
Centrum Wiskunde & Informatica

Coiterative Morphisms: Interactive Equational
Reasoning for Bisimulation, using Coalgebras

M. Niqui

SEN-1003



Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer 
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2010, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Science Park 123, 1098 XG Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

 



Coiterative Morphisms: Interactive Equational
Reasoning for Bisimulation, using Coalgebras

Milad Niqui ?

Department of Software Engineering
Centrum Wiskunde & Informatica, The Netherlands

M.Niqui@cwi.nl

Abstract. We study several techniques for interactive equational rea-
soning with the bisimulation equivalence. Our work is based on a modular
library, formalised in Coq , that axiomatises weakly final coalgebras and
bisimulation. As a theory we derive some coalgebraic schemes and an
associated coinduction principle. This will help in interactive proofs by
coinduction, modular derivation of congruence and co-fixed point equa-
tions and enables an extensional treatment of bisimulation. Finally we
present a version of the λ-coinduction proof principle in our framework.

1 Introduction

One of the problem domains that theorem provers deal with is tackling the
properties of infinite object. In this domain, coinduction in an important proof
method. Coinduction is the dual of induction, both for computation and rea-
soning and while stemming from Knaster–Tarski theorem in a set theoretical
framework, it can be studied from a category theoretical [23] or type theoretical
point of view [10]. Many theorem provers are capable of dealing with coinduc-
tive proofs. As the Knaster–Tarski theorem needs only the basics of set theory
and lattice theory, any higher order theorem prover can implement coinduc-
tion [1, 20]. Moreover, some of the theorem proving tools have built-in support
for coinduction. Among the latter are the ones based on constructive type theory
such as Coq and Agda where coinductive types serve this purpose.

In theorem proving with coinduction the main challenge is to identify mech-
anisable aspects and in places where full automation is impossible, to provide
assistance for interactive proofs. This is general issue that concerns all systems
dealing with infinite objects.

In addition to this, the systems that are based on constructive type the-
ory face another, more fundamental, issue. Type theories where termination is
crucial for finite objects enforce similar restrictions for ensuring productivity of
functions on infinite objects. These restrictions are syntactic tests (e.g. guard-
edness checks in Coq and Agda) and will inevitably exclude some legitimate

? Supported by a VENI grant from the Netherlands Organisation for Scientific Re-
search (NWO).

Keywords: coinduction; bisimulation; theorem proving
MSC Classification: 18C50 68Q85
ACM Classification: F.4.1 I.2.3 



2 M. Niqui

productive definitions. Thus not all Haskell programs, even those describing to-
tal functions, are accepted in coinductive type theories. An even more complex
problem is the following: the restrictions for ensuring productivity rises not only
in function definitions but also in coinductive proofs. The reason is that in these
type theories every coinductive proof corresponds to constructing an element of
a coinductive type. Thus several seemingly natural cyclic proofs would be refused
by the guardedness checker.

So for the users of systems based on type theory there are two problems with
coinduction based on coinductive types: (1) many total definitions are not ac-
cepted; and (2) even if they are accepted, proving their properties is problematic
as there are not special facilities for coinduction.1

We present a framework that intends to address both of these two problems.
In a high level, our approach is to develop a theory of coalgebras. This will be
a library containing abstract results and parametrised by the choice of functors.
The built-in coinductive types will then form one possible implementation of
this library but the user have the choice of choosing other implementations. In a
lower level, inside this library to tackle the aforementioned problems we directly
formalise various categorical definition and proof schemes from the theory of
coalgebras. Each scheme not only allows the formalisation of a class of specifi-
cations (or Haskell -like programs) satisfying a specific syntactic form, but also
it comes with a suitable coinduction proof principle.

In an earlier work [18], we presented a previous version of our library in
Coq where we aimed in a partial solution to problem (1) by implementing the
λ-coiteration [2]. The present work is a sequel to that where we extend our
framework with facilities to address problem (2).

Our aims is to show that by formalising a theory of coalgebras, independent
of coinductive types, one can transfer proofs by coinduction to theorem provers.
This has the pleasant side effect that our framework can be translated into
systems that lack coinductive types and can be used for dealing with coinduction
there. Working in Coq , a constraint for us is the intensionality of type theory
(Section 2). They will become non-issue for possible translations of our work
in systems with an extensional equality (overwhelming majority of systems). So
the core of our work, implementing coalgebraic schemes in a logical framework
is applicable to and can be potentially interesting for other theorem proving
systems. A complete Coq formalisation of the material in this paper can be
found in [19].

Related Work. Anton Setzer proposes a built-in implementation of weakly
final coalgebras (as opposed to the Haskell -like coinductive types) in intensional
type theories, which is also implemented in Agda [24, 25]. We follow the same
general philosophy. Our emphasise is on having a light-weight modular library

1 There is a third, rather serious problem, with equality and subject reduction for
coinductive types in intensional type theories [8, 15]. But this is orthogonal to our
work.



Interactive Equational Reasoning for Bisimulation 3

that is implementable within any logical framework. Furthermore we focus on
λ-coiteration scheme as the coalgebraic definition scheme.

Extensional functors (Section 4) are used in [14, 13]. Hancock and Setzer
develop the weakly final coalgebra and bisimulation for a very powerful functor
capable of representing interactive IO programs in intensional type theory [10].
Their work is formalised in Agda [16] using induction-recursive universe which
is beyond most type theoretic proof systems.

