.9)
in matrix form

vU1a −R∂ta =















0
−va−1

0
...
0















(7.10)

where

a =















a−1

a0

a1

...
aN















, (7.11)

U1 is given by

U1 =



















0 0 0 0 . . . 0
−1 0 1 0 . . . 0
0 0 0 2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . N
0 0 0 0 . . . 0



















. (7.12)

Notice that the vector (0,−va−1, 0, . . . , 0)
T is cancelled by the (2, 1) matrix

element of U1; equation (7.9) reduces to

∂ta =
v

R
U2a, (7.13)

where

U2 =



















0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . N
0 0 0 0 . . . 0



















. (7.14)
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Notice first of all that ∂ta−1 = 0, which means that the perturbed radius is
constant and can be absorbed in the unperturbed radius: choose a−1(0) = 0.
The same holds for a0 and the expansion for the perturbation can be written as

f1(0) =

N
∑

k=1

ak(t)ωk (7.15)

Insert

f1(ω, t) = eλtfλ(ω) (7.16)

in equation (7.13) and determine the eigenvalues λ to study the stability; this
means that we need to evaluate the eigenvalues of the matrix U2: this easy,
since it is an upper triangular matrix, the eigenvalues are the numbers on the
diagonal which happen to be all zero.
We can also derive the temporal evolution of the polynomial initial condition
(7.15),

f1(t) =

N
∑

k=1

ak(0)
(

ω +
v

R
t
)k

. (7.17)

We see a non-trivial temporal behaviour, which seems to contradict the previous
result about the eigenvalues. But eigenvalues can not be derived, since they
require N → ∞. We will get rid of the cut-off N in the next section and
construct solutions for a general perturbation.

7.1.2 A PDE for the perturbation

Use again

ft(ω) = f0 + δβ(ω, t) (7.18)

and evaluate the first order in δ (set again a−1(t) = 0: this means that β(ω, t)
is an analytic function of ω):

0 = Re (i∂αf
?∂tf) = Re (i∂αf

?
0 ∂tβ) + Re (i∂αβ∂tf0) =

Re(−Reiα∂tβ + vi∂αβ
?) (7.19)

and use Re(iz?) = Re(−iz) to obtain

Re (Rω∂tβ − vω∂ωβ) = 0. (7.20)

Set R = 1, absorb v in a redefinition of time and note

Re(ωg) = 0 and g analytic ⇒ g = 0 (7.21)

to derive

∂tβ − ∂ωβ = 0. (7.22)
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This equation can be solved analytically:

β(ω, t) = β(ω + t, 0) (7.23)

for an initial condition β(ω, 0). This is the generalization of equation (7.17).
Notice

• a perturbation of the radius of the circle and the perturbation of the po-
sition are time independent; the first can be absorbed in the unperturbed
problem and the second set to zero.

• the eigenvalue approach of the truncated series misses all interesting dy-
namics of the problem, because there are no terms exponential in time.

In this case, the eigenvalues give little information about the stability of the
problem; I need to derive the PDE for the perturbation to investigate the prob-
lem; all λ ∈ C turn out to be eigenvalues. Notice that the derivative of the
perturbation will blow up, if the time becomes large enough, thus causing a
cusp. This means, that the solution ceases to exist after some time, which is
consistent with the results of chapter 6.

7.2 The regularized case: the circle

In chapter 5 an analytic solution of the regularized problem was found: a uni-
formly translating circle described by f0:

f0 =
1

ω
+ vt, (7.24)

v = 2E0
1

1 + ε
(7.25)

is the velocity of the circle. The potential is given by

Φ0 = E0

(

1

ω
− 1 − ε

1 + ε
ω

)

. (7.26)

I would like to investigate the stability of the circle in this section. Add a small
perturbation to this solution and expand the mapping function f :

f = f0 + δf1, (7.27)

where

f1 =

∞
∑

k=−1

ak(t)ωk. (7.28)

This means that the potential will be perturbed as well:

Φ̂ = Φ0(1 + δa−1) + δΦ1, (7.29)
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where Φ1 is an analytic function of ω; I will use an expansion here as well:

Φ1 =

∞
∑

k=0

αkω
k. (7.30)

I will have to expand both the boundary condition

ReΦ = ε
Re(i∂αΦ)

|∂αf |
(7.31)

and the dynamical equation

Re (i∂αf
?∂tf) = Re(−i∂αΦ) (7.32)

up to linear order in δ. The hardest part is the expansion of the potential which
will be treated in the next section.

7.2.1 The calculation of the potential

The boundary condition reads

Re(Φ0(1 + δa−1) + δΦ1)|∂αf | = εRe (i∂αΦ0(1 + δa−1)) + εRe(iδ∂αΦ1) (7.33)

Expand the derivative of the mapping function:

f =
1

ω
+ vt+ δ

∞
∑

k=−1

akω
k, (7.34)

|∂αf | = 1 − δ

∞
∑

k=−1

kak cos(k + 1)α (7.35)

and insert this is the boundary condition to obtain

Re (Φ0(1 + δa−1)) = Re (i∂αΦ0(1 + δa−1)) , (7.36)

which gives the 0th order equation for Φ0:

Φ0 = E0

(

1

ω
− 1 − ε

1 + ε
ω

)

(7.37)

The first order in δ yields

−ReΦ0

∞
∑

k=−1

kak cos(k + 1)α+
∞
∑

k=0

αk cos kα = −ε
∞
∑

k=0

kαk cos kα (7.38)

and using the expression for Φ0 I derive

2εE0

1 + ε
cosα

∞
∑

k=−1

kak cos(k + 1)α =

∞
∑

k=0

(1 + εk) cos kα (7.39)
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I would like to rewrite equation (7.39) in matrix form, where the first component
corresponds to the equation for cos 0 α, the second to cosα and so on. Introduce
the vectors a and α

a =















a−1

a0

a1

...
aN−1















, α =















α−1

α0

α1

...
αN−1















. (7.40)

The calculation of the right hand side is straightforward:

N
∑

k=0

(1 + εk) cos kα = D3α, (7.41)

where

D3 =











1 0 . . . 0
0 1 + ε . . . 0
...

...
. . .

...
0 . . . 0 1 +Nε











. (7.42)

Use cos a cos b = 1
2 (cos(a+ b) + cos(a− b)) to rewrite the left hand side:

2εE0

1 + ε
cosα

∞
∑

k=−1

kak cos(k + 1)α =

εE0

1 + ε

(

∞
∑

k=1

kak(cosα+ (cos(k + 2)α) − 2a−1 cosα

)

(7.43)

which is in vector form

E0
ε

1 + ε



























0
−2a−1 + a1

2a2

3a3 + a1

4a4 + 2a2

...
(N − 1)aN−1 + (N − 3)aN−3

(N − 2)aN−2



























. (7.44)

and in matrix form:

E0
ε

1 + ε
T1T2a, (7.45)
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where T2 only put the right factor in front of the ak:

T2 =















−1 0 0 . . . 0
0 0 0 . . . 0
...

...
. . .

...
...

0 . . . 0 N − 2 0
0 . . . 0 0 N − 1















(7.46)

and T1 ’mixes’ the terms correctly:

T1 =























0 1 0 0 0 . . . 0
2 0 1 0 0 . . . 0
0 1 0 1 0 . . . 0
...

...
. . .

...
. . .

...
...

0 . . . 0 1 0 1 0
0 . . . 0 0 1 0 1
0 . . . 0 0 0 1 0























. (7.47)

Combining equations (7.41) and (7.45) yields the desired expression of the αk

in terms of the ak:

α =
E0ε

ε+ 1
D−1

3 T1T2a. (7.48)

We are now ready to calculate the right hand side of the dynamical equations
Re(−i∂αΦ), since we have the perturbed potential Φ1:

Re(−i∂αΦ) = −2E0
1

1 + ε
cosα(1 + δa−1) + δ

N
∑

k=0

kαk cos(kα), (7.49)

which yields at order δ in matrix form

Re(−i∂αΦ) =
−2E0

1 + ε















0
a−1

0
...
0















+
E0ε

1 + ε
D2D

−1
3 T1T2a. (7.50)

The expansion of the left hand side of the dynamical equation Re(i∂αf
?∂tf) is

similar to the unregularized case:

Re(i∂αf
?∂tf) = vRe(i∂αf

?
1 ) − Re(eiα∂tf1) =

−va−1 cosα+ v
∞
∑

k=0

kak cos kα−
∞
∑

k=−1

ȧk cos(k + 1)α (7.51)
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which is in matrix notation

Re(i∂αf
?∂tf) =

−2E0

1 + ε















0
a−1

0
...
0















+
2E0

1 + ε
D1a − ∂ta, (7.52)

where

D1 = 2



















0 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 2 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 N − 1
0 . . . 0 0 0 0



















(7.53)

Again two terms at the place (2,1) cancel eachother and we end up with:

∂ta =
E0

1 + ε

(

D1 − εD2D
−1
3 T1T2

)

a (7.54)

which implies that the matrix Mtot is defined in equation (7.54):

∂ta = Mtota (7.55)

Define the factors rk for convenience to derive a compact expression for the
matrix Mtot:

rk =
εk

1 + εk
. (7.56)

(Notice 0 < rk < 1). This gives us

Mtot =























0 0 0 0 0 0 . . .
2r1 0 (2 − r1) 0 0 0 . . .
0 0 0 2(2 − r2) 0 0 . . .
0 0 −r3 0 3(2 − r3) 0 . . .
0 0 0 −2r4 0 4(2 − r4) . . .
0 0 0 0 −3r5 0 . . .
...

...
...

...
...

...
. . .























. (7.57)

The eigenvalues of Mtot determine the stability of the circle. In the next section
we will show that they are purely imaginary.
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7.2.2 The eigenvalues

We need to calculate the zeros of the determinant of Mtot − λI; expanding to
the first row and column consecutively yields an equation of the following form:

λ2det



















−λ an−1 0 0 . . . 0
−bn−1 −λ an−2 0 . . . 0

...
. . .

. . .
. . .

...
...

