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Abstract. We implement Kahn networks in Maude system by using be-
havioural theory of streams and encoding higher order function types. As
an example we implement the alternating bit protocol in our framework.

1 Introduction

Kahn networks [8] provide a basic model for dataflow programming. The idea is
to model a (possibly parallel) process involving potentially infinite flow of data
as a set of equations that capture the dependency of various elements of the
system. Such equational description of a system, due to its inherent simplicity
and intuitiveness, has proven to be very useful in practice and has led to several
tools in dataflow programming [2]. On the other hand rewriting logic provides
a framework for efficient reasoning in equational theories. A feat that seems to
be suitable in combination with the essentially equational description given by
Kahn networks.

Maude system is a tool based on rewriting logic and can be used for spec-
ification and verification of the equational properties of various types of sys-
tems [3]. In this article we show how to use Maude to implement Kahn networks
in rewriting logic. First, in Section 2 we sketch a general method for transform-
ing arbitrary Kahn Networks to an equational theory in containing higher order
functions on streams. Then, in the remainder of the article we apply this method
to two illustrative examples. The first example comes from Kahn’s original pa-
per [8]. The second example is the alternating bit protocol, a basic communica-
tion protocol underlying many more advanced protocols. Because of simplicity
of the framework of Kahn networks our implementation of this protocol turns
out to be relatively lightweight. Our treatment is very much influenced by [4],
where an implementation of Kahn networks in a functional programming setting
is discussed. Although our approach to implementing fairness is based on the
hidden logic of Maude and is somehow different than in [4].

First we briefly introduce the framework of Kahn networks. A Kahn Network
consists of a program schema, i.e., a connected directed graph where the nodes
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2 M. Niqui

are different stream transformers and the connections denote the dependency of
the flow of input and output in nodes. The direction on the edges depicts the
flow of data. To each edge we assign a stream of data (i.e., an infinite sequence
of data) that denotes the flow of data tokens passing through that edge. The
relationship between the streams assigned to different edges is governed by a
set of fixed point equations. Each such equation is assigned to a node together
with all of its ingoing and one of its ongoing streams. It will contain an stream
transformer corresponding with the node, together with the streams assigned to
the in and outgoing edges.

There are variants of Kahn networks based on some restrictions on the op-
eration of networks. Here we only mention some assumptions that affect our
analysis. First the edges behave like a FIFO buffer, i.e., they have unbounded
capacity. In contrast, when a node awaits data on its input it is pended until its
read request is fulfilled. Furthermore, the stream transformers in the nodes are
assumed to work in a deterministic manner. Following [4], non-determinism can
be modelled by incompletely specified networks.

An example of program schema is the following graph [8].

C0

Z

S

C1

α β

γ
δ

τ

This schema corresponds with a closed Kahn network where there is no input
or output. The dependencies given by this graph are listed as the following
equations.

τ = Z(α, β) ,

α = C0(γ) , β = C1(δ) , (1)

γ = Sl(τ) , δ = Sr(τ) .

Note that since S has two outgoing edges it provides two equations, one for each
output with respect to the input τ .

We can obtain a Kahn network by assigning a set of stream transformers
to the nodes. Given a set A let Aω denote the set of streams of elements of
A. Given a stream s ∈ Aω we denotes its ith element by s(i), with 0th element
denoting the head. By s′ we denote the tail of s and by x : s we denote the stream
whose head is x and whose tail is s. Let zip : Aω × Aω −→ Aω, even : Aω −→
Aω and odd : Aω −→ Aω be the functions given by the following Haskell-like
specifications.

zip (s0,s1) = s0(0) : s1(0) : zip (s′0,s
′
1)
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even s = s(0) : even (s′′)
odd s = s(1) : odd (s′′)

Now let A = 2, the set of Booleans. Based on this we assign the following
stream transformer to each equation in (1).

Z(α, β) := zip(α, β) , (2)

C0(γ) := 0: γ , C1(γ) := 1: γ , (3)

Sl(τ) := even(τ) , Sr(τ) := odd(τ) . (4)

Hence the behaviour of the Kahn network will be fully captured by the fol-
lowing systems of equations.