CoCasl [17] and CCSL [22] are tools that can generate proof obligations for
theorem provers from coalgebraic specifications. The work on equational theorem
proving with bisimilarity is an active topic of research [6, 9, 11, 12]. In these
work the principal tool in coinductive proving is via bisimulation building, either
explicitly or implicitly via a circular coinduction [9]. In [6] various heuristics
for bisimulation finding are studied. In [11] several tactics for interactive and
automatic bisimulation building is implemented in Isabelle/HOL and are used
to derive bisimilarities for translated specifications from CoCasl. In [12] the CIRC
tool is introduced which is based on hidden algebra and uses a partial decision
procedure for proving bisimilarities via implicit construction of bisimulations.

These are relevant to our work and in future work we plan to work on integra-
tion of the above tools within our framework. In contrast, here our focus is not
on heuristics for bisimulation finding. Rather we focus on interactive equational
reasoning, as well as some automation for deriving co-fixed point equations from
coalgebraic schemes. The other difference is that the above systems deal with or-
dinary bisimulation while we consider other proof principles e.g. λ-coinduction
arising from more complex coalgebraic schemes. A final difference is that our
work is done completely inside a theorem prover: both our corecursive functions
as well as our coinductive proof principles are not simply assumed equational
specifications. They correspond to concrete proof objects and (especially in Coq)
they cab be extracted to executable code.

2 Mechanising Category Theory and Intensionality

First we should clarify the issue with intensionality as it affects our treatment
of coinduction since we develop our work in the intensional setting of Coq . We
do not aim to argue for why to use intensional over extensional systems or vice
versa. We only express the practical implications.

In intensional type theory the two objects being provably equal does not
entail that they are convertible. This restriction is necessary for the decidability
of type checking and although it is not a theoretical obstacle for programming,
it can be practically inconvenient. In particular, formalising category theory is
susceptible to this inconvenience, as proving the uniqueness of arrows in universal
properties of limits adheres to extensional properties of functions. On the other
hand in an extensional setting the axiom of functional extensionality holds:

∀XY ∀fg : X→Y, (∀z, f(z) = g(z))→f = g . (Ext)

This allows one to properly capture the uniqueness of arrows. It is mainly the
absence of this axiom that affects our treatment. First of all we should work



4 M. Niqui

with two equalities, one (denoting by =) is the intensional equality2, and the
other would be a defined extensional equality which in our case will be the
bisimulation equivalence (denoted by ∼=). Subsequently there will also be two
kind of uniqueness of arrows for each type of equality. The intensional uniqueness
arises only in basic cases where terms are indeed convertible while extensional
uniqueness is always built on top of non-trivial proofs.

The main workaround for working extensionally in intensional type theory
is is to use setoids and work modulo our extensionally defined equality. We
partly follow this. This means that some of the diagrams, namely those whose
commutativity depend on the extensional uniqueness, will be expressed using
this extensional equality (the predicate lRel(F ) in Section 4).

Note that Ext can be lifted from functions to functors and its absence means
that we can only work with functors that satisfy a similar condition (See Sec-
tion 4. This is perhaps the most dramatic effect that working with intensional
equality has on our work as it excludes some important functors. In fact in [18]
we showed that exponentiation, a functor often used in modelling processes, does
not satisfy functorial extensionality without assuming additional axioms.

Nevertheless we see certain positive aspects in our approach.3 Most impor-
tant advantage is that in our intensional setting our bisimilarity will coincide
with the standard coinductive definition of bisimilarity [8] that is defined using
coinductive types. This means the Haskell -like specification that we derive via
coalgebraic schemes will mimic those that would be accepted in Coq if their
productivity was detected by the guardedness checker of Coq . Especially since
standard polynomial functors fall within our framework and hence the impor-
tant cases of streams and infinite trees are covered by our treatment. Finally our
work can serve as the starting point for an extensional treatment of coalgebras
because we have shown that a relatively complex coalgebraic scheme is in prin-
ciple implementable. In fact in future work we plan to transfer our work into
a fully extensional setting using setoid functors and setoid coalgebras. It is our
conviction that the high level aspects of the work (e.g. uniqueness and existence
in the coalgebraic scheme) are straightforward to translate and they constitute
the non-trivial and interesting parts of our development.

3 Coalgebras and Coinduction Proof Strategies

While coinduction can be used for proving a variety of properties, its most com-
mon application is in proving the behavioural equivalence of infinite objects by
proving bisimilarity.

The theory of coalgebras [23] provides a framework for dealing with bisim-
ilarity and coinduction. Recall that given a functor F an F -coalgebra consists

2 This includes two different type of equalities which are identical in the empty context.
But we do not delve into this issue here.

3 We disregard the benefits that only affect the formalisation effort itself, e.g. that
proving naturality of transformations is simply conversion of intensional equality
and hence trivial.



Interactive Equational Reasoning for Bisimulation 5

of (X,αX), i.e., a set4 X, called the state set together with a transition map
αX : X −→ F (X). Given two coalgebras (X,αx) and (Y, αY ), a binary relation
R ⊆ X ×Y is a bisimulation between X and Y if there is a map γ : R −→ F (R)
making both squares in the left hand side diagram below commute (by πi we
denote the i-th projection of a tuple):

X

αX

��

oo π1

R

γ

��

Y//
π2

αY

��
F (X) oo

Fπ1

F (R) F (Y )//
Fπ2

X

αX

��

f // Ω

αΩ

��
F (X)

Ff
// F (Ω)

(3.1)

The following fundamental result, taken from [23], establishes an important
property of bisimulation.

Theorem 1. i) For any two coalgebras bisimulations form a lattice, with a
maximal element.

ii) Maximal bisimulation on a single coalgebra is an equivalence relation.