0 . . . −b3 −λ a2 0
0 . . . 0 −b2 −λ a1

0 . . . 0 0 −b1 −λ



















= 0, (7.58)

where

ak = (n− k + 1)(2 − rn−k+1), bk = (n− k + 2)rn−k+2, k = 1, . . . , n− 1(7.59)

the precise form of the ak and bk is not important, while the fact that they are
positive is important. Denote the determinant in equation (7.58) by Mn: We
see

Mn = −λMn−1 − an−1bn−1Mn−2 (7.60)

and

M2 = λ2 + a1b1, M3 = −λ(λ2 + a1b1) − λa2b2. (7.61)

Let us define the skew(anti)symmetric matrix Sn as follows:

Sn =



















0 An−1 0 0 . . . 0
−AN−1 0 AN−2 0 . . . 0

...
. . .

. . .
. . .

...
...

0 . . . −A3 0 A2 0
0 . . . 0 −A2 0 A1

0 . . . 0 0 −A1 0



















, (7.62)

where Ak =
√
akbk, k = 1..n− 1. Calculating the eigenvalues of Sn, we see

det(Sn − λI) = Mn, (7.63)

because it satisfies the same recursion relation and since equation (7.58) holds
for N = 2 and N = 3. This means that we can study the eigenvalues of Sn

instead of the eigenvalues of Mtot since these eigenvalues are equal. But

S skew symmetric ⇒ iS Hermitian, (7.64)

which means that the eigenvalues of iS are real and the eigenvalues of S purely
imaginary. We conclude that the eigenvalues of Mtot are purely imaginary as
well.
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7.2.3 Conclusion

If we have a general initial condition, one expects to see a superposition of os-
cillating eigenmodes. If we use a very small cut-off, say N = 2, we see those
oscillations in the modes, since there are only two complex conjugate eigenval-
ues, so one period. Using a higher cut-off, we could see an oscillation with a
period with is the least common multiple (lcm) of the individual periods; since
those periods become very large, this lcm becomes even larger and we are unable
to observe this numerically. The question arises how accurate the stability is
described by this mode expansion. In the section about the unregularized case,
we saw that the eigenvalue approach was not the right one, when applied to a
truncated series. In section 7.3 we will get rid of the mode expansion and derive
a PDE for the perturbation in order to analyze the stability.

7.3 The stability analysis in terms of a PDE for

ε > 0

In this section we will reformulate the linear stability problem of the circle in
terms of a PDE. Instead of a mode expansion for the perturbation, we will set:

ft(ω) =
1

ω
+ vt+ δβ(ω, t), (7.65)

where δ is a small parameter. In section 7.4 we will derive a PDE for β(ω, t),
in section 7.5 we will derive analytic solutions of the PDE for ε = 1. We notice
that a certain transformation of the unit disc

u(ω, T (t)) =
ω + T (t)

ωT (t) + 1
, T (t) = tanh

(

vt

2

)

(7.66)

plays a very important role in this case. Precomposing ft(ω) with this mapping
transforms the PDE; in section 7.6 we insert an expansion in the transformed
PDE:

β̃(u, t) =
N
∑

k=0

bk(t)uk (7.67)

and derive a set of N + 1 coupled ODE’s for the bk(t). We solve those ODE’s
and show that the results do not depend on the cut-off N . This leads to some
conclusions given in section 7.7.

7.4 Derivation

Perturb the uniformly translating circle

ft(ω) =
1

ω
+ t+ δβ(ω, t) (7.68)
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and the potential

Φ̂(ω) = E0

(

1

ω
− 1 − ε

1 + ε
ω

)

+ δφ1(ω), (7.69)

where δ is a small parameter and β and φ1 are analytic. (I absorbed the velocity
in t, by setting τ = vt and renaming τ → t). Inserting (7.68) and (7.69) in the
dynamical equation for the mapping

Re(i∂αf
?∂tf) = Re(−i∂αΦ̂) (7.70)

yields (first order in δ):

Re(eiα∂tβ + i∂αβ) = Re(i∂αφ1). (7.71)

(Use: Re (−iz) = Re (iz?)).
Substitute ω = eiα in equation (7.71) and notice that we obtain an equation of
the following form:

Re(ωg) = 0 on ω = eiα and g analytical. (7.72)

This implies that g = 0, so the real parts can be cancelled in equation (7.71)
and we obtain:

ω∂tβ − vω∂ωβ + ω∂ωφ1 = 0. (7.73)

Rewriting and rearranging the boundary condition

Re
(

Φ̂
)

= εRe

(

i∂αΦ̂

|∂αf |

)

(7.74)

yields

Re(φ1 + φ0Re(ieiα∂αβ)) = εRe (i∂αφ1) , (7.75)

since

∂αf = −ie−iα + δ∂αβ ⇒ |∂αf | = 1 + δRe(i∂αβ). (7.76)

Insert

Re (φ0) = ε cos(α) (7.77)

to obtain

ε cos(α)Re(ieiα∂αβ) = Re(εi∂αφ1 − φ1). (7.78)

Substitute the expression for ∂ωφ1 from equation (7.73) and ω = eiα in equation
(7.78) to obtain an expression for the real part of φ1 in terms of β:

Re (φ1) = εRe

(

1

2
(ω2 − 1)ω∂ωβ + ω∂tβ

)

. (7.79)
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This is possible, since we can define equation (7.79) for all |ω| ≤ 1; the expres-
sions are analytic in ω, their real part is given on the boundary, which means
that we can extend their definition to the whole unit disc. We can not cancel
the real parts in equation (7.79), since we can pick up an imaginary constant,
C(t). However, the fact that β and φ have to stay analytic dictates this choice.
We need to have

φ1 = ε

(

1

2
(ω2 − 1)ω∂ωβ + ω∂tβ

)

, (7.80)

where

φ1(ω = 0, t) = 0 ∀t (7.81)

in order to preserve the analyticity of φ1. In the following section we will show
why we need to impose this condition.

7.4.1 Imposing φ1(ω = 0, t) = 0

Combine equations (7.80) and (7.73) to eliminate ∂tβ. This leaves us with an
expression for φ1 in terms of β:

φ1 + εω∂ωφ1 =
1

2
ε(ω3 + ω)β. (7.82)

We see, that we can always add a solution of the form

φ1 =
f(t)

ωε
+ φ̃1. (7.83)

to equation (7.82). This is undesirable, since φ1 loses its analyticity. We have
to prevent this explicitly setting

φ1(ω = 0, t) = 0 ∀t⇒ f(t) = 0 ∀t (7.84)

in order to preserve analyticity.
If ε = 1 we can show explicitly what happens if φ1(ω = 0, t) 6= 0. In this case
we have:

iφ1 = −∂αφ1 +
1

2
(e2iα + 1)∂αβ, (7.85)

ieiα∂tβ = ∂αβ − ∂αφ1 (7.86)

Substitution of

β = β̃ + f(t)e−2iα, φ1 = φ̃+ g(t)e−2iα + h(t)e−iα (7.87)

and comparison of terms with e−iα and e−2iα yields

f(t) = g(t), ḟ(t) = −h(t), f(t) = φ1(ω = 0, t). (7.88)
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and equations (7.85) and (7.86) with β̃ and φ̃ instead of β and φ1. This means
that the wrong choice of the boundary condition yields terms ∼ e−2iα in β and
φ1. Imposing φ1(ω = 0, t) = 0 allows us to get rid of those terms. The physical
reason to get rid of those terms is that they would contribute to the electrical
field at infinity.
This is observed in the following section as well, where we have to choose a
proper boundary condition in order to get rid of those non-analyticities.

7.4.2 Derivation of the operator L
ε

Differentiate equation (7.80) to obtain an expression for ∂ωφ1:

∂ωφ1 = ε

(

1

2
(3ω2 − 1)∂ωβ +

1

2
(ω3 − ω)∂2

ωβ + ∂tβ + ω∂ω∂tβ

)

(7.89)

and substitue the expression for ∂ωφ1 from equation (7.73) in equation (7.89)
to eliminate φ1:

−∂tβ + ∂ωβ = ε

(

1

2
(3ω2 − 1)∂ωβ +

1

2
(ω3 − ω)∂2

ωβ + ∂tβ + ω∂ω∂tβ

)

(7.90)

which can be rewritten as

Lεβ = 0, (7.91)

where Lε is defined as follows:

Lε = −ε(1 − ω2)ω∂2
ω − (2 + ε− 3εω2)∂ω + 2εω∂ω∂t + 2(1 + ε)∂t. (7.92)

It turns out that we can calculate explicit solutions of equation (7.91) for ε = 1.
For ε 6= 1 I will need to write a numerical code; this needs evaluation of the
equation on the boundary, as will be explained in Section 7.5.2. The analytic
solutions for ε = 1 will be discussed in the next section.

7.5 Solutions for ε = 1

We can rewrite the operator Lε as a product:

L1 = (2∂t − (1 − ω2)∂ω)(2 + ω∂ω) (7.93)

which means that we can introduce the function

g(ω, t) = (2 + ω∂ω)β(ω, t) (7.94)

that obeys the equation

(2∂t − (1 − ω2)∂ω)g(ω, t) = 0 (7.95)
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which can be solved directly; g has to be a function of u only, where

u(ω, t) =
ω + T

ωT + 1
, (7.96)

and

T = tanh

(

t

2

)

. (7.97)

Notice that t = 0 corresponds to T = 0; at t = 0, we have u = ω. This means
that g(ω, t) can be obtained directly from the initial condition β(ω, 0). Define

G(ω) = g(ω, 0) = (2 + ω∂ω)β(ω, 0). (7.98)

The general solution g(ω, t) reads

g(ω, t) = G

(

ω + T

ωT + 1

)

(7.99)

and β(ω, t) can be calculated:

β(ω, t) =

∫ ω

0

xdx

ω2
G

(

x+ T

xT + 1

)

. (7.100)

A particular example for a given initial condition will be given in Section 7.5.1.
We can derive the asymptotic behaviour of the analytical solution, since we can
expand about T = 1. Expanding T yields

T = tanh
t

2
= 1 − 2e−t +O(e−2t) (7.101)

and use this to expand u(ω, T ) = ω+T
ωT+1 :

u(ω, T ) = 1 − 2
1 − ω

1 + ω
e−t +O(e−2t) (7.102)

and the expansion of G(u) reads

G(u) = G(1) − 2
1 − ω

1 + ω
e−tG′(1) +O(e−2t). (7.103)

Insert this in equation (7.100) to obtain an expansion for β(ω, t):

β(ω, t) =
1

2
G(1) +

G′(1)

ω2

∫ ω

0

dx
x(1 − x)