τ = zip(α, β) ,

α := 0: γ ,

β := 1: γ ,

γ = even(τ) ,

δ = odd(τ) .

We implement this ‘representation’ of Kahn networks in Maude. The mo-
tivation is that once we have an implementation we are able to test various
properties of the network. For example, the above system of equations has a
solution, namely,

τ = 0: 1: τ [the stream 01 ] ,

α := 0: γ [the constant stream 0 ] ,

β := 1: γ [the constant stream 1 ] , (5)

γ = 0: γ [the constant stream 0 ] ,

δ = 1: δ [the constant stream 1 ] .

Using our implementation and the reduction mechanism of Maude we can
observe that indeed the arbitrary portions of the streams satisfying (1) are equal
to their counterpart in (5).

For translating this Kahn network to Maude, first we implement the equa-
tional theory of (1). This step involves higher order functions and an abstract
(data-independent) theory of streams. Subsequently, we will implement the trans-
former at each node (e.g. the functions zip, even and odd) which are ordinary
(first order) functions acting on streams. In the next section we will explain this
process for a generic program schema.

2 Program Schemata and Higher Order Types

Maude can be easily used for encoding λ-terms and function application [3, § 8].
In our development we would not need a full embedding of λ-terms; the only



4 M. Niqui

thing we need from that theory is a function type constructor together with the
function application.

(fmod FUNC{X :: TRIV, Y :: TRIV} is

sort Func{X, Y} .

op _‘[_‘] : FuncX, Y X$Elt -> Y$Elt [strat (0)] .

endfm)

Here we are defining a module of functions between X and Y , introducing
the type Func{X,Y} for the function space. Further, we introduce the application
operation, here denoted by [ ], as the sole way of building the elements of the
function type. The important thing is that we assume our function application
is lazy, i.e., it is performed before reducing either of the arguments (note that
application is a binary operation). This is enforced by the strat keyword that
specifies the reduction strategy. We will use the lazy strategy for most functions
later on in this work.

Next we need a module for streams. This consists of a (parametric) type with
two observers for head and tail.

(fmod STREAM{X :: TRIV} is

sort Stream{X} .

op hd : Stream{X} -> X$Elt [memo] .

op tl : Stream{X} -> Stream{X} [memo] .

endfm)

This is a behavioural theory of streams (also called hidden theory [7]) in that
the observers hd and tl are further unspecified. This is similar to the treatment
of streams in the theory of coalgebras [14].

Apart from these we will need some standard Maude modules (such as Bool).
Furthermore we need to define the appropriate views for using parametric types.
As these are straightforward Maude constructs we refrain from explicitly men-
tioning those in this article but they can be found in [11].

Implementing the equational theory for a Kahn network has a generic part,
merely dependent on the shape of the program schema, and a part specific to
the semantics of each node. There is a generic method for implementing the first
part explained in [4], which we sketch below. We remark that in [4] higher order
functions of a functional programming language (e.g. Haskell) are readily usable,
while in our adaptation the stream transformer functions in the nodes should be
represented as elements of the functions type above.

Consider a node X with n incoming edges and one outgoing edge.

... X

σ1

σ2

σn

τ
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The point is to express that τ is a function of σ1 . . . σn. Hence this configu-
ration would lead to the equation

τ = X(σ1, . . . , σn) .

This indicates that τ depends on σ1, . . . , σn. Since this procedure can be re-
peated for each σi, one observes that τ depends on all the streams appearing on
the edges of the program schema. Assume there are in total k edges in the pro-
gram schema.We introduce a functional Fτ that takes k arguments and outputs
the stream τ . The k arguments are either stream transformers (hence functions
themselves) or in the case of external input nodes they are simply streams (which
can be considered as nullary constant functions). This means

Fτ (X̄1, . . . , X̄k) = X̄(Fσ1
, . . . , Fσn

)

where X̄i is the representation of the stream transformer Xi as an element of the
function space. I.e., for instance since X : Aω × · · · ×Aω︸ ︷︷ ︸

n

−→ Aω we will have

X̄ : Func{Aω × · · · ×Aω︸ ︷︷ ︸
n

, Aω} .