Property (i) forms the basis of the coinduction proof principle: given two coalge-
bras proving that two elements are in the maximal bisimulation is tantamount
to finding any bisimulation relation between the two coalgebras. However, in
practice we are interested in bisimulation between final coalgebras because they
model infinite objects. Recall that a coalgebra (Ω,αΩ) is final if for any other
coalgebra (X,αX) there exists a unique f making the right hand side diagram
in (3.1) commute.

The equivalence relation that is the maximal bisimulation on (Ω,αΩ) is called
the bisimilarity relation. In combination with part (i) of the above theorem one
can obtain the coinduction proof principle: two elements of a final coalgebra are
bisimilar if they are related by a bisimulation.

The advantage of this principle lies in the fact that in the standard setting
(i.e., with extensional equality), one can show that bisimilarity is the same as
equality [23]. So in order to prove that two infinite objects, e.g. processes or
streams, are equal, one can try to search for a bisimulation relation between
them. Of course there is no complete method for constructing bisimulations [21],
so an effective search is impossible even if the equality holds. This means that
any theorem prover dealing with bisimilarities should be equipped with alter-
native tools. The most obvious alternative technique would be to exploit the
equational reasoning since bisimilarity is an equivalence. While in standard (ex-
tensional) setting this step is vacuously straightforward, in the intensional type
theory it means that a congruence property should be proven for each function:
given a function g : Ω −→ Ω we should prove that x∼= y =⇒ g(x)∼= g(y) . In
Theorem 2.ii we prove this once for each g that is defined using the coiteration
scheme (i.e., using the finality in the above diagram). Such generic congruence
proofs are one of the advantages of our library.

4 We work in category Sets, but the notions are applicable in more general settings.



6 M. Niqui

Finally, in the coinductive type theory bisimilarity itself is a coinductive
type [8, 10]. To prove x∼= y one has to define a function on coinductive types
(e.g. in Coq it can be done using cofix construct). An interactive construction of
this function corresponds closely to CIRC’s circular coinduction. Such interactive
‘coinductive’ proofs can be very intuitive in the way the user gradually discovers
a circularity pattern. However since all functions should be productive, such
proofs too are subject to productivity tests. This is because they are function
themselves. This means many intuitive and valid circular proofs are rejected.

So we mentioned at least three techniques for interactively proving a bisim-
ilarity: (1) explicit building of bisimulation, (2) using the equational reasoning
and congruence and (3) using interactive circular coinduction. In the remainder
of the paper we present our library that enables the user in combining all these
three proof methods.

4 Modular Library of Coalgebras

In this section we present the formalised library of a theory of bisimulation and
weakly final coalgebras. Our formalisation uses some facets of the Coq system:
module system, record types, and Set-valued and Prop-valued dependent sums.
In other systems, most of these facilities exist but possibly in a different form (or
based on different foundations). The only peculiarity is the distinction between
Set and Prop but fortunately this distinction is not essential : it is only there to
satisfy Coq ’s fine-grained constraint on case analysis. Prop can be replaced by
Set everywhere and the formalisation is still valid (and much simpler).

The library consists of a number of module types and theories. Each module
type has a number of parameters and axioms. On top of each module type there
will be a corresponding theory consisting of lemmas that hold for all instances of
that module type. An instantiation of a module type consists of concrete values
for parameters and proofs for each axioms. Once the parameters and axioms are
provided the theory of the module type is available for that instantiation.

At the basis of our library lies the type of extensional Set functors. This
module type consists of two operations F : Set −→ Set (on objects) and
lF : (X→Y )→F (X)→F (Y ) (on arrows)5 satisfying the standard functorial prop-
erties plus the following extensionality axiom.

∀XY (fg :X→Y )x, (∀z, f(z) = g(z))→Ff(x) = Fg(x) .

Such functors are called extensional functors [13]. It can be easily seen that the
constant functor and the identity functor and the sum, product, composition
and iteration of extensional functors are extensional [13, 18].

Given an extensional Set-functor F , an F -coalgebra S is simply a record
containing the set of states S.st and the transition map S.tr : S.st −→ F (S.st).

For defining bisimulations as a relation we use dependent types for subsets.
We use different notation for a Prop-valued relation R : X→Y→Prop and the

5 From now on, we write Ff for lF (f).



Interactive Equational Reasoning for Bisimulation 7

set of pairs in {(x, y) ∈ X × Y |Rxy}. By {∃x : X,φ(x)} we denote the set of
elements of X satisfying φ : X→Prop. Given a relation R we write {∃(R)} as a
shorthand for {∃u : X × Y, R π1(u) π2(u)}. Note that an element of {∃(R)}
is a 3-tuple consisting a pair from X × Y and a proof that they satisfy R.

For coalgebras S0, S1 a binary relation R : S0 −→ S1→Prop is bisimulation
if there exists γ : {∃(R)}→F{∃(R)} making the diagram in (3.1) with R re-
placed by {∃(R)} commute. We can have a similar definition for Set-valued
relations leading to the definition of Set-valued bisimulation. Remarkably, we
define a bisimulation to be maximal if it contains every Set-valued bisimulation.
This is necessary in the proof of the transitivity of the maximal bisimulation.
Our module type of bisimulations takes as parameter the maximal bisimulation
between any two given coalgebra. Strictly speaking this is redundant since by
Theorem 1. i the maximal bisimulation can be built abstractly for any two coal-
gebras. However, we prefer to parametrise the maximum bisimulations because
for each concrete Set-functor such a maximum bisimulation can be defined using
coinductive types and hence it will enable the user to use the interactive circular
coinduction.