1 + x
dx e−t +O(e−2t). (7.104)

Evaluating the integral yields the desired equation for β(ω, t):

β(ω, t) =
1

2
G(1) +G′(1)

(

1 − 4

ω
+

4 log(1 + ω)

ω2

)

e−t +O(e−2t). (7.105)

This means, that only a shift is remaining of the original perturbation after a
long time; the shape of the circle is not changed. We have universal relaxation
for t→ ∞ independent of the precise form of β(ω, 0). The results of the stability
analysis have been published in Phys. Rev. Lett. [48].
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7.5.1 An explicit analytic solution

We know that g has to depend on ω and T via the variable u:

u =
ω + T

ωT + 1
. (7.106)

This is a bilinear transformation; an automorphism of the unit disc. This means
that analyticity of a function with respect to ω implies analyticity with respect
to u and vice versa. This means that we can take any analytic function of u,
but let us take

g̃(u) =
1

u− Γ
, (7.107)

where Γ = γeiα0 , γ > 1, which is an analytic function of |u| ≤ 1 due to the
constraint on γ. This gives us

g(ω, t) =
ωT + 1

ω(1 − ΓT ) + (T − Γ)
=

1

T − Γ

ωT + 1

ωb+ 1
, (7.108)

where

b =
1 − TΓ

T − Γ
. (7.109)

Use

β(ω, t) =
1

ω2

∫ ω

0

xg(x)dx (7.110)

to obtain

β(ω, t) =
1

ω2

1

T − Γ

∫ ω

0

x(xT + 1)

xb+ 1
dx. (7.111)

Evaluating the integral gives us β(ω, t):

β(ω, t) =
1

2

T

b
+

1

ωb

(

1 − T

b

)

+

(

1 − T

b

) −1

b2ω2
log(ωb+ 1). (7.112)

Notice that β(ω, t) is analytic for ω = 0, since the singularities cancel each other.
Sidestep The expansion of the logarithm is possible, since |b| < 1:

|b|2 =
1 − 2Tγ cos(α0) + T 2γ2

T 2 + γ2 − 2Tγ cos(α0)
< 1, (7.113)

since

γ2(1 − T 2) > (1 − T 2) ⇒
T 2 + γ2 − 2Tγ cos(α0) > 1 + T 2γ2 − 2Tγ cos(α0), (7.114)
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which implies equation (7.113).
The time evolution of this particular solution is shown in figure (7.1).

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1  1.5
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’anint2a’
’anint3a’
’anint4a’

Figure 7.1: The particular solution of β(ω, t) with γ = 1.1 and α0 = 0.3.
Consecutive timesteps are plotted on top on each other: the perturbation is
convected away to the back of the circle.

We see that the cusp is convected away to the back of the streamer. This
behaviour turns out to be generic for all solutions; solutions with

g(ω, 0) ∼ ωk (7.115)

have been calculated and plotted as well. Those solutions show the same be-
haviour.
Analytic solutions have been derived for ε = 0, 1. For different values, I have to
rely on a numerical method. This will be the subject of the next section.

7.5.2 Towards a numerical scheme for general ε

I need to preserve the analyticity of β and φ. This means that I need to evaluate
β for ω = eiα. Use

ω2∂2
ω = −∂2

α + i∂α (7.116)

to rewrite the operator Lε on the boundary of the unit disc

1

2
Lε = −iε sin(α)∂2

α + (−iεeiα + ie−iα)∂α + ((1 + ε) − iε∂α)∂t. (7.117)

Rearranging terms gives us a more convenient form of Lε:

Lεβ = (sin(α)∂α + ∂t)g(α, t) + i(1 − ε) cos(α)∂αβ, (7.118)
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where g is defined below:

g(α, t) = (−iε∂α + (1 + ε))β(α, t). (7.119)

This means that I can determine g from β and make a time step with equation
(7.118):

(sinα∂α + ∂t)g(α, t) = −i(1 − ε) cosα∂αβ (7.120)

Retrieving β from equation (7.119) is the difficult part. Terms like e−i(1+ε)α

could be generated. I derived a condition at ω = 0 to prevent those non-
analytic terms. This condition should be translated in an initial value for β, say
at α = 0. Let us take

µ = β(α = 0, t). (7.121)

Solving the integral equation with this particular initial value yields a solution
β(α, t;µ). We need to find the value of µ such that

m(µ) =

∫ α=2π

α=0

β(α;µ)e(1+ε)iαdα = 0 (7.122)

We can try to solve this problem in principle using a shooting algoritm: we
choose some µ0 and determine β0(α;µ0). This gives us the value m(µ0). Mini-
mizing (the abolute value of) m(µ) gives us the correct value of µ. This has to
be done every timestep; we can use the right value of µ of the previous timestep
to find the new one of course.
It is easier to impose the analyticity of β using an explicit mode expansion. This
will be done in section 7.6.

7.6 Transformation

Due to the factorization of the linear operator, we were able to calculate the
solution for ε = 1 analytically. Now a different method is needed for ε 6= 0, 1.
In Section 7.4 it became clear that the variable u

u =
ω + T

ωT + 1
(7.123)

plays a very important role in solving the ε = 1 case analytically. We will study
now whether it also helps for the ε 6= 1 case. Observe that equation (7.123) is
a so called bilinear transformation for 0 ≤ T < 1. Those transformations map
the unit disc conformally onto itself. This means, that we can precompose the
mapping ft(ω) with u(ω, T (t)):

ft(ω) = f̃(t, u(ω, T (t))). (7.124)
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Instead of deriving an equation of motion for the mapping of the unit disc
in ω space, we can rewrite the equation in terms of the new variable u and
derive an equation of motion of the unit disc in u space. The purpose of this
precomposition is the transfer of a lot of dynamical information in the mapping
u. This is actually an Ansatz on the dynamics of the mapping. We will do
this for the equations of the stability analysis of the circle first in section 7.6.1.
As discussed before, it is difficult to maintain the analyticity of the mapping
numerically. In section 7.6.2 we impose the analyticity using a mode expansion.
In section 7.6.3 we show the numerical results of this expansion and in particular
we will show that the results of this expansion do not depend on the cut-off.

7.6.1 Transformation of the equations

We define Lε, g(ω, t), u(ω, T (t)) and T (t) as before:

Lε = −ε(1 − ω2)ω∂2
ω − (2 + ε− 3εω2)∂ω + 2εω∂ω∂t + 2(1 + ε)∂t (7.125)

g(ω, t) = (εω∂ω + (1 + ε))β(ω, t), (7.126)

This means that we have to solve

(2∂t − (1 − ω2)∂ω)g(ω, t) = −(1 − ε)(1 + ω2)∂ωβ(ω, t) (7.127)

Define

β̃(u, t) = β(ω, t) and g̃(u, t) = g(ω, t) (7.128)

u(ω, T (t)) =
ω + T (t)

ωT (t) + 1
, ω(u, T (t)) =

−u+ T (t)

uT (t) − 1
, T (t) = tanh

(

t

2

)

. (7.129)

and use u = eiφ to parametrize the unit disk in u-space.
Rewrite in the new coordinate u:

du

dω
=

(1 − uT )2

1 − T 2
⇒ ∂ω =

(1 − uT )2

1 − T 2
∂u. (7.130)

Thus

1

2
(ω2 − 1)∂ω =

1

2
(u2 − 1)∂u (7.131)

and

∂t = ∂t|u +
du

dt
∂u. (7.132)

Since

du

dt
=
du

dT

dT

dt
= − u2 − 1

1 − T 2

1

2
(1 − T 2) = −1

2
(u2 − 1) (7.133)
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we have

(2∂t − (1 − ω2)∂ω)g = (u2 − 1)∂ug̃ + 2∂tg̃|u +
du

dt
∂ug̃ = 2∂tg̃|u. (7.134)

This is what we expected since we basically chose u such that we would obtain
such an easy result.
Rewrite the other parts of Lε:

−1

2
(ω2 + 1)∂ω = −u

2 − 4uT + T 2 + u2T 2 + 1

2(1 − T 2)
∂u (7.135)

which gives in terms of φ:

−1

2
(ω2 + 1)∂ω = i

cos(φ)(1 + T 2) − 2T

1 − T 2
∂φ. (7.136)

We also need ω∂ω:

ω∂ω =
(uT − 1)(−u+ T )

1 − T 2
∂u = −i1 + T 2 − 2T cos(φ)

1 − T 2
∂φ. (7.137)

This means that the equation (7.127) is rewritten as:

∂tg̃(u, t) = (1 − ε)
cos(φ)(1 + T 2) − 2T

1 − T 2
∂φβ̃(eiφ, t) (7.138)

and equation (7.126) is rewritten as

g̃(u, t) =

(

(1 + ε) − iε
1 + T 2 − 2T cos(φ)

1 − T 2
∂φ

)

β̃(eiφ, t). (7.139)

Notice that we can encounter numerical problems again if we want to integrate
equation (7.139). The term in front of the derivative ∂φ is positive, since

1 + T 2 − 2T cos(φ) ≥ 1 + T 2 − 2T = (1 − T )2 > 0, (7.140)

which means that we have to prevent the emergence of nonanalytic zero modes.
We will do so using a mode expansion for β̃ and g̃, given in the next Section
7.6.2.

7.6.2 Expansion

The easiest way to preserve the analyticity of a funtion is an expansion:

β =

∞
∑

k=0

ak(t)ωk. (7.141)

Inserting this ansatz will in general yield an infinite number of coupled ODE’s.
If we want to solve those ODE’s numerically, we have to introduce a cut-off N :

β =

N
∑

k=0

ak(t)ωk. (7.142)
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This is only a good approximation, if the solution is independent of the cut-off
N . This is easily checked by doubling and halving N . Previously, we found
that such a mode expansion didn’t work; the solutions depended heavily on the
choice of the cut off N . But now we hope that most of the dynamics of the
problem is transferred in the coordinate u, so we set:

β̃ =

N
∑

k=0

bk(t)uk, g̃ =

N
∑

k=0

gk(t)uk. (7.143)

Let us use a vector notation again and introduce

b̃ =















b0(t)
b1(t)
b2(t)

...
bN (t)















(7.144)

and g in the same way.
Substitution of the Ansatze of equation (7.143) in equation (7.139) using vector
notation yields

g = (1 + ε)b̃ + ε
1 + T 2

1 − T 2
M1b̃ +

−εT
1 − T 2

M2b̃, (7.145)

where M1 and M2 read:

M1 =



















0 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 2 0 . . . 0
...

