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On the Construction of Galois Towers
Alp Bassa and Peter Beelen

ABSTRACT. In this paper we study an asymptotically optimal tame tower over
the field with p? elements introduced by Garcia-Stichtenoth. This tower is
related with a modular tower, for which explicit equations were given by Elkies.
We use this relation to investigate its Galois closure. Along the way, we obtain
information about the structure of the Galois closure of Xo(p™) over Xo(p™),
for integers 1 < r < n and prime p and the Galois closure of other modular
towers (Xo{p™))n-

1. Introduction

Using Goppa’s construction of codes from curves over finite fields, Tsfasman-
Vladut-Zink {13] constructed sequences of codes of increasing length with limit
parameters above the Gilbert-Varshamov bound and hence better than those of
all previously known such sequences. Their construction is mainly based on the
existence of curves over a finite field of high genus with many rational points. This
enhanced the interest in towers of curves over finite fields. Subsequently, other
applications of such towers in coding theory and cryptography were discovered, for
instance for the construction of hash functions, low discrepancy sequences etc.

A natural idea is to search for such sequences of curves, with some additional
structure, which would reflect itself in some additional structure of the ohjects
constructed from them. Stichtenoth [12] constructed for example sequences of seif-
dual and transitive codes attaining the Tsfasman—Vladut-Zink bound over finite
fields with square cardinality. This was done by using a tower of function fields
Ey € E, C F; C..., where all extensions E,/Ep are Galois.

Motivated by this, we study Galois closures of the modular towers (Xo(p™))n.
In particular, we investigate the Galois closure of a tower M over [, introduced
by Garcia-Stichtenoth [3], which is recursively defined by
_ X%+l
o2
This tower corresponds to the modular tower (X4(2")),, for which explicit equation
were given by Elkies [2]. Using this interpretation of M as a modular tower, we
find the exact degrees of extensions in the Galois closure of it and study the Galois
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10 ALP BASSA AND PETER BEELEN

groups that appear. We show that the function fields of the Galois closure can be
obtained as a compositum of three different embeddings of the function fields in

the tower M. _
For more definitions and further details about {explicit) towers of algebraic

function fields, we refer to [5).

2. Groups of Galois closure

In this section the field of definition is always assumed to be C, the field of
complex numbers. Let p be a prime number and n > 1 an integer. The following
group is standard in the theory of modular curves:

To(p") = {( ot ) €SL(2,Z) : c=0 (mod p")}.

Associated to this group is the modular curve Xo(p™) which has been studied
extensively in the literature, cf. [7, 8]. ‘
Let 0 < < n be integers. The Galois closure of Xo{p™) over Xo(p") has Galois

group o{p”)/A-(p™) with
A= (] oTelMo.
o€le(p™)

The group A.(p") is the largest normal subgroup of To(p”) contained in To(p™),
since if H < Tg(p™) and H C To(p™), then H C Nyer,pry CTo(P™)o ™! = Ar(p™).
The maximality of A,(p™) with respect to the above property will be used later.

The goal of this section is to compute the order of the groups To(p™}/ Ar(d™)
and to obtain information about its group structure. We start by describing the
group A,{p") in more detail.

PROPOSITION 2.1.
Ar(p™) = {( c; g ) €To(@™) : p" la—d—bp” and p“"’lsz’"}
PROOF. We denote by H the group on the right-hand side of above equality.

For an element
b= a b
“VNe d

of SL{2,Z) to be in H it needs to satisfy three things:

1) p"le,
2) p*~"la —d — bp” and
3) p™ T 20p".

Clearly H C [o(p™), so to prove the proposition it is enough to show that
H 4 To(p") and that A.(p™) C H, since then A.(p") O H follows from the
maximality of A,(p™).

First we prove that H < Tg(p"). Conjugating an element h € H with a matrix

_( o B
TN 8 )
from T'g(p”) we find that

) = _p y(ab+ Bd) + (aa+Be)§  aPb+aB(d—a) - Fc )
MAM =\ pra(a — d)d — bpPaR +c8? pTy(ab - fa) + (ad = Be)d )
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We need to check that this an element of H. First we show that it is an element of
To{p™). We have
p(a—d)yd —p* Y + 82 = bp* (6 —v) =0 (mod p™).