Any instantiation of the theory of bisimulation should prove few results about
the provided parameters: first of all that the provided maximal bisimulation is
indeed bisimulation and maximal. Second, we require a proof that the extensional
Set-functor F have preserves weak pullbacks.6 Again this is necessary for proving
the transitivity of maximal bisimulation.

Within this theory, we can generically prove some properties of bisimula-
tion. Notably the counterpart of Theorem 1.ii for extensional Set-functors is
proven. More properties can be found in [18]. Here we present some additional
properties that were added recently for equational reasoning. Recall that for
F -coalgebras S0 and S1, f : S0.st −→ S1.st is a coalgebra homomorphism if
∀x, Ff(S0.tr(x)) = S1.tr(f(x)).

Proposition 1. i) Graph of a homomorphism is a bisimulation.
ii) If f : S0.st −→ S1.st is a homomorphism and R a bisimulation on S1 then

f−1(R) is a bisimulation on S0.

iii) If f, g in S0.st oo
f

X.st
g //S1.st are coalgebra homomorphisms and

Rs0s1 := {∃x : X.st, f(x) = s0 ∧ g(x) = s1} , then R is a Set-valued
bisimulation.

The type of weakly final coalgebras takes as parameter a weak pullback
preserving extensional Set-functors F for which a bisimulation theory exists (so
the maximal bisimulation is needed too). A weakly final coalgebra for F is an
F -coalgebra Ω such that for each F -coalgebra S we have

{∃unfldS : S.st→Ω.st, ∀s, Ω.tr(unfldS(s)) = FunfldS(S.tr(s))}.

From now on we use the notation ∼= for maximal bisimulation on the weakly final
coalgebra. Weak finality is due to the fact that this condition does not speak

6 In fact the actual condition that we require is slightly weaker [18].



8 M. Niqui

about the uniqueness of unfldS . For concrete cases the following weak form of
uniqueness is provable and hence can be assumed as axiom for this type.

∀S∀fg : S.st→Ω.st, (∀s0, Ω.tr(f(s0)) = Ff(S.tr(s0)))→
(∀s0, Ω.tr(g(s0)) = Fg(S.tr(s0)))→∀s, f(s)∼= g(s) . (4.1)

Our final axiom expresses the commutativity of diagram (3.1) modulo bisimilar-
ity. First we define the lifting of a relation to the image of F :

lRel(F )(S1, S2, R, zx, zy) := ∃xy,Rxy ∧ zx=S1.tr(x) ∧ zy=S2.tr(y) .

Using this our final axiom reads:

∀X∀fg : X→Ω.st∀y,
(
∀x, f(x)∼= g(x)

)
→ lRel(F )

(
Ω,Ω,∼=, Ff(y), Fg(y)

)
.

This concludes the definition of the module type for weakly final coalgebras.
From here on the rest of the library includes theory development. Basically
the remainder can be considered the theory of weakly final coalgebra but we
divide in three different sub theories: general theory of weakly final coalgebras
(given below), the coalgebraic schemes (Section 5) and a version of λ-coinduction
(Section 7).

In the general theory of weakly final coalgebras we can prove some useful tools
for interactive coinductive reasoning namely the coinduction proof principle, the
congruence of unfldS and a left inverse (up to bisimilarity) for Ω.tr.

Theorem 2. Let Ω be a weakly final F -coalgebra for F an extensional weak
pullback preserving Set-functor. Then

i) If R is a bisimulation relation on Ω.st then ∀x, y : Ω.st, Rxy =⇒ x∼= y .
ii) For any F -coalgebra S we have ∀x, y : S.st, x ∼S y ⇔ unfldS(x)∼= unfldS(y)

where ∼S denotes the maximal bisimulation on S.
iii) For the coalgebra Sc := (F (Ω.st), FΩ.tr) we have ∀x,unfldSc(Ω.tr(x))∼=x.

The second part, whose proof needs Theorem 1.i–ii, is a fundamental property;
it implies that if one considers (Ω,∼=) as a setoid, then f := unfldF is a setoid
morphism. This means that if our goal involves bisimilarity between applications
of f we can rewrite the bisimilarities between arguments of f into the goal.
In other words bisimilarity becomes rewritable. This improves the equational
reasoning, especially in a context where several such arrows are composed. In
Coq we use the setoid rewriting library to declare the maximal bisimulation as
a parametric setoid relation and unfldF as a parametric morphisms [5, § 24].

5 Coalgebraic Schemes

A coalgebraic definition scheme consist of syntactic constraints that will lead to a
valid definition (i.e., existence and uniqueness) of a function whose codomain is a
final coalgebra. There is no restriction on the domain: schemes can also be used



Interactive Equational Reasoning for Bisimulation 9

for defining constants as functions from the unit set. The most basic scheme
is the coiteration scheme given by the universal property in right hand side
diagram (3.1). Given a set X this scheme requires a transition map αX : X −→
F (X) to define a function from X to Ω.st.

The λ-coiteration scheme by Bartels [2] is a very expressive scheme in that
it subsumes many other schemes including coiteration. In [18] we showed how
to implement the λ-coiteration scheme in our library. This enabled us to ‘define’
functions whose productivity is difficult to capture by the basic guardedness
tests. Consider this specification for the stream of Fibonacci numbers:

fibs := 0:: ⊕3 (1, fibs, fibs) , (5.1)

where ⊕3 is a ternary operation defined as:

⊕3(x0, x :: xs, y :: ys) := x0 + y :: ⊕3 (x, xs, ys) .