...
...

. . .
...

...
0 . . . 0 0 N − 1 0
0 . . . 0 0 0 N



















, M2 =



















0 1 0 0 . . . 0
0 0 2 0 . . . 0
0 1 0 3 . . . 0
...

...
. . .

... . . .
...

0 . . . 0 N − 2 0 N
0 . . . 0 0 N − 1 0



















.(7.146)

Substitution in equation (7.138) yields equation (7.147):

∂tg = (1 − ε)

( −2T

1 − T 2
M1b̃ +

1

2

1 + T 2

1 − T 2
M2b̃

)

. (7.147)

Differentiating equation (7.145) gives us another expression for ∂tg, so we can
eliminate it from equation (7.147) in order to obtain an equation for ∂tb̃ in
terms of b̃ and T .
Notice that the matrices don’t depend on t but that some of the prefactors do
via T . Use again

dT

dt
=

1

2
(1 − T 2) (7.148)
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and apply ∂t to g from equation (7.145) to obtain

∂tg = i(1 + ε)∂tb̃ + εi
1 + T 2

1 − T 2
M1∂tb̃ + εi

2T

1 − T 2
M1b̃ +

−iεT
1 − T 2

M2∂tb̃ +
−iε
2

1 + T 2

1 − T 2
M2b̃. (7.149)

Equating (7.147) and (7.149) we can elimate ∂tg and derive an expression for
∂tb in terms of b. Notice that the terms linear in ε which are present in equation
(7.147) are in (7.149) as well: they will cancel each other. This means that the
equation for ∂tb̃ simplifies a lot:

(

(1 + ε) + ε
1 + T 2

1 − T 2
M1 +

−εT
1 − T 2

M2

)

∂tb̃ =

−2T

1 − T 2
M1b̃ +

1

2

1 + T 2

1 − T 2
M2b̃. (7.150)

Equation (7.150) has the following form:

A(T )∂tb̃ = B(T )b̃, (7.151)

where A(T ) and B(T ) depend on time only. It is not difficult to solve this
equation numerically; this will be done in section 7.6.3.

7.6.3 Numerical Results

Solving equation (7.150) numerically introduces several numerical errors. First
of all we have the discretization of time; this could be delicate, since changing
the time also changes the coeffients in the ODE’s (via T ). Previously, we did not
find any problems here and this still doesn’t cause problems. The second source
of errors can be the cut-off and the discretization of space (which is used to
calculate the bk(0) from an arbitrary initial condition). We denote the number
of modes with N and simply set the number of points equal to 10N , meaning
that the ’fastest’ cosine is still described by 10 points. First we notice that

T = tanh
t

2
. (7.152)

We would like to stay away from T = 1, so we let our simulations end when
T ≈ 0.9, which means t ≈ 3. Use

tanhx = 1 − 2e−2x + higher powers in e−2kx (7.153)

to estimate this real time. The numerical solution, with the initial condition of
Section 7.5.1 of the analytic solution, is plotted in Figure 7.2. It ’looks’ the same
as the analytical solution, a more precise comparison will be made in Section
7.6.4.
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Figure 7.2: Time evolution of the interface for ε = 1, 100 modes

I would like to study the effect of the cut off N . Simply plotting the shapes,
containing all modes does not tell us much. I prefer to plot the spectrum; the
number k, k = 0, . . . , N on the x-axis and the amplitude bk(T ) for a certain
T > 0 on the y-axis.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  10  20  30  40  50  60  70  80  90  100

’spec0’
’spec1’
’spec2’
’spec3’
’spec4’

Figure 7.3: The spectrum: bk(T ) as a function of k for T = 0, 0.2, 0.4, 0.6, 0.8,
100 modes

We see that the spectrum becomes essentially flat after approximately fourty
modes; we conclude that the solution is independent of the cut off in this case.
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7.6.4 Comparing analytical and numerical results

It is very important to compare the numerical results with mode expansion
with the analytical results. I will compare the analytical result (7.112) with the
numerics by inserting the proper initial condition and ε = 1 into my numerical
code. I calculate the coefficients bk(t)

β̃(u, t) =

∞
∑

k=0

bk(t)uk, (7.154)

which are in principal known from the analytic solution

β(ω, t) =
∞
∑

k=0

ak(t)ωk. (7.155)

This allows me to see whether the mode expansion, which failed many times,
works this time.
Applying brute force to write bk in terms of ak does not work. Use

k!bk =
dkβ̃

duk
(u = 0) =

(

dk

duk

)

β(ω = −T ). (7.156)

Differentiating β with respect to u requires the chain rule and the product rule,
which means that you pick up more terms for higher derivatives. The derivatives
of ω to u are easy, since:

ω =
u− T

−uT + 1
=

−1

T
+

1 − T 2

T

1

1 − uT
, (7.157)

we have

dkω

duk
(u = 0) =

1 − T 2

T

k!T k

(1 − uT )k+1
(u = 0) = k!(1 − T 2)T k−1. (7.158)

It turns out to be convenient to absorb the factors k! in Ωk

Ωk =
1

k!

dkω

duk
(u = 0) = (1 − T 2)T k−1. (7.159)

Define in a similar way

Ak =
1

k!

dkβ

dωk
(ω = −T ) (7.160)

and notice that Bk = bk. We are now ready to derive expressions for the bk in
terms of the Ak and Ωk. We have

B0 = b0 = β̃(0) = β(ω = −T ) = A0, (7.161)

B1 =
dβ

dω
(ω = −T )

dω

du
(u = 0) = A1Ω1. (7.162)
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Now we get more terms:

2!B2 =
d2β

dω2
(ω = −T )

(

dω

du

)2

(u = 0) +
dβ

dω
(ω = −T )

d2ω

du2
(u = 0) (7.163)

and we have

B2 = A2Ω
2
1 +A1Ω2 (7.164)

In a similar way we derive the other coefficients:

B3 = A3Ω
3
1 + 2A2Ω1Ω2 +A1Ω3 (7.165)

B4 = A4Ω
4
1 + 3A3Ω

2
1Ω2 +A2(Ω

2
2

+Ω1Ω3) +A1Ω4
,

B5 = A5Ω
5
1 + 4A4Ω

3
1Ω2 + 3A3(Ω1Ω

2
2 + Ω2

1Ω3)+
2A2(Ω2Ω3 + Ω1Ω4) +A1Ω5,

(7.166)

B6 = A6Ω
6
1 + 5A5Ω

4
1Ω2 +A4(6Ω

2
1Ω

2
2 + 4Ω3

1Ω3)
+A3(Ω

3
2 + 3Ω1Ω2Ω3 + 3Ω2

1Ω4)+
A2(Ω

2
3 + 2Ω2Ω4 + 2Ω1Ω5) +A1Ω6.

(7.167)

We need to calculate β(ω) and its derivatives which are given by the analytic
expression

β(ω) =
1

T − Γ

(

1

ωb

(

1 − T

b

)

+
1

2

T

b
− 1

ω2b2

(

1 − T

b

)

log(1 + ωb)

)

, (7.168)

where

b =
1 − TΓ

T − Γ
, Γ = γeiα0 . (7.169)

We will choose γ = 1.1 and α0 = 0.3, derived in Section 7.5.1.
This is not a nice expression to differentiate and evaluate, fortunately we can
go back one step in the derivation and notice:

(2 + ω∂ω)β =
g

i
=

1

T − Γ

ωT + 1

ωb+ 1
. (7.170)

It is convenient to rewrite equation (7.170) in the following way:

(2 + ω∂ω)β = a0(Γ, T ) + a1(Γ, T )
1

ωb+ 1
, (7.171)

where

a0(Γ, T ) =
T

1 − ΓT
and a1(Γ, T ) =

1 − T 2

(1 − ΓT )(T − Γ)
. (7.172)
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Now we see that it is very easy to obtain all derivatives of β; differentiation of
equation (7.171) gives the kth derivative in terms of a known function and the
(k − 1)th derivative:

ω
dkβ

dωk
= a1(Γ, T )

(k − 1)!(−b)k−1

(ωb+ 1)k
− (k + 1)

dk−1β

dωk−1
(7.173)

if k > 1. Evaluating at ω = −T and using the definition of Ak yields:

Ak =
1

−Tk

(

a1(Γ, T )
(−b)k−1

(1 − bT )k
− (k + 1)Ak−1

)

. (7.174)

Notice that we need to be careful when evaluating this expression for small
T ; this corresponds to small ω, where the singularities in the analytic solution
cancel each other. Since we are not interested in numerical problems due to an
analytic feature of a certain solution, we will avoid this problem by starting the
comparision at a small T > 0, say T ≈ t ≈ 10−4. I will use the Ak, extracted
from the analytical solution to calculate the Bk analytically and compare them
to the Bk calculated in the numerical procedure. This comparison will be made
in the next section.

7.6.5 Comparing numerics and analytical results: the pic-

tures

In the figures below, we plot time 0 < t < 3 on the x-axis, meaning 0 < T <
0.9 and the real and imaginary parts of the first six bk on the y-axis. Direct
calculations of the analytical solution are compared with the numerical results
with the same initial condition; both curves lie perfectly on top of eachother.
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Figure 7.4: Comparison of the real and imaginary parts of bk, k = 0, . . . 5 as a
function of time

Since the expressions for the higher bk get lengthier, I decided to stop here,
since the conclusion is obvious. There are no numerical problems for ε = 1 with
the mode expansion.

7.7 Conclusion

The circle is unstable for ε = 0. A mode expansion gives both for ε = 0 and
ε > 0 incorrect results; we derived a PDE for the perturbation instead and we
were able to solve the PDE for ε = 1. From those analytic solutions we see that
the circle is linear convectively stable: perturbations may be amplified, but are
convected away to the back were they disappear. This is the same scenario
which was observed experimentally and numerically in viscous fingering. The
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advantage of the analytical solution is that we can trace the dynamics up to
t→ ∞ and identify a universal attractor of the long time dynamics.
It is desirable to have a reliable numerical for ε 6= 1 when the PDE can not be
solved analytically anymore. I used the analytic solutions for ε = 1 to check
the reliability of the mode expansion from the numerics. Since the numerical
solutions matches perfectly with the analytical solution, I am confident that I
will be able to use the code for ε 6= 1 as well.