The first equality follows from properties 1) and 2} of h listed above. The last
equality follows directly from property 3) of h if p # 2. If p = 2, then it only
implies that 2*~1 divides bp?", but § has to be odd if p = 2, implying that in this
case 2 divides (4 — ).

Using again that a = d + bp" (mod p*~") and ¢ = 0 {mod p™~7), we see that
the second condition for mhm™! to be in H is equivalent to the statement

b (p"Bla+v)—alea+2y-48))=0 (mod p™ 7).

From property 3) of h we see that this is satisfied if p 5 2, while if p = 2, then
20~ ""Ubp™ and 2|afa — §), since § is odd if p= 2.

It remains to check that the third condition is satisfied, but this can easily be
seen to hold as well. We conclude that mhm™! € H and hence that H < [y(p").

Now we wish to prove that A.(p?) € H. In order to do this we introduce the

element
1 0
A= ( o1 )

Then for any h € Tg(p™) we have that
-1 _ a—bp" b
ArA _(c+p’(a—d—bp’) d—l-bp'")’

which implies that if ARA~! € Ty(p™), then p"~"|a—d—bp". Similarly, if A"*hA €
To(p™), then p*~"|a—d+bp". Therefore, if h € To(p™)NAL(p™)A~1NA~ITy(p") A,
then p"lc, p"~"|a — d — bp" and "~ "|a — d + bp", which is equivalent to conditions
1),2) and 3) above. In other words:

A, (p") C (To(p™) N ATo(p")A™" N A™'To(»p™)A) C H,
which concludes the proof. a
COROLLARY 2.2. We have
A-(p") = To(p™) N Alo(p™)A™H N A™ITo(p™) A,

1 0
am(10).

ProOF. In the above proposition we saw that
A,(p") C (To(p™) NATH(p")A™ N A To(p")A) C H,
but we have also seen that H C A, (p"). 0

with

The group A,.(p™) has some further properties we wish to ascertain. For a
group G, we denote by [G, G] its commutator subgroup.

LEMMA 2.3. Suppose that n > r > 0. We have
[Av‘ (pn)’ Ay (Pn)] C Af(pn+1)
and
g €A (p") = ¢° € A (p™).
As a consequence, the group A.(p™)/A.(p"1!) is an elementary abelian p-group.
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PROOF. A direct calculation shows that [A,(p"), A-(p")] C To(p™+!). Also,
since A,(p™) A To(p”), we find that for any o € I'p(p") we have

o[8, (™), Ar (Mot = [0 AL (P77 0 AL (pM)o ] = [Ar ("), Ar ("))
This implies that

A, A = [ ol ™), Ao € A, (™).
g€lp(pT)

To prove the second item, we use that

( a b )" _ ( F+ 0P bE=E 4 O )

n b —d* 7
cp” d Cp"—'a_f +0@E™)  d¥+ 0"

where O{p™) denoctes some number divisible by p™. This can be showed directly
using induction on k. If k = p, then cp™(a? —dP)/(a—d) = cp™(a—d)*~! mod p™*+.
Since g € A,(p*) we have that p"~"{a — d — bp", implying that plea — d. Hence
g? € To(p™*!). By definition of A.(p™), we have that for any o € T'o(p"), the
element o~ 1go is in [o(p™), implying that (o 1go)? = 6™1gPc € To(p™*!). This
implies that ¢* € (\,er,pr) oLo(P" o™t = AL (p™H1).
The final statement of the lemma, follows directly from the first two statements.
O

3. The order of the group A, (p")/T'(p")

The following congruence group is well-known:

r(pn):={(';" g)eSL(z,Z):(i 3):(5 [1)) (modp")}.

It is the kernel of the reduction modulo p™ map: ¢ : SL(2,Z) — SL(2,Z/p"Z) and
one can show that this map is surjective {[9, section 1.6]). Also it is well known [9]
that

(3.1) #SL(2,Z/p"Z) = p>* - p*" %

Note that by Proposition 2.1 the group I'(p™) is a (normal) subgroup of A.(p").
The goal of this section is to compute the cardinality of the group A,.(p")/T'(p").
We will start by giving several lemmas.

LEMMA 3.1, We have that
sy = {(§ %) €S2/ a) o - a -t anas i ).