There is a unique stream satisfying the specification in (5.1), namely the Fi-
bonacci stream. Ideally (5.1) should be accepted as a definition. However the
guardedness test of Coq refuses this definition. Fortunately, as we show below,
the shape of this definition fits the λ-coiteration scheme. In fact our scheme
provides the necessary existence theorem. Of course the absence of the inten-
sional uniqueness in our framework means that the (nullary) function we obtain
from our scheme is bisimilar to the stream of Fibonacci but for the purpose of
computation and observation of behaviour this bisimilarity is all one needs.

Here we present the adaptation of this scheme to our setting (cf. [18, Theo-
rem 2]). From here on we assume B to be a weak pullback preserving extensional
Set-functor, T to be an extensional Set-functor and Ω to be the weakly final
B-coalgebra. Let Λ : TB=⇒BT be a natural transformation. Note that with
the map ΛΩ.st ◦T (Ω.tr) : T (Ω.st) −→ BT (Ω.st) one can form a B-coalgebra
S0 := (T (Ω.st), ΛΩ.st ◦T (Ω.tr)). Let β := unfldS0

(so β : T (Ω.st) −→ Ω.st).

Theorem 3. With Λ, β as above assume a map g : X −→ BT (X) is given (for
an arbitrary set X). Then there exists an arrow f making the diagram below
commute up to bisimilarity.

X

g

��

f // Ω.st

Ω.tr

��
BT (X)

BT (f)
// BT (Ω.st)

B(β)
// B(Ω.st)

That is to say

lRel(B)

(
Ω,Ω,∼=, Ω.tr

(
f(x)

)
, Bβ ◦BTf ◦ g(x)

)
.

The map f given by the above theorem is called the λ-coiterative arrow induced
by g. In fact we can show the extensional uniqueness of f (see Section 7) but for
the material in this section the existence is enough.



10 M. Niqui

Presuming that we want to define functions into Ω.st, this scheme needs
as parameters T,Λ and g. Other (simpler) schemes can be obtained from this
scheme by taking specific functors for T and concrete natural transformations
for Λ. For example, λ-coiteration schemes subsumes coiteration and primitive
corecursion.

5.1 Coiteration scheme from λ-coiteration

Taking the identity functor T (X) := X, and the identity natural transformation
ΛX(x) := x we have the ordinary coiteration scheme. In this case β : Ω.st −→
Ω.st will be the identity as a coalgebra homomorphism, i.e., the function id

satisfying following specification:

id(x :: xs) := x :: id(xs) .

In this case providing g : X −→ B(X) is the same as providing a coalgebraic
transition structure on X, hence the above diagram will be equivalent to (3.1).
However the diagrams would not become intensionally equal. There will be an
occurrence of id in the λ-coiterative version.

We demonstrate this by an example. For the coalgebra of streams of natural
numbers (Nω, 〈hd, tl〉), taking g(σ) := 〈hd(σ), tl(σ)〉 and applying the above
theorem results in the λ-coiterative definition of the function x21 that doubles
each element of a stream. Applying the coiteration scheme directly (via dia-
gram (3.1)) and using the coalgebra S := (Nω, g) we get a function x21 := unfldS .
The two functions satisfy the following.

x21(x :: xs) = x :: x21(xs) ,

x22(x :: xs)∼=x :: id(x22(xs)) .

The first one follows from the weak finality hence it is an intensional equality.
The second is obtained from Theorem 3. We can prove that both x2i satisfy the
following bisimilarity.

x2i(x :: xs)∼=x :: x2i(xs) .

5.2 Primitive Corecursion scheme from λ-coiteration

Primitive corecursion scheme [7] is useful in some situations where ordinary
coiteration does not work. An example, taken from [2], is the function insert

that satisfies this specification:

insert n (x :: xs) :=

{
x :: insert n xs if x ≤ n,
n :: x :: xs otherwise .

(5.2)

This specification does not fall under ordinary coiteration. The primitive core-
cursion scheme takes as parameter a map g : X −→ B(X + Ω.st) and ensures



Interactive Equational Reasoning for Bisimulation 11

the existence of the primitive corecursive map f making the diagram below
commute.

X

g

��

f // Ω.st

Ω.tr

��
B(X +Ω.st)

B[f,id]
// B(Ω.st)

(5.3)

(Here [f, id] : X + Ω.st −→ Ω.st is the cotupling map given by the property of

coproduct). Let ıl, ır be the maps X
ıl //X+Ω.st oo

ır
Ω.st . In [2] it is pointed

out that by taking T (X) := X +Ω.st and ΛX := [Bıl, Bı2 ◦Ω.tr] this scheme is
a special case of the λ-coiteration scheme. In our framework we can prove that

∀x : X +Ω.st, β(x) ∼= [id, id](x) .

From this, Theorem 2.iii and Theorem 3 we obtain the following.

Theorem 4. Given a map g : X −→ B(X +Ω.st) there exists a map f making
the diagram (5.3) commute up to bisimilarity. I.e.,

lRel(B)

(
Ω,Ω,∼=, Ω.tr

(
f(x)

)
, B[f, id] ◦ g(x)

)
.

This enables us to define the insert function as a primitive corecursive map by
taking

g〈n, σ〉 :=

{
〈hd(σ), ıl〈n, tl(σ)〉〉 if hd(σ) ≤ n,
〈n, ır(σ)〉 otherwise .

Subsequently, Theorem 4 entails that insert defined using primitive corecursion
with the above g satisfies (5.2) up to bisimilarity.

5.3 Beyond coiteration and primitive corecursion

Primitive corecursion, while enhancing upon the ordinary coiteration, still has
a limited format. For example the specification (5.1) does not fall under either
of these schemes, but fits the λ-coiteration scheme. We define fibs as the λ-
coiterative arrow from 1 = {∗} into Ω.st. For this we need to apply Theorem 3
with the following parameters.