Chapter 8

Analysis of the planar front

and a different

regularization mechanism

This is chapter could have been the first chapter of my thesis, since the solutions
which are analyzed are the ’easiest’ nontrivial solutions of the PDE’s. Solutions
which are invariant in all but one of the spatial directions and invariant in time
are studied, so called planar solutions, because also more complex solutions
are, at least locally, planar. It is always possible to look for such solutions;
substitution of

ξ = z − vt (8.1)

in the PDE’s yields a set of ODE’s, which can be solved easier, either numerically
or analytically. The existence and stability of those solutions was investigated
in [9], [8]. Analytic expressions can be derived in the D = 0 case; the stability
analysis can be performed analytically in the limits for small and large k [12]:

s(k) =

{

E0k for k � 1
E0

2 e
−1/E0 for k � 1

(8.2)

The points inbetween are obtained numerically using a shooting algorithm.
Those results are presented in Section 8.1.
In Section 8.4 I will implement the dispersion relation as a new dynamical con-
dition on the interface instead of the boundary condition on the potential from
Chapter 5. This was our first effort to regularize the problem; it failed, but that
may be due to some oversimplifications I made at that moment.
The planar solutions show some unphysical behaviour; they are unstable to
transversal perturbations for all wavelengths. Once the diffusion is switched on
in section 8.7 we still see unstable wavelengths, but only a band of wavelengths
is unstable: the small wavelength instability is removed by the diffusion. In
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contrast to (8.2) only the k � 1 asymptote can be derived analytically. The
numerical solution of the eigenvalue problem and the numerical initial value
problem both give the same dispersion curve.

8.1 Planar solutions with D = 0 and their sta-

bility

I will derive analytic expressions for the planar front in the first part of this
section; those solutions are effectively one-dimensional, i.e. E(ξ) etc., where
ξ = z − vt is a comoving coordinate. Furthermore the proper boundary condi-
tions need to be imposed: zero net charge behind the front and no particles in
front, a vanishing electric field behind the front and a constant field in front,
which is just −E0, the field far away. I will repeat the main steps of the analysis
in [12] in section 8.1.1 and refer to this paper for more details.
The stability of the planar solutions is the subject of section 8.1.1; the linear sta-
bility analysis is performed in a standard way, using a transversal perturbation
with wavevector k. The growth rate of such a perturbation is studied for any
k, which yields a dispersion relation s(k). This relation can be approximated
analytically, but only for very small k

s(k) = E0k (8.3)

and for large k:

s(k) =
1

2
E0e

−1/E0 . (8.4)

This means that the solutions are unstable against large k perturbations; this
unphysical behaviour is cured by including diffusion in Section 8.7.

8.1.1 Derivation of expressions for the planar front

The streamer equations were derived in Chapter 3:

∂tσ −∇ · (σE) = σf(E), (8.5)

∂tρ = σf(E), (8.6)

∇ · E = ρ− σ, (8.7)

where

f(E) = |E|e−1/|E| (8.8)

Use the ansatz

ξ = z − vt (8.9)
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and impose the conditions on the electric field and the particle densities

E =

{

−E0ẑ z → ∞
0 z → −∞ ρ =

{

σ z → −∞
σ = 0 z → ∞

to derive expressions for the uniformly translating front:

(v + E)∂ξσ + (ρ− σ)σ + σf(|E|) = 0 (8.10)

v∂ξρ+ σf(|E|) = 0 (8.11)

ρ− σ − ∂ξE = 0. (8.12)

These equations were discussed in [9] and [12]; the velocity v = E0, the far
field, is the only solution fullfilling the requirement that the electron density
vanishes beyond a certain point. This will be called the selected velocity. For
any velocity, the equations (8.10)-(8.12) can be solved directly:

σ[E] =
v

v + E
ρ[E] (8.13)

ρ[E] =

∫ E0

|E|

e−1/x dx (8.14)

ξ2 − ξ1 =

∫ E(ξ2)

E(ξ1)

v + x

ρ[x]

dx

x
(8.15)

(8.16)

The solutions for v = E0 are plotted in Figure 8.1.1:
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Figure 8.1: The densities and the electric field as a function of the comoving
coordinate ξ. [12]

The front with v = E0 exhibits a discontinuity at ξ = 0, which is removed
by addition of diffusion. This would lead to pulled fronts, which means that
even a small addition of diffusion changes the behaviour drastically. We stick
here to the D = 0 case, but note that we have to take care around the point
ξ = 0 in the linear stability analysis.
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The stability of the planar solutions

To study the stability of the solutions, both the fields and the position of the
front are perturbed by ∆k:

ζ = ξ − ∆k, σ = σ0(ζ) + σ1(ζ)∆k, ∆k = δeikx+st. (8.17)

This means that the jump in the electron density is located at ζ = 0. Expanding
the equation up to linear order in δ yields an equation of the following form:

∂tf1 = Ms,kf1 − f2, (8.18)

where the vector f1 contains the physcial fields like electron density, the matrix
M and the vector f2 are given in terms of the 0th order solution and s and k.
Conditions on the fields at ζ = ±∞ fully specify the eigenvalues s(k). Solutions
can be found for general k using a shooting algorithm, the asymptotes for small
and large values of k can be found analytically:

s(k) =

{

E0k k small
f(E0)

2 k large
(8.19)

The dispersion relation with its asymptotes is plotted in Figure 8.2 for E0 = 1.
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Figure 8.2: The dispersion relation s(k) for D = 0 and E0 = 1 with both
asymptotes from [12]

8.2 Derivation of the dispersion relation with

the new boundary condition

We will show in this section that an equation for s(k) can be derived, when the
boundary condition

φ+ − φ− = ε(∇φ+)n (8.20)
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derived in Chapter 5 is imposed as a boundary condition on the planar front.
Use the explicit expression for φ+

φ+ = E0ξ + aδe−|k|ξ∆k + c.c. (8.21)

to rewrite the boundary condition at front (ξ = ζ0∆k):

φ+ − φ− = E0ζ0∆k + aδ∆k − φ− (8.22)

and

ε(∇φ+)n = ε(E0 − |k|aδ∆k) (8.23)

which implies (choose φ− = −εE0)

E0ζ0 + a = −ε|k|a. (8.24)

Turn the attention to the dynamic boundary condition

vn = (∇φ+)n (8.25)

on the interface. Use

z = E0t+ δζ0∆k (8.26)

to calculate the velocity on the interface:

vn = E0 + s(k)δζ0∆k (8.27)

and the previously obtained expression for (∇φ+)n:

(∇φ+)n = E0 − |k|aδ∆k (8.28)

to derive

s(k) = −a|k|
ζ0

. (8.29)

Combining equations (8.24) and (8.29) we obtain the dispersion relation s(k):

s(k) = E0
|k|

1 + ε|k| . (8.30)

This agrees with the results of the previous section. The linear behaviour for
small k is reproduced; for large k we have

s(k) → E0

ε
and s(k) → E0α(E0)

2
. (8.31)

where 1
α(E0)

∼ ε is the characteristic lengthscale of the interface.
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8.3 A different method to implement a regular-

ization

It is also possible to implement the results of the linear stability analysis into
a different regularization mechanism. There are different possibilities to regu-
larize our problem, whether the outcome is the same is an open question. Both
mechanisms implement the same dispersion relation; the dynamic boundary
condition

vn = (∇φ)n (8.32)

led to the correct dispersion relation for a planar front, as we saw in Section 8.2.
I will implement a different regularization mechanism in this Section. Let me
introduce the same lengthscale as before, the width of the boundary layer, but
I will use k0 ∼ 1

ε in the following analysis, which means that the unregularized
case corresponds to k0 → ∞.
Instead of taking the velocity proportional to the local field, I will use

(v(x))n =

(∫

K(x− x′)E(x′)dx′
)

n

, (8.33)

where the functionK(x−x′) contains the parameter k0, and basically determines
how large the region of integration is. (We would retrieve the unregularized dy-
namical condition with a delta function for k). Furthermore, this function will
be chosen such that the proper dispersion relation s(k) is retrieved. This means
that the same physics is implemented as in the regularization mechanism dis-
cussed in Chapter 5.
Intuitively one can see why this condition could regularize the problem as fol-
lows. Close to a sharp cusp in the interface, the electric field points (partly) in
opposite directions on different sides of the cusp, since it is still normal to the
equipotential boundary. This means that the velocity, which effectively takes
the vector sum of the electric fields around a point, is decreased due to the
cancellation of fields around the cusp. This implies, that the local velocity of
the cusp is smaller than the velocity of a flat interface, which means that the
cusp is overtaken by the flatter regions. This is illustrated by figure 8.3.

Figure 8.3: Around a cusp, contributions tend to cancel each other.
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Originally, I used

(v(x))n =

(∫

K(x− x′)E(x′)ndx
′

)

. (8.34)

instead of equation (8.33). Equation (8.34) will decrease the velocity of a cusp,
since the field is averaged over a region around the cusp which means that the
velocity of a cusp is lowered. By the time I was trying to implement a mechanism
like this, I made unfortunately some oversimplications, which led to the (erro-
neous ?) conclusion that the mechanism could not work, even independently of
the implemented dispersion relation. I will point out the correct approach in
the following section.