ProoF. This follows directly from Proposition 2.1 using the reduction modulo
p" map . O

LEMMA 3.2. Let n > r > 0 be integers and suppose thet p is an odd prime.
Then we have that

n ny QPH-" if n < 2r,
#A(p )/P(p )_{ 2p3r else.
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PrOOF. Using Lemma 3.1 and the assumption that p is odd, it is enough to
count the number of triples (a,b,d) € (Z/p"Z)? satisfying p™lad—1, p" "la—d and
pn—rlbpr.

We claim that the number of (a,d) € (Z/p"Z)? satisfying p"|ad—1 and p"~"|a—
d equals 2p". From the conditions, it is clear that p"""|a? — 1, which implies
that @ = £1 (mod p*~"). This leaves exactly 2p” possibilities for a. Given any
a satisfying the last congruence, there exists exactly one d € Z/p"Z such that
p"ad — 1 and by reducing modulo p"~" we see that d = +1 = a. This means that
p""|a — d is satisfied for this d as well.

We claim that the number of b € Z/p™Z such that p”~7|bp" is equal to p™ if
n < 2r and equal to p?" if n > 2r. Indeed, if n < 2r, the condition p"~"|bp" is
always satisfied, so that all b’s in Z/p"Z are possible. If n > 2r, then the condition
simplifies to p™~27|b, meaning that all p>" multiples of p"~%" in Z/p"Z are solutions.

Multiplying the number of possibilities for (a,d) with that for b, the lemma
follows. [

LEMMA 3.3. Let n > r > 0 be integers. Then we have that

( 92r+1 ifn—r=1,

24 fn=3 andr=1,
92r+3 ifn—r=2andr>1,
25 ifn=4andr=1

n ny _ !
g2r+s ifn—r=3 andr > 2,
nH 42 yfp >3 and n < 2r,
o3r+3 fn—r>3 andn > 2r

\

PRroOF. Using Lemma 3.1 it is enough to count the number of triples (a,b,d) €
(Z/27Z)? satisfying

1) 2"|ad — 1,

2) 2" "la —d — b2" and

3) 2n=r=1b2r.

Since 277 1[b2", we see that 42" = Omod 2"~" or b2 = 277""! mod 2°7".

Combining with 2), we see that d = amod 2" or d = a + 27"} mod 2*™".
Substituting in 1) gives that > = 1mod 2"~ or a? = 1 + a2*""! mod 2*7".
Since from 1), we can deduce that a is odd, the latter congruence simplifies to
aZ =1+ 27" mod 2"~". We now distinguish several cases.

Case 1, n — r = 1. In this case all solutions are characterized by choosing a €
Z/2"Z to be odd, d its multiplicative inverse modulo 2" and arbitrary b € Z/2"Z.
Thus there are 227~ = 227+1 possibilities.

Case 2, n—r = 2. We have seen that a®> = 1 mod 4 or a? = 3 mod 4. The latter
is not possible, so we deduce that a®> = 1 mod 4, which implies that « = d mod 4 and
b2™ = 0 mod 4. All in all we get that we can choose a = +1 mod 4, 42" = 0 mod 4
and d = a~! mod 2. For » = 1 this gives 16 possibilities for (a,b,d) and for r > 1
exactly 22743,

Case 3, n —r = 3. First we get that a> = 1 mod 8 or a® = 5mod 8, but
the latter is again not possible, since 8a? — 1 for any odd number a. This means
that 2" = 0 mod 8. Moreover, the condition that a®> = 1 mod 8 implies that
a = +lor + 3mod 8. Counting similarly as above, we find that there are 32
possibilities for (a,b,d) if r = 1, 256 if r = 2 and 2% if v > 2.
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Case 4, n — r > 3. First we assume that 2" = 0 mod 2"~7", which means
that there are 2% possibilities for b if n > 2r and 2" otherwise. Then we found
that a? = 1 mod 2"~7, which implies that ¢ = Zlor £ 1 + 2* "1 mod 27T,
leaving 4 - 27 possibilities for a. Now we can choose d to be the multiplicative
inverse of @ module 2™ and a direct computation shows that ¢ = d mod 2*~". All
in all we find 2°+7+2 possibilities if n < 2r and 232 if n > 2r, still assuming
that 42" = 0 mod 2"~ 7. Now assume that 52" = 2"~""! mod 2"~". This can
only occur if r < n — r — 1, or equivalently if n > 2r and then the number of
possibilities for b is 227. We saw that a® = 1 + 2"~"~! mod 2"~", implying that
a=+142"""20or+1—-2"""2mod 2" ". As before we choose d to be the
inverse of a, but now we find that d = a + 2"~ ! mod 27", so that condition 2)
is satisfied. Condition 3) is satisfied automatically. We find 2%7+2 possibilities if
n > 2r, but none if n < 2r. In total for case 4, we find 27*t7+2 possibilities for
(a,b,d} if » < 2r and 2% 13 otherwise. O