To decrease the clutter, from now on we ignore the over-line and identify f : A −→
B with its representation f̄ : Func{A,B}. Repeating this process for all edges we
obtain a set of mutually recursive equations.

3 Kahn Network for Zip

In this section we show the implementation of the Kahn network that was pre-
sented in Section 1. In fact we implement the system of equations (1) in Maude.
First we follow the procedure at the end of Section 2 to implement the program
schema. This results in the following system of equations.

Fτ (Z, Sl, Sr, C0, C1) = Z(Fα(Z, Sl, Sr, C0, C1), Fβ(Z, Sl, Sr, C0, C1)) ,

Fα(Z, Sl, Sr, C0, C1) = C0(Fγ(Z, Sl, Sr, C0, C1)) ,

Fβ(Z, Sl, Sr, C0, C1) = C1(Fδ(Z, Sl, Sr, C0, C1)) ,

Fγ(Z, Sl, Sr, C0, C1) = Sl(Fτ (Z, Sl, Sr, C0, C1)) ,

Fδ(Z, Sl, Sr, C0, C1) = Sr(Fτ (Z, Sl, Sr, C0, C1)) .

Note that even though Z : Aω×Aω −→ Aω, in Maude we need to pass to Fi the
representation of Z as an element of Func{Aω×Aω, Aω}. Same holds for other
arguments. This system can be implemented straightforwardly in Maude (see
Appendix A.1.)

Now assume we model the ports using the functions in (3). Further assume
that we are interested, as in [8], in observing the stream τ . First of all we im-
plement the stream transformers in the parametric stream module Stream{X}



6 M. Niqui

(Appendix A.2). Then we have to give the representation of the functions in (1)
as function types. The idea is to define the equational behaviour of function
application. For instance for function zip we have

var BS0 BS1 : Stream{Bool} .

op zipbar : -> Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

[strat (0) memo] .

eq zipbar[ ( BS0 , BS1 ) ] = zip(BS0,BS1) .

The definition for other functions is given in A.3.
Finally we have to link the program schema with the specific transformers.

The following function produces the stream τ .

op ziptrans : -> Stream{Bool} [strat (0)] .

eq ziptrans = functau(zipbar, evenbar, oddbar, cons0bar, cons1bar) .

4 Alternating Bit Protocol

In this section we present the Maude implementation of a more complex Kahn
network using the method of the preceding sections. The network corresponds to
the alternating bit protocol (ABP). This is a well-known protocol that underlies
the principle used in many communication protocols, including the TCP/IP
protocol. Yet, due to its simplicity it has been used as a benchmark for several
formal verification paradigms and has been implemented and verified in many
systems. Among these, related to our work are [13, 5, 1] using the calculus of
broadcasting systems (CBS) and process algebra and the implementation in the
timed rewriting logic [15]. But our implementation will follow [4].

The program schema for this protocol is depicted below.

I S

CH1

CH2

R O
σ

α β

γδ

τ

This a Kahn network with one input σ and one output τ . There are four modes
represent a sender S, a receiver R and two intermediate communication channels
CH1 and CH2. The sender reads data from the input and tries sending it through
the channel CH1 to the receiver located at R. The receiver in turn sends back
acknowledgement bits through CH2. Both intermediate channels CH1 and CH2

may introduce errors in the data. The protocol is designed to ensure the correct
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transmission of data through these lossy channels under a fairness assumption,
namely, that CH1 and CH2 eventually pass the correct data. The details of ABP,
i.e., how the stream transformers should act, can be found e.g. in [10]; here we
only present the implementation in Maude and the way in which we tackle the
fairness assumption.

First we implement the program schema. The dependencies in the program
schema above lead to the following set of equations.

τ = Rr(β),

γ = Rl(β) , δ = CH2(γ) , (6)

α = S(σ, δ) , β = CH1(α) ,

σ = I() .

Note that I (the external input) is assumed to be a nullary node. Following the
procedure in Section 2 we arrive at the set of equations below.