8.4 Implementation of the dispersion relation

In this section I will derive an expression for K(x− x′) such that

(v(x))n =

(∫

K(x− x′)E(x′)dx′
)

n

(8.35)

for the planar front. The function K(x − x′) will depend on the dispersion
relation s(k). Taking the normal component of the field before the integration
does not change the derivation; (it does not matter for a planar front). It does
change the implementation of the boundary condition in the full problem; I will
indicate the change.
Use the same notation as in Section 8.1.1; the perturbed coordinate ζ was
introduced

ζ = ξ − δeikx+st + c.c. (8.36)

such that the perturbed interface is located at ζ = 0. Solving the Laplace
equation in front of the front yields

Φ(ξ) = E0ξ + aeikx+ste−|k|ξ + c.c.. (8.37)

The constant a can be determined using the fact that the interface, located at
ζ = 0 is equipotential and gauged to zero:

a = −E0δ, Φ(ξ) = E0ξ − E0δe
ikx+ste−|k|ξ. (8.38)

This means that the normal component of the electric field is given by

En = −E0 − δ|k|E0e
ikxest + c.c. (8.39)

up to linear order in δ. The normal component of the velocity of the interface
is calculated as follows; the interface is defined as ζ = 0, which means

dζ

dt
=
dξ

dt
− δseikxest + c.c. = 0 (8.40)
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and we see that

vẑ =
dz

dt
ẑ =

(

dξ

dt
+ v0

)

ẑ = (E0 + δseikx+st + c.c.)ẑ, (8.41)

and I obtain

vn = E0 + δseikx+st + c.c.. (8.42)

Any perturbation of the uniformly translating front can be written as a sum a
Fourier modes:

En = −E0 − E0

∫

|k|es(k)tδke
ikxdk, (8.43)

where δk = δ?
−k since E is real. Expand vn in the same way:

vn = E0 +

∫

R

s(k)es(k)tδke
ikx. (8.44)

It is convenient to take Fourier transforms of the electric field and the velocity.
Define

f̂(k) =
1

2π

∫

R

f(x)e−ikxdx (8.45)

and the inverse transformation

f(x) =

∫

R

f(k)eikxdk. (8.46)

Use

Ê(k) =
1

2π

∫

R

Ene
−ikxdx = −E0δ(k) − E0δk|k|est (8.47)

and similarly for v̂(k):

v̂(k) = E0δ(k) + s(k)δke
s(k)t (8.48)

which implies

v̂(k) =
−s(k)
|k|E0

Ê(k) ∀k 6= 0. (8.49)

Notice that we can extend s(k) to k < 0, since it is symmetric with respect to
this transformation: s(k) = s(−k). It is convenient to use a functional form for
s(k) which can be substituted in equation (8.49). We want to implement the
following properties that we derived from the linear stability analyisis:

s(k) → |k|E0 as |k| → 0 (8.50)
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and

s(k) → k0E0 as |k| → ∞, k0 =
1

2
e−1/E0 . (8.51)

Use the following interpolation for s(k):

s(k) =
k0

k0 + |k| |k|E0, (8.52)

which can be inserted in equation (8.49) to obtain:

v̂(k) =
−k0

k0 + |k| Ê(k). (8.53)

(Notice that equation (8.53) also holds for k = 0). This means that I can
transform equation (8.53) back to real space to derive the desired dynamical
condition:

vn(x) =
−1

2π

(∫

R

dk

∫

R

dx′ eik(x−x′) k0

k0 + |k|E(x′)

)

n

. (8.54)

Notice that the k integral can be rewritten in an integral over R
+.

vn(x) =
−1

π

(∫

R+

dk

∫

R

dx′ cos(k(x− x′))
k0

k0 + k
E(x′)

)

n

. (8.55)

I will use equation (8.55) as the new boundary condition on the interface.

8.5 Implementation of the new boundary con-

dition in the full problem

The dynamical equation needs to be incorporated in the conformal mapping
frame. This means that the integration has to be taken along the interface
instead of over all x ∈ R:

∫

R

dx′ = −
∫ π

α′=−π

|∂αf |dα′. (8.56)

The minus sign is due to the fact that I reversed the direction of integration.
The distance d(α−α′) has to be measured along the interface; this means that
I have to replace it by

d(α− α′) = min

(

∫ α′

α

|∂yf |dy, |
∫ −2π+α′

α

|∂yf |dy|
)

, (8.57)

where α < α′. Write the velocity, the normal and the electric field in complex
notation instead of vector notation:

v = vx + ivy, n = nx + iny, E = Ex + iEy. (8.58)
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The normal component of the velocity reads

vn = vxnx + vyny = Re(nv?). (8.59)

Substitute this in equation (8.55)

vn(α) =
1

π
Re
(

∫

R+

dk

∫ π

α′=−π

|∂′αf |dα′ cos(kd(α− α′))

k0

k0 + k
n(α)(Ex(α′) − iEy(α′))

)

, (8.60)

where d(α− α′) is defined in equation (8.57). Rewrite

Ex − iEy = ∂xφ− i∂yφ = ∂x(φ+ iψ) = ∂zΦ(z) =
∂αΦ̂

∂αf
. (8.61)

and use the expression for the normal

n =
i∂αf

|∂αf |
(8.62)

to obtain the velocity in terms of the potential and the mapping function:

vn = Re

(

∫ π

−π

dα′|∂α′f |K(α− α′)
∂αf

|∂αf |
i∂α′Φ̂

∂α′f

)

, (8.63)

where

K(α− α′) =
1

π

∫

R+

dk
k0

k0 + k
cos k(d(α− α′)). (8.64)

In my first attempt, I evaluated the normal inside the integral, which means
that the argument of the normal becomes α′, which simplifies equation (8.63)
a bit. The equations (8.57), (8.63) and (8.64) fully specify the velocity of the
interface in terms of the mapping function for any given k0. Notice that the
potential is known, since it is the same as in the unregularized case:

Φ̂(ω) = E0a−1

(

1

ω
+ ω

)

, Φ̂(ω = eiα) = −2iE0a−1 sinα. (8.65)

It is difficult to make any analytic progress, unless I study the circle as initial
condition, which will be done in Section 8.6.
If we want to study the full problem with a general initial condition, the equation
of motion of the mapping function becomes

Re(i∂tf∂αf
?) = |∂αf |vn(eiα). (8.66)

The easiest way to solve equation (8.66) is the introduction of a mode expansion
for the mapping function f ; higher modes will be generated though, since the
right hand side generates all modes ∼ cos kα. This can be a line for future
research, I will not pursue it here any further.
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8.6 Study of the circle

It is possible to show that I can retrieve the unregularized circle if I take the
limit k0 → ∞. Take the circle with radius one as initial condition:

ft(ω) =
1

ω
+ vt⇒ |∂αf | = 1, (8.67)

which simplifies the equations (8.57)-(8.64) a lot. The equation for the velocity
becomes

vn(eiα) = 2E0

∫ π

−π

cos(α′ − α) cosα′K(α− α′), (8.68)

where I need to be careful with the evaluation of equation (8.57); the distance
between α and α′ is

x− x′ = α− α′ if |α− α′| < π, x− x′ = 2π − α+ α′ if |α− α′| > π. (8.69)

Inserting this allows to calculate the second integral;

vn(eiα) =
2E0

π

∫

R+

dk
k0

k0 + k

∫ π

−π

cos(k(x− x′)) cos(α′ − α) cosα′dα′. (8.70)

Evaluating the first integral as well in the limit k0 → ∞ gives the expected
result:

vn(eiα) = 2E0 cosα. (8.71)

The uniformly translating circle with velocity 2E0 is recovered. Studying finite
k0, one might recover the regularized circle as well. This requires a smart
’guess’ of the precise form of the interpolation formula though. This could be
the subject of further investigation.

8.7 Planar solutions for D 6= 0

There were doubts whether a dispersion relation with short wavelength insta-
bility as (8.2) would regularize the motion. We therefore derived the dispersion
relation for streamers with nonvanishing diffusion numerically. The streamer
equations were derived in Chapter 3 as:

∂tσ −∇ · (σE +D∇σ) = σf(E), (8.72)

∂tρ = σf(E), (8.73)

∇ · E = ρ− σ, (8.74)

where

f(E) = |E|e−1/|E|. (8.75)
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The general idea of this section is as follows; we would like to find the dispersion
relation s(k) numerically. In order to do so, we run a 2D-simulation of the full
PDE’s with an appropriate initial condition. This initial condition has the
following form:

U(x, z, 0) = U0(z) + δU1(z)e
ikx, (8.76)

if U1 is to be an eigenperturbation from the start, the choice of U0 and U1 is
dictated by the uniformly translating planar solution about which we perturb.
If we take δ small enough, δest � 2π

k , we will stay in the linear regime and
we can find s(k) by comparing the amplitudes of the perturbation at different
timesteps. Details and the results of the numerics are given in Section 8.7.1.

8.7.1 Numerical solution of the initial value problem

From the analysis we know that the perturbed solutions read

U(x, z, 0) = U0(x, z + δ cos(kx), 0) +O(δ2) (8.77)

for small k, where U0 is the planar front. (Only the coordinate is perturbed,
the contribution of the fields is higher order in δ). This gives me a convenient
initial condition for the perturbation of the planar front:

U(x, z, 0) = U0(z, t = 0) + δ cos(kx)(∂zU0)(z, t = 0), (8.78)

which is equivalent to equation (8.76), with U1 = ∂zU0.
We use an algorithm to solve the full 2D PDE’s, which has already been used
in [13]. In this case, we have to solve two separate problems; first we use some
initial condition which is uniform in x in order to find the planar front U0 after
a sufficiently long integration time. This is relatively easy, since it is a one-
dimensional problem. In the next step we take the initial condition (8.78). For
all values of k, we choose the length of the domain in the x-direction, Lx, such
that exactly 5 cosines fit into the domain:

Lx =
10π

k
. (8.79)

We also fix the number of points in the x-direction and we impose periodic
boundary conditions at x = 0 and x = Lx, since we want to keep the peridicity
of the solution. For z = 0 and z = Lz, we impose Neumann-conditions on the
electrons. Since we have a constant potential behind the front and a constant
field in front of the front, we have Dirichlet and Neumann conditions for the
electric potential φ at z = 0 and y = Lz respectively.
In order to find the growth rate of the perturbation, we need to find the maxi-
mum of σ in the z-direction for fixed x. The next step is to look at the amplitude
of the electron density σ as a function of x at this maximum. I will denote the
maximum by zmax which means that the desired function, at t = 50 is given by
σ(x, zmax, t = 50). This function is plotted in Figure 8.4:
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Figure 8.4: The amplitude of the perturbation of σ as a function of x at t =
50, k = 0.45 at zmax. We still clearly see the cosine shape.

We clearly see, that we still have the five cosines.
It is easy to find the amplitude of σ(x, zmax, t); in order to prevent lower modes
from entering the calculation, we use:

A =
−k
5π

∫ 10π
k

0

σ(x, zmax, t) cos(kx) dx. (8.80)

In Figure 8.5 we plotted log(A) as a function of time.
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Figure 8.5: log(A) as a function of time; k = 0.45.