4. Degrees and structure of Galois closure

Given n > 7 > 0 and a prime p, we will now determine the degree of the Galois
closure of Xo(p™) over Xo(p"). We quote the following well-known facts [9, section
1.6]: Let m be a positive integer. The degree of the covering X (p™) — X (1) equals
p¥™=2(p? — 1)/2, unless p = 2 and m = 1 in which case it equals 6. The degree of
the extension Xo(p™) — X (1) equals (p + 1)p™~!. As a consequence we see that
the degree of X (p™*1) — X (p™) equals p* unless p = 2 and m = 1, in which case it
equals 4. Also the degree of Xo{(p™*!) — Xy(p™) equals p. This together with the
previous results enables us to compute all degrees in the tower obtained by taking
the Galois closure of Xy(p™) over Xo(p”) for running n and fixed r.

LEMMA 4.1. Let n > 7 > 0 be integers, p an odd prime and let X5(p") denote
the Galois closure of Xo(p™) over Xo(p™). Then

plp—1)/2 ifn=r+1,
? ifr+1<n<2r
if n > 2r

deg(X3(p"™) — X5(»™1)) =

7,9

Forn > r + 1, the covering Xj(p") — X5(p™ 1) is elementary abelian.

_ PROOF. From Lemma 3.2 we can calculate all degrees of the coverings X (p") —
X§(p"). Indeed, since —~I € A,(p™) and —I € T'(p"), the only thing we need to do
is divide #A,.(p")/T(p™) by 2. Further, since deg(Xo(p") — X(1)) = (p+ 1)p"*
and deg(X (p") — X (1)) = (p* — 1)p* /2, we find that deg(X(p") — Xo(p")) =
(p—1)p*~1/2. Allin all we now know all degrees of the coverings X (p™) — X} (p™)
for m > r. Combined with the fact that deg(X(p™*!) — X (p™)) = p®, the first
part of the lemma follows. The second part follows directly from Lemma 2.3. O
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LEMMA 4.2. Letn > > 0 be integers and let X5(2") denote the Galois closure
of Xo(2") over Xo(2"). Then

,

ifn=r+1,
ifn=r+2andr>1,
ifn=r+3andr > 2
ifn=r+2andr=1,
ifn=r+3andr=12,
ifn=r+4andr=12,
ifr+4<n<2r+1,
ifn>2r+3andr=1,
fn>2r+2andr=2,
fn>2r+1andr > 2.

deg(X3(2") — X§(2"71)) = <

CO 00 QO b i i = W

\
PRrOOF. The proof is similar to that of the previous lemma, but now we use
Lemma 3.3. ]

LEMMA 4.3. Let n > r > O be integers and p a prime. The extension Xo(p™) —
Xo(p™) is Galois if and only if
() p=2andn—-r=1,
(2yp=2,r>landn—r=32,
B p=2,r>2andn-r=3,
(4) p=3andn—r=1
In all of these cases the Galois group is cyclic.