T (X) := N×X ×X ,

ΛX(x) := 〈π1(x) + π4(x), 〈π2(x), π3(x), π5(x)〉〉 ,
g(x) := 〈0, 〈1, ∗, ∗〉〉 .

Note that here we do not need to define ⊕3 explicitly. This is because ⊕3 = β,
and β is calculated automatically from T and Λ. More examples of definitions
using λ-coiteration-scheme in our framework can be found in [18].



12 M. Niqui

6 Equational Reasoning

In this section we explain some practical theorem proving aspects of our library
in proving bisimilarities. First of all, note that we distinguish between two kind
of goals. One is the bisimilarity that captures the specification of an infinite
object. This can be seen as the equation ‘defining’ an infinite object but stated
in terms of bisimilarity. We call these the co-fixed point equations. I.e., if one was
to declare the co-fixed point equation e.g. in Haskell one would get a well-defined
infinite object. As an example

fibs ∼= 0:: ⊕3 (1, fibs, fibs) (6.1)

is the co-fixed point equation corresponding to the specification in (5.1). The
characteristic property of a co-fixed point equation is that its left hand side
contains a single function f (possibly applied to curried arguments) and it always
has a unique solution in f :

f x0 · · ·xk ∼=φ(f, x0, · · · , xk) . (6.2)

Any other type of bisimilarity is usually about the algebraic properties of
infinite objects, therefore we call these algebraic bisimilarities. These need not
have a unique solution. Below we will show some examples of the the two type of
goals. Although in most cases the distinction between them is clear, we emphasise
that this distinction is a practical matter and it depends on the perspective of
the user.

6.1 Co-fixed point equations

In our framework the co-fixed point equations are proven with very little in-
teraction from the user. The prerequisite is that the equation for a function f
falls under the syntactic shape of the λ-coiteration scheme. The procedure then
would be to first use 3 (or 4) to obtain f as a λ-coiterative arrow. Second, we
derive the co-fixed point equation from the commutativity of the diagram. But,
the second step cannot be done generically for all functors. Rather, for each con-
crete instance of functor B we should prove a theorem deriving a co-fixed point
equation from the lRelB predicate that states commutativity up to bisimilarity.

For any B we can prove that lRelB implies the following which is a maximal
bisimulation on B(Ω.st).

Ω.tr(f(x)) ∼B(Ω.st) B(β ◦Tf) ◦ g(x) . (6.3)

The co-fixed point equation in fact applies the left inverse of Ω.tr, the so called
coconstructor (cf. Theorem 2.iii) to both sides of (6.3). Since the coconstructor
is a setoid morphism by Theorem 1.ii, this will entail

f(x)∼= unfldSc
(
B(β ◦Tf) ◦ g(x)

)
.



Interactive Equational Reasoning for Bisimulation 13

But in order to have a more simplified version in the right hand side, we need the
information about the functor B. For example, if B is the stream functor to get
the right hand side in terms of :: (which is the usual functional programming
style) we have to have an implementation of the theory of weakly final coalgebra
of streams e.g. using coinductive types. As a side advantage, we will also be able
to use the implementation-specific pattern matching for the arguments in the left
hand side (e.g. having x :: xs as an argument). Note that we only have to know
the shape of functor B, the remaining parameters namely T,Λ and g can remain
abstract. For the stream coalgebra we have the following in our framework.

∀x, f(x) ∼= π1
(
B(β ◦Tf) ◦ g(x)

)
:: π2

(
B(β ◦Tf) ◦ g(x)

)
.

Although such lemma has to be derived for each B, still afterwards one such
derivation can be used for many different specifications. For example for all the
stream examples in this paper and in [18] we need one single lemma. As the last
step, each concrete co-fixed point equation will be derived by replacing the values
of Λ, T and g in the above bisimilarity. This latter step is the only place where
some interaction from user is needed. In Coq even this step can be done semi
automatically, using proof scripts that are almost identical (see [19] where (6.1),
(5.2) and more examples are derived).

6.2 Algebraic bisimilarities

We have defined fib as a λ-coiterative arrow and we have derived its co-fixed
point equation. Now we want to prove that this stream satisfies another spec-
ification for the Fibonacci stream, namely the one used in [4]. I.e., we want to
prove:

fibs∼= 0:: 1 :: tl(fibs)⊕ fibs . (6.4)

Here ⊕ is the binary pointwise addition on streams and can be defined using
ordinary coiteration. Its co-fixed point equation reads as

xs⊕ ys ∼= hd(xs)+hd(ys) ::
(
tl(xs) ⊕ tl(ys)

)
.

Our goal (6.4) can be transformed, using the equational theory, to two sub goals:

⊕3 (x, xs, ys) ∼= (x :: xs)⊕ ys ;

xs⊕ ys ∼= ys⊕ xs . (6.5)

Both of these can be proven in two different ways. One method is by using 2.i
and explicitly providing a bisimulation. Of course ‘guessing’ the bisimulation is
the duty of the user; however in this case there are procedures that can help in
finding a suitable bisimulation by examining the shape of the goal and using it
as a starting point [6]. A direction for future work would be to integrate those
within the existing interactive theorem provers. The second technique would
be to use the implementation of ∼=. Recall that bisimilarity was a parameter



14 M. Niqui

in our modular theory and for each implementation had to come up with an
instance. In Coq for example, where we can instantiate weakly final coalgebras
by coinductive types, we can use the fact that∼= is a coinductive type itself. Hence
a proof of the above becomes constructing an inhabitant this type. As mentioned
earlier this process is in fact an interactive version of the circular coinduction.
In this particular case, since both specifications (⊕ and ⊕3) are obtained using
ordinary coiteration Coq will not have any problem with detecting productivity
of our proof (likewise, CIRC will readily find an automatic coinductive proof).
But in general this method is less robust than the explicit bisimulation method.
This is is partly due to productivity checker and partly because of its reliability
on a particular implementation of the theory.