Fτ (S,Rl, Rr, CH1, CH2, I) = Rr(Fβ(S,Rl, Rr, CH1, CH2, I) ,

Fγ(S,Rl, Rr, CH1, CH2, I) = Rl(Fβ(S,Rl, Rr, CH1, CH2, I) ,

Fδ(S,Rl, Rr, CH1, CH2, I) = CH2(Fγ(S,Rl, Rr, CH1, CH2, I) ,

Fα(S,Rl, Rr, CH1, CH2, I) = S
(
Fσ(S,Rl, Rr, CH1, CH2, I), Fδ(S,Rl, Rr, CH1, CH2, I)

)
,

Fβ(S,Rl, Rr, CH1, CH2, I) = CH1(Fα(S,Rl, Rr, CH1, CH2, I) ,

Fσ(S,Rl, Rr, CH1, CH2, I) = I() .

Conceptually I is an element of Func{1, Aω} which is equivalent to the constant
function σ. But for the ease of implementation we replace both I and I() by σ
in the Maude code. This code can be found in the Appendix B.1.

Implementing the stream transformers follows the alternating bit protocol.
There will be functions abpsend, abpack, abpout, corruptCH1 and corruptCH2

respectively modelling the transformers S, Rl, Rr, CH1 and CH2 in (6). The first
three, given in Appendix B.2, are defined following the Haskell-like specifications
in [4], while the latter two deal with fairness in a different way. Namely, we do not
define any coinductive predicate (a recursive infinitary predicate [12]) to capture
fairness. Although this is in principle possible but there is no easy way to model
that in Maude. In the future work we plan to study the general approach of
implementing coinductive predicates in Maude.

Assume that the lossy behaviour of each of these two channels is given by
an oracle stream of Booleans, with 0 denoting the loss of data and 1 denoting
the faithful passing of data. For ABP such an oracle stream is fair if it contains
infinitely many 1s; and this ‘infinite occurrence’ is a coinductive predicate. But
if we assume that the oracle streams are streams of natural numbers then we
can bypass this coinductive predicate. Let σ ∈ Nω, and let unpack : Nω −→ 2ω

be the function such that σ is the unary run-length compression of unpack(σ).
That means unpack starts by consuming σ and outputting σ0 consecutive 0’s
followed by a 1 (if σ0 = 0 then it immediately outputs 1) and continues with
the remainder of σ in the same fashion (the precise Maude specification can be
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found in Appendix B.4). Then it is clear that unpack(σ) is fair. The prove of
infinite occurrence which is given by a greatest fixed point in [4] is inherent in the
infinitude of σ. So to assume that CH1 and CH2 are fair, we assume that their
lossy behaviour (whether or not to lose data) is dictated by two oracle streams
which are streams of natural numbers. Subsequently in the specification for
corruptCH1 and corruptCH2 these oracle streams are unpacked to the Boolean
behaviour (see Appendix B.4).

To complete the implementation we have to link the program schema with
the specific transformers. The following function produces the stream τ .

vars B : Bool .

var OS1 OS2 : Stream{Nat} .

op abptrans : Bool Stream{Nat} Stream{Nat} Stream{Nat} -> Stream{Nat} .

eq abptrans(B,OS1,OS2,Isigma) =

ftau(abpsendbar(B),abpackbar(B),abpoutbar(B),

corruptCH1bar(unpack(OS1)),corruptCH2bar(unpack(OS2)),

Isigma) .

This completes the implementation of ABP as an equational theory in Maude.
The complete Maude code is available for download at [11].

5 Future Work: Verification using CIRC

The motivation for our work is to apply tools based on rewriting logic [3] and
hidden algebra [7] to verify concurrent systems and dataflow programs that
are modelled as Kahn networks. In particular we are interested in behavioural
properties of equational theories of streams, as streams are the main ingredients
in Kahn networks. For example, for the network in Section 3 we would like to
be able to prove:

ziptrans = zos , (7)

where zos is the stream of alternating 0 and 1’s, i.e., zos = 0 : 1 : zos.
Similarly for the ABP we would like to prove that for any oracle streams

o1, o2 ∈ Nω, any initial bit b and input stream σ ∈ Aω

abptrans(b, o1, o2, σ) = σ , (8)

i.e., the Kahn network for ABP acts as a buffer.
The natural way of reasoning about equalities between streams is by using

coinduction proof principle and finding bisimulations [14]. Coinduction is studied
in the context of hidden algebra and rewriting logic [6] and has culminated in
the CIRC proof tool. CIRC [9] is a tool for automatically proving behavioural
equalities coinduction and induction and is built on top of Maude.