PROOF. Since deg(Xo(p")} — Xo(p")) = p*~", we can use Lemmas 4.1 and 4.2
to check when this degree is the same as deg(X;(p") — Xo(p")). Assuming the
covering Xo(p") — Xo(p"} is Galois of order p™~", we also see that its Galois group
is To(p")/ A, (p™). However, the element A mod A, (p"), with A as in Corollary 2.2,
has order p™~7. O

5. Reduction mod ¢.

Let p be a prime. Until now, we have assumed that all the modular curves
we considered were defined over the field C. However, it is well known that the
curves Xo(p") have a model defined over Q [6]. Denote by (y» a primitive p™-th
root of unity. The curve X{p™) has a model defined over Q({;») and the covering
X(p™) — X(1) is still Galois and has the same degree as when working over C.
Since the Galois closure of Xo(p™) over Xo(p™) is contained in X (p™), it also has a
model defined over Q((p=} and all degrees computed before are still correct when
working over this field. These models have good reduction module a prime £ if
¢ # p. The Galois covering X (p™) — Xo(p”} is not necessarily Galois after this
reduction, but will be so when we consider it over a field containing a p"-th root of
unity. After having done so, the Galois group will be the same as before reducing
and in particular its degree is the same. All group theoretic arguments used before
are then still valid for the reductions, as long as the field of definition contains a
p"-th root of unity.

The following Lemmas will be useful:

LEMMA 5.1. Let F be a function field over a perfect field K and let f(T) €
F[T) be a separable irreducible polynomial over F. Let o € @ be a root of f(T)
in some fized algebraically closed field @ D F. Let K' be a separable algebraic
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extension of K. Suppose that there exists a place P of F, which splits completely
in the extension F(«)/F. Then the polynomial f(T) is irreducible in FK'(T] and
G(f.F) = G(f,FK') where G(f,F) and G(f, FK') denote the Galois group of f
over F' and FK', respectively.

PROOF. Since there exists a place P of F splitting completely in the extension
F(a)/F, the field K is algebraically closed in F(a). So the polynomial f(T) is
irreducible in FK’[T] (cf. [11, Proposition II11.6.6]). Denote by Z (respectively
Z") the splitting field of f(T) over F (respectively FK’). Let ai,...,a, be all
conjugates of o over F. We have Z = F(ay,...,0n). Since f{T) is irreducible
in FK'[T], the conjugates of & over FK' are also given by «y,...,0n, and hence
Z'=FK'(on,...,a,) = ZK' and therefore

G(f.FK') = G(Z'|FK') = G(Z/Z N FK’).

Since the place P of F splits completely in the extension F{a)/F, it will also split
in the Galois closure Z/F. So the field K is algebraically closed in Z and hence
ZNFK'=F. We obtain

G(f, FK') = G(Z/F) = G(}, F).
O

By use of the primitive element theorem, we immediately get the following

LEMMA 5.2. Let F be a function field over a perfect field K and let E be a
finite separable extension of F. Let K' be a separable algebruic extension of K.
Suppose that there exists a place P of F splitting completely in the extension E/F.
Consider the constant field extensions FK' and EK’ of F and E, respectively.
Denote by GC(E/F) respectively GC(EK'/FK') the Galois closure of the extension
E/F respectwvely EK'/FK'. Then

GC(EK'/FK') = GC(E/F)K’,

i.e., taking the Galois closure of such an extension commutes with extending the field
of constants. Moreover the Galois groups of GC{EK'/FK')/FK' and GC{E/F}/F
are isomorphic.

Denote by F, the function field of the curve Xg(p™) reduced modulo a prime £.
Note that its constant field is Fy. We would like to use Lemma 5.2 in order to gain
information on GC(F,/F,). In order to do so, we need that the extension F/F,
contains a completely splitting place, but this is not true in general. It is well known
however, that if we extend the constant field to Fye, the tower F,. C Fryy C -+ is
asymptotically optimal. So if the constant field is Fy2, we can expect completely
splitting places. The following lemma confirms this for a large class of cases.

LEMMA 5.3. Suppose that £ and p are two primes such that £ > 13 and £ # p,
and let 0 < r < n be two integers. The extension F,Fe /F,.Fp contains a completely
splitting place.

Proor. Let F_ ¥ denote the function field arising by reducing the modular
curve X (1) modulo £ and then extending the constant field. The reason the function
fields F,F;» have many rational places is that the supersingular j-invariants in
F_iFg are Fya-rational and all places in F,,Fy2 lying above any of these j-invariants
different from 0 and 1728 are Fyz-rational as well (see Lemma 5.3 in [1]}). On the
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other hand, it is well known that the only branching in F,/F_; occurs at j = 0,
3 =1728 and j = oo.