Our tools for dealing with this kind of goal are the three techniques that we
mentioned in Section 3. Mainly we use the equational theory of bisimilarity, the
facilities for dealing with setoids (rewriting congruences and morphisms) and the
generic lemmas that our library provides. These generic lemmas provide some
automated steps but most of the reasoning relies on the interaction with user.
When the user proves more and more lemmas they may be used to fabricate an
algebraic structure and use more advanced automation tools. For example, based
on (6.5) and a couple of more lemmas on associativity and neutrality the user can
prove that the streams of integers form an abelian group with ⊕. Subsequently
decision strategies for dealing with word problems on groups can be used to
prove more complex goals, independent of coinduction and bisimulations.

7 λ-Coinduction

The coinduction proof principle reduces the bisimilarity goals to finding bisimu-
lations, which is still not an easy problem [21]. In case of functions defined using
λ-coiteration scheme one can use an alternative proof principle that reduces
the bisimilarity goals to finding another type of relations called λ-bisimulations.
The formal definition of λ-bisimulation and λ-bialgebra can be found in Ap-
pendix A. Using those we could develop a theory of λ-bisimulation following [2].
Most notably we formalised the following result which cumulatively entail the
λ-coinduction principle. A crucial step in the proof relies on Proposition 1.iii.

Theorem 5. Let R be a λ-bisimulation between λ-bialgebras (X,βX , αX) and
(Y, βY , αY ). Then

i) There is a Set-valued bisimulation between coalgebras (X,αX) and (Y, αY ).
ii) If Rxy then x ∼XY y ; where ∼XY is the maximal bisimulation between

(X,αX) and (Y, αY ).
iii) (Ω.st, β,Ω.tr), with β as in Section 5, is a λ-bialgebra.
iv) Let RΩ be a λ-bisimulation on (Ω.st, β,Ω.tr). Then RΩxy implies x∼= y.

The advantage of λ-coinduction is that in some cases where the suitable
bisimulations have a complicated shape, the λ-bisimulation relation has a simple
intuitive shape. We demonstrate this by an example taken from [2]. Let shuffle



Interactive Equational Reasoning for Bisimulation 15

product, denoted by ⊗, be the function on streams of natural numbers satisfying
the following co-fixed point equations.

(x :: xs)⊗ (y :: ys) ∼= x · y :: (xs⊗ (y :: ys))⊕ ((x :: xs)⊗ ys) .

This operation can be defined using λ-coiteration [2, 18]. Assume we want to
prove that the shuffle product is commutative. It is very difficult to prove this
by finding a bisimulation.7 On the other hand the relation R := ∃x∃y, σ =
x⊗ y ∧ τ = y ⊗ x is extensionally a λ-bisimulation.

Since our definition of λ-bisimulation and bisimulation is based on intensional
commutativity, in order to prove that R is a bisimulation we needed to assume an
axiom stating that on streams bisimilarity implies equality: x∼= y =⇒ x=y .
It is easy to prove that this axiom is equivalent to the axiom that states the
intensional uniqueness of the arrow into the final coalgebra (and hence turns
weak finality into finality). In a fully extensional setting (even within Coq , with
setoids) this axiom is validated automatically.

We conclude by stating that λ-coinduction enables us to prove the uniqueness
of the λ-coiterative arrow up to the extensional equality (similar to (4.1)). This
was missing in [18] where we only showed the existence.

8 Conclusions and Further Work

We presented a modular library that axiomatises weakly final coalgebras and
bisimulation. As a theory we derived some coalgebraic schemes and an associated
coinduction principle. These provide tools for reasoning about bisimilarities. Our
framework has three layers: (1) generic results for all extensional functors, (2)
results for each concrete functor, and (3) the specific functions to be formalised
by the user. The first is fully provided by our library. The second is dependent on
implementation. In [18] we have given an implementation for streams and natural
numbers using coinductive types but the user is free to use other implementation.
For example, instead of coinductive type of streams one could use N→N to
represent streams of natural numbers as a function type.

Our work is done in Coq , but in principle it can transferred to other logical
frameworks. Doing so may actually relax some of the constraints that the in-
tensional type theory has posed on us, while the essential coalgebraic parts (the
schemes and λ-coinduction) wily remain intact.

In future we plan to construct a setoid version of our framework (still within
the intensional type theory) and work on the integration of bisimulation search
techniques in it.

References

[1] F. Andersen and K. D. Petersen. Recursive boolean functions in HOL. In
M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors, Proc. of the

7 In fact attempts to prove this in Coq by using coinductive types fails due to guard-
edness. It seems that CIRC too, at least when tried with the standard stack limit
and number of steps, is unable to find this bisimulation automatically.



16 M. Niqui

1991 Int. Workshop on the HOL theorem proving system and its Applications,
pages 367–377. IEEE, 1992.

[2] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats:
Distributive Laws in Coalgebraic Modelling. PhD thesis, Vrije Universiteit Ams-
terdam, 2004.

[3] S. Berardi, F. Damiani, and U. de’Liguoro, editors. Proceedings of TYPES 2008
Workshop, volume 5497 of LNCS. Springer, 2009.

[4] Y. Bertot and E. Komendantskaya. Using structural recursion for corecursion. In
Berardi et al. [3], pages 220–236.