Our implementation of Kahn networks paves the way for applying CIRC
for the automatic generation of their correctness proofs. Although the current
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version of CIRC’s decision procedure is unable to prove (7)–(8), this inability is
not essential in that it seems not to be a theoretical expressiveness issue and there
is evidence that it can be fixed. We are currently working with the developers
of CIRC to find a suitable solution for this.

Another direction for future work would be to present a systematic way of
formalising coinductive predicate (such as the ‘infinite occurrence’ in fairness)
in Maude and CIRC. In a parallel project [12] we are pursuing this track.

Acknowledgements. The author wishes to thank Lacramioara Astefanoaei
and Dorel Lucanu for helpful comments on Maude implementation.
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A Maude specification for Zip network

A.1 Program Schema

var Z : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}} .

vars Sl Sr C0 C1 : Func{Stream{Bool},Stream{Bool}} .

op ftau : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}} -> Stream{Bool} [strat (0) memo] .

eq ftau(Z,Sl,Sr,C0,C1) = Z [ ( falpha(Z,Sl,Sr,C0,C1) , fbeta(Z,Sl,Sr,C0,C1) ) ] .

op falpha : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}} -> Stream{Bool} [strat (0) memo] .

eq falpha(Z,Sl,Sr,C0,C1) = C0 [ fgamma(Z,Sl,Sr,C0,C1) ] .

op fbeta : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}} -> Stream{Bool} [strat (0) memo] .

eq fbeta(Z,Sl,Sr,C0,C1) = C1 [ fdelta(Z,Sl,Sr,C0,C1) ] .

op fgamma : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}} -> Stream{Bool} [strat (0) memo] .

eq fgamma(Z,Sl,Sr,C0,C1) = Sl [ ftau(Z,Sl,Sr,C0,C1) ] .

op fdelta : Func{Tuple{Stream{Bool},Stream{Bool}},Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}}

Func{Stream{Bool}, Stream{Bool}} -> Stream{Bool} [strat (0) memo] .

eq fdelta(Z,Sl,Sr,C0,C1) = Sr [ ftau(Z,Sl,Sr,C0,C1) ] .
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A.2 Stream Transformers

var S1 S2 : Stream{X} .

var E : X$Elt .

op cons : X$Elt Stream{X} -> Stream{X} [strat (0) memo] .

eq hd(cons(E, S1)) = E .

eq tl(cons(E, S1)) = S1 .

op zip : Stream{X} Stream{X} -> Stream{X} [strat (0) memo] .

eq hd(zip(S1, S2)) = hd(S1) .

eq tl(zip(S1, S2)) = zip(S2, tl(S1)) .

op even : Stream{X} -> Stream{X} .

eq hd(even(S1)) = hd(S1) .

eq tl(even(S1)) = even(tl(tl(S1))) .

op odd : Stream{X} -> Stream{X} .

eq hd(odd(S1)) = hd(tl(S1)) .

eq tl(odd(S1)) = odd(tl(tl(S1))) .

A.3 Stream Transformers as Function Types

var BS0 BS1 : Stream{Bool} .

op zipbar : -> Func{Tuple{Stream{Bool},Stream{Bool}}, Stream{Bool}} [strat (0) memo] .

eq zipbar[ ( BS0 , BS1 ) ] = zip(BS0,BS1) .

op evenbar : -> Func{Stream{Bool}, Stream{Bool}} [strat (0) memo] .

eq evenbar[ BS0 ] = even(BS0) .

op oddbar : -> Func{Stream{Bool}, Stream{Bool}} [strat (0) memo] .

eq oddbar[ BS0 ] = odd(BS0) .

op cons0bar : -> Func{Stream{Bool}, Stream{Bool}} [strat (0) memo] .

eq cons0bar[ BS0 ] = cons(false,BS0) .

op cons1bar : -> Func{Stream{Bool}, Stream{Bool}} [strat (0) memo] .

eq cons1bar[ BS0 ] = cons(true,BS0) .