In order to prove the lemma it is therefore enough to show that there exists
a supersingular j-invariant different from 0 and 1728. Such a j-invariant always
exists if £ > 13 (see [10, section V.4]). ]

6. Galois closure of a tame tower

Explicit equations for some of the towers considered above (and also for some
other modular towers) were given by Elkies (see [2]). In particular let p = 2 and
consider the tower

coo = Xp(2%) = Xp(2°) — Xo(2Y).

Let £ be a prime such that £ > 13. For ¢ > 0 let M; be the function field of
the curve Xo(2°*4), with the field of constants extended to Fyz. Hence we have a
corresponding tower of function fields
M = (Mo, M1, My, ...)
over Fp. This tower can be recursively defined as follows (see [2] and (3, Remark
5.9]): My = Fg(20) is the rational function field and M,, = M,_,(z,) where
2
1
xi — Tn-1 +
2$n.—l

for n > 1. This tower was studied in detail in [3]. It is an asymptotically optimal
tower over Fy2. Following Section 5, we can use the group theoretical arguments
considered before to obtain detailed information about the Galois closure of the
tower M. For ¢ > 0 let G; be the Galois closure of M; over My and consider the
sequence of function fields G = (G, G, ...) called the Galois closure of the tower

M over Mp. Let
o 00
Mm={JM and &={JG;,
i=0 3=0
and let Q be a fixed algebraically closed field containing 9.

THEOREM 6.1. (1) G is a tower over Fy.
(2) The tower G is optimal; i.e., for the limit A(G) of G we have

AMG) =AMy =¢£-1.
(3) There exist two embeddings o, 7 of M into Q over My, such that
Gi = M,' . O’(Mi) - T(Mi), fOT‘ 7 2 0,
and
&= (M) - 7(M).
(4) The extension Mz/Mpy (and more generally the extension M 3/M; for
t > 0) is a cyclic Galois extension of degree 8. In particular we have

Ga = M;.
(5) We have
2 if1<i<3,
[G,’!Gi_1]= 4 f3<i<h,
8 ifb<i.

(6) The G;/Gi—1 is an elementary abelian 2-extension fori> 1.
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PROOF. (1) Since there is a place of My splitting completely in the tower
M, the result follows from [4, Prop. 2.1]
(2) See (4, Rem. 2.4].
(3) This follows directly from Corollary 2.2 by noting that the matrix

1 0
4=(a )

is the same at every step.

(4) This follows from Lemma 4.3, with p = 2,r = 4.

(5) This is just a special case of Lemma 4.2. _ '

(6) The Galois groups of the extension G;/G;_1 is given by A.(p*)/ A (P
So it follows from Lemma 2.3 that this extension is an elementary abelian

2-extension.
O

Next we will give some alternative generators and equations for the tower con-
sidered above. Let F = (Fy, F1, F2,...) be a tower of function fields over a field K,
which is recursively defined by the polynomial f(X,Y) € K[X,Y];ie, Fo=K (9?0)
is the rational function field, and for every n > 1, we have F,, = Fo_1(z,) with
f(:nn_l,:cn) =0.

So in particular we have

Fﬂ. = FD(.’E]_,Q:Q, .. 73:11)
for all n > 1. It turns out that for most of the interesting towers we in fact have
Fn = Fo(:l:n).
The following Lemma gives an easy criterion for this to be the case.

LEMMA 6.2. Let F = (Fo, F1, Fs,...) be a tower of function fields over a field
K recursively defined by f(X,Y) € K[X,Y)]. Suppose that there exists a place P of
Fy such that the place P is totally ramified in the ertension Fy, /Fo and the unique
place Q of F, lying above P is unramified over K (xn). Then F, = Fo(zn).

PROOF. We have Fy C Fy(z,) C F,,. Since the place Q of Fy is unramified
over K(z,), it will be unramified over Fp(z,). But since @ is totally ramified in
the extension F,/Fy, we have Fo(x,) = Fu. O

Let £ be an odd prime and consider the tower M = (Mg, My, ...} over Fpe

above, which is recursively defined by
yro Xt
2X

From the ramification in the tower M and Lemma 6.2 it follows that M,, = Mo(xn).