Using a least squares algorithm, we can find the inclination of the line
through these points, which is the growth rate s(k).
However, in Figure 8.5 we see a transient behaviour before we reach constant
growth rate; this is observed for the larger k-values. For small k, the eigenfunc-
tion is given by equation (8.78); this is the reason why we have this transient
behaviour only for k > 0.1. It is more difficult to determine the growth rate in
this case; we can not run the simulation longer (the electrode will be reached),
so we use the data up to t = 100 and use different starting points for the fit,
to see whether the inclination of the curve converges to a constant. The uncer-
tainty of the starting point of the fitting procedure is reflected in the error bars
in Figure 8.6 which are almost absent for small k and increase for larger k, as
expected.
Figure 8.6 shows the dispersion relation from this section together with the curve
obtained in Section 8.7.2. Especially for small values of k up to the maximum
of s(k), the agreement is very good.
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Figure 8.6: The dispersion relation obtained in two different ways; crosses for
the intial value problem and plus-signs for the eigenvalue problem, E0 = 1 and
D = 0.1.

We have to make several approximations which will be discussed; discretiza-
tion of space and time and choice of the start of the fit. The choice of δ can play
a role too. Doubling the number of gridpoints in both spatial directions meant
lowering the value of s(k) a few percents, for large k. The timestep does not
influence the outcome. We need to chose δ large enough that the perturbation
is visible and small enough to stay in the linear regime. For k > 0.2, it takes
longer to reach the eigenperturbation, which means that the value s(k) picks up
some information of the transients and becomes too high. We conclude that the
values s(k), k > 0.2 can be viewed as upper bounds, which agrees nicely with
the results in Section 8.7.2.
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8.7.2 Numerical solution of the eigenvalue problem

The dispersion relation s(k) for D 6= 0 can also be treated as an eigenvalue
problem: it is defined by the ansatz U1(z, t) = Uk(z)est inserted into the
PDE’s of the linear perturbation supplemented with the boundary conditions
at z → ±∞. The problem was solved numerically by Gianne Derks [51]. Denote
the 0th order solution as σ0 etc. and define f0 = E0e

−1/E0 . Let the vector w
contain the physical fields:

w =













∂ζσ
σ
ρ
E
φ













(8.81)

then the equation

∂ζw = A[ζ;E0, k, s]w, (8.82)

where the matrix A is given in terms of the planar solution, k, s,D and v =
E0 + 2

√
Df0

A =















E0−v
D

2σ0−ρ0−f0+s+Dk2

D −σ0

D −∂ζσ0−σ0f ′

0

D 0
1 0 0 0 0

0 − f0

v
s
v

σ0f ′

0

v 0
0 −1 1 0 −k2

0 0 0 −1 0















(8.83)

defines the eigenvalueproblem. For ζ → −∞ two conditions are given: ρ = σ
and E = 0; for ζ → ∞ three conditions are given: ρ = σ = E = 0. Together
with the gauge invariance of φ (the sixth condition), the eigenvalue problem
(8.82) is fully specified. For further details on the numerical solution strategy I
refer to [51]. The resulting curve s(k) is plotted in figure 8.6.



Chapter 9

Conclusion

A minimal streamer model has been derived; PDE simulations motivated the
application of a moving boundary approximation and led to the main question
of this thesis: can we analyze streamer propation and branching using a moving
boundary approximation. The unregularized problem was analyzed and reduced
to a system of ODE’s. Unphysical cusps were present in the solutions; this was
not surprising, since a regularization mechanism was missing. Cusp formation
is inevitable in an unregularized problem; this is known from viscous fingering.
A new boundary condition on the interface was derived from the microscopic
PDE’s, a mixed Dirichet-Neumann condition, which took the width ε of the
boundary layer into account. From viscous fingering it is known that simulating
the regularized problem is a demanding numerical problem. Instead of going
into this problem we decided to formulate a different problem first: is the new
boundary condition able to regularize the moving boundary problem?
Points where the cusps form on the interface coincide with the points where
the mapping function looses its conformality. The dynamics of those points was
traced and it was shown in some example that indeed generically cusp forma-
tion was inevitable in the unregularized case. The results for the short time
dynamics of the regularized case were promising but inconclusive. However, we
were able to derive an explicit, analytic solution of the regularized problem: the
uniformly translating circle. The next step was the study of the linear stability
of the circle. We were able to solve the regularized PDE’s analytically for ε = 1
in this case. The analytic solutions show that the circle is convectively sta-
ble; a perturbation can be amplified initially but is convected away to the back
where it dies out. This is exactly the same scenario observed numerically and
experimentally in viscous fingering. We can get further, since we have analytic
solutions. In particular, we can derive the slow manifold on which the pertur-
bation decays for t → ∞. The stability of the circle is surprising as the planar
front is unstable against perturbations of any wavelength. For viscous finger-
ing, the regularization allows only a finite band of wave lengths to destabilize
a planar front. For this reason a stronger regularization for the streamer was
derived in the last chapter, but this regularization in the end was not needed.
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The conservation of the analyticity of the mapping function was solved in a natu-
ral way, using a mode expansion. This led to erroneous conclusions on temporal
eigenfunctions and might cause erroneous results in the PDE-solutions of the
full moving boundary problem. Recent discussions with S. Tanveer showed that
these problems are specific to our regularization and do not appear with surface
tension regularization. It is possible to conserve the analyticity of a function
using the so called Hilbert transform. This would be a logical next step to
continue the investigation of both the linear stability of the circle for ε < 1 and
the full problem. Results of L. Schaefer for the linear stability analysis of the
circle for ε < 1 show that the convective stability is a generic feature of the
problem for all ε > 1

20 . The explicit solutions for ε = 1 can be used to test the
numerical code; they can serve as a gauge point. Another interesting question is
whether other attractors with a different geometry exist, e.g. half infinite finger
like streamers.
The answer to the central question of this thesis, can a moving boundary ap-
proximation be used to describe streamer propagations and branching, is sum-
marized as follows. The model is able to describe streamer propagation but
stays numerically challenging. The scenario for branching can be summarized
as follows: the unregularized problem does show the onset of branching for
any perturbation, but then develops unphysical cusps. The regularized problem
shows that linear perturbations of curved fronts are convected away. There-
fore, only a finite perturbation can lead to branching. The bassin of attraction
of propagating and branching solutions as well as the size and form of generic
physical perturbations need to be determined.
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Summary

Patterns occur in nature on all scales; an example on a large scale is the dis-
tribution of galaxies in the universe. They are neither clumped together in a
massive black hole nor distributed uniformly through space. Denser regions are
separated from each other by almost empty regions. A more familiar example
can be encountered on the beach: a pattern of regular sand ripples. These exist
in a sand desert as well on a larger scale where sand dunes several kilometers
from each other are formed. The structure of a snow flake is an example of
pattern formation on a very small scale. The patterns I studied are on a scale
somewhere in between: electric discharges in the atmosphere. The most familiar
example is lightning, but above a thunder cloud a large variety of discharges can
be seen as well. Those events were reported only a couple of years ago, which
is not surprising, since they tend to be obscured by the much brighter lightning
flashes and, of course, by the clouds. Those discharges were named ’transient
luminous events’ (TLE’s) or more fanciful: sprites, jets and elves. An article
about those TLE’s appeared in Zenit and de Volkskrant [53]. A telescopic im-
age of a sprite shows an inner structure of the sprite: it consists of a number of
channels which are believed to be so called ’streamers’: an ionized channel with
an active, charged head. The basic idea of a discharge is quite simple: when a
large electric field is imposed on a nonionized medium (air), free electrons will
be accelerated and collide with neutral molecules. This can lead to ionization
of the molecules and the release of a new electron, thus leading to an avalanche
of electrons: the initially nonionized region becomes ionized. The electrons can
not be observed directly, but they excite the molecules as well. The excited
molecules emit a photon when returning to their ground state: those photons
can be observed.
Our goal is to find a theoretical model which describes propagation and branch-
ing of streamers. Physical models are typically reductionistic: one tries to
identify the essential mechanisms and investigates whether the correct physics
is retrieved. We will follow this line and derive a ‘minimal’ model for streamers,
which incorporates the following ingredients: only one ionization reaction, elec-
trostatic interactions and mobile electrons that carry the current. This results
in partial differential equations (PDE’s) which in general need to be solved by
numerical computation. The numerical results do indeed show streamer propa-
gation and branching, but the accuracy of the numerical scheme was challenged:
one may be looking at some numerical artefact instead of some real physical in-
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stability. Analysis of the minimal model is required: the numerical analysis did
give an idea for an analytic approach. It showed that space was divided in two
regions: the ionized tail of the streamer was separated from the nonionized sur-
roundings by a very thin space charge layer. This suggested a moving boundary
approximation. I will explain the idea of this method with its application to
a different physical system: viscous fingering. (In pattern formation, similar
methods can often be applied to systems which are physically quite different.
Similar equations have similar solutions.)
Consider two horizontal glass plates which are placed very close to each other
with closed side walls. When water flows between the plates, it can be viewed
from above; since the plates are close together, this flow can be considered two
dimensional. Such a device is called a Hele-Shaw cell. When water is injected in
a long stretched empty cell, not much happens and the water simply expels the
air. When the experiment is performed the other way around, injection of air
in a cell filled with water, something completely different happens: a finger of
air forms in the cell which is about half the width of the channel (thus: viscous
fingering). This is because a planar interface between water and air is unstable
if the air is pushing: small perturbations will grow and disturb the interface.
Since the air and the water hardly mix, the problem is fully specified by the
position of the interface; subsequently, the temporal evolution is fully deter-
mined by the motion of the interface. This reduction of the problem is called
a moving boundary approximation. This is even more convenient, because the
problem is two dimensional; I will explain this for the more mathematically
inclined reader. The pressure has to satisfy the Laplace equation in the water
region. Complex analysis can be used since the problem is two-dimensional.
Solving the Laplace equation is equivalent to finding an analytic function, the
complex potential. The real part of this function corresponds to the pressure
and automatically satisfies the Laplace equation. Finding an analytic function
on a moving domain is hard as well, though. It is possible to apply the Riemann
mapping theorem, which states that (under some conditions) any region in C

can be mapped onto the unit disc. Since a composition of analytic functions is
analytic, one only has to find the potential on the unit disc (which is standard)
and determine the mapping function. Unfortunately, the Riemann mapping
theorem is not constructive; the hard part of the problem is the determination
of the mapping function. Once this function is determined, it can be evaluated
on the unit circle, which yields the interface.
This gave some remarkable results in viscous fingering; fingers were indeed so-
lutions, but any width of the finger would do; why was the finger whose width
was about half of the channel selected? This problem was solved about thirty
years later: when surface tension was added to the problem, it turned out that
the finger with the appropriate width was selected. This is remarkable, since a
microscopic mechanism (surface tension) caused a macroscopic selection. This
finger is convectively stable, which means that perturbations of the finger may
grow, but are convected away to the back of the finger where they die out. This
was observed both numerically and experimentally.
Let me get back to the streamer problem; we can apply this machinery if we
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study the streamer in two dimensions. The air region corresponds to the ionized
region and the water region to the air region, the pressure needs to be replaced
by the electric potential and we have almost the same equations. Conformal
mapping can be applied, the equation of motion of the mapping function is the
same as in the viscous fingering case. The big problem was the analogue of the
surface tension, which is evidently very important. To find the ’surface tension’,
the so called regularization mechanism, we returned to the original microscopic
PDE’s and used the width of the charge layer as a regularization parameter.
Since solving the regularized moving boundary problem is still challenging, we
wondered whether we had the correct regularization: does it indeed stabilize?
We were able to show that it causes a convective stabilization, which is similar
to viscous fingering. We were able to get further than that, since we were able
to derive the temporal evolution of arbitrary perturbations of a particular shape
up to time infinity.