B Maude specification for ABP

B.1 Program Schema

var S : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}} .

var Rl : Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}} .

var Rr : Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}} .

var CH1 : Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}} .

var CH2 : Func{Stream{Bool},Stream{Maybe{Bool}}} .
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var Isigma : Stream{Nat} .

op falpha : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}}

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

Func{Stream{Bool},Stream{Maybe{Bool}}}

Stream{Nat} -> Stream{Tuple{Nat,Bool}} [strat (0) memo] .

eq falpha(S,Rl,Rr,CH1,CH2,Isigma) = S[ ( Isigma , fdelta(S,Rl,Rr,CH1,CH2,Isigma) ) ] .

op fbeta : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}}

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

Func{Stream{Bool},Stream{Maybe{Bool}}}

Stream{Nat} -> Stream{Maybe{Tuple{Nat,Bool}}} [strat (0) memo] .

eq fbeta(S,Rl,Rr,CH1,CH2,Isigma) = CH1[ falpha(S,Rl,Rr,CH1,CH2,Isigma) ] .

op fgamma : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}}

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

Func{Stream{Bool},Stream{Maybe{Bool}}}

Stream{Nat} -> Stream{Bool} [strat (0) memo] .

eq fgamma(S,Rl,Rr,CH1,CH2,Isigma) = Rl[ fbeta(S,Rl,Rr,CH1,CH2,Isigma) ] .

op fdelta : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}}

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

Func{Stream{Bool},Stream{Maybe{Bool}}}

Stream{Nat} -> Stream{Maybe{Bool}} [strat (0) memo] .

eq fdelta(S,Rl,Rr,CH1,CH2,Isigma) = CH2[ fgamma(S,Rl,Rr,CH1,CH2,Isigma) ] .

op ftau : Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}}

Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}}

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

Func{Stream{Bool},Stream{Maybe{Bool}}}

Stream{Nat} -> Stream{Nat} [strat (0)] .

eq ftau(S,Rl,Rr,CH1,CH2,Isigma) = Rr[ fbeta(S,Rl,Rr,CH1,CH2,Isigma) ] .

B.2 Stream Transformers

var B : Bool .

var N : Nat .

var NS : Stream{Nat} .

var MBS : Stream{Maybe{Bool}} .
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var MNBS : Stream{Maybe{Tuple{Nat,Bool}}} .

op abpsend : Bool Stream{Nat} Stream{Maybe{Bool}} ->

Stream{Tuple{Nat,Bool}} [strat (0) memo] .

eq hd(abpsend(B, NS, MBS)) = ( hd(NS) , B ) .

eq tl(abpsend(B, NS, MBS)) = await(B, hd(NS) , tl(NS) , MBS)

op await : Bool Nat Stream{Nat} Stream{Maybe{Bool}} ->

Stream{Tuple{Nat,Bool}} [strat (0) memo] .

ceq hd(await(B, N, NS, MBS)) = ( N , B ) if hd(MBS) = maybe .

ceq tl(await(B, N, NS, MBS)) = await(B, N, NS, tl(MBS)) if hd(MBS) = maybe .

ceq hd(await(B, N, NS, MBS)) = hd(abpsend(not B, NS, tl(MBS))) if hd(MBS) = B .

ceq tl(await(B, N, NS, MBS)) = tl(abpsend(not B, NS, tl(MBS))) if hd(MBS) = B .

ceq hd(await(B, N, NS, MBS)) = ( N , B ) if hd(MBS) =/= B .

ceq tl(await(B, N, NS, MBS)) = await(B, N, NS, tl(MBS)) if hd(MBS) =/= B .

op abpack : Bool Stream{Maybe{Tuple{Nat,Bool}}} -> Stream{Bool} [strat (0) memo] .

ceq hd(abpack(B , MNBS)) = not B if hd(MNBS) = maybe .

ceq tl(abpack(B , MNBS)) = abpack(B , tl(MNBS)) if hd(MNBS) = maybe .

ceq hd(abpack(B , MNBS)) = B if p2 hd(MNBS) = B .