By Theorem 6.1 for n > 0 the extension My3 /My, is a cyclic Galois extension
of degree 8. It is hence natural to consider the tower M’ = (Mg, M, M; .. ) with
M! = Mz, This is in fact just an alternative way of defining the tower M, where
a step in this new description corresponds to 3 steps in the tower M. Forn > 0
let =/, = x3,. Clearly for n > 1 we then have M, = Mg(z;,) = M!_,(zh). It can
be verified that the minimal polynomial of z, over M;,_; is given by

TS _ T4 _ (1:;1—1 - 1)8 c M! [T].
12827 (z2_, + D{zj_, + 1)~ "7
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Letting f(T) = T® — T* we note that

(g — 1)° 1
1282, y(zi_g + DEn + D 15y (::::ji) '
]Ijt; hence follows that the tower M’ = (M}, M{, M}, ...} can be recursively defined
Fv)= W
1

where f(T) = T% — T
As mentioned before, the steps M) /M), _, are cyclic Galois extensions of degree
8. This can be seen explicitly. Define

2z,
Qp = ——
TP
Then o, € M, and it can be shown by an explicit calculation that
32z,

8 _

(61 o G+ D
Denote by F the place of M} that is the pole of function zf, by @ a place of
M, _, lying above P in the extension M},_,/M} and by R the place Q@ NFp(z!,_;)
. From the ramification structure of the tower M, it follows that R is the pole of
the function z],_; and e(Q|R) = 1, see [3]. From this and equation (6.1) it then
follows immediately that M, = M),_;(a,).

We conclude by analyzing a property of the splitting locus of the tower A’
For an odd prime number ¢ we define the Deuring polynomial

{(8-1)/2 L4 1\ 2
H(X)= (T) - X' € FolX).

=0
The splitting locus of the tower M (and hence of M’) is given by all o € F, such
that H(a} = 0, see [3]. By the recursive definition of the tower this means that
if H(a*) = 0 and 3 € F, satisfies 5% = (a® + 1)/2a, then H(#*) = 0. Considering
the above description of the tower M’, we then get the following property for the
Deuring polynomial H(X): let @ € Fy such that H{a*) = 0 and let 8 € F; such
that f(8) =1/(16 - f(2t})). Then H(8*) =0.
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Codes defined by forms of degree 2 on quadric varieties in

P4(F,)
Frédéric A. B. Edoukou

ABSTRACT. We study the functional codes of second order defined by G.
Lachaud on X C P4(F,) a quadric of rank({X’)=3,4,5. We give some bounds for
the number of points of quadratic sections of X, which are the best possible
and show that codes defined on non-degenerate quadrics are better than those
defined on degenerate quadrics. We also show the geometric structure of the
minimum weight codewords and estimate the second weight of these codes.
We also prove by using the theorem of Ax on the zeros of polynomials over a
finite field that all the weights of the codewords of the codes Cz(X) defined in
any quadric in P*(F,) are divisible by g. The paper ends with a conjecture on
the number of points of two quadrics in P*([F,} with no common hyperplane.

1. Introduction

We denote by F, the field with ¢ elements. Let V = A"*!(F,) be the affine
space of dimension n + 1 over F, and P*(F,) = II, the corresponding projective
space. Then

T =#PF) =¢" +¢* '+ ...+ 1
We use the term forms of degree h to describe homogeneous polynomials f of degree
h, and Z{f) denotes the zeros of f in the projective space P"(F,). Let Fp(V) be
the vector space of forms of degree h in V = A"*Y(F,), X C P*(F,) a variety and
| X| the number of rational points of X over F,. Let W; be the set of points with
homogeneous coordinates (zg : ... : z,) € P*(IF;) such that ; = 0 for j < ¢ and
z; # 0. The family {W;}o<i<n is a partition of P*(F,). The code Cn(X) is the
image of the linear map ¢ : Fp(V) — ]FLXl, defined by ¢(f) = (¢x(f})zex, where

ez(f) = f(zo, .y za)/z:® with z = (z¢ : ... : &) € Wi. The length of Cr(X) is
equal to {X|. The dimension of Cy(X) is equal to dim F,(V) — dim ker ¢, where
(1.1) dim Fr(V) = ( ”Zh )

The minimum distance of Cr(X) is equal to the minimum over all non null poly-
nomials f of | X|— |X N Z(f).
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