[5] The Coq Development Team. Reference Manual, Version 8.2. INRIA, June 2008.
http://coq.inria.fr/V8.2/doc/html/refman/, [cited 18 Jan. 2010].

[6] L. Dennis. Proof Planning Coinduction. PhD thesis, University of Edinburgh,
1998.

[7] H. Geuvers. Inductive and coinductive types with iteration and recursion. In
B. Nordström, K. Petersson, and G. Plotkin, editors, Informal Proc. of Types’92,
pages 193–217. Chalmers Univ. of Technology, 1992.

[8] E. Giménez. Un Calcul de Constructions Infinies et son Application a la Verifi-
cation des Systemes Communicants. PhD thesis 96-11, ENS Lyon, Dec. 1996.

[9] J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proc. of
ASE’00, pages 123–132. IEEE, 2000.

[10] P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets
and Types to Topology and Analysis. Towards Practicable Foundations for Con-
structive Mathematics, volume 48 of Oxford Logic Guides, pages 115–134. Oxford
University Press, 2005.

[11] D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction
for CoCasl in Isabelle/HOL. In M. Cerioli, editor, Proc. of FASE 2005, volume
3442 of LNCS, pages 341–356. Springer, 2005.

[12] D. Lucanu and G. Roşu. CIRC : A circular coinductive prover. In T. Mossakowski,
U. Montanari, and M. Haveraaen, editors, Proc. of CALCO 2007, volume 4624 of
LNCS, pages 372–378. Springer, 2007.

[13] R. Matthes. An induction principle for nested datatypes in intensional type theory.
J. Funct. Programming, 19(3–4):439–468, 2009.

[14] C. McBride. Dependently Typed Programs and their Proofs. PhD thesis, University
of Edinburgh, 1999.

[15] C. McBride. Let’s see how things unfold: Reconciling the infinite with the inten-
sional (extended abstract). In A. Kurz, M. Lenisa, and A. Tarlecki, editors, Proc.
of CALCO 2009, volume 5728 of LNCS, pages 113–126. Springer, 2009.

[16] M. Michelbrink. Interfaces as functors, programs as coalgebras - a final coalgebra
theorem in intensional type theory. Theoret. Comput. Sci., 360(1–3):415–439,
2006.

[17] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel. Algebraic-
coalgebraic specification in CoCasl. J. Log. Algebr. Program., 67(1–2):146–197,
2006.

[18] M. Niqui. Coalgebraic reasoning in Coq: Bisimulation and the λ-coiteration
scheme. In Berardi et al. [3], pages 272–288.

[19] M. Niqui. http://www.cwi.nl/~milad/coalgebras/ [cited 18 Jan. 2010], Jan.
2010. Files for Coq v. 8.2.

[20] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. J.
Logic Comput., 7(2):175–204, Apr. 1997.



Interactive Equational Reasoning for Bisimulation 17

[21] G. Roşu. Equality of streams is a Π0
2 -complete problem. In J. H. Reppy and J. L.

Lawall, editors, Proc. of ICFP’06, pages 184–191. ACM Press, 2006.
[22] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification language

ccsl. J. Universal Comput. Sci., 7(2):175–193, 2001.
[23] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput.

Sci., 249(1):3–80, Oct. 2000.
[24] A. Setzer. Coalgebras in dependent type theory. http://unit.aist.go.jp/cvs/

symposium/AIM9/setzer.pdf, [cited 18 Jan. 2010], 2008. Talk at AIM 9 : Agda
Intensive Meeting 9. Sendai, Japan, 27 Nov. - 4 Dec. 2008.

[25] A. Setzer. Coalgebras and codata in agda. http://www.cs.swan.ac.uk/

~csetzer/slides/wessexSeminarMarch2009.pdf, [cited 18 Jan. 2010], 2009. Talk
at 3rd Wessex Theory Seminar. Bath, UK, March 2009.

A λ-Bialgebra and λ-Bisimulation

These definitions are based on [2] but are adapted to our framework. Let B
be an extensional weak pullback preserving Set-functor, T be a Set-functor and
Λ : TB=⇒BT a natural transformation. We call (X,βX , αX) a λ-bialgebra if the
following diagram commutes.

T (X)

TαX ��=======
βX // X

αX // B(X)

BβX���������

TB(X)
ΛX // BT (X)

Let (X,βX , αX) and (Y, βY , αY ) be two λ-bialgebras. Then a binary relation
R : X −→ Y→Prop is a λ-bisimulation if there exists a unique arrow γ making
the diagram below commute.

T (X)
βX // X

αX

��

oo π1 {∃(R)}

γ

��

Y//
π2

αY

��

T (Y )
βYoo

B(X) oo
B(βX ◦Tπ1)

BT ({∃(R)}) B(Y )//
B(βX ◦Tπ2)







Centrum Wiskunde & Informatica

Centrum Wiskunde & Informatica (CWI) is 
the national research institute for 
mathematics and computer science in the 
Netherlands. The institute’s strategy is to 
concentrate research on four broad, 
societally relevant themes: earth and life 
sciences, the data explosion, societal 
logistics and software as service.

Centrum Wiskunde & Informatica (CWI) is 
het nationale onderzoeksinstituut op het 
gebied van wiskunde en informatica. De 
strategie van het instituut concentreert zich 
op vier maatschappelijk relevante 
onderzoeksthema’s: aard- en 
levenswetenschappen, de data-explosie, 
maatschappelijke logistiek en software als 
service.

Bezoekadres:
Science Park 123
Amsterdam

Postadres:
Postbus 94079, 1090 GB Amsterdam
Telefoon 020 592 93 33
Fax 020 592 41 99
info@cwi.nl
www.cwi.nl