ceq tl(abpack(B , MNBS)) = abpack(not B , tl(MNBS)) if p2 hd(MNBS) = B .

ceq hd(abpack(B , MNBS)) = not B if p2 hd(MNBS) =/= B .

ceq tl(abpack(B , MNBS)) = abpack(B , tl(MNBS)) if p2 hd(MNBS) =/= B .

op abpout : Bool Stream{Maybe{Tuple{Nat,Bool}}} -> Stream{Nat} [strat (0) memo] .

ceq hd(abpout(B , MNBS)) = hd(abpout(B , tl(MNBS))) if hd(MNBS) = maybe .

ceq tl(abpout(B , MNBS)) = tl(abpout(B , tl(MNBS))) if hd(MNBS) = maybe .

ceq hd(abpout(B , MNBS)) = p1 hd(MNBS) if p2 hd(MNBS) = B .

ceq tl(abpout(B , MNBS)) = abpout(not B , tl(MNBS)) if p2 hd(MNBS) = B .

ceq hd(abpout(B , MNBS)) = hd(abpout(B , tl(MNBS))) if p2 hd(MNBS) =/= B .

ceq tl(abpout(B , MNBS)) = tl(abpout(B , tl(MNBS))) if p2 hd(MNBS) =/= B .

B.3 Stream Transformers as Function Types

op abpsendbar : Bool ->

Func{Tuple{Stream{Nat},Stream{Maybe{Bool}}},Stream{Tuple{Nat,Bool}}}

[strat (0) memo] .

eq (abpsendbar(B))[ ( NS , MBS ) ] = abpsend(B, NS, MBS) .

op abpackbar : Bool -> Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Bool}} [strat (0) memo] .

eq (abpackbar(B))[ MNBS ] = abpack(B, MNBS) .

op abpoutbar : Bool -> Func{Stream{Maybe{Tuple{Nat,Bool}}},Stream{Nat}} [strat (0) memo] .

eq (abpoutbar(B))[ MNBS ] = abpout(B, MNBS) .

B.4 Transformers for Fairness Oracles

var OS BS : Stream{Bool} .

var NBS : Stream{Tuple{Nat,Bool}} .
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var NS : Stream{Nat} .

op decrhd : StreamNat -> StreamNat .

eq hd(decrhd(NS)) = sd(hd(NS),1) .

eq tl(decrhd(NS)) = tl (NS) .

op unpack : Stream{Nat} -> Stream{Bool} .

ceq hd(unpack(NS)) = false if (hd(NS)) > 0 .

ceq hd(unpack(NS)) = true if (hd(NS)) = 0 .

ceq tl(unpack(NS)) = unpack(decrhd(NS)) if (hd(NS)) > 0 .

ceq tl(unpack(NS)) = unpack(tl(NS)) if (hd(NS)) = 0 .

op corruptCH1 : Stream{Bool} Stream{Tuple{Nat,Bool}} -> Stream{Maybe{Tuple{Nat,Bool}}} .

ceq hd(corruptCH1(OS, NBS)) = hd(NBS) if hd(OS) = true .

ceq hd(corruptCH1(OS, NBS)) = maybe if hd(OS) = false .

eq tl(corruptCH1(OS, NBS)) = corruptCH1(tl(OS), tl(NBS)) .

op corruptCH2 : Stream{Bool} Stream{Bool} -> Stream{Maybe{Bool}} .

ceq hd(corruptCH2(OS, BS)) = hd(BS) if hd(OS) = true .

ceq hd(corruptCH2(OS, BS)) = maybe if hd(OS) = false .

eq tl(corruptCH2(OS, BS)) = corruptCH2(tl(OS), tl(BS)) .

op corruptCH1bar : Stream{Bool} ->

Func{Stream{Tuple{Nat,Bool}},Stream{Maybe{Tuple{Nat,Bool}}}}

[strat (0) memo] .

eq (corruptCH1bar(OS))[ NBS ] = corruptCH1(OS, NBS) .

op corruptCH2bar : Stream{Bool} -> Func{Stream{Bool},Stream{Maybe{Bool}}} [strat (0) memo] .

eq (corruptCH2bar(OS))[ BS ] = corruptCH2(OS, BS) .
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