Samenvatting

Patronen zijn in de natuur te vinden in allerlei ordes van grootte. Een voorbeeld
van een patroon op grote schaal is de verdeling van sterrenstelsels in het univer-
sum. Ze zijn noch samengeperst in een groot zwart gat, noch uniform verdeeld
in de ruimte. Dichter bevolkte gebieden worden afgewisseld met vrijwel lege
gebieden. Een bekender voorbeeld komen we tegen op het strand: een patroon
van regelmatige heuveltjes zand. Deze heuvels bestaan ook in een zandwoestijn
waar zandduinen enkele kilometers van elkaar gevormd worden. De structuur
van een sneeuwvlok is een voorbeeld van een patroon op een heel kleine schaal.
De patronen die ik bestudeerd heb, zijn op een schaal hier ergens tussenin: elek-
trische ontladingen in de atmosfeer. Het bekendste voorbeeld hiervan is bliksem,
maar ook boven de onweerswolk kan een aantal verschillende soorten ontladin-
gen waargenomen worden. Pas een aantal jaar geleden zijn deze fenomenen voor
het eerst waargenomen en gerapporteerd. Dit is niet zo vreemd, aangezien ze
moeilijk te zien zijn door de veel heldere bliksemflitsen en de aanwezigheid van
de onweerswolken die het zicht belemmeren. Deze ontladingen werden ’tran-
sient luminous events’ (TLE’s) genoemd, of met wat meer fantasie, sprites,
jets en elves. Een artikel over deze TLE’s is verschenen in Zenit en de Volk-
skrant [53]. Een opname met behulp van een telescoop van een sprite onthult de
inwendige structuur van de sprite; die bestaat uit een aantal kanalen waarvan
men gelooft dat het zogenaamde ’streamers’ zijn: een geioniseerd kanaal met
een geladen kop. Het basisidee van een gasontlading is vrij eenvoudig: als een
niet-geioniseerd medium (zoals lucht) wordt blootgesteld aan een hoog elektrisch
veld, zullen vrije electronen versneld worden en botsen met neutrale moleculen.
Zo’n botsing kan leiden tot de ionisatie van het molecuul, waarbij een extra
electron vrijkomt. Op deze manier ontstaat een lawine van electronen en wordt
het medium geioniseerd. Deze electronen zijn niet zichtbaar, maar naast dat ze
moleculen ioniseren, slaan ze soms ook moleculen aan en geraken deze in een
hogere energietoestand. Wanneer de moleculen weer terugvallen naar de grond-
toestand, zenden ze een foton uit. Deze fotonen kan men wel zien.
Het doel van dit proefschrift is het vinden van een model om de propagatie en
splitsing van streamers te beschrijven. Natuurkundige modellen zijn meestal
reductionistisch van aard: men probeert de essentiele mechanismes de vinden
en kijkt of een model met alleen deze mechanismes de correcte natuurkunde
beschrijft. We benaderen dit probleem op dezelfde manier en proberen een
’minimaal’ model voor streamers te construeren, waar alleen de volgende
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ingrediënten in zitten: slechts één ionisatiereactie, elektrostatische interacties
en bewegende electronen die de stroom transporteren. Dit resulteert in partiële
differentiaalvergelijkingen (PDE’s) die over het algemeen met een numerieke
code opgelost moeten worden. Deze numerieke resultaten laten inderdaad pro-
pagatie en splitsing van streamers zien, maar de numerieke resultaten werden
ter discussie gesteld: is er hier sprake van een numeriek artefact of is er een
echte fysische instabiliteit? Analyse van het minimale model is noodzakelijk en
de numerieke resultaten gaven een idee voor een analytische aanpak. Deze resul-
taten toonden dat de ruimte verdeeld is in twee gebieden: de geioniseerde staart
van de streamer, gescheiden van de niet-geioniseerde lucht door een dun geladen
laagje. Dit bracht ons op het idee van een zogenaamde moving boundary ap-
proximation. Aan de hand van een ander fysisch probleem, viscous fingering, zal
ik deze methode uitleggen. (Wanneer vorming van patronen bestudeerd wordt,
kunnen vaak gelijksoortige methodes worden toegepast op systemen die fysisch
verschillend zijn.) Neem twee horizontale, parallele platen van glas die dicht bij
elkaar geplaatst worden en maak de zijkanten dicht. Wanneer water tussen de
beide platen stroomt, kan men hier van boven naar kijken en omdat de platen
dicht bij elkaar zijn, is de stroming bijna tweedimensionaal. Een dergelijk appa-
raat wordt een Hele-Shaw cell genoemd. Als water door een lang kanaal geperst
wordt, gebeurt er niet veel bijzonders en wordt de lucht uit het kanaal geduwd.
Wanneer men dit experiment nu andersom doet en probeert water met behulp
van lucht uit het kanaal te persen, gebeurt er iets heel anders. Een vinger
van lucht vormt zich in het kanaal, waarvan de breedte ongeveer de helft van
het kanaal is. Vandaar de naam, viscous fingering. Dit komt omdat een vlak
water-lucht grensvlak instabiel is, wanneer de lucht geperst wordt: kleine ver-
storingen van het grensvlak zullen groeien en de vorm van het grensvlak veran-
deren. Aangezien water en lucht nauwelijks mengen, bepaalt de positie van dit
grensvlak het probleem volledig, dit impliceert dat het tijdsafhankelijke gedrag
van het probleem volledig bepaald wordt door de beweging van het grensvlak.
Een dergelijke vereenvoudiging van het probleem wordt een ’moving bound-
ary approximation’ genoemd. Dat is hier nog handiger, aangezien het probleem
tweedimensionaal is: ik zal dit uitleggen voor de lezers met wat meer wiskundige
bagage. In het water moet de druk voldoen aan de Laplacevergelijking. Com-
plexe analyse kan toegepast worden, omdat het probleem tweedimensionaal is.
Oplossen van de Laplacevergelijking is dan equivalent met het vinden van een
analytische functie, de complexe potentiaal. Het reële deel van deze potenti-
aal correspondeert dan met de druk en voldoet automatisch aan de Laplace
vergelijking. Een analytische functie vinden op een bewegend gebied is ook
moeilijk. Het is mogelijk om het Riemann mapping theorem te gebruiken, dat
zegt dat, onder bepaalde voorwaarden, elk gebied in C afgebeeld kan worden op
de schijf met straal 1. Deze afbeelding is conform en dus analytisch; aangezien
een compositie van analytische functies weer analytisch is, hoeft alleen maar
een analytische functie gevonden te worden op de schijf (en dat is standaard).
Helaas is het Riemann mapping theorem niet constructief: het lastige deel van
het probleem is het bepalen van de mappingfunctie. Wanneer die bepaald is,
kan deze geëvalueerd worden op de eenheidscirkel, wat het grensvlak oplevert.
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Deze methode gaf enkele opmerkelijke resultaten in het viscous fingering-probleem:
vingers waren inderdaad oplossingen van de vergelijkingen, maar elke willekeurige
breedte was een oplossing: waarom werd nu de halve breedte van het kanaal
geselecteerd? Dit probleem werd ongeveer dertig jaar later opgelost. Wan-
neer oppervlaktespanning aan het model werd toegevoegd, werd automatisch
de juiste λ geselecteerd. Dit is opmerkelijk, aangezien een microscopisch me-
chanisme (oppervlaktespanning) zorgt voor een macroscopische selectie. Deze
vinger is convectief stabiel, wat betekent dat verstoringen van de vinger wel kun-
nen groeien, maar tegelijkertijd naar de achterkant weggeconvecteerd worden,
waar ze verdwijnen. Dit werd zowel experimenteel als numeriek waargenomen.
Nu kom ik terug bij het probleem van de streamer; we kunnen deze hele ma-
chinerie gebruiken als we het probleem in twee dimensies bekijken. De lucht cor-
respondeert dan het het geioniseerde gebied en het water met het neutrale gebied
(de lucht). De druk moet vervangen worden door de electrische potentiaal. Dit
levert dan bijna dezelfde vergelijkingen op. Een conforme afbeelding kan weer
gebruikt worden, de bewegingsvergelijking voor de mappingfunctie is dezelfde
als die in het geval van viscous fingering. Het grote probleem was het vinden van
het analogon van oppervlaktespanning, die zeker een grote rol speelde bij het
oplossen van het probleem van viscous fingering. Om onze ’oppervlaktespan-
ning’ te vinden, het zogenaamde regularisatiemechanisme, bekeken we opnieuw
de microscopische PDE’s. We gebruikten de breedte van het laagje met lading
als regularisatieparameter. Aangezien het oplossen van een moving boundary-
probleem nog steeds erg lastig is, vroegen we ons eerst af of deze parameter het
probleem wel kon regulariseren. We hebben aangetoond dat deze regularisatie
inderdaad zorgt voor een convectieve stabilisatie, net als bij viscous fingering.
We zijn zelfs wat verder gekomen, omdat we de verstoring van een bepaalde
vorm willekeurig lange tijd analytisch kunnen berekenen.
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